
Under review as a conference paper at ICLR 2022

SCALA: SPEEDING-UP FINE-TUNING OF PRE-
TRAINED TRANSFORMER NETWORKS VIA EFFICIENT
AND SCALABLE ADVERSARIAL PERTURBATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The size of transformer networks is growing at an unprecedented rate and has
increased by three orders of magnitude in recent years, approaching the trillions.
To train models of increasing sizes, researchers and practitioners have employed
large-batch optimization to leverage massive distributed deep learning systems and
resources. However, increasing the batch size changes the training dynamics, often
leading to generalization gap and training instability issues that require extensive
hyperparameter turning to maintain the same level of accuracy. In this paper, we
explore the steepness of the loss landscape of large-batch optimization and find that
it tends to be highly complex and irregular, posing challenges to generalization. To
address this challenge, we propose ScaLA, a scalable and robust method for large-
batch optimization of transformer networks via adversarial perturbation. Moreover,
we perform several optimizations to reduce the computational cost of performing
the adversarial perturbation, thereby improving its performance and scalability
in the distributed training environment. We provide a theoretical convergence
rate analysis for ScaLA using techniques for analyzing non-convex saddle-point
problems. Finally, we perform an extensive evaluation of our method using BERT
and RoBERTa on GLUE datasets. Our results show that our method attains up
to 18 × fine-tuning speedups on 2 DGX-2 nodes, while achieving comparable
and sometimes higher accuracy than the state-of-the-art large-batch optimization
methods. When using the same number of hardware resources, ScaLA is 2.7–9.8×
faster than the baselines.

1 INTRODUCTION

We have seen exponential growth in DL model size since the debut of the transformer net-
work (Vaswani et al., 2017). For example, while BERTbase has around 100M parameters, the
model size has increased to multi-billion parameters such as Megatron-LM (8B) (Shoeybi et al.,
2019), T5 (11B) (Raffel et al., 2019), Turing-NLG (17B) (tur), and with GPT-3 hitting a new stagger-
ing record of 175B parameters. With the three orders of magnitude growth, these large models also
have powered accuracy breakthroughs in many challenging Natural Language Processing (NLP) tasks
such as the General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019a).
Recent studies show that the performance of these models continues to scale with their sizes (Kaplan
et al., 2020). As a result, we expect that the model size would continue to grow in the future.

To accelerate the training speed of large models, the most common way is to increase the batch size
in the optimization algorithm in order to leverage multi-GPU training (Li et al., 2020; Liu et al., 2019;
Huang et al., 2019; Shazeer et al., 2018; Shoeybi et al., 2019; Rajbhandari et al., 2019). By increasing
the batch size, a mini-batch of sizeB can be divided across more workers (GPUs), where the gradients
are computed locally on each worker using back-propagation and then aggregated. Furthermore,
most of the operations used in transformer networks are highly optimized in modern linear algebra
frameworks on GPUs and can scale to larger batch sizes without significantly increasing the time
per step (Wang et al., 2019c; Kaplan et al., 2020). If researchers can train each neural network with
more GPUs and increased throughput, then it makes it possible for them to achieve better results by
training even larger models, using larger datasets and exploring new ideas more rapidly.

1

Under review as a conference paper at ICLR 2022

However, changing the batch size is not always straightforward, as it often impacts the training
dynamics. You et al. propose LAMB (You et al., 2019a) to exploit large-batch optimization for
transformer networks. LAMB is a variant of Adam (Kingma & Ba, 2015) that applies layer-wise
normalization before applying each gradient update, which has been used to successfully train BERT
on 1024 TPU chips in 76 minutes. Despite showing promising results, prior work (You et al.,
2019a) primarily focuses on pre-training. On the other hand, the fine-tuning stage starts to become a
bottleneck (e.g., it takes tens of hours to fine-tune RoBERTa-large on MNLI (Wang et al., 2019a))
and becomes more expensive as model size increases. If we can speed-up pre-training by increasing
batch sizes, why do we not also increase the batch size during fine-tuning in the interest of making
fine-tuning more efficient as well? Contemporary experience is that fine-tuning with large batch sizes
is harder to train, often reaching lower accuracy than the baseline accuracy using small batch sizes.

To address these challenges, we develop new approaches to improving the scalability and generaliz-
ability in fine-tuning pre-trained transformer networks by making the following contributions: (1)
We present an adversarial perturbation based large batch optimization algorithm ScaLA (Scalable
Large-batch Adversarial Perturbation) for training transformer networks, in the distributed training
setting. We show how adversarial perturbation helps improve the generalization and more importantly
how we reduce the cost of injecting adversarial perturbations to improve computational efficiency. (2)
We also present a theoretical convergence rate analysis using techniques for analyzing non-convex
saddle-point problems. (3) We conduct evaluation on a wide range of natural language understanding
(NLU) tasks and assess the impact of adversarial perturbations on both the scalability and the general-
izability in large batch task-specific fine-tuning. (4) We evaluate our approach against BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) and show that ScaLA obtains significant improvements
over the state-of-the-art algorithms, such as LAMB, for the large batch optimization of fine-tuning
tasks. Concretely, while LAMB leads to 1 point accuracy drop on average (e.g., GLUE) as we
increase the batch size, our approach achieves the same and sometimes higher accuracy (up to 0.9
points) after drastically increasing the batch size. Furthermore, with our cost-efficient optimizations,
ScaLA achieves up to 18× speedups on 2 NVIDIA DGX-2 nodes over the baseline fine-tuning time
and is up to 9.8× faster than the baseline when using the same number of GPUs.

2 BACKGROUND AND RELATED WORK

Despite the great success of pre-trained transformer networks such as BERT (Devlin et al., 2019),
a big challenge, in general, comes from the training efficiency – even with self-attention and par-
allelizable recurrence (Vaswani et al., 2017), and high-performance hardware (Jouppi et al., 2017),
training transformer networks can still take a significant amount of time. One effective approach to
reducing training time is through data parallelism (Devlin et al., 2019; Liu et al., 2019; Shoeybi et al.,
2019), which motivates studies on large-batch stochastic non-convex optimizations for transformer
networks (You et al., 2019a). These studies have raised concerns with respect to its convergence,
generalizability, and training stability by observing that training with a large batch could be diffi-
cult (Keskar et al., 2017; Hoffer et al., 2017; Nado et al., 2021). Furthermore, prior works mostly
focus on reducing the pre-training time (You et al., 2019a; Zhang & He, 2020; Gong et al., 2019;
Clark et al., 2020) instead of the adaptation time at the fine-tuning stage.

While many researchers and practitioners focus on how to reduce the pre-training time, few attention
has been paid to accelerate the fine-tuning stage, which gradually becomes a bottleneck as model
sizes increase (e.g., it takes tens of hours to fine-tune MNLI on RoBERTa-large). Therefore, in
contrast to previous works, our goal in this paper is to speed-up task-specific fine-tuning without
hurting model accuracy. Different from pre-training, the fine-tuning stage often employs a much
smaller batch size (e.g., log2B = {4, 5}) than pre-training (e.g., log2B ≥ 10) (Devlin et al.,
2019; Liu et al., 2019). The small batch size results in inefficient data parallelism (i.e., sub-optimal
computation-communication ratio), making it difficult for fine-tuning to benefit from multi-GPU
training. Moreover, a common understanding is that small-batch sizes provide implicit regularization
effects (e.g., from gradient noise) that help improve generalization of downstream tasks. In contrast,
our goal is to speed-up the fine-tuning process with large batch sizes while preserving model accuracy.

On a separate line of research, adversarial training was first proposed in the computer vision literature
to improve a model’s robustness against adversarial attacks (Goodfellow et al., 2015; Madry et al.,
2018). Recently, there has been some work that shows that adversarial training helps improve model
generalizability (Cheng et al., 2019; Wang et al., 2019b; Jiang et al., 2020; Liu et al., 2020; Yao et al.,

2

Under review as a conference paper at ICLR 2022

2018a; Zhu et al., 2020). However, very few works examine large-batch optimization of transformer
networks and NLP tasks with adversarial perturbations from a computational efficiency and scalability
perspective. The work most similar to ours is Zhu et al. (2020), who study adversarial training for
NLP tasks by accumulating the gradient of the parameters from each of the ascent steps and updates
the parameters only once after K inner ascent steps with the accumulated gradients. Unlike Zhu
et al. (2020), we consider accelerating the fine-tuning speed by parallel adversarial training and by
adjusting the number of inner maximization steps, which offers much higher speedups.

3 THE PROPOSED METHOD

In this section, we present a principled method for large batch optimization that is highly scalable
while maintaining the quality of the solutions as measured by task-appropriate accuracy metrics.

3.1 A SEQUENTIAL GAME-THEORETIC METHOD VIA ADVERSARIAL PERTURBATION ORACLE

Formulation: Let X denote the parameter space and Y denote the data (mini-batch/sample) space and
Q denote a distribution supported on Y. To improve the generalizability of transformer fine-tuning
while retaining the scalability, we augment the usual stochastic optimization objective by constructing
an adversarial (Keskar et al., 2017; Madry et al., 2018) regularization. In particular, we solve the
following robust optimization problem, which is a stochastic minimax (Lin et al., 2020) optimization
problem augmented with a regularization term involving a deterministic adversarial perturbation,
instead of vanilla risk minimization:

min
x∈X

Eξ∼Q[g(x, ξ)] = min
x∈X

Eξ∼Q[f(x, ξ) + λr(x)]

= min
x∈X

max
y∈Y

Eξ∼Q[f(x, ξ) + λr(x, y)] := min
x∈X

max
y∈Y

Eξ∼Q[f(x, y, ξ)] (1)

where g : X× Y→ R denotes the robust training objective, f : X× Y→ R denotes the standard
training objective, f : X × Y × Y → R denotes the augmented objective, r : X → R denotes
a deterministic regularization term on the parameters controlled by a strength factor λ ∈ (0,∞),
r : X→ R denotes the augmented regularization and ξ denotes samples drawn fromQ (for simplicity,
we slightly abuse the notation in using ξ to denote the random variable, e.g. Eξ[g(x, ξ)], or its
empirical realizations, e.g. 1

K

∑K
k=1 g(x, ξk) for any K; the meaning is clear from the context). The

overall (outer) training objective involves a minimization problem in the parameter space while being
stochastic with respect to the data space. The adversarial regularization (inner) term is a deterministic
maximization problem operating in the data space conditioned on a fixed parameter configuration. We
wish to emphasize that this formulation is a two-player sequential (Jin et al., 2020), not simultaneous,
game wherein the goal is to optimize a transformer network that is robust to adversarial perturbation.
In a given round, the first player (associated with the outer minimization) proposes a parameter
configuration, and the second player (associated with the inner maximization) responds with a penalty
to capture the effect of label errors due to perturbations in a large data batch size to undermine the
performance of the transformer parameter configuration chosen by the first player.

Practical Considerations: Language expressions are quite sensitive to individual words or clauses,
where perturbations against those would likely generate incorrect or biased training data with wrong
labels (Zhang & Yang, 2018). Following prior success in applying adversarial training to NLP
models (Miyato et al., 2017; Zhu et al., 2020), we apply perturbations to the continuous word
embeddings instead of directly to discrete words or tokens. The term r captures the prediction
deviation from the perturbation. In a given round of the game, with respect to the first player’s
proposal, let Φ denote the transformer network under consideration (specifically, Φ is BERT in this
paper) and ξ be a large batch of data sampled from Q. We construct a label for the second player as
γ := Φ(x, ξ). Next, for classification tasks, we choose r to be the symmetric KL divergence (Jiang
et al., 2020), i.e., r(x, y) := KLsym(γ,Φ(x, y)). We use symmetric KL divergence to measure the
distributional divergence to generate adversarial perturbation. For regression tasks, we choose r to be
the squared loss, i.e., r(x, y) := (γ − Φ(x, y))2. In practice, we add an `∞ constraint on y, which is
achieved by simple clipping with a radius of ω (projection). Intuitively, a large r corresponds to a
situation wherein the transformer is highly sensitive to a given perturbation in the input, suggesting
that the model parameters are close to a sharp minimum. Augmenting the original training objective
with r makes the first player incur an additional penalty if the outer minimization solution veers
closer to sharp minima, thereby encouraging flatter solutions and better generalizability.

3

Under review as a conference paper at ICLR 2022

Lexicon encoder

+

sentence inputs

Input embeddings Adv. noise

Transformer encoder

Context embeddings

Output layer

Minimize loss

Maximize
prediction
deviation
(Delayed
PGA-1)

Noise generator

Figure 1: The architecture of the pro-
posed method.

Figure 2: Time breakdown
with and with PGA-1.

Figure 3: Impact of perturba-
tion steps.

Inner Maximization: For any given outer step t, let xt denote the parameter proposed by the first
player. Since the exact inner maximization in Equation equation 1 is intractable for non-convex
models such as transformers, we adopt truncated methods as in prior works. Specifically, we use
Projected Gradient Ascent (PGA) (Madry et al., 2018; Jiang et al., 2020) to solve this problem, i.e.,
yτ+1 = Πω(yτ + ρτ∇yr(xt, y)) where ρτ for τ ∈ [T] is the step size sequence and Π projects
the result of the gradient ascent update into an `∞ ball of diameter 2ω around the original input
embeddings, ξ, considered by the first player.

Outer Minimization via Groupwise Adaptive Learning Rates: Inspired by prior works that
stabilize large-batch training and improve its convergence quality, we employ algorithms with
groupwise adaptive learning rates (You et al., 2019a) to solve the outer minimization. Specifically, we
solve the minimization problem in Equation equation 1 by xit+1 = xit−ηtν(‖xit‖)∇̂ixg(x)/‖∇̂ixg(x)‖,
∀i ∈ [h] where i denotes the ith-layer of the transformer. The normalized gradient descent mitigates
issues due to exploding gradients. The learning rate sequence ηt, ∀t ∈ [T] is scaled by a clipping
function ν(c) := max(L,min(c,U)) where L < U (e.g., L = 0 and U = 10), which ensures the
norm of the update is of the same order as that of the weights. Note that we use gradient averaging
on ξ, i.e., gradient accumulation and all-reduce, over a batch size B distributed across P workers in
order to obtain a noisy gradient estimate ∇̂ixg(x) at epoch t.

Computational Cost: Given that the primary interest of using a large batch size is to improve
hardware efficiency, we are motivated to look carefully into the computational cost of adversarial
perturbation. Adversarial perturbation requires an extra PGA inner loop that standard training does
not have. Figure 2 provides the time breakdown of adversarial training using PGA with T = 1
(denoted as PGA-1). PGA-1 performs the perturbation and takes approximately the same time as
making three forward passes (Fwd) through the network. This is because one step of PGA requires
to make one forward and backward pass (Bwd) over the entire network. The backward pass of
adversarial training takes roughly twice the amount of time as the standard backward step because the
back-propagation is triggered twice to calculate the perturbation noise and the gradients. The time
spent on the optimizer step function (step) remains the same. In total, adversarial training slows down
training by at least 2 times, even with T =1. This motivates us to look at the effectiveness of different
perturbation steps as well as the usefulness of perturbation from the initial epochs in practice.

Impact of Perturbation Steps, T : Prior works often do multiple gradient computation steps
(T > 1) and take several times longer training time to produce adversaries (Madry et al., 2018;
Zhu et al., 2020), because their focus is not on computational efficiency. Subsequently, researchers
presented Curriculum Adversarial Training (CAT) (Cai et al., 2018) and Annealing-based Adversarial
Training (Amata) (Ye et al., 2020), which progressively increase the perturbation with various
strengths, cutting the adversarial training cost while maintaining good accuracy. To investigate how
CAT and similar methods affect large-scale NLP problems involving transformers, we evaluate the
final fine-tuning accuracy and training cost of QNLI, varying the number of perturbation steps T
and report the results in Figure 3. Interestingly, although using a large T helps to produce stronger
adversaries, we find that this does not lead to improved fine-tuning accuracy, despite the fact that the
training overhead still increases almost linearly. In fact, the best accuracy is achieved with T = 1.

Our hypothesis to this phenomenon is below. The model has two components, namely, the parameter
space and data space. First, unlike the minimization in the parameter space, which is stochastic,
the maximization in the data space is deterministic. Second, with respect to the testing phase,

4

Under review as a conference paper at ICLR 2022

the numerical convergence in the model’s parameter space is of primary importance rather than
the numerical convergence in the data space, i.e., the maximization is an auxiliary procedure that
augments the training phase to make the parameter space ”aware” of effects of the batch size across
epochs. Due to these two points, at a certain epoch, for a given batch, the marginal utility of an
additional PGA step is low, and we are able to get away with inexact deterministic maximization.
Therefore, we apply PGA-1 in our large-batch optimization scheme, given that it produces sufficiently
good solutions while being much more computationally efficient.

Delayed Perturbation Injection: Given that even PGA-1 still adds an overhead factor of 2, we
are motivated to investigate how useful adversarial perturbations are in the initial phase of large-
batch optimization. We conduct additional experiments to measure the final accuracy corresponding
to starting from a regular fine-tuning and then enabling PGA-1 for t ≥ ts where ts ∈ [T]. Our
observation is that enabling PGA-1 from the beginning does not offer much improvement in accuracy,
whereas adversarial perturbation becomes more potent as the model begins to stabilize towards
the end of training. Intuitively, this makes sense because generally, at initialization, the model’s
parameters are relatively far from their final values and are less likely to get stuck at local minima.
Therefore the adversarial perturbations generated in the initial training iterations are quite different
from the perturbations towards the end of training because they would not maximize the adversarial
loss in Equation 1. We remark that a similar phenomenon has been observed in computer vision
tasks (Cai et al., 2018; Ye et al., 2020; Gupta et al., 2020). We show that it is possible to delay the
injection of adversarial perturbations for large-batch optimization of transformers for NLP tasks.

The Algorithm, ScaLA: Combining the formulation with the above investigations, we construct
our distributed large-batch transformer fine-tuning algorithm, named ScaLA (Algorithm 1), whose
convergence rate is characterized in Theorem 1.

Algorithm 1 , ScaLA, Scalable Large-batch Adversarial Perturbation

1: Input: Epochs T , delay ts, perturbation (inner) step size ρ, clipping radius ω, regularization
strength λ, (outer) learning rate η

2: Output: h-layer transformer model Φ with converged robust parameters x := xT
3: for t ∈ [T] do . Loop through epochs
4: for worker p ∈ [P] do . In parallel across homogeneous workers
5: for mini-batch ξp ∼ Q do . Subsample B

P data instances on each worker
6: r(xt)← 0, γ ← Φ(x, ξp), select y0 . Initialize regularization and label
7: if t ≥ ts then . Check delay condition
8: y1 ← Πω(y0 + ρ∇yr(xt, y)) . Perform adversarial perturbation with PGA-1
9: r(xt)← KLsym(γ,Φ(xt−1, y1)) . Calculate the adversarial regularization

10: g(xt, ξp)← f(xt−1, ξp) + λr(xt) . Calculate the augmented loss
11: ∇xg(xt, ξp)← Backward pass on Φ . Compute local gradients using accumulation
12: ∇̂xg(xt)← 1

B

∑P
p=1∇xg(xt, ξp) . Gradient averaging using all-reduce

13: xit ← xit−1 − ηtν(‖xit‖)
∇̂ixg(xt)
‖∇̂ixg(xt)‖

, ∀i ∈ [h] . Update model parameters

Theorem 1 (Complexity of Algorithm 1; Informal – Details in Appendix D). Consider the problem
in Equation 1. Let ts = 0. Setting the outer learning rate as η = O

(
1/
√
T
)

and scaling batch

size as b = O(T), for Algorithm 1, we have E
[
‖∇g1/2α(x)‖2

]
≤ O

(
ε+ κα/

√
T
)

where x is the
estimator obtained from running T steps of Algorithm 1 and picking xt uniformly at random for
t ∈ [T]. Here, ε is the error due to the approximate inner maximization oracle, α characterizes the
smoothness of f(x, .), g1/2α is the Moreau-envelope of g and κα = maxi αi/mini αi.

4 EVALUATION

We evaluate the effectiveness of ScaLA in training transformer networks over a set of NLP tasks.

Hardware: We study the efficiency of computation using 2 NVIDIA DGX-2 nodes. Each node
consists of 16 NVIDIA V100 GPUs. The nodes are connected with InfiniBand using a 648-port
Mellanox MLNX-OS CS7500 switch. We vary the number of workers (i.e., from 1 GPU to 32 GPUs)
in the experiments to evaluate the scalability. Software: We use PyTorch Distributed Data Parallel to

5

Under review as a conference paper at ICLR 2022

scale the fine-tuning from a single GPU to multiple GPUs, which uses all-reduce (Proficz, 2018) to
compute the average of the gradients across all workers for a parameter update. We use NCCL V2.4
as the underlying all-reduce implementation. Model/Dataset: We use pre-trained BERTbase model
released by HuggingFace (Wolf et al., 2020). We use the GLUE benchmark (Wang et al., 2019a),
which is a collection of sentence or sentence-pair natural language understanding tasks including
question answering, sentiment analysis, and textual entailment. Given that large models normally
require days or even weeks (e.g., RoBERTa) if trained from scratch, it is not cost-efficient to evaluate
from scratch using large-scale pretraining. Therefore, experiments presented in this section focus on
fine-tuning pre-trained models, e.g., BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019), and
exclude fine-tuning tasks that have very small datasets (e.g.,CoLA, RTE). We report the details about
the hyperparameters in Appendix B.

4.1 MAIN RESULTS – TRAINING TIME ACCELERATION AND ACCURACY IMPROVEMENT

We first compare the following schemes: (1) Single GPU + SB: This is the existing PyTorch
implementation of Transformer fine-tuning from HuggingFace (HF), using small batch (SB) sizes
(e.g., 32). Our fine-tuning results on single GPU achieves higher accuracy than what was reported
by (Devlin et al., 2019), (2) Multi-GPU + SB: This is multi-node multi-GPU PyTorch fine-tuning
implementation using DistributedDataParallel (Li et al., 2020), and (3) Multi-GPU + LB + ScaLA:
This is our approach as described in Algorithm 1, using large minibatches (LB), e.g., 1K. Table 2
shows results on MNLI, QNLI, QQP, and SST2, which are larger datasets and less sensitive to
random seeds. n× g refers to Pn nodes each with Pg GPUs for a total of P = PnPg homogeneous
workers (e.g., 32 GPUs on 2 NVIDIA DGX-2 nodes). For a fair comparison, we reproduce BERT
and RoBERTa baseline. Our reproduced baseline achieves the same or slightly higher accuracy than
the originally reported results in (Devlin et al., 2019) and (Liu et al., 2019). We now discuss our
results and observations.

Table 1: The training time and accuracy results on GLUE benchmark. Results show that ScaLA is
able to achieve the same average accuracy as the baseline while providing up to 18× speedups than
single GPU, and up to 9.8× speedups when using the same amount of hardware resources.

BERTbase n×g bsz MNLI-m QNLI QQP SST-2 Avg.Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Devlin et al. 2019 84.4 88.4 - 92.7 -
Baseline (B=32) 1x1 32 73632 19635 84.8 19644 5535 90.6 68226 16494 91/88.0 12630 2736 93.1 89.4
Baseline (B=32) 2x16 32 73632 8848 84.8 19644 2408 90.6 68226 11311 91/88.0 12630 1494 93.1 89.4
ScaLA (B=1K) 2x16 1K 2301 1323 85.1 615 432 90.0 2133 4229 90.9/87.7 396 151 93.5 89.4

RoBERTalarge n×g bsz MNLI-m QNLI QQP SST-2 Avg.Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Liu et al. 2020 90.2 94.7 92.2/- 96.4 -

Baseline (B=32) 1x1 32 73632 43090 90.5 19644 14188 94.7 68226 40945 92.0/89.4 12630 4940 96.4 92.5
Baseline (B=32) 2x16 32 73632 18114 90.5 19644 4842 94.7 68226 16614 92.0/89.4 12630 3072 96.4 92.5
ScaLA (B=1K) 2x16 1K 2301 3363 90.9 615 1168 95.1 2133 2404 92.3/89.8 396 401 96.7 92.9

Improving scalability with ScaLA: Compared with single-GPU training, baseline fine-tuning on
multi-GPU leads to only modest training speedup improvements, e.g., with 1.5− 2.4× faster training
speed for both BERT and RoBERTa, even with 32× more compute resources. The speedup is limited
because of the small mini-batches (e.g., 32) used for fine-tuning, which do not provide sufficient
workload to fully utilize the underlying hardware (e.g., many cores stay idle). Thus, communication
overhead becomes the dominant part, and fine-tuning tasks struggle to obtain speedups with more
than 4 GPUs (see detailed analysis results later). In contrast, ScaLA achieves up to 18× speedups
with 32 GPUs. When using the same number of GPUs (e.g., 32), ScaLA is 2.7–9.8× faster than
Baseline (B = 32). The speedup is significant because (1) large batches prevent hardware from
under-utilization and enables processing more samples per second; (2) it takes fewer iterations to
process an epoch, hence the reduced all-reduce operations to exchange gradients and the overall
increased computation-vs-communication ratio; (3) PGA-1 significantly reduces the cost to generate
adversarial perturbations; and (4) With delayed perturbation injection, PGA-1 is only added to later
iterations instead of throughout the entire training process, further reducing the training cost. Finally,
ScaLA obtain the speedups while achieving the same accuracy (88.4 vs. 88.4) average accuracy for
BERT and higher accuracy (92.9 vs. 92.5) for RoBERTa as the baselines.

6

Under review as a conference paper at ICLR 2022

Closing generalization gap with ScaLA: We also compare alternative methods that perform large-
batch optimizations: (1) Multi-GPU + LB: This configuration uses large mini-batches (e.g., 1K),
and applies heuristic-based scheduling rule (e.g., square root) and grid search for learning rates;
(2) Multi-GPU + LB + LAMB: Applies the large-batch optimizer LAMB (You et al., 2019a) to
fine-tuning tasks. First, compared with the baseline, the accuracy of Multi-GPU + LB drops by close
to 1 point (88.4 vs. 89.4, and 92.1 vs. 92.9) in average and close to 2 points for some tasks (e.g., QQP
on BERT), indicating that it is challenging to obtain on-par accuracy with large-batch optimizations
for fine-tuning tasks. Second, LAMB leads to only marginal improvements (88.6 vs. 88.4, and
92.1 vs. 92.1) than the baseline and is 0.8 points lower than the small-batch baseline. Since LAMB
performs no explicit regularization to model complexity, it may still lead to overfitting on downstream
tasks. With ScaLA, we are able to close the generalization gap from large-batch optimization (89.4
vs. 89.4, and 92.5 vs. 92.9) and achieve 0.8 points higher accuracy (89.4 vs. 88.6, 92.9 vs. 92.1)
than LAMB on both BERT and RoBERTa. ScaLA improves generalizability because it introduces
adversarial perturbations, which serves as a regularizer. By training the network to be robust to such
perturbations, the model loss landscape is smoothed out, leading to improved generalization.

Table 2: The comparison results of the GLUE benchmark. ScaLA outperforms large-batch optimiza-
tion baselines by achieving higher accuracy after training the same number of samples.

BERTbase n×g Batch MNLI-m QNLI QQP SST-2 Avg.size Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Baseline (B=1K) 2x16 1K 2301 1148 84.3 615 349 89.3 2133 2892 89.6/86.1 396 134 93 88.4
LAMB (B=1K) 2x16 1K 2301 1180 84.1 615 359 89.6 2133 2978 90.5/87.0 396 139 92.4 88.6
ScaLA (B=1K) 2x16 1K 2301 1323 85.1 615 432 90.0 2133 4229 90.9/87.7 396 151 93.5 89.4

RoBERTalarge n×g Batch MNLI-m QNLI QQP SST-2 Avg.size Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Baseline (B=1K) 2x16 1K 2301 2514 90.1 615 936 94.3 2133 1874 91.7/89.1 396 317 95.9 92.1
LAMB (B=1K) 2x16 1K 2301 2646 90.5 615 973 94.5 2133 1998 91.3/88.5 396 324 96.2 92.1
ScaLA (B=1K) 2x16 1K 2301 3363 90.9 615 1168 95.1 2133 2404 92.3/89.8 396 401 96.7 92.9

4.2 EXPERIMENT – ANALYSIS RESULTS

Ablation analysis: In this part, we study the importance of components in ScaLA. We set ts to 0,
which denotes as w/o Delaying PGA-1. We replace the outer minimization to use ADAM (Kingma &
Ba, 2015), which is noted as w/o Groupwise LR. We set λ to 0, which denotes as w/o PGA-1. The
results are reported in Table 3.

Table 3: Ablation study of ScaLA using BERTbase on GLUE tasks.
MNLI-m QNLI QQP SST-2 Avg.Time Acc. Time Acc. Time Acc/F1 Time Acc.

BERT 19635 84.8 5535 90.6 16494 91/88.0 2736 93.1 89.4
ScaLA 1323 85.1 432 90 4229 90.9/87.7 151 93.5 89.4

w/o Delaying PGA-1 2503 85.2 726 90.2 6407 91.3/88.3 272 93.1 89.5
w/o Groupwise LR 1290 85.0 422 89.9 4212 90.7/87.6 146 93.0 89.2

w/o PGA-1 1180 84.1 359 89.6 2978 90.5/87.0 139 92.4 88.6

The results show that the removal of either design element would result in a performance drop.
For example, removing groupwise learning rates leads to 0.2 points accuracy drop (89.2 vs. 89.4),
while completely removing PGA-1 leads to 0.8 points accuracy drop (88.6 vs. 89.4). This result
demonstrates that these two components are complementary to each other. If we perform PGA-1
without delayed injection, the average accuracy increases by 0.1 point (89.5 vs. 89.4), but the
execution time is increased significantly. This difference will be particularly felt during pre-training
or training larger models. With our delayed PGA-1 approach, we save the training time by 1.5–1.9×
while retaining high accuracy.

Scalability analysis varying GPUs. We carry out a scalability test by varying the number of GPUs
from 1 to 32, with and without communication. We choose a batch size 32, and divide the samples
among P GPUs. If the per-GPU batch size (e.g., 16) is larger than the maximum admissible per-GPU
batch size (e.g., 8), we use local gradient accumulation (Goyal et al., 2017) to avoid running out of
memory. Figure 4a shows the scalability results. For batch size 32, the training time decreases when
the number of workers increases. However, it quickly plateaus and increases slightly after 4 GPUs.
This is because small-batch leads to more frequent communication among workers. As a result, the

7

Under review as a conference paper at ICLR 2022

(a) Scalability (b) Generalizability
(c) Sharpness

Figure 4: Scalability and generalizability results by fine-tuning BERTbase using ADAM with different
batch sizes on the MNLI task from the GLUE benchmark.

communication overhead dominates the total execution time and hinders the scalability of multi-GPU
training. In contrast, by increasing the batch size, the training time keeps decreasing as the number of
GPUs increases because a large batch not only reduces the number of expensive all-reduce operations
for exchanging gradients (i.e., increased computation-vs-communication ratio) but also increases the
training throughput per GPU due to increased computation granularity. Figure 5 shows the scalability
comparison on SST-2 after optimizations. While the speedup still plateaus at 4 GPUs with a small
batch size (e.g., B = 32), the four large-batch configurations are able to scale well up to 32 GPUs
and take a similar amount of time with 32 GPUs. ScaLA scales better than ScaLA without delaying
PGA-1, and achieves a much faster training speed, especially in the 1-16 GPU range.

Batch sizes vs. learning rates for fine-tuning tasks. Figure 4b reports the learning rate scaling
effects on fine-tuning Transformer networks. We observe that the learning rate scales roughly with
the the square root of the increase of the mini-batch size (That said, the Appendix C provides analysis
to show that the best learning rates do not always follow sqrt rule). This is consistent with prior
findings in pre-training (You et al., 2019a) and simplifies the hyperparameter tuning effort for ScaLA.

Curvature analysis. Prior work (Keskar et al., 2017) correlates the low generalization with sharp
minima (which are characterized by a positive curvature of large magnitude in the parameter space).
To verify this hypothesis, we quantitatively measure the steepness of loss landscape by loading the
checkpoint of a converged model and computing the curvature, i.e., properties of the second derivative
of the model, with respect to its parameters, for a fixed batch of samples. In particular, following
(Yao et al., 2018b), for a model Φ(x), we compute the largest eigenvalue of the model’s Hessian,
Lmax[∇2

xΦ(x)], using the Hessian-vector product primitive and the power method. We use the largest
eigenvalue as a measure of sharpness since the corresponding (top) eigenvector characterizes the
direction of the largest change in gradient at a given point in the parameter space. From Figure 4c,
the largest eigenvalue of the model trained with large batch (e.g., 1K) is much larger (e.g., 2.6x)
with higher deviations (e.g., 3.9x) compared to the small batch baseline. Thus, we empirically find
that large-batch optimization makes the loss landscape of the model more prone to ill-conditioning
and less robust to perturbation, which may explain the loss in generalization. We then measure
the steepness of the loss landscape again after applying ScaLA. As shown in Fig. 4c, the largest
eigenvalue of the model becomes much smaller (6.9×) with lower deviations with ScaLA and is
slightly better than the small batch baseline, which is a strong indication that our approach enforces
the smoothness of the model that leads to the accuracy improvement.

Comparison with random noise. We have performed additional experiments by creating pertur-
bations through adding Gaussian noise to the embeddings. Table 5 that random noise indeed can
improve the accuracy for MNLI-m (84.3 vs. 84.5), QNLI (89.3 vs. 89.4), and QQP (90.3/87.0 vs.
89.6/86.1) over the baseline, but it also leads to worse results on SST-2 (93. vs. 92.6). Compared
with ScaLA, random noise consistently falls behind ScaLA in its ability to reduce the generalization
error on all tested tasks and is on average 0.7 points lower than ScaLA (88.7 vs. 89.4).

Perturbations via ground-truth vs. label probability. We also create one-hot labels and use those
to generate perturbations instead of using label probability generated by the network. Table 5 shows
that using label probability (LP) consistently leads to higher accuracy than using the ground-truth
(GT), e.g., 89.4 vs. 89.0 on average. Label probability leads to better generalization, probably because
it provides a better measurement of the adversarial direction, which is the direction in the input space
in which the label probability of the model is most sensitive to small perturbations.

8

Under review as a conference paper at ICLR 2022

Table 4: Evaluation results on alternative methods to generate per-
turbations using random noise, ground-truth, and label probability.

Model MNLI-m QNLI QQP SST-2 Avg
Baseline 84.3 89.3 89.6/86.1 93 88.4

Gaussian noise 84.5 89.4 90.3/87.0 92.6 88.7
ScaLA (GT) 84.1 89.6 90.7/87.6 93.2 89.0
ScaLA (LP) 85.1 90 90.9/87.7 93.5 89.4

Table 5: Comparison results
with FreeLb.

MNLI-m SST-2
Acc. Time Acc. Time

Baseline 84.8 8848 93.1 2736
FreeLb 85.1 3773 93.3 389
ScaLA 85.1 1323 93.5 151

Comparison with FreeLb. We also compare ScaLA with FreeLb. The original FreeLb does not
support multi-node training. We extend it with PyTorch DDP to train in a multi-node distributed
training environment. We observe that although both FreeLb and ScaLA achieve similar accuracy,
ScaLA is much faster than FreeLb. ScaLA is faster because FreeLb still performs multiple ascent
steps to calculate adversaries cross the entire training. In contrast, ScaLA takes several optimizations
to reduce the adversarial perturbation cost as well as leveraging group-wise adaptive learning rates to
enable training with larger batch sizes, which improves the computational efficiency.

Figure 5: Comparison of
scalability using different
large-batch optimization
methods on SST-2.

Figure 6: Comparison of
test accuracy by training the
baseline longer.

(a) MNLI-m (b) SST-2
Figure 7: Comparison of accuracy under
even larger batch sizes.

Train longer, generalize better? Despite improved training speed and accuracy, one may still
wonder whether the generalization gap can be mitigated by training the downstream tasks longer.
(Figure 6 shows the comparison results between ScaLA and the baseline on a batch size of 2K. ScaLA
obtains an accuracy of 85.2 after 6 epochs of training, whereas the baseline has difficulty to reach 84
after training twice longer (e.g., 12 epochs). ScaLA achieves better accuracy because it explicitly
penalizes model weights from getting stuck at sharp minima, leading to better generalizability.

Generalizability under different batch sizes. In this part, we evaluate how different batch sizes
affect the generalizability of fine-tuning transformer tasks. Figure 7 shows the results on MNLI-m and
SST-2. We make two major observations: (1) The accuracy tends to drop as the batch size increases.
(2) While both the baseline and LAMB suffer from significant accuracy drop by drastically increasing
the batch size (e.g., from 32 to 8K), ScaLA is able to mitigate the generalization gap and consistently
achieves higher accuracy than the baseline (e.g., 84.4 vs. 83.5 for MNLI, and 92.6 vs. 91.3 for SST-2
at batch size 8K) and LAMB (e.g., 84.4 vs. 83.9 for MNLI, and 92.6 vs. 91.7 for SST-2 at batch size
8K). These results indicate the benefit of ScaLA is maintained by further increasing the batch size,
which could bring even greater speedups when increasing the data parallelism degree.

5 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we study how to add adversarial perturbations to improve the scalability and gener-
alizability of training large transformer networks in a principled manner. We introduce ScaLA, a
scalable and generalizable large-batch optimization method using adversarial perturbations. The
experiment results show that ScaLA obtains up to 18× speedups on fine-tuning transformer networks
and outperforms the state-of-the-art large-batch optimization methods in accuracy. Despite offering
great speedups without losing accuracy, ScaLA is limited in that it currently has only been evaluated
against fine-tuning tasks of pre-trained transformer networks due to the expensive pre-training cost.
Furthermore, it has not been tested on emerging pre-trained transformer networks for computer vision
tasks, such as ViT, so it is unclear about the effectiveness of ScaLA on those tasks. We plan to
explore how to generalize our proposed method to improve the generalization of the pre-training of
large-scale language models as well as tasks in other domains in future work.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Turing-NLG: A 17-billion-parameter language model by Microsoft.
https : / / www . microsoft . com / en-us / research / blog /
turing-nlg-a-17-billion-parameter-language-model-by-microsoft/.
Accessed: 19-May-2020.

Qi-Zhi Cai, Chang Liu, and Dawn Song. Curriculum adversarial training. In Jérôme Lang (ed.),
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden, pp. 3740–3747. ijcai.org, 2018.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. Robust neural machine translation with doubly
adversarial inputs. In Anna Korhonen, David R. Traum, and Lluı́s Màrquez (eds.), Proceedings of
the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp. 4324–4333. Association for Computational
Linguistics, 2019.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: pre-training
text encoders as discriminators rather than generators. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic subgradient method converges at the rate
o(k̂{−1/4}) on weakly convex functions. arXiv preprint arXiv:1802.02988, 2018.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex
functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019), pp. 4171–4186, 2019.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tie-Yan Liu. Efficient training of
BERT by progressively stacking. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 2337–2346, 2019. URL
http://proceedings.mlr.press/v97/gong19a.html.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training imagenet
in 1 hour. CoRR, abs/1706.02677, 2017.

Sidharth Gupta, Parijat Dube, and Ashish Verma. Improving the affordability of robustness training
for dnns. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
Workshops 2020, Seattle, WA, USA, June 14-19, 2020, pp. 3383–3392. IEEE, 2020.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1731–1741, 2017.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, pp. 103–112, 2019.

10

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
http://proceedings.mlr.press/v97/gong19a.html

Under review as a conference paper at ICLR 2022

Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. arXiv preprint
arXiv:1712.07897, 2017.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. SMART:
robust and efficient fine-tuning for pre-trained natural language models through principled regu-
larized optimization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (eds.),
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pp. 2177–2190. Association for Computational Linguistics, 2020.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In International Conference on Machine Learning, pp. 4880–4889. PMLR,
2020.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford
Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug
Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,
Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray
Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma,
Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA ’17, pp. 1–12, 2017. ISBN
978-1-4503-4892-8. doi: 10.1145/3079856.3080246. URL http://doi.acm.org/10.
1145/3079856.3080246.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?id=
H1oyRlYgg.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, 2015.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experiences
on accelerating data parallel training. Proc. VLDB Endow., 13(12):3005–3018, 2020.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In International Conference on Machine Learning, pp. 6083–6093. PMLR, 2020.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng
Gao. Adversarial training for large neural language models. CoRR, abs/2004.08994, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018.

11

http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/3079856.3080246
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg

Under review as a conference paper at ICLR 2022

Takeru Miyato, Andrew M. Dai, and Ian J. Goodfellow. Adversarial training methods for semi-
supervised text classification. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Zachary Nado, Justin Gilmer, Christopher J. Shallue, Rohan Anil, and George E. Dahl. A large
batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. CoRR,
abs/2102.06356, 2021.

Jerzy Proficz. Improving all-reduce collective operations for imbalanced process arrival patterns. The
Journal of Supercomputing, 74(7):3071–3092, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. CoRR, abs/1910.10683, 2019. URL http://arxiv.org/abs/1910.10683.

Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Weakly-convex–concave min–max
optimization: provable algorithms and applications in machine learning. Optimization Methods
and Software, pp. 1–35, 2021.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimization
towards training A trillion parameter models. CoRR, abs/1910.02054, 2019.

Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and Blake A.
Hechtman. Mesh-tensorflow: Deep learning for supercomputers. In Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
pp. 10435–10444, 2018.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
CoRR, abs/1909.08053, 2019.

Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 - learning
rate, batch size, momentum, and weight decay. CoRR, abs/1803.09820, 2018. URL http:
//arxiv.org/abs/1803.09820.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning rate,
increase the batch size. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pp.
5998–6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, 2019a.

Dilin Wang, ChengYue Gong, and Qiang Liu. Improving neural language modeling via adversarial
training. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pp. 6555–6565. PMLR, 2019b.

Yu Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu, gpu, and CPU platforms for deep
learning. CoRR, abs/1907.10701, 2019c.

12

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1803.09820

Under review as a conference paper at ICLR 2022

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, EMNLP 2020 -
Demos, Online, November 16-20, 2020, pp. 38–45. Association for Computational Linguistics,
2020.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W. Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 4954–4964, 2018a.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W. Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 4954–4964, 2018b.

Nanyang Ye, Qianxiao Li, Xiao-Yun Zhou, and Zhanxing Zhu. Amata: An annealing mechanism for
adversarial training acceleration. CoRR, abs/2012.08112, 2020.

Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and Cho-Jui Hsieh. Reducing
BERT pre-training time from 3 days to 76 minutes. CoRR, abs/1904.00962, 2019a.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019b.

Dongxu Zhang and Zhichao Yang. Word embedding perturbation for sentence classification. CoRR,
abs/1804.08166, 2018.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced
adversarial training for natural language understanding. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

13

Under review as a conference paper at ICLR 2022

A ADDITIONAL RESULTS

In the part, we present results that are not included in the main text due to the space limit.

A.1 THE USEFULNESS OF PERTURBATION IN THE INITIAL EPOCHS

(a) MNLI-m (b) SST-2
Figure 8: Accuracy results from delaying the injection of PGA-1 at different epochs.

In Section 3.1, we mention that no adversaries are needed at the initial epochs of fine-tuning. To
verify, we conduct experiments to measure the final accuracy corresponding to starting from regular
training and switching to PGA-1 after ts epochs, where ts ∈ [T]. Figure 8 shows that enabling
PGA-1 from the very beginning does not offer much improvement on accuracy. However, as we delay
the adversarial perturbation, the model accuracy starts to increase. This is because, at initialization,
the model’s parameters are relatively far from their final values and are less likely to get stuck at
local minima. By delaying the injection of adversarial perturbations, we observe improved test
accuracy on fine-tuning tasks. However, it also seems that such perturbation should not be injected
too late, which may inadvertently affect the accuracy. It is possible that a more advanced method
to adaptively choose the value of ts is desired. However, given that (1) the primary focus of this
work is to demonstrate that it is possible and effective to leverage adversarial training for large-batch
optimization of transformer networks and (2) the search space of is quite small for fine-tuning tasks,
we leave this as an interesting research question for future exploration.

B HYPERPARAMETERS

For all configurations, we fine-tune against the GLUE datasets and set the maximum number of
epochs to 6. We use a linear learning rate decay schedule with a warm-up ratio of 0.1. For ScaLA, we
set λ = 1, perturbation clipping radius ω = 10−5, step size ρ = 10−4, and ts={3,5}. These values
worked well enough that we did not feel the need to explore more. For fairness, we perform a grid
search of learning rates in the range of {1e-5, 3e-5, 5e-5, 7e-5, 9e-5, 1e-4, 3e-4} for small batch sizes
and {5.6e-5, 8e-5, 1e-4, 1.7e-4, 2.4e-4, 2.8e-4, 4e-4, 5.6e-4, 1e-3} for large batch sizes. We keep the
remaining hyperparameteres unchanged.

C LEARNING RATE SCALING FOR FINE-TUNING TASKS

In this part, we investigate how large-batch optimization affects the generalizability in fine-tuning
transformer networks. As there are various heuristics for setting the learning rates (Smith et al., 2018;
Goyal et al., 2017; Smith, 2018; You et al., 2019a), and because few work studies the learning rate
scaling effects on fine-tuning Transformer networks, we perform a grid search on learning rates
{1e-4, 3e-4,5e-4, 7e-4, 9e-4, 1e-3, 3e-3} and batch sizes {1K, 2K, 4K, 8K} while keeping the other
hyperparameters the same to investigate how ScaLA affects the hyperparameter tuning effort for large
batch optimizations.

Table 6 below shows the results of using the square root scaling rule to decide the learning rates for
large batch sizes vs. accuracy results with tuned learning rate results, without and with ScaLA. The

14

Under review as a conference paper at ICLR 2022

first row represents the best accuracy found through fine-tuning with a small batch size 32. The next
two rows correspond to fine-tuning with batch size 1024 using tuned learning rates vs. using the
scaling rule. The last two rows represent fine-tuning using ScaLA with batch size 1024, also using
tuned learning rates vs. the scaling rule. Even with square-root scaling, the large-batch baseline still
cannot reach the small-batch accuracy (88.7 vs. 89.4). Moreover, although tuning the learning rates
lead to better results on some datasets such as MNLI-m (84.9 vs. 85.1) and SST-2 (92.9 vs. 93.5),
the square-root scaling rule leads to better results on other tasks such as QNLI (90.8 vs. 90) and
QQP (91.4/88.4 vs. 90.9/87.7). So the best learning rates on fine-tuning tasks are not exactly sqrt.
However, given that ScaLA with square-root learning rate scaling achieves on average better results
than the grid search of learning rates (89.4 vs. 89.7), we suggest to use sqrt scaling for learning rates
to simplify the hyperparameter tuning effort for ScaLA.

Table 6: Evaluation results on hyperparameter tuning vs. using square-root learning rate scaling.
MNLI-m QNLI QQP SST-2 Avg

Bsz=32 (tuned, baseline) 84.8 90.6 91/88 93.1 89.4
Bsz=1024 (tuned, baseline) 84.3 89.3 89.6/86.1 93 88.5
Bsz=1024 (scaling rule, baseline) 83.9 89.2 90.6/87.4 92.5 88.7
Bsz=1024 (tuned, ScaLA) 85.1 90 90.9/87.7 93.5 89.4
Bsz=1024 (scaling rule, ScaLA) 84.9 90.8 91.4/88.4 92.9 89.7

D CONVERGENCE ANALYSIS

In this section, we provide the formal statements and detailed proofs for the convergence rate. The
convergence analysis builds on techniques and results in (Davis & Drusvyatskiy, 2018; You et al.,
2019b). We consider the general problem of a two-player sequential game represented as nonconvex-
nonconcave minimax optimization that is stochastic with respect to the outer (first) player playing
x ∈ X while sampling ξ from Q and deterministic with respect to the inner (second) player playing
y ∈ Y, i.e.,

min
x

max
y

Eξ∼Q[f(x, y, ξ)] := min
x

Eξ∼Q[g(x, ξ)] (2)

Since finding the Stackelberg equilibrium, i.e., the global solution to the saddle point problem,
is NP-hard, we consider the optimality notion of a local minimax point (Jin et al., 2020). Since
maximizing over y may result in a non-smooth function even when f is smooth, the norm of the
gradient is not particularly a suitable metric to track the convergence progress of an iterative minimax
optimization procedure. Hence, we use the gradient of the Moreau envelope (Davis & Drusvyatskiy,
2019) as the appropriate potential function. Let µ ∈ Rh+. The µ-Moreau envelope for a function
g : X→ R is defined as gµ(x) := minz g(z) +

∑h
i=1

1
2µi ‖x

i − zi‖2. Another reason for the choice
of this potential function is due to the special property (Rockafellar, 2015) of the Moreau envelope
that if its gradient∇x[gµ(x)] almost vanishes at x, such x is close to a stationary point of the original
function g.

Assumptions: We assume that X =
⊔h
i=1 Xi is partitioned into h disjoint groups , i.e., in terms of

training a neural network, we can think of the network having the parameters partitioned into
h (hidden) layers. The measure Q characterizes the training data. Let ∇̂xf(x, y) denote the
noisy estimate of the true gradient ∇xf(x, y). We assume that the noisy gradients are unbiased,
i.e., E[∇̂xf(x, y)] = ∇xf(x, y). For each group i ∈ [h], we make the standard (groupwise)
boundedness assumption (Ghadimi & Lan, 2013) on the variance of the stochastic gradients, i.e.,
E‖∇̂ixf(x, y)−∇ixf(x, y)‖2 ≤ σ2

i , ∀i ∈ [h]. We assume that f(x, y) has Lipschitz continuous gradi-
ents. Specifically, let f(x, y) be α-smooth in x where α := (α1, . . . , αh) denotes the h-dimensional
vector of (groupwise) Lipschitz parameters, i.e., ‖∇ixf(xa, y) − ∇ixf(xb, y)‖ ≤ αi‖xia − xib‖,
∀i ∈ [h] and xa, xb ∈ X, y ∈ Y. Let κα := maxi αi

mini αi
.

Super-scripts are used to index into a vector (i denotes the group index and j denotes an element in
group i). For any c ∈ R, the function ν : R→ [L,U] clips its values, i.e., ν(c) := max(L,min(c,U))
where L < U . Let ‖.‖, ‖.‖1 and ‖.‖∞ denote the `2, `1, and `∞ norms. We assume that the true
gradients are bounded, i.e., ‖∇xf(x, y)‖∞ ≤ G.

First, we begin with relevant supporting lemmas. The following lemma characterizes the convexity
of an additive modification of g.

15

Under review as a conference paper at ICLR 2022

Lemma 1 ((Lin et al., 2020; Jin et al., 2020; Rafique et al., 2021)). Let g(x) := maxy f(x, y)
with f being α-smooth in x where α ∈ Rh+ is the vector of groupwise Lipschitz parameters. Then,
g(x) +

∑h
i=1

αi
2 ‖x

i‖2 is convex in x.

The following property of the Moreau envelope relates it to the original function.
Lemma 2 ((Rockafellar, 2015)). Let g be defined as in Lemma 1. Let x̂ = arg minx̃ g(x̃) +∑h
i=1

1
2µi ‖x̃

i−xi‖2. Then, ‖gµ(x)‖ ≤ ε implies ‖x̂−x‖ ≤ ‖µ‖∞ε and minh ‖h‖ ≤ ε with h ∈ ∂g
where ∂g denotes the subdifferential of g.

We now present the formal version of Theorem 1 in Theorem 2. Note that Lemma 2 facilitates giving
the convergence guarantees in terms of the gradient of the Moreau envelope. Recall that t ∈ [T]
denotes the epochs corresponding to the outer maximization. Without loss of generality, we set the
delay parameter for injection of the adversarial perturbation in Algorithm 1 as ts = 0. Here, we
assume that the PGA provides an ε-approximate maximizer.
Theorem 2 (Groupwise outer minimization with an ε-approximate inner maximization oracle). Let
us define relevant constants as D :=

(
g1/2α(x0)− E(minx g(x))

)
being the optimality gap due

to initialization, κα := maxi αi
mini αi

being the condition number, ‖∇xf(x, y)‖∞ ≤ G being gradient

bound, Z := maxi,j,t
(x̂i,jt −x

i,j
t)

(∇i,jt)
σi being the variance term, L,U being clipping constants such that

L ≤ U . For the outer optimization, setting the learning rate as η = 1
U
√
T

and scaling batch size as

b = 16TL2Z2

U2 , we have

E
[
‖∇g1/2α(x)‖2

]
≤ 4ε‖α‖∞ +

2καDG√
T

(3)

where x is the estimator obtained from running T steps of Algorithm 1 and picking xt uniformly at
random for t ∈ [T].

Proof. In this proof, for brevity, we define the vector ∇t := ∇xf(x, y), i.e., the gradient of the
objective with respect to x, evaluated at the outer step t. Since evaluating gradients using mini-batches
produces noisy gradients, we use ∇̂ to denote the noisy version of a true gradient∇, i.e., ∇̂ = ∇+ ∆
for a noise vector ∆. For any outer step t, we have f(xt, ŷ) ≥ g(xt)− ε where ŷ is an ε-approximate
maximizer. For any x̃ ∈ X, using the smoothness property (Lipschitz gradient) of f , we have

g(x̃) ≥ f(x̃, yt)

≥ f(xt, yt) +

h∑
i=1

〈∇it, x̃i − xit〉 −
h∑
i=1

αi
2
‖x̃i − xit‖2

≥ g(xt)− ε+

h∑
i=1

〈∇it, x̃i − xit〉 −
h∑
i=1

αi
2
‖x̃i − xit‖2 (4)

Let φµ(x, z) := g(z) +
∑h
i=1

1
2µi ‖x

i − zi‖2. Recall that the µ-Moreau envelope for g is defined as
gµ(x) := minz φµ(x, z) and its gradient is the groupwise proximal operator given by ∇x[gµ(x)] =[

1
µ1

(
x1 − arg minz1 φµ(x, z)

)
, . . . , 1

µh

(
xh − arg minzh φµ(x, z)

)]
.

Now, let x̂t = arg minx φ1/2α(xt, x) = arg minx

(
g(x) +

∑h
i=1 αi‖xit − xi‖2

)
. Then, plugging

in the update rule for x at step t+ 1 in terms of quantities at step t, using the shorthand νit := ν(‖xit‖)

16

Under review as a conference paper at ICLR 2022

and conditioning on the filtration up to time t, we have

g1/2α(xt+1) ≤ g(x̂t) +

h∑
i=1

αi‖xit+1 − x̂it‖2

≤ g(x̂t) +

h∑
i=1

αi

∥∥∥∥∥xit − ηtνit ∇̂it‖∇̂it‖ − x̂it
∥∥∥∥∥
2

≤ g(x̂t) +

h∑
i=1

αi
∥∥xit − x̂it∥∥2 +

h∑
i=1

2αiηt

〈
νit
∇̂it
‖∇̂it‖

, x̂it − xit

〉
+

h∑
i=1

αiη
2
t (νit)

2

≤ g1/2α(xt) +

h∑
i=1

2αiηt

〈
νit
∇̂it
‖∇̂it‖

, x̂it − xit

〉
+

h∑
i=1

αiη
2
t (νit)

2

≤ g1/2α(xt) + 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇̂i,jt
‖∇̂it‖

− ∇
i,j
t

‖∇it‖
+
∇i,jt
‖∇it‖

)
× (x̂i,jt − x

i,j
t) +

h∑
i=1

αiη
2
t (νit)

2

≤ g1/2α(xt) + 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇i,jt
‖∇it‖

)
× (x̂i,jt − x

i,j
t)

+ 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇̂i,jt
‖∇̂it‖

− ∇
i,j
t

‖∇it‖

)
× (x̂i,jt − x

i,j
t) +

h∑
i=1

αiη
2
t (νit)

2

≤ g1/2α(xt) + 2ηt

h∑
i=1

αiν
i
t

‖∇it‖
〈
∇it, x̂it − xit

〉
+ 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇i,jt + ∆i,j

t

‖∇it + ∆i
t‖
− ∇

i,j
t

‖∇it‖

)
× (x̂i,jt − x

i,j
t) +

h∑
i=1

αiη
2
t (νit)

2

17

Under review as a conference paper at ICLR 2022

≤ g1/2α(xt) + 2ηtU
h∑
i=1

αi
‖∇it‖

〈
∇it, x̂it − xit

〉
+ 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
‖∇it‖(∇

i,j
t)(∇i,jt + ∆i,j

t)− ‖∇it + ∆i
t‖(∇

i,j
t)2

‖∇it + ∆i
t‖‖∇it‖

)
× (x̂i,jt − x

i,j
t)

(∇i,jt)

+

h∑
i=1

αiη
2
t (νit)

2

E1

≤ g1/2α(xt) + 2ηtU max
i

αi
‖∇it‖

(
g(x̂t)− g(xt) + ε+

h∑
i=1

αi
2
‖x̂i − xit‖2

)

+ 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,jt − x
i,j
t)

(∇i,jt)

(
〈∇it,∇it + ∆i

t〉 − ‖∇it + ∆i
t‖‖∇it‖

‖∇it + ∆i
t‖

)
+

h∑
i=1

αiη
2
t (νit)

2

≤ g1/2α(xt) + 2ηtU max
i

αi
‖∇it‖

(
g(x̂t)− g(xt) + ε+

h∑
i=1

αi
2
‖x̂i − xit‖2

)

− 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,jt − x
i,j
t)

(∇i,jt)

(
‖∇it + ∆i

t‖‖∇it‖ − ‖∇it + ∆i
t‖2 + 〈∆i

t,∇it + ∆i
t〉

‖∇it + ∆i
t‖

)

+

h∑
i=1

αiη
2
t (νit)

2 (5)

≤ g1/2α(xt) + 2ηtU max
i

αi
‖∇it‖

(
g(x̂t)− g(xt) + ε+

h∑
i=1

αi
2
‖x̂i − xit‖2

)

− 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,jt − x
i,j
t)

(∇i,jt)

(
‖∇it‖ − ‖∇it + ∆i

t‖ −
|〈∆i

t,∇it + ∆i
t〉|

‖∇it + ∆i
t‖

)
+

h∑
i=1

αiη
2
t (νit)

2

E2

≤ g1/2α(xt) + 2ηtU max
i

αi
‖∇it‖

(
g(x̂t)− g(xt) + ε+

h∑
i=1

αi
2
‖x̂i − xit‖2

)

− 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,jt − x
i,j
t)

(∇i,jt)

(
‖∇it‖ − ‖∇it + ∆i

t‖ − ‖∆i
t‖
)

+

h∑
i=1

αiη
2
t (νit)

2

E3

≤ g1/2α(xt) + 2ηtU max
i

αi
‖∇it‖

(
g(x̂t)− g(xt) + ε+

h∑
i=1

αi
2
‖x̂i − xit‖2

)

− 4ηt

h∑
i=1

αiν
i
t max

j

(x̂i,jt − x
i,j
t)

(∇i,jt)
‖∆i

t‖+

h∑
i=1

αiη
2
t (νit)

2

g1/2α(xT)
E4

≤ g1/2α(x0) + 2U
T−1∑
t=0

ηt max
i

αi
‖∇it‖

(
g(x̂t)− g(xt) + ε+

h∑
i=1

αi
2
‖x̂i − xit‖2

)

− 4

T−1∑
t=0

ηt

h∑
i=1

αiν
i
t max

j

(x̂i,jt − x
i,j
t)

(∇i,jt)
‖∆i

t‖+

T−1∑
t=0

h∑
i=1

αiη
2
t (νit)

2

where we have used Hölder’s inequality along with bound equation 4 in E1, Cauchy-Schwarz
inequality in E2, triangle inequality in E3, telescoping sum in E4. Rearranging and using ηt = η in

18

Under review as a conference paper at ICLR 2022

E5 along with Hölder’s inequality,

1

2ηU
(
g1/2α(xT)− g1/2α(x0)

)
≤
T−1∑
t=0

max
i

αi
‖∇it‖

(
g(x̂t)− g(xt) + ε+

h∑
i=1

αi
2
‖x̂i − xit‖2

)

− 2

U

T−1∑
t=0

h∑
i=1

αiν
i
t max

j

(x̂i,jt − x
i,j
t)

(∇i,jt)
‖∆i

t‖+
η

2U

T−1∑
t=0

h∑
i=1

αi(ν
i
t)

2

1

2ηU
(
g1/2α(xT)− g1/2α(x0)

) E5

≤ max
i,t

αi
‖∇it‖

T−1∑
t=0

(
g(x̂t)− g(xt) + ε+

h∑
i=1

αi
2
‖x̂i − xit‖2

)

− 2

U

T−1∑
t=0

h∑
i=1

αiν
i
t max

j

(x̂i,jt − x
i,j
t)

(∇i,jt)
‖∆i

t‖+
η

2U

T−1∑
t=0

h∑
i=1

αi(ν
i
t)

2

Dividing by T and rearranging,

1

T

T−1∑
t=0

(
g(xt)− g(x̂t)−

h∑
i=1

αi
2
‖x̂i − xit‖2

)
≤ ε− 1

2ηUζT
(
g1/2α(xT)− g1/2α(x0)

)
− 2

UζT

T−1∑
t=0

h∑
i=1

αiν
i
t max

j

(x̂i,jt − x
i,j
t)

(∇i,jt)
‖∆i

t‖

+
η

2UζT

h∑
i=1

αi

T−1∑
t=0

(νit)
2

where we define ζ := maxi,t
αi
‖∇it‖

. Defining D :=
(
g1/2α(x0)− E(minx g(x))

)
and taking expec-

tation with respect to ξ on both sides, we have

1

T

T−1∑
t=0

E

(
g(xt)− g(x̂t)−

h∑
i=1

αi
2
‖x̂i − xit‖2

)
≤ ε+

D
2ηUζT

− 2L
UζT

T−1∑
t=0

h∑
i=1

αi max
j

(x̂i,jt − x
i,j
t)

(∇i,jt)
E‖∆i

t‖+
ηU‖α‖1

2ζ

E6

≤ ε+
D

2ηUζT

− 2L
UζT

T−1∑
t=0

h∑
i=1

αi max
j

(x̂i,jt − x
i,j
t)

(∇i,jt)

σi√
b

+
ηU‖α‖1

2ζ

E7

≤ ε+
D

2ηUζT

− 2L‖α‖1
Uζ
√
b

max
i,j,t

(x̂i,jt − x
i,j
t)

(∇i,jt)
σi +

ηU‖α‖1
2ζ

E8= ε+
D

2ηUζT
− 2L‖α‖1Z
Uζ
√
b

+
ηU‖α‖1

2ζ
(6)

where we have used the assumption on the variance of stochastic gradients in E6, Hölder’s inequality
in E7 and we define Z := maxi,j,t

(x̂i,jt −x
i,j
t)

(∇i,jt)
σi in E8; b denotes batch size. Now, we lower bound

19

Under review as a conference paper at ICLR 2022

the left hand side using the convexity of the additive modification of g.

g(xt)− g(x̂t)−
h∑
i=1

αi
2
‖x̂i − xit‖2

≥ g(xt) + 0− g(x̂t)−
h∑
i=1

αi‖x̂i − xit‖2 +

h∑
i=1

αi
2
‖x̂i − xit‖2

≥

((
g(xt) +

h∑
i=1

αi‖xit − xit‖2
)
−min

x

(
g(xt) +

h∑
i=1

αi‖xi − xit‖2
))

+

h∑
i=1

αi
2
‖x̂i − xit‖2

≥
h∑
i=1

αi
2
‖x̂i − xit‖2 +

h∑
i=1

αi
2
‖x̂i − xit‖2=

h∑
i=1

4α2
i

4αi
‖x̂i − xit‖2

E9

≥ 1

4 maxi αi
‖∇g1/2α(xt)‖2 (7)

where we have used the expression for the gradient of the Moreau envelope in E9. Combining the
inequalities from Equation equation 7 and Equation equation 6, we have

1

T

T−1∑
t=0

E
(

1

4 maxi αi
‖∇g1/2α(xt)‖2

)
≤ ε+

D
2ηUζT

+

(
ηU
2ζ
− 2LZ
Uζ
√
b

)
‖α‖1

Setting the learning rate as η = 1
U
√
T

and batch size as b = 16TL2Z2

U2 ,

1

T

T−1∑
t=0

E
[
‖∇g1/2α(xt)‖2

]
≤ 4εmax

i
αi +

2Dmaxi αi

ζ
√
T

Now, to simplify ζ, using the inequality that maxk(ak · bk) ≥ minka aka ·minkb bkb for two finite
sequences {a, b} with positive values, along with the bounded gradients assumption, we have

1

T

T−1∑
t=0

E
[
‖∇g1/2α(xt)‖2

]
≤ 4εmax

i
αi +

2DGmaxi αi√
T mini αi

= 4ε‖α‖∞ +
2καDG√

T

where κα := maxi αi
mini αi

.

In analyzing inexact version, as in Theorem 2, we assumed the availability of an adversarial oracle.
Next, we open up the adversarial oracle to characterize the oracle-free complexity. In order to do this,
we will assume additional properties about the function f as well as our deterministic perturbation
space, Yt ⊆ Y, ∀t ∈ [T]. Note that, for any given t, yτ ∈ Yt, ∀τ ∈ T . We recall the following
guarantee for generalized non-convex projected gradient ascent.
Lemma 3 ((Jain & Kar, 2017)). For every t, Let f(xt, ·) satisfy restricted strong convexity with
parameter C and restricted strong smoothness with parameter S over a non-convex constraint set with
S/C < 2, ie, C2 ‖z − y‖

2 ≤ f(xt, y)− f(xt, z)− 〈∇zf(xt, z), y − z〉 ≤ S2 ‖z − y‖
2 for y, z ∈ Yt.

For any given t, let the PGA-T algorithm yτ ← Πε[yτ−1 + ρ∇yf(xt, y)] be executed with step size

ρ = 1/S. Then after at most T = O
(
C

2C−S log 1
ε

)
steps, f(xt, yT) ≥ maxy f(xt, y)− ε.

Using Theorem 2 and Lemma 3 (together with the additional restricted strong convexity/smoothness
assumptions), we have the following theorem on the full oracle-free rates for Algorithm 1.
Theorem 3 (Groupwise outer minimization with inner maximization using projected gradient ascent).
Setting the inner iteration count as T = O

(
C

2C−S log 8‖α‖∞
ε

)
and the outer iteration count as

T = 16καD2G2

ε2 , for a combined total of O(1
ε2 log 1

ε) adaptive adversarial iterations, Algorithm 1
achieves E

[
‖∇g1/2α(x)‖2

]
≤ ε.

20

	Introduction
	Background and Related Work
	The Proposed Method
	A Sequential Game-theoretic Method via Adversarial Perturbation Oracle

	Evaluation
	Main Results – Training Time Acceleration and Accuracy Improvement
	Experiment – Analysis Results

	Conclusions and Future Directions
	Additional Results
	The Usefulness of Perturbation in the Initial Epochs

	Hyperparameters
	Learning Rate Scaling for Fine-tuning Tasks
	Convergence Analysis

