
FastJAM: a Fast Joint Alignment Model for Images

Omri Hirsch∗ Ron Shapira Weber∗ Shira Ifergane Oren Freifeld
The Faculty of Computer and Information Science, Ben Gurion University of the Negev (BGU), Israel

The Data Science Research Center, BGU
The School of Brain Sciences and Cognition, BGU

{omrihir,ronsha,shiraif}@post.bgu.ac.il
orenfr@bgu.ac.il

Abstract

Joint Alignment (JA) of images aims to align a collection of images into a unified
coordinate frame, such that semantically-similar features appear at corresponding
spatial locations. Most existing approaches often require long training times, large-
capacity models, and extensive hyperparameter tuning. We introduce FastJAM, a
rapid, graph-based method that drastically reduces the computational complexity of
joint alignment tasks. FastJAM leverages pairwise matches computed by an off-the-
shelf image matcher, together with a rapid nonparametric clustering, to construct
a graph representing intra- and inter-image keypoint relations. A graph neural
network propagates and aggregates these correspondences, efficiently predicting
per-image homography parameters via image-level pooling. Utilizing an inverse-
compositional loss, that eliminates the need for a regularization term over the pre-
dicted transformations (and thus also obviates the hyperparameter tuning associated
with such terms), FastJAM performs image JA quickly and effectively. Experimen-
tal results on several benchmarks demonstrate that FastJAM achieves results better
than existing modern JA methods in terms of alignment quality, while reducing
computation time from hours or minutes to mere seconds. Our code is available at
our project webpage, https://bgu-cs-vil.github.io/FastJAM/.

1 Introduction

Joint Alignment (JA) is the task of aligning a collection of images by estimating per-image spatial
transformations such that, when applied, all images become geometrically consistent in a shared
coordinate frame according to certain semantic or geometric criteria (see, e.g., Figure 1). Unlike
pairwise alignment, which aligns each image pair independently and often leads to error accumulation
(i.e., “drifting”), JA enforces a global agreement across the entire set, making JA particularly valuable
for discovering shared structures between images or building a class atlas. However, achieving JA is
inherently challenging: without supervision or a reference image, optimization methods frequently
collapse into trivial or inconsistent solutions. Moreover, existing approaches typically require
extensive computational resources, taking more than an hour [1, 2] to jointly align as few as 30
images. Recently, we proposed a method called SpaceJAM [3] that, partially by virtue of a new
inverse-compositional loss over dense feature maps, significantly mitigated these computational
issues, thereby solved the task in only a few minutes. Additionally, SpaceJAM set new state-of-the-art
quantitative results. A natural question arises, however: is it possible to do even better in terms of
both speed and performance? Fortunately, the answer is positive, as we show in the present paper.
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Figure 1: Joint alignment with FastJAM. Given a set of images of the same object, or of different
objects from the same category (e.g., motorbikes), our method aligns all images in seconds, compared
to other methods (minutes [3] or hours [1, 2]).

Here we introduce an even more computationally-efficient method that solves the JA problem in
under 50 seconds, dramatically outperforming prior approaches in terms of speed while maintaining,
and in fact typically improving, alignment quality.

Traditionally, JA methods relied on classical approaches such as congealing [4, 5], which iteratively
align each image towards the remaining set, or centroid-based methods that utilize a reference image
or a latent template [3]. Classical techniques employed feature-based methods (e.g., SIFT [6]), to
establish keypoint (KP) correspondences between images. The rise of deep learning, particularly
through Vision Transformers (ViTs) [7] and semantic feature extraction methods like DINO [8],
has significantly advanced JA by providing richer representations that alleviate some challenges
faced by traditional methods. However, even with ViT features, many difficulties persist, leading
recent approaches to depend heavily on high-capacity, computationally-expensive models paired
with extensive regularization [1, 2]. This reliance not only increases computational demands but also
introduces complexity through the requirement of extensive hyperparameter (HP) tuning, ultimately
resulting in methods that are slow and often brittle (as the HP tuning is usually dataset-specific).

Both congealing and atlas-based approaches typically rely on objective functions that fall into two
main categories: geometric losses and semantic (feature-based) losses. In the geometric cases, one di-
rectly minimizes spatial discrepancies between corresponding KPs across images, leveraging explicit
correspondence information. In contrast, semantic losses operate over dense feature representations
and provide a smoother, globally-differentiable alignment without requiring explicit KPs. However,
such dense (and typically high-dimensional) representations, often derived from high-capacity models
like DINO [8], are computationally expensive when used within the JA optimization (even if the
features themselves are kept frozen). Therefore, in this work we adopt the geometric loss paradigm,
offering a sparse, lightweight, and scalable formulation that achieves typically higher alignment
accuracy while significantly reducing the computational overhead.

Concretely, we introduce FastJAM, a graph-based JA framework that achieves fast and scalable
alignment. Unlike prior methods that rely on dense feature maps and/or computationally-intensive
optimization, FastJAM constructs a KP graph from pairwise correspondences using an off-the-shelf
matcher, where nodes represent KPs and edges encode intra- and inter-image relationships. A
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Figure 2: Overview of the FastJAM architecture. Given a set of images, we extract sparse keypoints
(KPs) and pairwise correspondences using an off-the-shelf matcher (left; only red-dot matches are
shown for clarity). A graph is built by linking KPs within each image (intra-image edges) and across
matched pairs (inter-image edges). A GNN with L layers propagates alignment information through
this graph (center). Image-level features are then obtained via mean pooling and used to predict
per-image homography parameters (θi) for joint alignment.

Table 1: Comparison with recent JA methods on three SPair-71k categories [9]. Runtime is reported
as average ± standard deviation in hh:mm:ss format.

Method # Params # Losses #HP Atlas-free # Epochs Runtime

Neural Congealing [1] 28.7M 8 8 ✗ 8000 01:18:30 ± 00:06:18
ASIC [2] 7.9M 4 5 ✗ 20000 01:06:38 ± 00:00:38
SpaceJAM [3] 0.016M 1 0 ✓ 700 00:06:00 ± 00:00:12
FastJAM (Ours) 0.13M 1 0 ✓ 600 00:00:49 ± 00:00:04

Graph Neural Network (GNN) propagates alignment cues across the graph, and a readout layer
produces image-level embeddings used to predict the homography parameters (as shown in Figure 2).
Combined with a robust inverse-compositional geometric loss, FastJAM aligns an entire image set in
under 50 seconds. Experiments on SPair-71k and CUB-200 show that FastJAM matches or exceeds
the accuracy of contemporary JA methods while being significantly more efficient and orders of
magnitude faster (see Table 1 for a comparison). Our key contributions are as follows.

1. We introduce FastJAM, a novel GNN-based framework for JA that significantly accelerates
the alignment process (compared with existing methods) from hours/minutes to seconds.

2. FastJAM graph structure allows for the information from the entire image collection to prop-
agate between images during optimization, unlike previous “image-by-image” approaches
(including SpaceJAM), leading to improvements in JA quality.

3. The first Inverse-Compositional JA loss that is based on a sparse KP representation.

2 Related Work

Pairwise image alignment. Learning-based correspondence methods have substantially improved
the accuracy and robustness of image matching. Sparse approaches like SuperPoint [10] and Su-
perGlue [11] detect KPs and compute context-aware matches using attention and GNNs, but might
struggle in low-texture or repetitive regions due to their reliance on sparse detections. To overcome
these limitations, dense methods such as LoFTR [12] compute pixel-wise matches using transformer-
based architectures without requiring explicit KPs. Recent advances continue to close the gap between
the sparse and dense paradigms. RoMa [13] combines DINOv2 features with hierarchical transform-
ers for robust wide-baseline matching. DIFT [14] introduces efficient descriptor interpolation from
diffusion models. Additional types of relevant dense features appeared in the works of Mariotti et
al. [15], who propose spherical viewpoint maps that encode rich geometry, and Xu et al. [16], who
incorporate directional priors to disambiguate symmetric cases. However, common issues with
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dense matching approaches are that they can be computationally demanding and that they require
post-processing because the geometry often breaks.

JA by feature matching. Classical JA methods utilize geometric transformations and handcrafted
features. The idea of congealing [4, 5] is to iteratively align images by minimizing a global cost,
typically entropy or least-squares of pixel values [17, 18, 5] or descriptors like SIFT [19, 20, 21].
Other approaches simultaneously cluster and align images to their class means [22, 23] or use template
matching [24, 25, 26]. In any case, such methods are limited by the quality of the extracted features.
Another classical approach models image sets as low-rank linear subspaces [27, 28, 29, 30].

Deep learning has substantially advanced image JA. Huang et al. [31] adapted congealing to CNN
features, while Spatial Transformer Networks (STNs) [32] introduced a differentiable module for
predicting spatial transformations, enabling end-to-end alignment learning. STNs have since been
widely adopted in JA tasks, including congealing [33], atlas construction [34, 35, 36, 37, 38], joint
clustering [39, 40], moving-camera background modeling [41, 42], and temporal synchronization
of multiple videos [43]. STNs have also been combined with GANs [44] to generate high-quality
canonical atlases [45, 46], albeit data demanding.

Recent works have increasingly adopted deep features as the basis for JA. DINO features [8], in
particular, offer robust and semantically-rich representations well-suited for this task. Neural Con-
gealing [1] employs test-time optimization to build class-specific atlases (e.g., birds) by aligning
DINO features using rigid and non-rigid warps, predicted by a ResNet-based STN [47]. ASIC [2]
utilizes DINO features, learning dense warps from input images to a canonical space through a
U-Net architecture [48]. Both these methods are computationally intensive (often exceeding an
hour for 30 images on an RTX 4090), require heavy regularization to avoid degenerate solutions,
and are prone to instability. ASIC also typically produces fragmented or globally-incoherent align-
ments due to the challenges of dense warping. More recently, a previous work from our group
introduced SpaceJAM [3], a more efficient solution using a lightweight ConvNet (CNN) and an
inverse-compositional loss over refined DINO features, reducing runtime to a few minutes. However,
its reliance on high-dimensional feature maps results in substantial memory overhead during the
optimization process. In contrast, FastJAM combines sparse KP-based matching with a geometric
loss, enabling much faster optimization and better scalability. FastJAM also differs from SpaceJAM
in its architecture and the fact that the input to its neural net is based on the entire image collection,
as opposed to SpaceJAM’s single-image input.

JA by KP correspondence. Several methods tackle JA by explicitly leveraging KP correspondences
across the image set and minimizing a geometric loss. Shokrollahi et al. [21] construct a similarity
graph from KP matches to select optimal references for alignment. Safdarnejad et al. [49] propose a
temporally-aware congealing method for video frames based on tracked KPs. FlowWeb [50] estimates
dense correspondences across images and refines them jointly through graph-based optimization.
ASIC [2] also incorporates an initial KP matching step, though its primary pipeline relies on dense
warping. Dense matching is often computationally demanding and memory intensive, while sparse
KPs offer a more efficient alternative. Building on recent successes of GNNs in pairwise alignment
tasks [11, 51, 52], FastJAM capitalizes on this sparsity and introduces a GNN to aggregate alignment
information across matched KPs. Combined with a fast inverse-compositional loss, this enables
high-quality and regularization-free JA in seconds and with a low-memory footprint.

3 Method

In this section, we first formally introduce the JA problem (§ 3.1). We then detail how to construct
a correspondence graph from pairwise image matches (§ 3.2), while in § 3.3 we detail the model
architecture. Finally, we explain in § 3.4 how to perform image JA with FastJAM.

3.1 The Joint Alignment Problem and the Inverse-Compositional Framework

Given N images, I = (Ii)
N
i=1, depicting different instances from the same semantic class (e.g., cars),

the task is to facilitate JA by estimating a transformation T θi ∈ T for each image such that the
transformed images (Ii ◦ T θi)Ni=1 are spatially aligned in a shared coordinate frame C. We assume a
parametric family of transformations T (e.g., homographies), with T θi denoting the transformation
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Figure 3: Comparison of joint alignment frameworks. Left: Atlas-based methods align each image
independently to a canonical space C by minimizing variance. Middle: Existing inverse-compositional
(IC) methods estimate C implicitly via relative transformations (T θi ◦ T−θj ), but process images
independently. Right: FastJAM follows the IC paradigm, but differs from previous approaches in
that 1) the loss is computed between KPs and 2) all images are processed simultaneously (the model
process the entire KPs graph during its forward pass), allowing shared reasoning across all images.

for image Ii, parameterized by θi. Atlas-based approaches (e.g., [1, 2]) usually optimize for a latent
template, Iµ, jointly with the transformations. Formally, they solve

argmin
Iµ,(Tθi )Ni=1∈T

∑N

i=1
D(Iµ, Ii ◦ T θi) +R(T θi ;λ) (1)

where D is a discrepancy measure (e.g., the Euclidean distance), R(T θi ;λ) is a regularization term
on the predicted transformations with HPs λ, and Iµ is the so-called canonical space or atlas. Due to
its notion of centrality, Iµ is also known as the average or centroid image.

In contrast, FastJAM follows a congealing-inspired approach [4, 5] (particularly, Least-Squares (LS)
Congealing [17, 18]) which avoids the need to maintain an explicit reference image, together with
the modern Inverse Compositional (IC) approach we proposed in [3]. Concretely, the IC approach
can be defined via the following loss:

argmin
(Tθi )Ni=1∈T

∑N

i=1

∑
j:j ̸=i

D(Ij , Ii ◦ T θi ◦ T−θj ) . (2)

Of note, the historical roots of the IC approach go back to the pre-DL era [18]. SpaceJAM [3],
however, rather than optimizing over the warping of a single image at a time (as was done in
traditional LS-congealing) simultaneously optimizes over all transformations.

The IC formulation indicates that the image collection is mapped to a shared space, since

Ij ≈ Ii ◦ T θi ◦ T−θj ⇔ Ij ◦ T θj ≈ Ii ◦ T θi . (3)

As explained in [3], the IC approach obviates the need for using regularization terms. An important
distinction between our work and [3] is that in [3] the optimization is based on the discrepancy
between dense feature maps (e.g., DINO features), while we adapt it to KPs and rely on geometric
measure, as detailed below. Figure 3 illustrates the different JA approaches.

By design, and due to the inverse-compositional nature, IC losses are invariant to a single global
homography. That is, for any (T θi)Ni=1 and any additional transformation T θ0 , the (T θi ◦ T θ0)Ni=1
transformations would give rise to the same value of the loss. The same phenomena happens in
not only [3] (and, for slightly-different reasons, [38, 43]) but also many works on synchronization
over groups (see, e.g., [53, 54]). This is a feature, not a bug, as it simplifies the optimization
considerably. Importantly: 1) While this means there are infinitely-many solutions, the implied
N -fold joint correspondence is unique. 2) After the fact (i.e., after the optimization is done), and for
visualization purposes, for example, one can pick the value of T θ0 without affecting the quality of the
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Figure 4: Canonical Space Visualization. We visualize the canonical space (C) via a predefined
RGB colormap. The first row shows an example of color projection from the canonical space
onto a reference triangle. From the second row, we color each image Ii by applying its inverse
transformation on C (i.e., C ◦ T−θi ). FastJAM maps semantically similar regions to the same areas of
C, as shown by the consistent color mapping.

solution. Plausible choices include the inverse of the average homography (which can be computed
in various ways, including the so-called Karcher mean [55, 56]) or the inverse of, say, T θ1 . Note that
the latter choice does not imply that the first image had any special importance in the optimization.

3.2 Graph Construction

The first stage of FastJAM involves constructing a sparse graph over KPs extracted from the image
collection. This graph encodes both intra-image structure and inter-image correspondences and serves
as the input to the GNN. The construction process consists of three steps, detailed below.

Object-centric region extraction. We follow [1, 2, 3] and extract object-centric masks for the
image collection. We use Grounded-SAM [57], a combination of the Grounding DINO object detector
and the Segment Anything Model (SAM) [8, 58]. Given a text prompt corresponding to the object
category, Grounded-SAM produces a segmentation mask focusing on the object of interest. This
mask is used to restrict the KP extraction and matching to the relevant region, improving robustness
to background clutter and occlusions. Mask extraction takes ∼ 0.4 seconds per image and can be
parallelized over the GPU.

KP detection and matching. For each image Ii, we extract a set of sparse KPs Xi =

{x(1)
i , . . . , x

(Mi)
i } (where Mi is the number KPs in Ii) using an off-the-shelf image matcher in-

side the objects’ mask. We use RoMa [13], but any matcher producing KP correspondences can be
used. We chose RoMA due to its robustness and fast inference time (∼ 0.3 seconds for an image
pair on an RTX4090, which can be done in parallel across pairs). For each image pair (Ii, Ij), RoMa
returns a set of KPs, (Xi, Xj), and correspondences Mij ⊂ Xi ×Xj along with a confidence score
for each match. To improve spatial coverage and reduce redundancy, we apply non-maximum suppres-
sion (NMS) over the matcher confidence scores using a 30× 30 window, and retain the top-scoring
points. We found that selecting as few as 10 KPs per image is sufficient for our framework.

Intra-image KP clustering. Consider three images, (I1, I2, I3), and recall that RoMa is a pairwise
KP extractor and matcher. Running RoMa on (I1, I2) produces 10 KPs on I1 and 10 on I2; running
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it on (I1, I3) produces another 10 KPs on I1 and 10 on I3; and so on. Consequently, each image
(e.g., I1) accumulates multiple sets of KPs obtained from different pairwise runs. Importantly, these
sets are not guaranteed to be identical, even though they all refer to the same image, leading to
redundancy. For instance, in bird images, most of the N−1 KP sets extracted from I1 are likely to
include a KP near the beak tip, though at slightly different locations. To reduce this redundancy and
merge semantically similar KPs within an image, we apply a fast, nonparametric clustering step.
Specifically, we use Dinari and Freifeld’s parallel DP-Means algorithm [59] (with init_n=3 and
δ = 1), a highly efficient variant of DP-Means [60], which itself generalizes K-Means to an unknown
number of clusters. It takes ∼ 0.13 seconds to cluster ∼ 6000 points. After clustering, we discard the
original KPs and retain only the cluster means as the representative intra-image KPs.

Graph definition. We define a single graph G = (V, E) over the entire image set. Each KP, x(m)
i ,

is represented as a node v ∈ V . We add two types of edges: (1) Intra-image edges: In each image
Ii, we fully connect all KPs in Xi to model local spatial structure. (2) Inter-image edges: In each
matched KP pair (x(m)

i , x
(n)
j ) ∈ Mij , we add an edge between the corresponding nodes. Each

node v ∈ V is initialized with a vector h(0)
v consisting of the KP’s 2D coordinates such that H(0)

is the initial nodes coordinates matrix. In addition, each node is tagged with a categorical identifier
indicating its source image, which is later used to perform image-level pooling. Unlike traditional
graph-level readout layers that summarize the entire graph, FastJAM performs structured readout by
pooling node embeddings per image. The edge structure is encoded as a binary adjacency matrix
A ∈ {0, 1}|V|×|V|, where Auv = 1 if there is an edge (intra- or inter-image) between nodes u and v.
The resulting graph G = (V, E ,H(0),A) encodes both local geometric structure and cross-image
semantic correspondence, and serves as input to a message-passing GNN that propagates alignment
information throughout the image collection.

3.3 Model Architecture

Given the graph G = (V, E ,H(0),A), our objective is to predict a transformation parameter vector
θi ∈ R8 for each image Ii, representing its homography. We treat this as a structured regression task
over node features: each node corresponds to a KP, and the GNN must propagate alignment-relevant
information across the graph to produce per-image outputs. Formally, let f(G) = (θi)

N
i=1 be a

GNN that predicts the warping parameters from the graph. In our setting, where the goal is to
regress image-specific transformations from KPs structured within a shared graph, it is essential
to preserve the distinction between a node and its neighbors. GraphSAGE [61] achieves this by
applying separate transformations to self and neighbor features, enabling more effective modeling of
local asymmetries and node-specific roles which is relevant when propagating alignment cues across
inter- and intra-image connections. While attention-based models such as GAT [62] offer expressive
edge-aware aggregation, we found them to be empirically slower. In contrast, GraphSAGE provided
a favorable balance of speed, stability, and alignment accuracy, making it well-suited for FastJAM’s
test-time optimization regime. The message protocol for GraphSAGE is

h(l)
v = σ

(
W

(l)
1 h(l−1)

v +W
(l)
2 ·meanu∈N (v)h

(l−1)
u

)
(4)

where h(l)
v is the embedding of node v at layer l, N (v) denotes the neighbors of v, W (l) is a learnable

weight matrix, and σ is a non-linear activation function. After L = 5 message-passing layers, we
perform per-image readout via global average pooling over all nodes belonging to each image:

zi =
1
Mi

∑
v∈Vi

h(L)
v (5)

where Vi ⊂ V is the set of nodes from image Ii, and zi ∈ Rd is the resulting image-level embedding.
Finally, we project the embedding of each image to the estimated homography parameters:

θi = zT
i Wout ∈ R8 . (6)

3.4 FastJAM Joint Alignment

Lie-algebraic parameterization. To ensure matrix invertibility, which is essential for our IC
formulation and for stable optimization [63, 3], we represent homographies using the Special Linear
group SL(3) via a Lie-algebraic parameterization as was done in, e.g., [64, 54, 3]. For details, see
our supplemental material (SupMat).
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Robust inverse-compositional KP loss. Our geometric loss builds upon the IC formulation intro-
duced in [3], adapted to sparse KP correspondences. For each image pair (Ii, Ij), the forward warp
from Ii is composed with the inverse warp from Ij (i.e., T θi ◦ T−θj ). We penalize the discrepancy
between each matched KP pair (x(m)

i , x
(n)
j ) ∈ Mij after applying the IC transformation

LKP-IC =

N∑

i=1

∑

j ̸=i

∑

(x
(n)
i ,x

(m)
j )∈Mij

ρσ

(
∥x(m)

j − x
(n)
i ◦ T θi ◦ T−θj∥2

)
, (7)

where ρσ(z) =
z2

z2+σ2 is the Geman-McClure robust loss function [65] with parameter σ.

This formulation allows alignment to be computed at the original KP locations without any reg-
ularization term on the warps or the need to render warped images via expensive interpolation.
Compared to dense alignment over high-dimensional DINO feature maps, our sparse formulation is
both significantly more efficient and more robust to missing KPs, wrong matches, and outliers.

Handling reflections. We follow [3] and explicitly check for flips every K epochs during optimiza-
tion (where K = 100) and compute the gradient and update the model’s weight only for the best
configuration. We have found that only checking for horizontal flips is sufficient. This ensures that
flipped images can still participate in alignment without requiring a reflection-aware parameterization.

Implementation details. All experiments were conducted on a single NVIDIA RTX 4090 GPU
with 24GB of memory. We optimize FastJAM for 600 epochs using Adam [66] with a Geman-
McClure robustness parameter σ = 0.25. We use pretrained Grounding-SAM [57] and RoMa [13]
with the default HP once, before starting the optimization. For more details, please see our SupMat.

Limitations. Our main limitation is the reliance on an external image matcher to generate initial KP
correspondences. While modern matchers like RoMa provide high-quality matches in many scenarios,
the overall alignment quality depends on the accuracy of these correspondences. In addition, FastJAM
models geometric transformations using homographies, which may be insufficient in cases involving
strong non-planar deformations. Extending the model to support more expressive transformation
families remains a direction for future work.

4 Results

Datasets, evaluation metrics, and baselines. We evaluate FastJAM under a test-time optimization
setting, where the model is optimized independently on each image collection. We use two benchmark
datasets: SPair-71k [9] and CUB-200 [67] (classes and subsets). SPair-71k’s test set comprises 18
object categories, each with ∼30 images, with annotated KPs and large intra-class variation. We
report both per-category performance and average results across all categories. Following prior works,
we evaluate on the first 3 categories of CUB-200 test set, each containing ∼30 images as well. We
use the Percentage of Correct Keypoints (PCK) as the evaluation metric. A predicted KP is deemed
correct if it falls within a normalized distance threshold α of the ground-truth location. We report
mean PCK across all KPs and categories, with α = 0.1. We average the results over 3 runs.

As in prior work [2, 3], we compare FastJAM to several baselines. Neural Best Buddies (NBB) [68]
aligns image pairs using mutual nearest neighbors with Moving Least Squares warping [69], using
VGG (VGG-MLS) or DINO (DINO-MLS) features. DINO-NN performs dense nearest-neighbor
matching. GANgealing [46] uses GANs but is limited to seen categories. Neural Congealing [1]
builds an explicit atlas but requires hyperparameter tuning and reported results on only three SPair-71k
classes. ASIC [2] predicts dense warps to a canonical space, and SpaceJAM [3] applies an IC loss
over DINO features. FastJAM instead uses sparse KPs and a graph-based model, enabling faster and
more scalable alignment. We cite the results reported in [2, 3].

4.1 Qualitative Results

We illustrate the qualitative performance of FastJAM in Figure 1, Figure 4, and Figure 5. Given a
collection of category-level images (e.g., birds), FastJAM aligns all images within seconds, producing
visually coherent and semantically consistent outputs across instances. To interpret the alignment, we
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Figure 5: JA Visual Comparison. We compare FastJAM with SpaceJAM [3] on both rigid (TV) and
non-rigid (Sheep) classes. In both cases, FastJAM alignment is visually better, where the improvement
is particularly noticeable for close-up images, such as the middle or rightmost sheep.

Table 2: SPair-71k results: PCK@0.10 on the test set. Among test-time optimization (TTO)
methods, the best is in bold, second-best is underlined. (⋆) Denotes use of a reference image. (−)
Indicates missing results. (†) Marks non-TTO methods.
Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV All

GANgealing [46] - 37.5† - - - - - 67.0 - - 23.1 - - - - - - 57.9 -
VGG+MLS [68] 29.5 22.7 61.9 26.5 20.6 25.4 14.1 23.7 14.2 27.6 30.0 29.1 24.7 27.4 19.1 19.3 24.4 22.6 27.4
DINO+MLS [68, 70] 49.7 20.9 63.9 19.1 32.5 27.6 22.4 48.9 14.0 36.9 39.0 30.1 21.7 41.1 17.1 18.1 35.9 21.4 31.1
DINO+NN [71] 57.2 24.1 67.4 24.5 26.8 29.0 27.1 52.1 15.7 42.4 43.3 30.1 23.2 40.7 16.6 24.1 31.0 24.9 35.0
NeuCongeal [1] - 29.1⋆ - - - - - 53.3 - - 35.2 - - - - - - - -
ASIC [2] 57.9 25.2 68.1 24.7 35.4 28.4 30.9 54.8 21.6 45.0 47.2 39.9 26.2 48.8 14.5 24.5 49.0 24.6 37.0
SpaceJAM (ViT-L) [3] 53.6 53.5 45.4 47.5 71.0 54.0 46.0 66.0 25.8 48.6 28.5 47.6 54.0 50.7 34.0 09.0 71.8 15.4 45.7
FastJAM (Ours) 64.4 43.3 60.0 29.6 58.4 66.8 56.5 63.7 32.0 49.2 40.8 53.7 62.8 49.1 42.9 33.4 76.2 71.2 53.0

visualize the canonical space C using a fixed RGB colormap. Each image Ii is colored by applying
the inverse of its predicted transformation to C, i.e., C ◦ T−θi . As shown in Figure 4, semantically
similar regions (e.g., heads, wings, tails) align to consistent areas in C, indicating robust JA across
pose and appearance. As shown in Figure 5 in comparison to [3], FastJAM alignment is visually
better. Additional examples and comparisons are available in the SupMat.

4.2 Quantitative Results

Table 2 reports alignment accuracy on the SPair-71k test set, measured by mean PCK@0.10 across
18 object categories. FastJAM achieves the best overall performance with an average PCK of 53.0,
outperforming all competing methods. It ranks first in 11 categories and second in 6 others, with
comparable performance across a wide range of object classes and viewpoints. Compared to [1, 2],
FastJAM offers on-par or better accuracy while being significantly faster and more memory-efficient,
validating the benefits of its sparse, graph-based formulation. While FastJAM performs competitively
across most categories, we observe reduced performance on highly-symmetric objects such as bicycles.
These cases pose inherent challenges due to visual ambiguity, where the initial matcher struggles
to disambiguate symmetric parts (e.g., right versus left). In such scenarios, FastJAM can propagate
incorrect correspondences. Addressing this remains an interesting direction for future work. Results
for the CUB-200 dataset are reported in Table 3 where FastJAM outperforms SpaceJAM and achieves
comparable results to ASIC [2] (in a fraction of the computation time) on the categories benchmark
and the best results across subsets (results were not reported for [2]).
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Table 3: A comparison on CUB-200.
Method CUB-200 Method CUB-200

(first 3 cate.) (Subsets)

VGG+MLS [68] 25.8 - -
DINO+MLS [70, 68] 67.0 - -
DINO+NN [71] 68.3 GANgealing [46] 56.8
ASIC [2] 75.9 NeuCongeal [1] 63.6
SpaceJAM [3] 69.6 SpaceJAM [3] 69.9
FastJAM (Ours) 75.3 FastJAM (Ours) 73.6

Table 4: Dense vs. KP warping runtime analysis [sec].
Loss Bmax Npoints D Grid warping Interpolation Fwd. +Back Total

Dense 10 70756 2 1.28 0.13 2.82 8.46
Dense 10 70756 25 1.29 0.77 4.12 12.36
KPs 30 16 2 0.18 0.36 0.36
KPs 30 16 25 0.17 0.34 0.34

Table 5: Ablation Study.
Ablation CUB-200 SPair-71k

(first 3 cate.)

LoFTR [12] (No RoMa) 33.8 17.0

Linear projection 33.2 14.0
MLP (per-image, no graph) 73.5 47.8
Homography optimization (no deep net) 74.1 48.3

L2 loss (No Geman-McClure function) 61.0 33.9
No masks 74.8 41.8
No non-maximum suppression 74.3 47.2
No Lie Group 75.0 49.3
No intra-image edges 74.7 50.0

GNN Backbones

GCN [72] (53 secs) 73.2 47.4
GAT [62] (66 secs) 75.0 49.9
GraphSAGE [61] (49 secs) 75.3 53.0

4.3 Runtime Analysis

Runtime comparison. We evaluate the computational efficiency of FastJAM by comparing its
runtime against: NeuCongeal [1]; ASIC [2]; SpaceJAM [3]. As shown in Table 1, FastJAM achieves
over an order-of-magnitude speedup (measured over three SPair-71k categories), aligning image
collections in under ∼50 seconds, compared to 5–6 minutes for SpaceJAM and over an hour for
ASIC and NeuCongeal. The reported runtime includes preprocessing (i.e., pairwise matches). We
also compare FastJAM and SpaceJAM on an increasing number of images (N = 10 to 100). The full
experimental setup is available in our SupMat.

Dense vs. KP warping. We analyze the individual warping components of both methods on a set of
30 images (see Table 4, all reported runtime in this table are in seconds) for one epoch. We evaluate
how the number of points (Npoints) in the coordinate grid and the feature dimension (D) affect
the overall warping time. For dense matching, we set Npoints = 266 × 266 = 70,756 (the image
resolution used in SpaceJAM) and D = 25, corresponding to the feature dimension on which the loss
is computed. For FastJAM, we set Npoints = 16 and D = 2 (i.e., 8 KPs in 2D). For completeness,
we also evaluate D ∈ {2, 25} for both methods. We measure the time required for (i) grid warping,
(ii) interpolation (used only in dense warping), (iii) forward and backward warping for the IC loss
(Fwd + Back), and the total runtime over all batches in a single epoch. For dense warping (e.g.,
SpaceJAM), the maximum batch size is Bmax = 10, resulting in a total runtime of 3× (Fwd+Back).
The key observations are: (1) reducing Npoints is crucial for achieving fast warping, and (2) avoiding
interpolation further accelerates computation, making the runtime largely independent of D.

4.4 Ablation Study

Table 5 summarizes our ablation study on CUB-200 (3 categories) and SPair-71k. Replacing RoMa
with LoFTR [12] significantly reduces performance, underscoring LoFTR’s limitations in cross-
instance correspondence. Substituting the Geman–McClure loss [65] with an ℓ2 loss or removing
the object mask also causes notable accuracy drops, confirming the importance of robust error
modeling and spatial masking. NMS and intra-image edges provide additional gains. Although
removing the Lie-algebraic parameterization has little effect on accuracy, it ensures warp invertibility,
essential for the IC loss, as without it about 2% of runs fail due to non-invertible matrices, whereas
using it eliminates such failures entirely. Replacing the GNN with a linear projection caused a
substantial performance drop, while MLP-based and direct homography optimization models also
reduced accuracy, though less severely. Among GNN backbones, GraphSAGE [61] outperforms both
GCN [72] and GAT [62] in accuracy and runtime.

5 Conclusion

We introduced FastJAM, a graph-based framework for fast and scalable image JA. By leveraging
sparse KP correspondences and a lightweight GNN architecture, FastJAM propagates alignment cues
across image collections and regresses per-image transformations. Our method achieves state-of-the-
art alignment quality while significantly reducing runtime and memory usage.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the claims made in the abstract are backed in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In section § 3.4, we elaborate about the limitations of FastJAM.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: there are no theoretical results in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Most if not all needed information about reproducibility is given either in the
paper itself, in the Supplementary or in the future to be published code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: As described in the abstract, the code would be released upon acceptance. The
datasets we used are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe all the details either in the paper itself or in the supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the substantial computational cost associated with running all competing
methods, it was not feasible to perform multiple trials necessary for estimating variance or
reporting error bars. On our results, we averaged our experiments on 3 different seed runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments where maybe on internal cluster, GPU RTX4090, we mention
it where needed. Memory size is also indicated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All the data we used is publicly available.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The method presented is a generic tool for aligning images and is not directly
tied to a specific application. While it may enable both beneficial and potentially harmful
uses (e.g., in surveillance or misinformation), the paper does not explore these societal
implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not found high risk misuse for our method.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Any credit or citation needed was provided in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All needed documentation would be provided with the code upon acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper did not involve crowd-sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowd-sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The usage of LLM, as declared, was mainly for writing and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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FastJAM: a Fast Joint Alignment Model for Images
————

Supplemental Material

Contents

This document contains the following:

• § A: Visual Comparison
– Additional qualitative comparisons against existing joint alignment methods (Figure 6).

• § B: Additional Visualizations
– Additional joint alignment results on the CUB dataset (Figure 7).
– Full pairwise alignment grids for representative categories (Figure 8 and Figure 9)

• § C: Explaining the Colormap Visualization in More Detail
– Illustration of FastJAM’s canonical alignment using a fixed RGB colormap (Figure 10).

• § D: Runtime Analysis
– Scalability runtime assessment for increasing number of images (N = 10 to 100)

(Figure 11).
• § E: Model Configuration and Training Setup

– Full architecture summary (Table 5).
– Optimization settings, matcher configuration, and training procedure.

• § F: External Tools and Frameworks
– Summary of third-party tools and libraries used, including RoMa, LoFTR, Grounded-

SAM, and torch_geometric.
• § G: Lie Group Parameterization

– Full explanation of the Lie group parameterization.

Additionally, key notational conventions used throughout the main paper and this document are
summarized in Table 6.

A Additional Visual Comparisons

To qualitatively assess alignment quality, we compare FastJAM against existing joint alignment
methods, including SpaceJAM and ASIC. As illustrated in Figure 6, FastJAM produces more
coherent and natural-looking alignments, particularly in challenging cases involving pose variation.
Unlike ASIC, which applies dense warping and often introduces distortions, FastJAM preserves
global structure by relying on sparse keypoints and homographic transformations.

B Additional Visualizations

This section provides supplementary qualitative results that further demonstrate the alignment capa-
bilities of FastJAM across various categories and settings.
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Source Target ASIC SpaceJAM FastJAM (Ours)

Figure 6: Qualitative Comparison of Pairwise Alignment Methods. Visual comparison of joint
alignment results across ASIC [1], SpaceJAM [2], and FastJAM (ours) on several image pairs. ASIC,
which relies on dense warping fields, often introduces spatial distortions and unrealistic deformations
in low-texture or structured regions. In contrast, SpaceJAM and FastJAM apply global homographies,
resulting in more coherent transformations. Notably, in the top row (bird), FastJAM produces the most
geometrically consistent alignment, as evidenced by the parallel lines and precise correspondence of
semantically meaningful points such as the beak and tail.

B.1 Additional Joint Alignment on CUB Dataset

Figure 7 presents further joint alignment results on additional classes from the CUB-200 dataset. For
each class, the original input images are shown in the top row, while the bottom row displays their
aligned counterparts. The outputs demonstrate FastJAM’s ability to handle fine-grained categories
and produce visually coherent canonical views across varying poses and appearances.

B.2 Pairwise Alignment

We visualize full pairwise alignment grids for two representative categories: “aeroplane” and “horse.”
As shown in Figure 8 and Figure 9, each grid displays how the source images (rows) are aligned
to the target images (columns) using the estimated inverse-compositional warps. The diagonal
entries, which correspond to self-alignments (i.e., identity transformations), are highlighted with a
purple dashed-line frame. These grids illustrate FastJAM’s ability to produce consistent, symmetric
mappings across image pairs and maintain semantic structure throughout the alignment process.
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CUB class 2

CUB class 2
Aligned

CUB class 3

CUB class 3
Aligned

CUB class 1

CUB class 1
Aligned

Figure 7: Qualitative alignment results on CUB-200 classes. Each pair of rows corresponds to a
distinct semantic class from the CUB-200 [3] dataset. The top row in each pair shows the original,
unaligned images; the bottom row shows the corresponding aligned images produced by FastJAM.
The alignment process successfully maps semantically consistent parts (e.g., heads, wings, tails) to
similar spatial locations across different instances within each class.
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Input images

Pairwise
Aligned

Image 1 Image 2 Image 3 Image 4 Image 5

Image 1

Image 2

Image 3

Image 4

Image 5

Target

Figure 8: Pairwise Alignment Grid – “Aeroplane” Class. Top row: five input images from the
“aeroplane” category. Below: a 5 × 5 alignment matrix, where each entry in column j displays
the corresponding source image from row i, warped to align with target image j using the inverse-
compositional transformation T θi ◦ T−θj . Each row thus visualizes the same source image aligned to
five different targets. Diagonal entries show the self-warped images (i.e., identity transformation), but
with the canonical background rather than the original, and are marked with a red dashed-line frame.
This layout highlights FastJAM’s ability to achieve coherent, semantically meaningful alignments
across all image pairs.
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Input images

Pairwise
Aligned

Image 1 Image 2 Image 3 Image 4 Image 5

Image 1

Image 2

Image 3

Image 4

Image 5

Target

Figure 9: Pairwise Alignment Grid – “Horse” Class. Top row: five input images from the “horse”
category. Below: a 5× 5 grid showing the full pairwise alignment structure. Each image in row i,
column j corresponds to the source image i aligned to the target image j using T θi ◦ T−θj . The
diagonal entries depict self-warping (identity), rendered with the canonical background rather than
the original, and are marked with a red dashed-line frame. This visualization reveals consistent
alignment behavior across the set, illustrating how FastJAM handles pose and appearance variation
within a semantic class.
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C Explaining the Colormap Visualization in More Detail

To provide an intuitive understanding of how FastJAM aligns images to a shared canonical space,
we visualize the warped outputs using a predefined RGB colormap. As shown in Figure 10, each
input image is first aligned to the canonical frame and blended with the colormap. The result is
then inverse-warped back to the original image space, allowing us to visualize how semantic regions
are mapped consistently across instances. This process highlights FastJAM’s ability to establish
meaningful correspondences without relying on dense features or explicit templates.

Original Image Aligned Image
Aligned Image

Colored
Original Image

Colored 

Figure 10: Illustrated Canonical Space Visualization. This figure provides an intuitive explanation
of how FastJAM visualizes the canonical space C using a predefined RGB colormap Icolormap. For each
input image Ii (left column), we first apply the estimated homography to obtain its aligned version
in canonical space: Ii ◦ T θi . We then blend this aligned image with the colormap via averaging:
1
2 (Icolormap + (Ii ◦ T θi)). Finally, we apply the inverse warp to visualize the blended canonical signal
in the original image frame:

[
1
2 (Icolormap + (Ii ◦ T θi))

]
◦ T−θi . This provides a visual explanation

of how semantically similar regions across instances are mapped to consistent spatial locations.
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D Runtime Analysis
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Figure 11: Runtime analysis between SpaceJAM and FastJAM over an increasing number of images.
SpaceJAM PCA processing step runs out of RAM after 40 images.

As illustrated in Figure 11, FastJAM remains efficient across all tested sizes, completing alignment in
under 450 seconds even for 100 images. In contrast, the current implementation of SpaceJAM runs
out of RAM after N = 40 images due to the PCA preprocessing step.

E Model Configuration and Training Setup

We train the model for 600 epochs using the Adam optimizer with an initial learning rate of 5× 10−3,
multiplied by 0.5 after 200 epochs without improvement. The loss function is based on the Geman-
McClure formulation with a robustness parameter σ = 0.25, and no weight decay is applied. The
feature extractor within the GNN uses 5 layers of hidden size 128, followed by a linear projection
to an 8-dimensional homography parameter vector. A full summary of the model architecture and
its 133,256 trainable parameters is provided in Table 5. To encourage geometric stability, the final
projection layer is initialized to approximate the identity transformation, and transformations are
parameterized using Lie algebra to ensure invertibility. Alignment is applied iteratively using a single
pass of the inverse compositional (IC) spatial transformer network. During optimization, horizontal
flips are checked every 100 epochs.

Table 5: GraphSAGE GNN Model Summary.

Layer (type:name) Output Shape Param

GraphSAGE GNN – –
convs.0.lin_l.weight [128, 2] 256
convs.0.lin_l.bias [128] 128
convs.0.lin_r.weight [128, 2] 256
convs.1.lin_l.weight [128, 128] 16,384
convs.1.lin_l.bias [128] 128
convs.1.lin_r.weight [128, 128] 16,384
convs.2.lin_l.weight [128, 128] 16,384
convs.2.lin_l.bias [128] 128
convs.2.lin_r.weight [128, 128] 16,384
convs.3.lin_l.weight [128, 128] 16,384
convs.3.lin_l.bias [128] 128
convs.3.lin_r.weight [128, 128] 16,384
convs.4.lin_l.weight [128, 128] 16,384
convs.4.lin_l.bias [128] 128
convs.4.lin_r.weight [128, 128] 16,384
fc.weight [8, 128] 1,024
fc.bias [8] 8

Total – 133,256

For correspondence estimation, we employ the RoMa matcher at a fixed image resolution of 560×560
for both coarse and upsampled stages. A maximum of 10 keypoints is retained per image, filtered by
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non-maximum suppression (NMS) using a radius of 0.054 in normalized coordinates—corresponding
to a 30× 30 pixel window in the original image space. This ensures spatial coverage while avoiding
redundant detections.

Table 6: Summary of Notation

Symbol Description

I = (Ii)
N
i=1 Set of input images

Mi Number of keypoints in image Ii
Xi = {x(1)

i , . . . , x
(Mi)
i } Keypoints in image Ii, x

(m)
i ∈ [−1, 1]2

Mij Set of matched keypoints between Ii and Ij
T Family of parametric transformations (e.g., homographies)
T θi ∈ T Transformation for image Ii, parameterized by θi

G = (V, E) Keypoint graph with intra- and inter-image edges
f(G) GNN-based function that predicts {θi}Ni=1 from a graph
Ii ◦ T θi Image Ii warped by transformation T θi

F External Tools and Frameworks

We gratefully acknowledge the use of several open-source libraries and resources in this project.
Our GNN implementation is based on torch_geometric, primarily using the GraphSAGE [4]
architecture, along with other variants for comparison. We used Weights & Biases for experiment
tracking and visualization. For keypoint matching, we built upon the official implementation of
RoMa [5], and we also incorporated components from the LoFTR framework [6]. Object-centric
masks were obtained using Grounded-SAM, which combines Grounding DINO [7, 8] and the
Segment Anything Model (SAM) [9]. We thank the authors of all these works for making their code
and models publicly available.

G Lie Group Parameterization

A homography has 8 degrees of freedom and corresponds to an equivalence class of invertible
matrices, where a representative with unit determinant can be used. Now consider

sl(3) =

{
Θ =

[
θ1 θ2 θ3
θ4 θ5 θ6
θ7 θ8 −(θ1+θ5)

]}
and SL(3) =

{
H ∈ R3×3 : detH = 1

}
. (1)

The space sl(3) is the Lie algebra of trace-zero matrices. The matrix exponential maps sl(3) into
SL(3), yielding a smooth eight-parameter representation of homographies. Our network predicts
(θi)

N
i=1, where each θi ∈ R8 is mapped to Θi ∈ sl(3) as shown above, and the homography is

obtained via T θi = Hi = exp(Θi). This construction guarantees detT θi = 1. In particular,
θi = 08×1 yields the identity matrix, and T−θi is the inverse of T θi .
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