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Abstract
Parameter-sharing (PS) techniques have been
widely adopted in cooperative Multi-Agent Rein-
forcement Learning (MARL). In PS, all the agents
share a policy network with identical parameters,
which enjoys good sample efficiency. However,
PS could lead to homogeneous policies that limit
MARL performance. We tackle this problem from
the angle of gradient conflict among agents. We
find that the existence of futile neurons whose up-
date is canceled out by gradient conflicts among
agents leads to poor learning efficiency and di-
versity. To address this deficiency, we propose
GradPS, a gradient-based PS method. It dynami-
cally creates multiple clones for each futile neu-
ron. For each clone, a group of agents with low
gradient-conflict shares the neuron’s parameters.
Our method can enjoy good sample efficiency by
sharing the gradients among agents of the same
clone neuron. Moreover, it can encourage di-
verse behaviors through independently updating
an exclusive clone neuron. Through extensive
experiments, we show that GradPS can learn di-
verse policies with promising performance. The
source code for GradPS is available in https:
//github.com/xmu-rl-3dv/GradPS.

1. Introduction
Many real-world tasks can be modeled as coopera-
tive Multi-Agent Reinforcement Learning (MARL) prob-
lems (Hernandez-Leal et al., 2019), where multiple agents
must collaborate to achieve a common goal (Rashid et al.,
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2020). MARL is challenging due to issues such as non-
stationary (Qiu et al., 2021), partial observability (Oliehoek
& Amato, 2016), scalability, credit assignment (Foerster
et al., 2018; Rashid et al., 2018), low sample efficiency,
etc. Researchers have proposed various methods to address
these issues. Many of them adopted the Centralized Training
with Decentralized Execution (CTDE) paradigm (Oliehoek
et al., 2008), where agents are trained jointly with central
information, but the agents execute their policies decentrally
with the agent’s local observation. In the CTDE paradigm,
Parameter Sharing (PS) (Rashid et al., 2018) is a widely
adopted technique in MARL to alleviate the scalability and
low sample efficiency issues.

In PS, all agents share a neural network policy determined
by the same set of parameters. PS is effective for MARL
tasks where the agent behaviors are identical or similar.
However, PS can lead to homogeneous policies, limiting the
diversity of agent behaviors and the overall capabilities of
joint policies.

Existing studies on PS can be classified into four categories:
(1) full PS approaches where all agents share the same pa-
rameters, the identity of an agent is used as input to the
policy to increase policy diversity (Rashid et al., 2018; Qiu
et al., 2021; Wang et al., 2020), (2) group-based PS where
agents are group (either dynamically or statically) into mul-
tiple groups based on the behaviors (e.g., trajectories), each
group shares the same set of parameters (Christianos et al.,
2021; Li et al., 2024b). (3) partial PS where the neural
network of the policy is divided into a shared part and an
individual part (Li et al., 2021), (4) mask-based PS where
the agent policy is determined by the combination of a
shared policy network and an agent-specific mask that can
be static (Kim & Sung, 2023) or dynamic (Li et al., 2024d).
Our work is a neuron-based PS approach that addresses the
problems of PS from the angle of neuron gradient conflict
among agents.

Neuron gradient refers to the gradient of a loss with re-
spect to a neuron. The gradient of the neuron represents
the change in the knowledge learned by the agent. In a PS
network, agents could lead different knowledge which lead
to gradient conflict. The neuron gradient conflict indicates
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gradient directions for a neuron among some agents are
different. Regarding learning efficiency, gradient conflict
is harmful, as it cancels out the learning progress of agents.
Regarding policy diversity, gradient conflict could be ben-
eficial, suggesting that agents have learned different skills
and knowledge.

In this work, we study the gradient conflict in PS networks.
We find the existence of futile neurons whose updates are
canceling out significantly by gradient conflict. We find
that these futile neurons can affect the expressiveness of the
MARL policy network.

We propose a method, Gradient-based Parameter Shar-
ing (GradPS), to resolve futile neurons in the PS network.
GradPS records the gradient conflicts between agents for
the last T interval during training. For each futile neuron,
GradPS dynamically creates K clones for the neuron. For
each clone, a group of agents with low gradient conflict
shares the parameters of the clone. Its parameters are up-
dated according to the gradient of the agents in the group.
A group can consist of multiple agents, and their gradi-
ents (knowledge) with respect to the neuron can be shared
among the group. A group can consist only of a few agents,
which helps the agents to develop their specialized skills.
As agent policies evolve, cloned neurons assigned to groups
may once again become futile, while previously conflicting
agents may no longer exhibit conflicts. To adapt to these
changes, we re-evaluate inter-agent conflicts and restore a
subset of cloned neurons with minimal conflicts to their
original state, enabling a dynamic regrouping process.

Through extensive experiments on multiple benchmarks,
we show that GradPS performs better than state-of-the-art
PS methods. GradPS can learn diverse policies through
utilizing the gradient conflict information.

2. Background
2.1. Dec-POMDPs

We consider Decentralized Partially Observable Markov
Decision Processes (Dec-POMDPs) (Oliehoek & Am-
ato, 2016) in modeling cooperative multi-agent re-
inforcement learning (MARL) scenarios. A Dec-
POMDP can be formally described by the tuple G =
⟨S, {Ui}Ni=1, P, r, {Oi}Ni=1, {σi}Ni=1, N, γ⟩, where N rep-
resents the set of agents, S is a finite set of states, and Ui

is the set of actions available to agent i. At time step t,
each agent i chooses an action ut

i ∈ Ui, forming a joint
action ut ∈ UN = U1 × . . . × UN . This leads to a
transition to a new state st+1 ∼ P (·|st,ut) and a joint
reward rt. In consideration of partial observability, each
agent can only access an individual observation oti ∈ Oi,
which is drawn from oti ∼ σi(·|st). γ denotes the dis-
counting factor. Each agent acts base on individual policy

πi(ui|τi), τi = (Oi × Ui)
∗ represents agent’s local action-

observation history. the global action-observation history
is denoted as τ ∈ T N := τ1 × . . . × τN , on which it con-
ditions the joint policy π =< π1, . . . , πN >. The joint
policy π has a joint action-value function: Qπ (st,ut) =
Est+1:∞,ut+1:∞ [Rt | st,ut], where Rt =

∑∞
i=0 γ

irt+i is
the discounted return.

2.2. Gradient Conflict

Gradient conflict is a common phenomenon in multi-task
learning (MTL), where multiple different but related tasks
are jointly trained by sharing a model (Caruana, 1997). One
implementation of MTL is to jointly train a network for all
tasks, with the goal of discovering and leveraging relation-
ships between tasks.

Learning multiple tasks may result in worse overall perfor-
mance and data efficiency. One reason for this is gradient
conflict where the gradients of multiple tasks diverge, such
that the update for one task negatively affects the other. Re-
searchers (Yu et al., 2020) consider the gradient conflict for
a vector, which is defined as follows.

Definition 1 (Vector Conflicting Gradients (Yu et al., 2020)).
For a vector, the gradients gi and gj (i ̸= j) for tasks i and
j are said to be conflicting with each other if cosϕij < 0,
where ϕij is the angle between gi and gj .

Conflicting gradients pose a challenge to optimizing the
multi-task objective, as different gradients of individual
tasks may impede the learning of knowledge.

Here, vector gradient conflict refers to the conflict between
gradient vectors composed of neuron gradients across dif-
ferent tasks in a neural network. In contrast, the neuron
gradient conflict proposed in this paper specifically pertains
to conflicts in gradient values for a particular neuron among
different agents within a PS network.

3. Related Work
3.1. Parameter Sharing (PS)

Multi-Agent PS Parameter sharing has been widely used
in MARL algorithms due to its simplicity and high sample
efficiency. However, it could lead to homogeneous agent
behaviors. ROMA (Wang et al., 2020) adopts a full PS
approach, where agent behaviors are encoded into roles rep-
resented by a hidden vector. Agent policies are sampled
from the hidden vector. SePS (Christianos et al., 2021)
adopts a group-based PS approach by creates multiple sets
of parameters each shared by a group of agents. Agents are
clustered into groups based on their behaviors (trajectories)
in the beginning of training. SNP (Kim & Sung, 2023) em-
ploys a partial PS approach. It creates a big neural network,
and then each agent builds its policy based on part of the
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network through network pruning. AdaPS (Li et al., 2024b)
combines SNP and SePS by proposing a cluster-based par-
tial PS approach. Kaleidoscope (Li et al., 2024d) adopts
a mask-based PS approach, an agent policy is determined
on both a full PS network and a mask, which is learned
dynamically for each agent.

Multi-Task PS Parameter sharing is also widely used in
multi-task learning (MTL), which learns a single model
for multiple different tasks. By PS among different tasks,
MTL methods can learn more efficiently with an overall
smaller model size compared to learning with separate mod-
els. PCGrad (Yu et al., 2020) found that parameter sharing
of different tasks in MTL produces gradient conflicts and
hurt performance. To avoid gradient conflicts, CAGrad (Yu
et al., 2020) seeks an update vector that maximizes the worst
local improvement of any target within the average gradi-
ent neighborhood, optimizing the minimum reduction rate
of any specific task loss. Gradient Vaccine (Wang et al.,
2021c) uses task relevance to set gradient similarity goals
and adaptively aligns task gradients to achieve these goals.
GradNorm (Chen et al., 2018) balances training in deep
multi-task models by dynamically adjusting the gradient
magnitude among tasks. Recon (Guangyuan et al., 2023)
selects the layers with high conflict scores and turns them
into task-specific layers.

3.2. Neuron Learning Efficiency

Redo (Sokar et al., 2023) identifies the existence of dormant
neurons, whose activation score is low during the train-
ing procedure. The dormant neurons lead to poor learning
efficiency. Reset (Igl et al., 2021; Nikishin et al., 2022)
improves the plasticity of neural networks through peri-
odic resets of the weights of neurons in the last layer of a
neural network. (Dohare et al., 2024) proposes continue
backpropagation algorithm which periodically re-initiates
some less-used neurons. Reborn (Qin et al., 2024) perturbs
parameters of dormant neurons in MARL mixing network.

Our work analyzes the learning efficiency of MARL neu-
rons based on gradient among different agents. Moreover,
we identify the existence of futile neurons, a special type
of neurons whose update are canceled mostly by gradient
conflicts.

4. The Futile Neuron Phenomenon in MARL
In this section, we study the gradient conflict in the Parame-
ter Sharing (PS) network for MARL. We find the existence
of gradient conflicts in PS, identify futile neurons whose up-
dates are affected significantly by the gradient neurons, and
find that futile neurons hurt MARL network expressiveness.

We study the most popular PS (Sunehag et al., 2018; Wang
et al., 2021a; Rashid et al., 2018; Shen et al., 2022), where
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Figure 1: Gradients of a neuron for different agents: VDN
(Left) and QMIX (Right) in the SMAC 3m environment.

: Predator

: Shared knowledge

: Individual knowledge

: Prey

Figure 2: Two agents collaborate to capture a prey in a
predator-prey environment.

the parameters of the agent policy are shared among all
agents. The observation of each agent is concatenated
with its agent identity to increase policy diversity. The
neural network of the PS agent network consists of two
fully-connected layers and a GRU layer. We analyze the
neurons in the fully connected layers of the agent network.

4.1. Neuron Gradient Conflict Exists in MARL

In this section, we study the gradient of the temporal differ-
ence loss with respect to neurons for different agents with
the VDN and QMIX methods.

Definition 2 (Neuron Gradient). During a target network
update period, the accumulate sum of the gradients gener-
ated by the observation data of agent i on neuron n after
backpropagation through loss is the neuron gradient ϕi.

In Figure 1, the gradient of two neurons for the SMAC
3m environment with the VDN and the QMIX method are
plotted in the left and the right part of the graph, respectively.
Different agents could have different gradients, which could
be negative or positive. The aggregated gradient for the
neuron (depicted as the sum) could become zero due to
gradient conflict. For Figure 1, the RMSProp optimizer is
used, we show in Appendix Figure 1 that gradient conflicts
exist for the SGD and Adam optimizer too.

Gradient conflicts are common in multi-agent reinforcement
learning. Even if two predators cooperate to hunt the same
target, the learned knowledge may still conflict due to the
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Figure 3: Average Neuron Gradient Conflict of neurons for
each agent: 5m_vs_6m (Left) and MMM2 (Right).

different initial positions in the environment. As shown in
Figure 2, the agents need to learn shared knowledge and
individual knowledge. Differences in individual knowledge
may lead to conflicts in certain neurons. The conflicting
neuron gradients cancel each other out, which slows down
the learning process of neurons. We define Neuron Gradient
Conflict as follows.

Definition 3 (Neuron Gradient Conflict (NGC)). During a
target network update interval T , for neuron n, the accumu-
lated gradient of agent i at the activation layer is ϕT

i , and
the gradient of agent j is ϕT

j . The gradient conflict between
agents i and j on this neuron within the T interval is defined
as:

CT
ij =

∑
T

(|ϕT
i |+ |ϕT

j | − |ϕT
i + ϕT

j |) (1)

We study the NGC CT
ij of all the neurons in the first FC

layer for interval T with QMIX. Figure 3 (left) shows the
average value of the NGC for the 5m_vs_6m environment.
The value of cell (i, j) of the table represents the average
NGC among agent i and j. The darker the color of the
cell in the table, the greater the conflict between the agents.
It can be seen that there are gradient conflicts in such an
environment where agents belong to the same agent type.
Moreover, we find that the aggregate NGC behaviors among
different agents vary. The conflict among agent 0 and 1 is
low as their behavior are similar. The average NGC between
agent 0 and agent 4 is high as the learned behaviors of them
are different.

Figure 3 (right) shows the average NGC for the SMAC
MMM2 environment, where agents have heterogeneous
agent types. Agents 0 and 1 belong to marauder agents,
agents 2 to 8 are marine agents, and agent 9 is a medivac
agents. The agent policies should be diverse to finish such
task. It can be seen that the mean NGC among all the marine
agents (agents 2 to 8) are small compared to the conflicts
among other agent types. Agent 9 has a large gradient
conflict with most of the agents, as it is a healing agent
rather than a combat agent (e.g., marine). The NGC among
agents can be used as a measure to distinguish the role/task
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Figure 4: Neuron Gradient Efficiency in homogeneous
(Left) and heterogeneous (Right) SMAC environments.
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Figure 5: Percentage of Futile Neurons in homogeneous
(Left) and heterogeneous (Right) SMAC environments.

of agents during MARL task training.

4.2. Futile Neurons in MARL

We study the learning efficiency of neurons in terms of the
NGC among agents. It is defined as follows.
Definition 4 (Neuron Gradient Efficiency (NGE)). During
the last T periods of the target network update interval,
for neuron n, the accumulated gradient for agent i of the
update interval T is ϕT

i . The Neuron Efficiency for neuron
n is defined as follows:

en =
1

T

T∑
t=1

(|
∑
i

ϕT
i |/

∑
i

|ϕT
i |) (2)

NGE is a value among 0 and 1. To evaluate NGE in MARL,
we conduct experiments in homogeneous SMAC environ-
ments with only one agent type. As is depicted in Figure 4
(left), with the increase of training time, the neuron effi-
ciency decrease. This finding suggests that with the increase
of the training time, the gradient conflicts among different
agents increase, which may lead to inefficient learning. In
Figure 4 (left), different environments with an increasing
number of agents are considered. There are 3 and 5 agents
in the 3m and the 5m environments, respectively. We find
that with increasing number of agents, the neuron efficiency
decreases. This is due to the fact that more agents could
lead to more gradient conflicts.

In Figure 4 (Right), three environments with the same num-
ber (i.e., 9) of agents are shown. There are 1, 2, and 3 types
of agents in the 9z, 3s6z, and 1c3s5z environments, respec-
tively. We find that with the increase of agent type, the NGE
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Figure 6: (a) Percentage of futile neurons, (b) MSE of
reconstructed Q value

decrease. For some neurons, their NGE can be very low.
Such neurons are refer to Futile Neurons defined as follows.

Definition 5 (Futile Neuron). A neuron n is a futile neuron
if it satisfies the following condition.

en < α (3)

where 0 < α < 1 (i.e., α = 0.2). To ensure fairly display
of futile neurons across different scenarios, we fixed α to
a constant threshold in experiments. For practical imple-
mentation, more flexible methods such as median absolute
deviation (MAD) can be employed to dynamically identify
futile neurons.

Figure 5 depicts the percentage of Futile Neurons for dif-
ferent SMAC environments. It shows that the percentage
increases with time. And such percentage is non-neglect-
able. Figure 5 (left) shows that with an increasing agent
count, the futile neuron percentage increases. Such a per-
centage increases with the number of agent types in Figure 5
(right).

4.3. Futile Neurons Could Hurt Network Expressiveness

The expressiveness of value factorization functions (Rashid
et al., 2018; Son et al., 2019) is shown to significantly im-
pact MARL performance. In this section, we conduct exper-
iments to study whether futile neurons hurt agent network
expressiveness. We conduct experiments on multiple simple
one-step matrix games. In these games, there are only two
agents with only one time step, all agents shared a team
reward without receiving separated rewards.

We build the payoff matrix as a sum of two utility functions,
and use VDN as the value factorization function, which can
model the summation relationship. The payoff matrix is
constructed as Q(u1, u2) = f1(u1)+f2(u2), where u1 and
u2 are the actions taken by agent 1 and 2, respectively, and
f1 and f2 are two utility functions. f1(A) = 0, f1(B) = 1,
f1(C) = 2, f1(D) = 3. f2 = w · f1, where w ∈ R .
Each matrix games differ by the value w. Please refer to all
matrices in Appendix D.2.3.

Figure 6 (left) shows the percentage of futile neurons during

the training process. When f1 = f2 (w = 1), there is
basically no futile neuron, while in other scenarios, futile
neurons gradually appear. The larger the discrepancy w
from 1, the earlier the appearance of futile neurons. More-
over, we find that the time of the appearance of futile neu-
rons correlates with the time that the MSE of the Q values
is close to convergence, as shown in Figure 6 (right). For
example, at step around 0.65k, the futile neurons for the
curve f2 = f1 × 0.5 suddenly increase. At the same time,
the MSE for f2 = f1 × 0.5 converges, and the loss does not
drop thereafter.

From Figure 6, we find that the appearance of futile neurons
prevents the further convergence of the MSE loss for the
matrix game. The gradient conflicts generated by knowledge
differences will lead to the generation of futile neurons. It is
possible that the gradient conflicts for these futile neurons
cancel out most of the learning process, which hurts the
expressiveness of the MARL networks.

5. Method
In this section, we propose the GradPS method to address
the futile neuron phenomenon in MARL. The overview of
the GradPS algorithm is described in Algorithm 1, with
a schematic diagram shown in Figure 7. GradPS groups
agents into K distinct groups for each futile neuron, and the
parameters of group are updated independently to reduce
gradient conflicts. Thus, the gradient conflict for futile
neurons is alleviated. We describe the key operation of the
algorithm in the following sections.

5.1. Conflict-Based Grouping

The appearance of futile neurons indicates significant con-
flicts in the agents during recent periods. Gradient conflicts
Gradient conflicts correlate with diverse observations and
actions of individual agents, which gradient descent meth-
ods struggle to resolve effectively. The gradients of agents
with larger conflicts are more likely to cancel each other
out, so we group agents with smaller conflicts based on the
conflict matrix.

For each target update interval, the neuron gradient effi-
ciency of each neurons is recorded, and futile neurons are
identified. To reduce gradient conflicts among agents, we
cluster agents into K groups based on their gradient conflict
values accumulated over T periods, aiming to minimize the
total gradient conflict within each group. The clustering
is performed based on the average gradient conflict among
agents.

Specifically, we convert the conflict matrix into an affinity
matrix and use the spectral clustering algorithm for grouping
the agents. Please refer to Appendix C.2 and C.3 for details
about the recording of gradients and the clustering.
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Figure 7: The schematic plot of GradPS. Each futile neurons is duplicated into K clones, each is shared by distinct group of
agents. If the difference among clones are small, they will be restored into a normal neuron.

Algorithm 1 GradPS Algorithm
1: Get the accumulated gradients for all the neurons.
2: Identify the Futile Neurons
3: for Each futile neuron n do
4: Grouping agents into K groups according to gradient

conflicts (Sec. 5.1)
5: Makes K clones of the futile neuron n, and assign

each clone to a distinct group of agents.(Sec. 5.2)
6: end for
7: if Restore operation required then
8: Calculate the variance of each neuron
9: Restoring the clones to a normal neuron (Sec. 5.3)

10: end if

5.2. Group-Based Neuron Clone

After the grouping operation, for a futile neuron n in linear
layer, its input weights Win and bias bin are cloned K time.
Each clone j is shared among the group j of agents, and the
update of clone j is independent of other clones. Each agent
belongs to a distinct group.

The output of clone j for the futile neuron n is defined as
W j

inx + bjin. Each clone does not individually connect to
the neurons in the next layer, their outputs are aggregated
into F (

∑K
j=1 W

j
inx + bjin) as the input for the next layer,

where F is the activation function.

During training, the input weights W j
in for the clone neuron

j are updated independently from other clones. As the
grouping operation has made the gradient conflict in each
group small, the update of W j

in for the clone neuron j enjoys
a better learning efficiency than without sharing. Moreover,
agents can learn diverse policies without gradient conflict
within a clone neuron. Although the efficiency and diversity
improvement comes at the cost of more neurons, we will

show in the experiment section that the cost is low.

5.3. Group Parameter Sharing Restoring

As agent policies evolve, cloned neurons assigned to groups
may once again become futile, while previously conflicting
agents may no longer exhibit conflicts. To adapt to these
changes, we re-evaluate inter-agent conflicts and restore a
subset of cloned neurons with minimal conflicts to their
original state, enabling a dynamic regrouping process.

In each restoration period, with a probability of ρ times the
percentage of futile neurons, we select the group of clones,
whose parameter variance are smallest, for restoration. The
restoration process changes the weights of each clone to the
same values.

It is possible to simply set the weights of the clones as
the average weights of all the groups. However, such an
operation could lead to forgetting learned knowledge among
different groups. To this end, we add a regularization loss
for parameter restoration and use a separate SGD optimizer
for gradual parameter restoration. The regularization loss is
defined as follows.

Lreg =

K∑
j=1

(
|W j

in −Win|+ |bjin − bin|
)

(4)

where Win and bin are average values among groups. After
M updates by the SGD optimizer, when the group’s param-
eters converge, we merge the clones and restore them into a
normal neuron that is shared among all agents.

6. Empirical Evaluations
We show that GradPS performs better than the other param-
eters sharing (PS) methods for the SMAC and the Predator-
Prey benchmarks. GradPS can improve the performance
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Figure 8: GradPS performs better than other PS methods: (a-c) The test win rate and the futile neuron percentage (d-f)
of the 2c_vs_64zg, 27m_vs_30m, 3s5z_vs_3s6z environment. (g-i) The test win rate of the 5m_vs_6m, MMM2, and
1c3s8z_vs_1c3s9z environments.

of MARL algorithms by reducing the percentage of futile
neurons in PS networks. GradPS is able to learn diverse
policies thanks to identifying hidden properties of agents
based on gradient conflicts, and GradPS works for multiple
MARL agent networks. Please refer to Appendix D.3 for a
detailed experimental setup and more experimental results.

6.1. Environmental Setup

Environments. The StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019) is a popular benchmark
used extensively in MARL, where multiple ally units con-
trolled by MARL algorithms aim to defeat enemy units
controlled by the game’s built-in AI. Predator-Prey simu-
lates a grid world where multiple predators collaborate to
capture preys, which consists of stag and hare. Capturing a
stag can lead to a higher reward than capturing a hare, but it
requires close collaboration between two predators. In this

experiment, some agents hold hidden property that they will
receive the same reward for capturing a hare as capturing
a stag. Such hidden property cannot be observed by any
agents. We evaluate three environments of Predator-Prey:
small, medium, and large. Each of them consists of different
numbers of agents with varying grid sizes.

Baselines and training. We compare GradPS with vari-
ous parameter sharing methods including (1) Full Parame-
ter Sharing (FuPS), (2) Full Parameter Sharing with index
(FuPS+id), (3) Selective Parameter Sharing (SePS) (Chris-
tianos et al., 2021), (4) Structured Network Pruning with
parameter Sharing (SNP) (Kim & Sung, 2023), (5) Kaleido-
scope (Li et al., 2024d), (6) No Parameter Sharing (NoPS).
We evaluate the performance of GradPS and all these meth-
ods with the QMIX (Rashid et al., 2018) value factorization
function. Detailed implementations and parameter configu-
rations are available in Appendix D.1.
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Figure 9: GradPS performs better than other PS methods on Predator-Prey: (a) Small, (b) Medium, (c) Large
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Figure 10: Performance of GradPS based on PyMARL3 with more environmental steps. (a) Predator-Prey Large, (b)
1c3s8z_vs_1c3s9z, (c) 3s5z_vs_3s6z
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Figure 11: The average gradient conflicts among agents
for the (a) small, (b) medium, and (c) large maps of the
predator-prey benchmark. The darker the cell, the larger the
gradient conflict. The agents with the hidden property in the
small map are 2 and 3, in the medium map are 1, 5, and 6,
and in the large map are 0, 9, 10, 12, and 13. Agents can be
divided into two groups, with smaller conflicts within each
group. GradPS successfully distinguishes agents with the
hidden properties through gradient conflicts.

6.2. GradPS Is Superior to Other PS Methods

The experimental results for various PS methods and
GradPS are shown in Figure 8. For the 2c_vs_64zg, the
27m_vs_30m, the 3s5z_vs_3s6z environments, as is shown
in Figure 8 (a-c), GradPS achieves the best performance in
terms of win rate thanks to its ability to reduce the futile neu-
rons better than other PS methods, as is shown in Figure 8
(d-f). For the 5m_vs_6m, MMM2, 1c3s8z_vs_1c3s9z envi-

ronments, GradPS performs the best among all the methods
as well. Figure 9 depicts the results for the Predator-Prey en-
vironments. As shown in the graph, GradPS performs better
than other PS methods for the Predator-Prey environments.

In addition, we implemented GradPS based on PyMARL3
and extended the environmental steps, as shown in the Fig-
ure 10. More results are presented in Appendix 7 and 8.

6.3. GradPS Can Encourage Diverse Policies

In real-world scenarios, there may exist unobservable fea-
tures that could significantly influence agent policies. For
some agents (with hidden property) in predator-prey envi-
ronments, capturing a hare can lead to the same reward as
capturing a stag. After carefully inspecting the learned poli-
cies, we find that agents with such hidden property learn to
prefer to capture hares.

Figure 9 shows the comparison with other PS methods. Al-
though FuPS+ID can also learn slightly different behaviors,
this becomes difficult as the number of agents increases.

To analyze such a phenomenon, we depict the average gra-
dient conflict among agents for the last T update periods in
Figure 11. We find that GradPS can distinguish agents with
the hidden property through gradient conflicts and learn di-
verse policies. Agents with the hidden property have a large
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Figure 12: GradPS works for different agent networks (i.e., QPLEX, DMIX, RMIX): (a) 5m_vs_6m, (b) MMM2, (c)
Predator-Prey Medium environment.
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Figure 13: Ablation of different hyperparameters in GradPS. (a) the period of accumulating gradients T . (b) the number of
groups K. (c) the restoration probability ρ. (d) the futile threshold α.

gradient conflict with agents without the property. GradPS
learns different behaviors through the use of the grouping
of cloned neurons. Further, we show that GradPS leads to
less futile neurons in Appendix Figure 5 (e-f).

6.4. GradPS Works for Multiple PS Agent Networks

In this section, we investigate the applicability of GradPS by
validating GradPS’s ability to enhance performance across
various value factorization algorithms (QPLEX, DMIX,
RMIX) in different experimental scenarios (5m_vs_6m,
MMM2, Predator-Prey Medium).

The agent architectures of QPLEX, DMIX, and RMIX fea-
ture a separate value head, distributional function, and risk-
sensitive function, respectively. They are different from
the architecture of agents used in QMIX. According to the
experimental results presented in Figures 12, GradPS can
improve the performance of multiple PS agent architectures
and effectively reduce gradient conflicts between agents.

6.5. Parameter Sensitivity Analysis

The ablation study in Figure 13 illustrates the impact of dif-
ferent hyperparameter settings in QMIX-GradPS, focusing
on the ablation of the futile threshold α, the probability of
the restoration ρ, the number of group K, and the group
interval T . The default configuration of QMIX-GradPS is
α = 0.2, T = 20, K = 3, and ρ = 0.05.

We individually modify each hyperparameter, and the ex-
perimental results indicate that appropriate hyperparameters
can help better distinguish and utilize futile neurons, thereby
improving learning efficiency.

The parameter α can be adaptively optimized rather than
constrained by fixed thresholds. It is not recommended to
set a large ρ because gradual parameter recovery requires
sufficient time to prevent rapid performance degradation. In
future work, We will explore whether the aggregate K of
all the neurons can represent agent heterogeneity.

7. Conclusion
In this work, we study the gradient conflict among agents
for the Parameter Sharing (PS) networks of Multi-Agent Re-
inforcement Learning (MARL). We identify the existence
of futile neurons whose update is canceled out by gradient
conflicts. We show that such neurons hurt the policy ex-
pressiveness. We propose GradPS, a simple yet effective
gradient-based PS method that resolves futile neuron issues.
It dynamically creates multiple independent clones for each
futile neuron. Each clone is shared among a group of agents
with low gradient conflicts. GradPS can learn diverse be-
haviors through multiple clones to avoid gradient conflict,
and enjoys good sample efficiency by sharing the gradients
among agents of the same clone neuron. Through extensive
experiments, we show that GradPS is promising.

9



GradPS: Resolving Futile Neurons in Parameter Sharing Network for MARL

Acknowledgements
This work was partially supported by the Fundamen-
tal Research Funds for the Central Universities (No.
20720230033), by Xiaomi Young Talents Program. We
would like thank the anonymous reviewers for their valu-
able suggestions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. Our work has many potential so-
cietal consequences, none of which must be specifically
highlighted here.

References
Caruana, R. Multitask learning. Machine learning, 28:

41–75, 1997.

Chen, Z., Badrinarayanan, V., Lee, C.-Y., and Rabinovich,
A. Gradnorm: Gradient normalization for adaptive loss
balancing in deep multitask networks. In ICML, pp. 794–
803. PMLR, 2018.

Christianos, F., Papoudakis, G., Rahman, M. A., and Al-
brecht, S. V. Scaling multi-agent reinforcement learning
with selective parameter sharing. In ICML, pp. 1989–
1998. PMLR, 2021.

Das, A., Gervet, T., Romoff, J., Batra, D., Parikh, D., Rab-
bat, M., and Pineau, J. Tarmac: Targeted multi-agent
communication. In ICML, volume 97, pp. 1538–1546,
2019.

Dohare, S., Hernandez-Garcia, J. F., Lan, Q., Rahman, P.,
Mahmood, A. R., and Sutton, R. S. Loss of plasticity
in deep continual learning. Nature, 632(8026):768–774,
2024.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradients.
In AAAI, pp. 2974–2982, 2018.

Guangyuan, S., Li, Q., Zhang, W., Chen, J., and Wu, X.-M.
Recon: Reducing conflicting gradients from the root for
multi-task learning. In ICLR, 2023.

Hernandez-Leal, P., Kartal, B., and Taylor, M. E. Is mul-
tiagent deep reinforcement learning the answer or the
question? A brief survey. In AAMAS, pp. 750–797, 2019.
URL http://arxiv.org/abs/1810.05587.

Hu, S., Shen, L., Zhang, Y., and Tao, D. Learning multi-
agent communication from graph modeling perspective.
arXiv preprint arXiv:2405.08550, 2024.

Igl, M., Farquhar, G., Luketina, J., Boehmer, W., and
Whiteson, S. Transient non-stationarity and gener-
alisation in deep reinforcement learning. In ICLR,
2021. URL https://openreview.net/forum?
id=Qun8fv4qSby.

Kim, W. and Sung, Y. Parameter sharing with network prun-
ing for scalable multi-agent deep reinforcement learning.
In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pp. 1942–
1950, 2023.

Li, C., Wu, C., Wang, T., Yang, J., Zhao, Q., and Zhang, C.
Celebrating diversity in shared multi-agent reinforcement
learning. In NeurIPS, 2021.

Li, C., Deng, Z., Lin, C., Chen, W., Fu, Y., Liu, W., Wen,
C., Wang, C., and Shen, S. Dof: A diffusion factorization
framework for offline multi-agent reinforcement learning.
In ICLR, 2024a.

Li, D., Lou, N., Zhang, B., Xu, Z., and Fan, G. Adaptive
parameter sharing for multi-agent reinforcement learning.
In ICASSP, pp. 6035–6039. IEEE, 2024b.

Li, X., Liu, Z., Chen, S., and Zhang, J. Individual contri-
butions as intrinsic exploration scaffolds for multi-agent
reinforcement learning. arXiv preprint arXiv:2405.18110,
2024c.

Li, X., Pan, L., and Zhang, J. Kaleidoscope: Learnable
masks for heterogeneous multi-agent reinforcement learn-
ing. In NeurIPS, 2024d.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mor-
datch, I. Multi-agent actor-critic for mixed cooperative-
competitive environments. In NeurIPS, pp. 6379–6390,
2017.

Mahajan, A., Rashid, T., Samvelyan, M., and Whiteson, S.
MAVEN: multi-agent variational exploration. In NeurIPS,
pp. 7611–7622, 2019.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering:
Analysis and an algorithm. NeurIPS, 14, 2001.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.,
and Courville, A. C. The primacy bias in deep re-
inforcement learning. In ICML, pp. 16828–16847,
2022. URL https://proceedings.mlr.press/
v162/nikishin22a.html.

Oliehoek, F. A. and Amato, C. A Concise Introduction to
Decentralized POMDPs. Springer Briefs in Intelligent
Systems. Springer, 2016.

Oliehoek, F. A., Spaan, M. T., and Vlassis, N. Optimal and
approximate q-value functions for decentralized pomdps.

10

http://arxiv.org/abs/1810.05587
https://openreview.net/forum?id=Qun8fv4qSby
https://openreview.net/forum?id=Qun8fv4qSby
https://proceedings.mlr.press/v162/nikishin22a.html
https://proceedings.mlr.press/v162/nikishin22a.html


GradPS: Resolving Futile Neurons in Parameter Sharing Network for MARL

Journal of Artificial Intelligence Research, 32:289–353,
2008.

Qin, H., Ma, C., Deng, M., Liu, Z., Mei, S., Liu, X., Wang,
C., and Shen, S. The dormant neuron phenomenon in
multi-agent reinforcement learning value factorization.
In NeurIPS, 2024.

Qiu, W., Wang, X., Yu, R., Wang, R., He, X., An, B.,
Obraztsova, S., and Rabinovich, Z. RMIX: learning risk-
sensitive policies for cooperative reinforcement learning
agents. In NeurIPS, pp. 23049–23062, 2021.

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G.,
Foerster, J. N., and Whiteson, S. QMIX: monotonic value
function factorisation for deep multi-agent reinforcement
learning. In ICML, pp. 4292–4301, 2018.

Rashid, T., Farquhar, G., Peng, B., and Whiteson, S.
Weighted QMIX: expanding monotonic value function
factorisation for deep multi-agent reinforcement learning.
In NeurIPS, 2020.

Samvelyan, M., Rashid, T., de Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G. J., Hung, C., Torr, P. H. S.,
Foerster, J. N., and Whiteson, S. The starcraft multi-agent
challenge. In AAMAS, pp. 2186–2188, 2019.

Shen, S., Qiu, M., Liu, J., Liu, W., Fu, Y., Liu, X., and
Wang, C. Resq: A residual q function-based approach for
multi-agent reinforcement learning value factorization.
In NeurIPS, 2022.

Shen, S., Ma, C., Li, C., Liu, W., Fu, Y., Mei, S., Liu,
X., and Wang, C. Riskq: Risk-sensitive multi-agent re-
inforcement learning value factorization. In NeurIPS,
2023. URL https://openreview.net/forum?
id=FskZtRvMJI.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learning.
In ICML, pp. 32145–32168, 2023.

Son, K., Kim, D., Kang, W. J., Hostallero, D., and Yi, Y.
QTRAN: learning to factorize with transformation for
cooperative multi-agent reinforcement learning. In ICML,
pp. 5887–5896, 2019.

Sukhbaatar, S., Szlam, A., and Fergus, R. Learning multia-
gent communication with backpropagation. In NeurIPS,
pp. 2244–2252, 2016.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M.,
Zambaldi, V. F., Jaderberg, M., Lanctot, M., Sonnerat,
N., Leibo, J. Z., Tuyls, K., and Graepel, T. Value-
decomposition networks for cooperative multi-agent
learning based on team reward. In AAMAS, pp. 2085–
2087, 2018.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and computing, 17:395–416, 2007.

Wang, J., Ren, Z., Liu, T., Yu, Y., and Zhang, C. Qplex:
Duplex dueling multi-agent q-learning. In ICLR, 2021a.

Wang, T., Dong, H., Lesser, V. R., and Zhang, C. ROMA:
multi-agent reinforcement learning with emergent roles.
ICML, 2020.

Wang, Y., Zhong, F., Xu, J., and Wang, Y. Tom2c: Target-
oriented multi-agent communication and cooperation
with theory of mind. NeurIPS, 2021b.

Wang, Z., Tsvetkov, Y., Firat, O., and Cao, Y. Gradient vac-
cine: Investigating and improving multi-task optimization
in massively multilingual models. In ICLR, 2021c.

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A.,
and Wu, Y. The surprising effectiveness of ppo in coop-
erative multi-agent games. NeurIPS, 35:24611–24624,
2022.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K.,
and Finn, C. Gradient surgery for multi-task learning.
NeurIPS, 33:5824–5836, 2020.

Zhu, Z., Liu, M., Mao, L., Kang, B., Xu, M., Yu, Y., Ermon,
S., and Zhang, W. Madiff: Offline multi-agent learning
with diffusion models. NeurIPS, 2024.

11

https://openreview.net/forum?id=FskZtRvMJI
https://openreview.net/forum?id=FskZtRvMJI


GradPS: Resolving Futile Neurons in Parameter Sharing Network for MARL

A. Background
A.1. Spectral Clustering

Spectral clustering (Von Luxburg, 2007; Ng et al., 2001) is a graph-based clustering method that first treats data points as
nodes in a graph and computes an affinity matrix based on similarity measures such as Euclidean distance or Gaussian kernel
functions. The affinity matrix is then transformed into the Laplacian matrix. The Laplacian matrix L is constructed using
the graph’s affinity matrix A and its degree matrix D, as represented by the formula L = D − A. The Laplacian matrix
captures the connectivity between nodes in the graph and reflects the structural information of the graph, playing a key role
in spectral clustering. By performing spectral decomposition of the graph Laplacian, a low-dimensional embedding of the
data is obtained. In this low-dimensional space, data points within the same cluster are more tightly grouped, while the
distance between different clusters is larger, enabling the clustering algorithm to perform better on complex and nonlinear
datasets.

Finally, a conventional clustering algorithm, such as k-means, is applied to this low-dimensional representation. Compared
to traditional k-means, spectral clustering often outperforms in handling nonlinear structures and complex data, as it can
better capture implicit relationships between data points.

B. Related work
B.1. Multi-Agent Reinforcement Learning

Multi-Agent reinforcement learning (MARL) provides a framework for modeling complex interactions among agents, with
methods typically classified into policy-based, value decomposition, offline, communication-based, and exploration-based
approaches.

Policy-based methods, such as COMA (Foerster et al., 2018), MADDPG (Lowe et al., 2017), and MAPPO (Yu et al., 2022),
optimize agent policies using gradients. In contrast, value decomposition methods, include VDN (Sunehag et al., 2018),
QMIX (Rashid et al., 2018), QPLEX (Wang et al., 2021a), QTRAN (Son et al., 2019), ResQ (Shen et al., 2022), RiskQ (Shen
et al., 2023), and RMIX (Qiu et al., 2021), which are particularly effective in cooperative tasks.

Offline methods, such as MADIFF (Zhu et al., 2024) and DoF (Li et al., 2024a) using diffusion to generate trajectories and
policies of agents. Communication-based approaches, such as CommNet (Sukhbaatar et al., 2016), TarMAC (Das et al.,
2019), ToM2C (Wang et al., 2021b), and CommFormer (Hu et al., 2024), focus on enhancing multi-agent cooperation
through improved communication. Exploration-based methods like MAVEN (Mahajan et al., 2019) and ICES (Li et al.,
2024c) aim to strengthen agents’ exploration capabilities to better adapt to dynamic and complex environments.

Our method, GradPS, is orthogonal to these techniques, focusing on improving learning efficiency by mitigating gradient
conflicts among agents.

C. Method
C.1. Gradient Conflict

Gradient conflicts commonly occur in multi-agent systems. Even if agents share a common goal, they may have different
partial observations, be located in different positions of the game which may lead to different agent gradients (e.g., divergent
actions). For example, when capturing one prey, it is possible that the best action for agent 1 is to move left, while the best
action for agent 2 is to move right. This will cause gradient conflict when the optimal actions differ between agents.

We apply VDN and QMIX to run 3m scenario. As shown in Figure 1, gradient phenomenon still exists when using different
optimizers. The gradient conflict in multi-agent reinforcement learning is shown in Figure 2.

C.2. Gradient Monitoring

The gradient of neurons refers to the gradient on the activation layer in a neural network. To calculate the gradient for each
agent, we designed a gradient detection layer capable of computing the partial derivative of the loss with respect to the
observation of a specific agent. Specifically, the input data to the detection layer has dimensions of (batch× agents, dim),
and the layer’s weights are a fixed all-ones matrix with dimensions (agents, dim). The input dimensions are reshaped to
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Figure 1: Gradient conflicts in VDN and QMIX when using different optimizers.
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Figure 2: Gradient conflicts in multi-agent reinforcement learning (MARL). Different colors represent the observations and
gradients of different agents. The overall gradient, computed by summing the gradients of all agents, is used to optimize the
parameters of the agent network. However, conflicts may arise when positive and negative gradients counteract each other.

(batch, agents, dim), then multiplied element-wise by the all-ones matrix. The result is subsequently reshaped back to the
original dimensions of the input data to produce the output.

After the backpropagation of loss, each detection layer obtains the calculated partial derivative, which is the gradient of each
neuron. We obtain the gradient of loss in the detection layer and clear these gradients to prevent the optimizer from updating
the parameters of the detection layer. Afterward, the optimizer will continue to update the network parameters using the
gradients of each parameter as usual.

This allows the gradient information to be retained in the gradient detection layer without altering the original data values.
Batch refers to the batch size, agents represents the number of agents, and dim denotes the number of neurons.

C.3. Conflict-Based Grouping

The gradients for the most recent T target network update periods are accumulated and recorded. Please refer to Appendix
C.2 for a detailed procedure of gradient recording. At the end of each target network update period, we evaluate the neuron
efficiency of neurons with T period data and identify futile neurons if their neuron efficiency (defined in (4)) is low.

The appearance of futile neurons indicates significant conflicts in the agents during recent periods. To reduce gradient
conflicts, We divide the agents into K groups based on their gradient conflict values accumulated over T periods, aiming to
minimize the total gradient conflict within each group.

Based on the gradient conflict values between different agents, we apply the spectral clustering algorithm to clustering the
agents. The clustering information is implicitly represented by the gradient conflict values between the agents. Therefore,
we utilize the Gaussian kernel function to calculate the distance between agents based on gradient conflicts. First, the
conflict matrix is transformed into an affinity matrix A using the Gaussian kernel function. The affinity matrix represents the
similarity between agents. Each cell Aij is defined as follows.

Aij = e

(
−

C2
ij

2σ2

)
(C.1)

where Cij is the Neuron Gradient Conflict between agent i and j defined in (3), and σ is the scale parameter of the Gaussian
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kernel, which controls the influence of distance (conflict value) on similarity. Typically, σ is chosen to be close to the mean
or median of the sample distances, ensuring that the affinity matrix is neither too sparse nor too dense.

The graph Laplacian matrix L is computed as L = D −A, where D is the degree matrix (the degree of each node is the
sum of the weights of its connected edges) and A is the affinity matrix.

Di,j =

{
0, if i ̸= j∑

j Ai,j , if i = j
(C.2)

The Laplacian matrix is subjected to spectral decomposition, and the top K eigenvectors corresponding to the smallest
eigenvalues are selected as the embedding vectors. In the embedding space, K-means clustering is applied to these
eigenvectors to partition the agents into K groups.

C.4. Algorithm

The detailed GradPS algorithm is described in Algorithm 2.

Algorithm 2 GradPS
Require: cumulative gradient interval T , number of groups K, group restore probability ρ

1: Initialize parameters of the network ϕ
2: Initialize parameters of the target network ϕ′

3: Initialize replay buffer D
4: Initialize Neural Network Optimizer
5: Initialize the SGD optimizer for restoring
6: for e ∈ {1, . . . ,m episodes} do
7: Start a new episode;
8: while Episode is not end do
9: Get the Agent action ai

10: Execute ai, obtain global reward r and the next state s′

11: Update replay buffer D
12: Sample a batch D′ from replay buffer D
13: Loss(θ, ϕ) = (Q(s, a; θ, ϕ)− ys,a)

2

14: Accumulated the gradient of each agent
15: Update ϕ by Loss
16: end while
17: if Target network update then
18: Get the set of neurons that have accumulated T period gradients in the first activation layer
19: Select the futile neurons
20: for Each futile neuron do
21: Grouping agents into K groups according to gradient conflicts
22: Make K copies of the parameters
23: Assign parameters of the corresponding group to each agent
24: Clear the accumulated gradient of this neuron
25: end for
26: if Restore operation required then
27: Calculate the variance of each neuron
28: Set the SGD optimizer to start resetting the weights of this neuron
29: end if
30: if Some neurons have already been reset then
31: Restore these neurons to fully parameter sharing
32: end if
33: ϕ′ = ϕ
34: end if
35: end for

14



GradPS: Resolving Futile Neurons in Parameter Sharing Network for MARL

D. Experimental Details
D.1. Experimental Setup

We compare GradPS with six parameter sharing methods, including Kaleidoscope (Li et al., 2024d), Selective Parameter
Sharing (SePS) (Christianos et al., 2021), Structured Network Pruning with parameter Sharing(SNP) (Kim & Sung, 2023),
Parameter Sharing (FuPS), Full Parameter Sharing with index (FuPS+id), No Parameter Sharing (NoPS). For the sake of
robustness, each experiment was carried out using different random seeds at least 5 times.

Table 1: Baseline parameter sharing algorithms

Algorithms Description

FuPS1 2 Agents share all the parameters.
FuPS+id Agents share all the parameters with agent ID in input.

SNP (Kim & Sung, 2023) The network is randomly pruned subnetworks.
SePS3 (Christianos et al., 2021) Agents are clustered to share parameters within each cluster.

NoPS Agents do not share any parameters.
Kaleidoscope4 (Li et al., 2024d) Agents share parameters based on learnable masks.

We implement these algorithms based on their open-source repositories to carry out performance analyses with hyperpa-
rameters consistent with those in PyMARL. Our methods are implemented within the PyMARL framework, and each is
evaluated using five random seeds with 95% confidence intervals. Specific hyperparameters of different environments are
listed in Table 2. We conduct experiments on a cluster equipped with multiple NVIDIA GeForce RTX 3090 GPUs.

Table 2: Hyperparameter of different environments

Hyperparameter SMAC Predator-Prey

Action Selector epsilon greedy epsilon greedy
Batch Size 32 32
Buffer Size 5000 5000

Learning Rate 0.0005 0.0005
Hypernet Embed Dimension 64 64

Target Update Interval 200 200
Futile Threshold α 0.2 0.2

Accumulated Period T 20 10
Group Number K 3 2

Restore Probability ρ 0.05 0.025
Reg Learning Rate 0.005 0.005

D.2. Environment

D.2.1. PREDATOR-PREY

The predator-prey scenario simulates a grid world where multiple agents cooperate to capture prey scattered across the map.
The prey consists of two types: stags and hares. Capturing a hare requires only one agent while capturing a stag necessitates
at least two agents working together. Successfully capturing a hare provides a team reward of +2, while capturing a deer
yields a reward of +10.

Some predators possess a special, unobservable trait that enables them to receive the same team reward for capturing a hare
as they would for capturing a stag. The goal is to maximize the total team reward within a limited timeframe. We have
developed three different environmental configurations—small, medium, and large—each with varying numbers of agents
and prey, as well as different map sizes.

1https://github.com/oxwhirl/pymarl
2https://github.com/tjuHaoXiaotian/pymarl3
3https://github.com/uoe-agents/seps
4https://github.com/LXXXXR/Kaleidoscope
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Game Rules

• Agent Movement: Agents can move in four directions or stay in place. Movement is restricted by the presence of
other agents or preys.

• Observation and Decision Making: Each agent observes a 7x7 grid centered around itself, receiving information
about nearby agents and preys. Decisions are based on this local observation.

• Capture Mechanism: To capture a stag, at least two agents must be adjacent to it and must choose the capture action
at the same time. In contrast, capturing a hare requires only one agent. Successful capture relies on strategic positioning
and synchronized actions among agents.

• Rewards and Penalties: Agents receive a positive reward for each prey captured through cooperative action.

• Episode Termination: An episode terminates if all preys are captured or after 150 steps, providing a fixed time frame
for agents to maximize their collective reward.

Configuration Number of
All Predators

Number of Special
Predators

Number of
Stags

Number of
Hares

Map Size Reward for
Stags

Reward for
Hares

Small 6 2 6 6 20 x 20 +10 +2

Medium 10 3 10 10 25 x 25 +10 +2

Large 15 5 15 15 30 x 30 +10 +2

Table 3: Comparison of Predator-Prey Configurations

D.2.2. STARCRAFT II MULTI-AGENT CHALLENGES (SMAC)

The StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) is a popular benchmark used extensively in the
domain of multi-agent reinforcement learning. Built on the StarCraft II game engine, SMAC specializes in micromanagement
scenarios where each agent is controlled by an independent agent who must make decisions based on local observations.
MARL algorithms coordinate a team of agents to engage in combat against an opposing team managed by the game’s
built-in AI.

The performance of these algorithms is quantitatively evaluated by the test win rate or the test return of the gameplay.
Table 4 depicts the overview of SMAC scenarios used in the experiment.

Name Difficulty Ally Units Enemy Units

3m Easy 3 Marines 3 Marines
5m Easy 5 Marines 5 Marines

15m Easy 15 Marines 15 Marines
9z Easy 9 Zealots 9 Zealots

3s6z Easy 3 Stalkers & 6 Zealots 3 Stalkers & 6 Zealots
1c3s5z Easy 1 Colossi & 3 Stalkers & 5 Zealots 1 Colossi & 3 Stalkers & 5 Zealots

5m_vs_6m Hard 5 Marines 6 Marines
2c_vs_64zg Hard 2 Colossi 64 Zerglings

MMM2 Super Hard 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 3 Marauders & 8 Marines
27m_vs_30m Super Hard 27 Marines 30 Marines

1c3s8z_vs_1c3s9z Super Hard 1 Colossi & 3 Stalkers & 8 Zealots 1 Colossi & 3 Stalkers & 9 Zealots
3s5z_vs_3s6z Super Hard 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots

Table 4: Overview of SMAC scenarios used in the experiment.
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D.2.3. ONE STEP MATRIX GAME

The One-Step Matrix Game is a classic experimental environment used to evaluate the performance of multi-agent
reinforcement learning (MARL) algorithms. By designing a simple reward structure in the form of a matrix, it simulates
cooperative or competitive interactions among multiple agents, enabling the assessment of an algorithm’s ability to handle
nonlinear relationships and coordination challenges. In this study, the One-Step Matrix Game involves two agents, each
selecting an action, where the combination of all agents’ actions constitutes a joint action. The rows and columns of the
matrix represent the action choices of the respective agents, and each element within the matrix denotes the reward value
corresponding to a specific joint action.

u1

u2 A B C D

A 0 -1 -2 -3
B 1 0 -1 -2
C 2 1 0 -1
D 3 2 1 0

Table 5: f2 = −1× f1

u1

u2 A B C D

A 0 0 0 0
B 1 1 1 1
C 2 2 2 2
D 3 3 3 3

Table 6: f2 = 0× f1

u1

u2 A B C D

A 0 0.5 1 1.5
B 1 1.5 2 2.5
C 2 2.5 3 3.5
D 3 3.5 4 4.5

Table 7: f2 = 0.5× f1

u1

u2 A B C D

A 0 1 2 3
B 1 2 3 4
C 2 3 4 5
D 3 4 5 6

Table 8: f2 = 1× f1

Table 9: Simple one-step payoff matrix game for understanding the impact of futile neurons on network expressiveness.
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Figure 3: Conflicting neuron gradients in different one step payoff matrix games.

Figure 3 depicts the gradients for different agents in two payoff matrix game using the VDN methods. As it is depicted in
the graph, the gradients for different agents can be significantly different. The conflict of gradients may lead to canceling out
each other, which makes the sum of the gradient for one neuron close to zero. GradPS can further reduce bias by resolving
gradient conflicts in neurons, as shown in Figure 4.
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Figure 4: Applying GradPS to different one step payoff matrix games.

D.3. Experimental Results

Predator-Prey

Figure 5 presents the return and the percentage of futile neurons in GradPS within the predator-prey environment, in
comparison to other parameter-sharing algorithms.

SMAC

Figure 6 presents the win rate and the percentage of futile neurons in GradPS within the SMAC environment, in comparison
to other parameter-sharing algorithms.
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Figure 5: GradPS performs better than other PS methods on Predator-Prey: (a-c) the return for predator-prey
small/medium/large environment. (d-f) the percentage of futile neurons for predator-prey small/medium/large environment.

D.4. GradPS Performance Under PyMARL3 Settings

We extended the training time based on the settings of PyMARL and PyMARL3. The results are shown in Figure 7 and
Figure 8.

D.5. Ablation Study and Discussion

D.5.1. COMPARISON OF FUTILE AND DORMANT NEURONS

Feature Dormant Neurons Futile Neurons

Definition Normalized Average Activation Value falls below Neuron Efficiency is below
Normalized activation score Small Any

Gradient conflict Unclear Large
Gradient Near Zero Any

Parameter Update Near Zero Slowed down by gradient conflict

Table 10: Overview of SMAC scenarios used in the experiment.

Dormant neurons (Sokar et al., 2023) have low normalized activation scores, while futile neurons suffer from gradient
conflicts unrelated to activation. A non-dormant neuron can be a futile neuron. We have listed the differences as Table 10.

Additionally, we report the percentage of dormant neurons and futile neurons in agent networks with VDN during the
training process in three simple payoff matrix games. Moreover, we evaluate the MSE of reconstructing the Payoff matrix
when using ReDo (Sokar et al., 2023) and GradPS. ReDo and GradPS are methods developed to reduce the percentage of
dormant neurons and futile neurons, respectively. The default parameters of ReDo and GradPS are used. The results are
shown in Figure 9.

For the f2 = f1 · 0.0 and f2 = f1 · 0.5 games, the Neuron Percentage graphs show that dormant neurons gradually decrease
and stabilize to fix values (around 10%), whereas futile neurons rise to 100% after a few thousand environment steps. For the
f2 = f1 · −1.0 game, the percents of the dormant neurons and the futile neurons fluctuate around 30%-40% and 80%-90%,
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Figure 6: Comparison with other Parameter Sharing methods: the test win rate and the futile neuron percentage in SMAC
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Figure 7: Comparison with other Parameter Sharing methods: the test win rate in SMAC and the return in Predator-Prey
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Figure 8: Comparison with other Parameter Sharing methods based on PyMARL3: the test win rate in SMAC and the return
in Predator-Prey
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respectively. These figures show that the percentages for the two types of neurons are different across training processes.

For all three matrix games, the MSE of reconstructed payoff matrix is shown in MSE.pdf figures. For these graphs, the MSE
for the original VDN, VDN with ReDo (Sokar et al., 2023), VDN with GradPS are shown.

When using ReDo with VDN, the MSE does not change significantly compared to the VDN method. However, when
using GradPS with VDN, the MSE drops significantly. For these matrix games, in terms of reducing MSE, GradPS, as
a futile-neuron-method, works better than ReDo, a dormant-neuron-based method. These findings further highlight the
significant difference among the two types of neurons.
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Figure 9: Conflicting neuron gradients in different one step payoff matrix games.

D.5.2. THE IMPACT OF NETWORK WIDTH

In this section, we study whether gradient conflicts are different in networks of different widths. As shown in Figure 10, the
percentage of futile neurons remains approximately equal across networks of different widths.

0.4M 0.8M 1.2M 1.6M 2.0M
Environmental Steps

0

20

40

60

80

Te
st

 W
in

 R
at

e

MMM2
FuPS-32DIM
FuPS-64DIM
FuPS-128DIM
FuPS-256DIM

0.4M 0.8M 1.2M 1.6M 2.0M
Environmental Steps

30

35

40

45

50

55

60

Av
er

ag
e 

Ef
fic

ie
nc

y 
Pe

rc
en

ta
ge

MMM2
FuPS-32DIM
FuPS-64DIM
FuPS-128DIM
FuPS-256DIM

0.4M 0.8M 1.2M 1.6M 2.0M
Environmental Steps

10

20

30

40

50

60

Fu
ti

le
 N

eu
ro

n 
Pe

rc
en

ta
ge

MMM2
FuPS-32DIM
FuPS-64DIM
FuPS-128DIM
FuPS-256DIM

Figure 10: Average Efficiency Percentage and Futile Neurons Percentage in networks with different widths.

D.5.3. SHARING AT DIFFERENT DEPTHS OF NETWORK LAYERS

In this section, we investigate whether gradient conflicts differ at different depths in the network. We deepen the QMIX
agent network to have four linear-activation layers. We apply GradPS to these activation layers and detect gradient conflicts
separately. The results are shown in Figure 11, the number of futile neurons in the first layer is greater than in the other
layers.
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Figure 11: (a) The Futile Neurons Percentage at different depths of a four layer QMIX network. (b) The performance of
GradPS in different network layers. (c) The Futile Neurons Percentage after using GradPS on different layers.

D.6. Execution Time Table and Memory Usage Table.

We present the wall-clock training time (in hours) for each algorithm, averaged over 5 random seeds. The computational
overhead of GradPS is small. It takes less training time than SNP, SePS and NoPS, most of the time.

Table 11: Training time of different parameter sharing algorithms

Training Time(h) FuPS GradPS FuPS+id SNP SePS NoPS Kaleidoscope

Predator-Prey Small 2.45 2.74 2.55 2.72 5.23 5.45 4.37
Predator-Prey Medium 5.11 5.65 5.23 5.34 6.86 7.18 6.32

Predator-Prey Large 5.89 6.32 5.84 6.62 9.92 11.65 9.05
5m_vs_6m 9.21 9.74 9.33 10.64 12.56 14.21 11.86

MMM2 12.94 13.83 13.02 14.95 18.42 19.34 15.53
27m_vs_30m 23.12 24.75 23.45 25.77 36.53 42.32 31.45

The following table depicts the number of parameters for the whole network and each agent network compared to the full
parameter-sharing approach. The additional memory overhead of GradPS is lower than that of SePS and NoPS.

Table 12: Usage of the whole network parameters

The whole network Parameter usage FuPS GradPS FuPS+id SNP SePS NoPS Kaleidoscope

Predator-Prey small 100% 105% 100% 103% 112% 159% 114%
Predator-Prey medium 100% 104% 100% 102% 108% 171% 109%

Predator-Prey large 100% 103% 100% 101% 105% 178% 107%
5m_vs_6m 100% 116% 101% 106% 180% 261% 151%

MMM2 100% 122% 101% 108% 156% 354% 134%
27m_vs_30m 100% 114% 101% 105% 128% 466% 117%

Table 13: Usage of agent network parameters

Agent network Parameter usage FuPS GradPS FuPS+id SNP SePS NoPS Kaleidoscope

Predator-Prey Small 100% 145% 102% 123% 198% 624% 218%
Predator-Prey Medium 100% 146% 103% 124% 197% 1034% 217%

Predator-Prey Large 100% 147% 104% 124% 196% 1540% 216%
5m_vs_6m 100% 140% 102% 116% 297% 519% 226%

MMM2 100% 176% 102% 128% 296% 1036% 218%
27m_vs_30m 100% 195% 105% 136% 293% 2762% 215%
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E. Discussion
E.1. Societal Impact

Our research primarily concentrates on the technical and theoretical aspects of multi-agent reinforcement learning, aiming to
enhance the performance of these agents across a variety of tasks. While we do not foresee any direct negative consequences
arising from our research, we are committed to maintaining an open dialogue. We highly appreciate and value constructive
feedback from the community to ensure our work’s contributions are beneficial and ethically sound.

E.2. Limitations and Future Work

Although the gradient-based grouped parameter sharing method we proposed has achieved promising results compared
to other approaches, there is still room for improvement. Our hyperparameters, such as the number of groups and the
threshold for defining futile neurons, require further tuning. Additionally, increasing the number of groups may lead to
higher parameter overhead. Defining futile neurons more effectively and exploring adaptive grouping will be key directions
for our future research.
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