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ABSTRACT

Transformer-based video diffusion models (VDMs) deliver state-of-the-art video
generation quality but are constrained by the quadratic cost of self-attention, mak-
ing long sequences and high resolutions computationally expensive. While linear
attention offers sub-quadratic complexity, prior attempts fail to match the expres-
siveness of softmax attention without costly retraining. We introduce Attention
Surgery, an efficient framework for linearizing or hybridizing attention in pre-
trained VDMs without training from scratch. Inspired by recent advances in lan-
guage models, our method combines a novel hybrid attention mechanism—mixing
softmax and linear tokens—with a lightweight distillation and fine-tuning pipeline
requiring only a few GPU-days. Additionally, we incorporate a cost-aware block-
rate strategy to balance expressiveness and efficiency across layers. Applied to
Wan2.1 1.3B, a state-of-the-art DiT-based VDM, Attention Surgery achieves the
first competitive sub-quadratic attention video diffusion models, reducing atten-
tion cost by up to 40% in terms of FLOPs, while maintaining generation quality
as measured on the standard VBench and VBench-2.0 benchmarks.

1 INTRODUCTION

Video diffusion models (VDMs) have become a cornerstone of generative modeling, enabling high-
fidelity, temporally coherent video synthesis for applications from entertainment to simulation. Early
VDMs relied on U-Net backbones, but these architectures struggle to scale and capture long-range
temporal dependencies. Recent advances favor Diffusion Transformers (DiTs) (Peebles & Xie,
2023). These models operate on spatiotemporal patches and provide global receptive fields from
the outset. State-of-the-art systems such as Wan2.1 (Wan et al., 2025), CogVideoX (Yang et al.,
2025), HunyuanVideo (Lab, 2025), PyramidalFlow (Jin et al., 2025), and Open-Sora Plan (Lin
et al., 2024) exemplify this trend, consistently outperforming U-Net-based models in quality and
scalability. Recent surveys confirm this transition, highlighting DiTs as the dominant architecture
for video generation (Wang et al., 2025b; Melnik et al., 2024).

While recent DiT-based video diffusion models deliver state-of-the-art quality, they come with sub-
stantial computational and memory costs that limit their practical applicability. A primary bottle-
neck lies in the self-attention mechanism, whose complexity scales quadratically with the sequence
length, i.e., O(N2d) in time and O(N2) in memory, where N denotes the number of tokens and d
the hidden dimension (Vaswani et al., 2017; Rabe & Staats, 2021). This issue is particularly severe
in video diffusion, where the token count easily reaches tens of thousands due to the combination of
spatial patches and multiple frames. Our profiling of large-scale DiT-based video diffusion models
indicates that a vast proportion of compute is devoted to self-attention. For instance, in Wan2.1 1.3B,
more than 76% of the total compute within the transformer blocks is attributable to self-attention
alone. Even with optimizations such as FlashAttention (Dao et al., 2022), the quadratic scaling
remains a fundamental barrier, constraining both training and inference when targeting higher res-
olutions, longer durations, or multi-shot videos. Consequently, reducing the attention cost without
sacrificing model quality is critical for making video diffusion models more efficient and broadly
deployable.

Although linear-time attention to address the quadratic cost of softmax attention (Katharopoulos
et al., 2020; Choromanski et al., 2021) has been around for several years, no competitive video diffu-
sion model based on linear attention exists today. Three factors explain this gap. First, training such

1



054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2026

L
in

ea
r

a
tt

n
.

n
o

d
is

ti
ll

.

L
in

ea
r

a
tt

n
.

w
it

h
d

is
ti

ll

H
y
b

ri
d

a
tt

n
.

w
it

h
d

is
ti

ll
.

W
a
n

2
.1

O
ri

g
in

a
l

Figure 1: Impact of the proposed method components: attention distillation and hybrid attention.
Prompt: ”An astronaut flying in space, Van Gogh style.”

models from scratch is prohibitively expensive: state-of-the-art video diffusion systems require hun-
dreds of thousands to millions of GPU hours and massive curated datasets (Blattmann et al., 2023;
Chen et al., 2024; Wan et al., 2025). Second, there is no practical method proposed for distilling
softmax attention into linear attention under reasonable compute budgets for video diffusion. This
difficulty arises because the exponential kernel underlying softmax requires an infinite-dimensional
feature map for exact representation, making efficient approximations challenging (Han et al., 2024;
Zhang et al., 2025). While linear attention in image diffusion (Li et al., 2023) and low-rank lin-
earization in language models (Zhang et al., 2025) show promise, no analogous solution exists for
the more complicated spatiotemporal token interactions in video diffusion. Third, lower expressive-
ness in linear attention often results in notable degradation in the attention transformation fidelity
and consequently lower quality generations, specifically for videos with more complicated temporal
signal dynamics.

To address these challenges, we propose an efficient attention surgery strategy – eliminating the
need for extensive retraining from scratch – coupled with a novel efficient hybrid attention archi-
tecture inspired by recent developments in language modeling (Zhang et al., 2025). Intuitively, if
a small subset of tokens retains full softmax attention while the rest use linear attention, the model
can preserve global structure and fine-grained dependencies where needed, while scaling efficiently
elsewhere. Our approach significantly narrows the quality gap between linearized and full softmax
attention while achieving higher efficiency than the original softmax attention models. Importantly,
it can be realized with modest compute –requiring less than 0.4k GPU hours for the overall surgery
– making it practical for a wide range of research and industrial settings. We validate our method on
Wan2.1, a state-of-the-art video diffusion model, demonstrating that our contributions are success-
fully applicable to transformer-based diffusion models. Figure 1 illustrates the obtained advantage.

Our main contributions are as follows:

• We introduce attention surgery, an efficient recipe that enables achieving competitive lin-
ear/hybrid models within only a few GPU days training on modestly-sized training datasets,
liberalizing the process of such significant architectural operations.

• We propose a novel hybrid attention formulation with components carefully designed tak-
ing the intrinsics of videos into consideration.

• We propose a novel block-rate optimization strategy that adjusts the attention configu-
ration of each block based on its transformation complexity, achieving the best accu-
racy–efficiency trade-off within a given compute budget.

2 RELATED WORK

Efficient Attention. Numerous approaches have been proposed to reduce the quadratic complex-
ity of self-attention, for perception e.g. EfficientViT (Cai et al., 2023), PADRe (Letourneau et al.,
2025), Performer (Choromanski et al., 2021), and Linformer (Wang et al., 2020), for image gen-
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eration e.g. SANA (Li et al., 2023), LinGen Wang et al. (2025a), Grafting (Chandrasegaran et al.,
2025), and for language modeling (Mercat et al., 2024; Wang et al., 2024; Yang et al., 2024; Zhang
et al., 2024; 2025). Although these methods demonstrate the feasibility of sub-quadratic or more
efficient attention, they typically require extensive training or training from scratch (e.g., SANA
(Li et al., 2023)). In contrast, our work aims for lightweight distillation and fine-tuning of pre-
trained softmax-attention-based models into an efficient hybrid attention design specifically tailored
for video diffusion under modest compute budgets. Moreover, we target video generation task with
unique challenges in modeling spatiotemporal token dependencies.

Linear recurrent models, such as SSM and RWKV, have recently emerged as efficient alternatives
to self-attention, enabling the modeling of longer token sequences for high-resolution image gen-
eration (Fei et al., 2024b; Wang et al., 2024; Fei et al., 2024a; Zhu et al., 2025; Yao et al., 2025).
However, due to the architectural differences between transformer blocks and SSM-based blocks
(e.g., Mamba), distilling pre-trained DiT weights into these architectures typically requires exten-
sive training. In contrast, our approach preserves the same underlying block structure, enabling
effective distillation under a low-training regime. Furthermore, as highlighted in the seminal work
on linear attention (Katharopoulos et al., 2020), there exists a strong connection between RNNs and
causal linear attention, which allows a linearized causal attention mechanism to be deployed as an
RNN during inference, a property that is particularly desirable for long video generation.

Efficient Video Diffusion Models. Recent large-scale video diffusion systems such as
CogVideoX (Yang et al., 2025), Open-Sora Plan (Lin et al., 2024), PyramidalFlow (Jin et al.,
2025), LTX-video (HaCohen et al., 2024), and Wan2.1 (Wan et al., 2025) have advanced quality
and scalability, but at enormous compute and memory cost. Mobile-oriented designs like Mobile
Video Diffusion (Yahia et al., 2025), MoViE (Karjauv et al., 2024), SnapGen-V (Wu et al., 2025b;a),
AMD-HummingBird (Isobe et al., 2025), and On-device Sora (Kim et al., 2025) explore lightweight
architectures, yet remain non-DiT-based or rely on full quadratic attention, limiting scalability to
long videos.

Prior work accelerates video generation via token merging (Bolya & Hoffman, 2023; Kahatapitiya
et al., 2024; Ding et al., 2025), token downsampling (Crowson et al., 2024; Peruzzo et al., 2025),
and attention tiling (Ding et al., 2025). Efficient-vDiT (Ding et al., 2025) improves DiT efficiency
by tiling attention, achieving linear complexity and reducing memory overhead. In contrast, our
hybrid attention with attention surgery remains quadratic in the worst case but reduces effective
compute by applying softmax attention to only a fraction of tokens and linear attention to the rest.
While not matching the asymptotic complexity of Efficient-vDiT, our method achieves better qual-
ity–efficiency trade-offs. Concurrent work M4V (Huang et al., 2025) accelerates video DiTs by
distilling them into Mamba blocks. Despite our simpler block structure and lightweight training, we
outperform M4V in both generation quality and efficiency.

3 METHODS

3.1 PRELIMINARIES: LINEAR ATTENTION

Let x ∈ R
N×F represent a sequence of N feature vectors of F dimensional, and consider the l-th

layer’s transformer block, defined as:
Tl(x) = fl

(

Al(x) + x
)

, (1)

where fl(·) applies a token-wise transformation, typically implemented as a small feedforward net-
work, and Al(·) denotes the self-attention operation, the only component that mixes information
across the N tokens, defined as:

Al(x) = y = softmax

(

qk⊤√
D

)

v, (2)

in which q = xwq , k = xwk and v = xwv are linear projections of x using learnable parameters

wq, wk ∈ R
F×D, and wv ∈ R

F×M . One can rewrite the softmax attention in the following form:

yi =

∑N

j=1 sim(qi, kj) vj
∑N

j=1 sim(qi, kj)
. (3)

3
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Following the kernel trick, reformulating sim(qi, kj) = eqik
⊤

j reproducing the original softmax

attention, to sim(qi, kj) = ϕ(qi)ϕ(kj)
⊤ yields:

yi =
ϕ(qi)

∑N

j=1 ϕ(kj)
⊤vj

ϕ(qi)
∑N

j=1 ϕ(kj)
⊤
. (4)

As observed, the terms
∑N

j=1 ϕ(kj)
⊤vj and

∑N

j=1 ϕ(kj)
⊤ are independent of the output index i

and thus can be precomputed and cached to achieve the above-defined reformulated attention in
linear complexity. Note that ϕ(x) must be non-negative and the original linear attention paper by
Katharopoulos et al. (2020) defines it as ϕ(x) = 1 + elu(x), however, the significant mismatch in

expressiveness of the original similarity function eqik
⊤

j and the elu-based ϕ(qi)ϕ(kj)
⊤ results in

substantial retraining compute and data requirement and/or inability to achieve the original quality
observed from softmax attention.

3.2 HYBRID ATTENTION

Attention Architecture. To circumvent the aforementioned issues, and inspired by the recent de-
velopments in language models (Zhang et al., 2025), we define the hybrid attention by decoupling
the full set of token indices T = {1 . . . N} into softmax tokens TS and the rest as linear tokens,
TL = T \ TS , as:

ŷi =

∑

j∈TS
exp(qik

⊤
j /
√
D − ci)vj + ϕq(qi)(

∑

j∈TL
ϕk(kj)

⊤vj)
∑

j∈TS
exp(qik⊤j /

√
D − ci) + ϕq(qi)(

∑

j∈TL
ϕk(kj)⊤)

. (5)

Here ci is the stabilizing constant computed as the maximum exponent. As opposed to Zhang et al.
(2025), instead of defining TS as a local window around token i, we uniformly subsample tokens at
hybrid rate R, as: TS = {i ∈ T | i mod R = 1}. This design ensures that higher-quality softmax
tokens are distributed across the entire temporal span, providing global anchors that preserve motion
coherence and prevent temporal drift — an issue that local windows often suffer from in video
generation. Note that selecting subsampling rates R is an important hyperparameter that indicates a
trade-off between the fidelity of hybrid reconstruction of the original softmax and the corresponding
computational efficiency. Higher values such as R = 4 or 8 will ensure that the attention to only
a small fraction of tokens scales quadratically that will notably decrease the compute burden. In
contrast, a value of R = 2 can reconstruct the original softmax with higher accuracy, while still
spending the quadratic terms on half of the tokens. Fig. 2 illustrates this.

Characterization of ϕ. To enhance the expressiveness of linear attention, we define distinct learn-

able feature maps ϕq, ϕk : RD → R
P ·D′

. Each map first applies a lightweight per-head embedding
network (implemented as grouped 1 × 1 convolutions with non-linear activations) to produce an
intermediate representation, which is then split into P equal parts. Each part is raised to a different
polynomial degree, from 1 to P , and concatenated along the feature dimension. Formally, for an
input x ∈ R

D, we define:

ϕ(x) = [(ψ1(x))
1, (ψ2(x))

2, . . . , (ψP (x))
P ]⊤ ∈ R

P×D′

,

where ψi(·) denotes the i-th learnable embedding slice produced by the shared embedding network.
This polynomial expansion allows ϕq(qi)ϕk(kj)

⊤ to approximate the large dynamic range of the

exponential kernel eqik
⊤

j more accurately than fixed ELU-based mappings.

3.3 ATTENTION SURGERY

To significantly decrease the required computational budget for training, we propose attention
surgery as a framework that involves decoupling the process into three stages: attention distilla-
tion, block-rate selection optimization and lightweight finetuning.

Attention Distillation: Algorithm 1 details how we distill each softmax self-attention layer of a
pretrained teacher diffusion model into the corresponding hybrid attention layer of the student. This
step is crucial for maintaining the quality under aggressive attention linearization (e.g., large re-
duction factors or many transformed blocks), while keeping the training process lightweight. Note
that the distillation of the student is done independently per isolated block, making it simple and
scalable. Furthermore this stage of training only requires a set of prompts to train.
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Figure 2: Overview of the attention distillation for the proposed attention surgery method. The
example illustrates token separation with a hybridization rate of 3.

Algorithm 1 Attention Distillation for isolated attention layer l (Trainables φ = (ϕq, ϕk))

Require: Teacher params ΘT; Student params ΘS
l of layer l with frozen weights except for φ =

(ϕq, ϕk); prompt distribution P; noise distribution N ; sampling denoising steps set T ; batch
size m; update repeats U ; learning rate η;

1: while not converged do

2: Randomly sample prompts {p(n)}mn=1 ∼ P and initial noises {ε(n)0 }mn=1 ∼ N
3: ▷ Cache teacher trajectories:

4: {{(x(n)t , y
(n)
t,l )}t∈T }mn=1 ← TEACHERTRAJECTORY(ΘT, {(p(n), ε(n)0 )}mn=1, T )

5: for u = 1 to U do ▷ Multiple student updates from the cached batch

6: ŷ
(n)
t,l ← STUDENTATTN

(

ΘS
l , x

(n)
t

)

▷ Using equation Eq. (5)

7: L ← 1

m |T |
∑m

n=1

∑

t∈T

∥

∥y
(n)
t,l − ŷ

(n)
t,l

∥

∥

1
, ▷ Using Eq. (7) or Eq. (6)

8: φ ← φ − η∇φL
9: end for

10: end while
11: Return φ = (ϕq, ϕk)

As for the objectives, We define the attention distillation loss as:

Lad = log
(

1 +
∥

∥eqik
⊤

j − ϕq(qi)ϕk(kj)⊤
∥

∥

2

2

)

, (6)

where the logarithmic term mitigates numerical instabilities caused by large attention logits and
gradients (Barron, 2025). However, given that matching the attention scores is a proxy optimization
and the self-attention’s weighted averaged hidden states are the target to match, one can alternatively
define the value distillation objective as follows:

Lvd =
∥

∥y − ŷ
∥

∥

1
, (7)

where y and ŷ are defined according to Eqs. (2) and (5) respectively. Fig. 2 illustrates this. In prac-
tice, this distillation formulation significantly reduces the compute required for adapting large video
diffusion models, enabling competitive hybrid attention efficiently. The most expensive variations
of our attention surgery take less than 0.4k GPU hours.

Heterogeneous Block-Rate Optimization. Referring to Fig. 3, we observe that various blocks ex-
hibit different reconstruction error values under different hybrid rates, each with their corresponding
compute costs. How do we then decide upon the hybrid rates (8, 2, 4 or 1 (full softmax)) to form
our hybrid architecture among the exponentially many combinations? We aim to optimize for an
attention configuration for each transformer block under a global compute budget so as to minimize
the approximated accumulated error throughout the network. More specifically, let the model have
B blocks indexed by i ∈ {1, . . . , B}, and let R denote the set of candidate attention hybrid rates
(e.g.,R = {1, 2, 4, 8}). For each block i and rate r ∈ R, we pre-compute:

• cir: estimated compute cost (e.g., FLOPs or latency),

• eir: estimated error relative to softmax, available from the attention distillation pretraining.

5
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Figure 3: Per-block distillation error (top-left) and compute implications of ϕ architectural parame-
ters and the attention hybrid rate.

Define binary decision variables zir ∈ {0, 1}, where zir = 1 iff block i uses rate r. The optimization
problem is:

min
{zir}

B
∑

i=1

∑

r∈R

eirzir s.t.

B
∑

i=1

∑

r∈R

cirzir ≤ β,
∑

r∈R

zir = 1 ∀i, zir ∈ {0, 1}. (8)

This is a multiple-choice knapsack problem: select one rate per block to minimize the estimated
accumulated error under a compute budget β, which can be efficiently solved (Kellerer et al., 2004).
The solution to this optimization identifies the final configuration of the architecture with hetero-
geneous attention rates that provide the best accuracy/cost trade-off under the given budget. We
call the block selection homogeneous if the set R consists of a single element, and heterogeneous
otherwise.

Lightweight Fine-tuning. After the pretraining distillation stage and the block-rate selection opti-
mization, we shape the final Hybrid DiT architecture with hybrid attention modules that are distilled.
However, while the pretraining distillation helps the overall model to keep the general structure of
the scenes, the details will be far from perfect, as the layers are pretrained in isolation. Now fine-
tuning the whole DiT architecture on a modest set of prompt/video pairs for only a few hundred
iterations will recover the lost generation quality.

4 EXPERIMENTAL SETUP

Evaluation. We evaluate our proposed attention surgery and hybrid attention methods using the
Wan2.1 1.3B video diffusion model (Wan et al., 2025). For state-of-the-art comparisons, we generate
videos at the original Wan resolution and length (81 × 480 × 832) using the full set of extended
prompts from the VBench and VBench-2.0 benchmarks (Huang et al., 2024; Zheng et al., 2025).

In addition to quantitative evaluation, we conduct a blind user study to assess visual quality and
prompt alignment. We randomly select 50 prompts from VBench and present participants with
paired videos, asking them to choose their preferred video or indicate no significant difference. In
total, we collect 562 paired comparisons.

To enable large-scale ablation studies, we fine-tune a lower-resolution model producing 320 × 480
frames on a subset of VBench comprising one-fifth of the original prompts. To mitigate performance
fluctuations from short training runs, we evaluate each configuration at four iteration counts—i.e.,
400, 600, 800, and 1,000—and report averaged results.

Datasets. For fine-tuning low-resolution models, we use a 350K subset of the video dataset from
Open-Sora Plan (Lin et al., 2024). For high-resolution fine-tuning, we use 22K synthetic video
samples generated by Wan2.1 14B, with prompts drawn from the same source as the low-resolution
dataset.
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Figure 4: Sample qualitative video frames from hybrid models with varying numbers of hybrid
blocks (15, 20, 25) and hybrid rates (2, 4, 8). For each configuration, the left frame shows the result
after layer-wise attention distillation, and the right frame shows the result after 1,000 fine-tuning
iterations. Prompt: A man is reading a book sitting on the cloud.

Models with 2B–5B parameters Total↑ Quality↑ Semantic↑

Open-Sora Plan V1.3 77.23 80.14 65.62

CogVideoX 5B 81.91 83.05 77.33

CogVideoX1.5 5B 82.01 82.72 79.17

Models up to 2B parameters

Efficient VDiT 76.14 – –

Open-Sora V1.2 79.76 81.35 73.39

LTX-Video 80.00 82.30 70.79

SnapGenV 81.14 83.47 71.84

Hummingbird 16frame 81.35 83.73 71.84

Wu et al. – Mobile 81.45 83.12 74.76

CogVideoX 2B 81.55 82.48 77.81

PyramidalFlow 81.72 84.74 69.62

M4V 81.91 83.36 76.10

Wan2.1 1.3B 83.31 85.23 75.65

Wan2.1 1.3B* 82.47 83.33 79.01

+ Attention Surgery (15×R2) 82.40 83.43 78.28

Table 1: Comparisons with SOTA efficient video
diffusion models. All metrics are extracted from
reported numbers, except for ‘Wan2.1*‘, which
is our reproduction using the same evaluation
pipeline and parameters as our variations.

Prompt Dimension
Preference %

Ours No preference Wan2.1

Appearance style 51.8 19.6 28.6

Color 52.2 21.7 26.1

Human action 16.2 54.1 29.7

Object class 30.3 30.3 39.4

Overall consistency 30.5 45.8 23.7

Scene 10.0 40.0 50.0

Spatial relationship 43.9 33.3 22.8

Subject consistency 35.7 21.4 42.9

Temporal flickering 20.7 56.0 23.3

Temporal style 28.3 39.1 32.6

Total 31.0 39.7 29.3

Table 2: Results of the method-blinded human
visual preference study over 562 paired compar-
isons. Rows correspond to subsets filtered by dif-
ferent VBench prompt dimensions.

Model Hyperparameters. We experiment with converting different numbers of transformer blocks
to hybrid attention: 15, 20, and 25 out of the 30 blocks in Wan2.1 1.3B. For hybrid blocks, we
explore hybridization rates of 2, 4, and 8. Based on empirical analysis of the impact of ϕk and
ϕq transformation complexity on generation quality, we find that a lightweight 2-layer MLP with
degree-2 polynomial features is sufficient, adding approximately 2.4M parameters per converted
block. Unless otherwise stated, we use value distillation loss during pretraining. Additional hyper-
parameter details are provided in Appendix A.

5 RESULTS

Distillation vs Finetuning: Qualitative. Fig. 4 shows the qualitative results of our models with dif-
ferent hybrid rates and number of hybrid blocks. It can be noted that in most cases, attention distilla-
tion alone is insufficient, leaving a noticeable gap that can be resolved by the following lightweight
finetuning. Furthermore, lower-rate hybrid attention, e.g. R = 2, provides a much better reconstruc-
tion right after distillation, but the quality gap narrows significantly by the lightweight finetuning.

Comparison with SOTA. Tab. 1 shows a comparison of one of the variations of our model with the
state-of-the-art methods on VBench. Results indicate that our hybrid operated models are compet-
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Figure 5: The total DiT FLOPs percentages versus the VBench score of original Wan2.1 1.3B model
compared to various hybrid configurations or 320×480 (left) and 480×832 (right) resolutions.
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Figure 6: Qualitative illustration of impact of attention distillation on two hybrid architecture in-
stances (15×Linear and 20×R8). Prompt: ”A playful golden retriever bounds through a sunlit
meadow, its fur gleaming in the warm afternoon light.”

itive with state-of-the-art efficient video diffusion models, while one of the variations (15×R2) is
equivalent to the original Wan2.1* model it’s based on. On VBench-2.0 15×R2 gets total score of
55.1, comparable to the original 56.0. Please refer to Supplementary for full set of evaluations.

User Study The user study comparing the original Wan2.1 and our 15×R2 hybrid model, presented
in Tab. 2, also reveals no overall preference for the original model.

Various Hybrid Architectures. Fig. 5 illustrates the compute-quality trade-off for various hybrid
attention configurations, and compares them against the original baseline Wan2.1 model with the
softmax attention blocks. As it appears, one can replace the original attentions with hybrid attention
for half of the blocks or more while the quality of the generated videos is not significantly impacted.
This is obtained with less than 0.4k GPU hours in contrast to estimated hundreds of thousands to
millions of GPU hours to train SOTA text-to-video diffusion models from scratch. An extensive set
of qualitative videos is available in the appendix and supplementary materials.

Impact of Attention Distillation. In Tab. 3, we show the impact of attention distillation with
two different setups: 15 blocks with learnable linear attention (15× Linear), and computational
equivalent of 20 blocks of hybrid attention with rate 8 (20×R8). As it can be noted, not performing
distillation significantly impacts the quality of the outputs. A qualitative example showing multiple
video frames from each of the 4 variations is illustrated in Fig. 6.

Impact of Block Rate Optimization. To assess the effectiveness of the heterogeneous block-rate
selection strategy proposed in Sec. 3.3, we used 4 different budget setups, as reported in Tab. 4.
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Converted Blocks Attention Distillation Total↑ Quality↑ Semantic↑

15 Linear × 59.7 69.7 20.0

15 Linear ✓ 78.9 82.2 65.9

20 Hybrid R = 8 × 77.3 80.2 65.9

20 Hybrid R = 8 ✓ 80.0 81.7 73.2

Table 3: VBench scores comparison of linear/hybrid models with and without attention distillation.

Block selection Total↑ Quality↑ Semantic↑

1
5
×

R
4 homogeneous 81.0 82.4 75.1

heterogeneous 81.9 83.2 76.4

2
0
×

R
4 homogeneous 80.9 81.9 76.61

heterogeneous 81.1 82.5 75.2

Block selection Total↑ Quality↑ Semantic↑

2
0
×

R
8 homogeneous 80.0 81.7 73.2

heterogeneous 80.9 82.3 75.4

2
5
×

R
4 homogeneous 79.9 81.1 75.1

heterogeneous 80.2 82.1 72.5

Table 4: Impact of the proposed heterogeneous block-rate selection strategy under different budget
constraints. Our method consistently leads to marginally better total VBench score.

We compare our optimization-based method with a simpler homogeneous baseline: conversion of
blocks with the lowest error after attention distillation under given hybrid rate, similar to Fig. 3. The
proposed method consistently (albeit incrementally) improves VBench total scores.

Converted Blocks Hybrid Rate Distillation Loss Total ↑ Quality ↑ Semantic ↑ Dynamic Degree ↑
20 R8 Attention distil. 79.5 81.5 71.5 37.5

20 R8 Value distil. 80.0 81.7 73.2 66.1

15 R8 Attention distil. 81.2 82.8 74.6 51.8

15 R8 Value distil. 80.1 81.9 72.9 66.1

Table 5: Comparison of distillation loss types, as measured by VBench scores.

φ Specification VBench Total↑ Parameters ↓ FLOPs ↓
Poly. degree MLP layers 10×R8 15×R8 20×R8 (M) (G)

6 3 82.1 80.8 80.3 15.4 387

4 2 82.3 81.6 80.3 3.9 70

3 2 82.3 81.9 79.8 2.4 60

2 2 82.1 81.5 80.2 1.2 30

Table 6: VBench total scores for various hybrid architectures with different complexities of the
learnable ϕ transformation, varying in MLP depth and polynomial degree.

Attention Distillation Loss. To evaluate the impact of the loss function choice, Tab. 5 exposes
experiments on two different hybrid architectures (15×R4 and 20×R4). Despite the total VBench
score differs marginally, we observe that using value distillation loss consistently results in videos
with significantly more motion. Furthermore, our qualitative observations show a significantly larger
number of sampled videos with attention distillation have cartoonish style, which does not necessar-
ily hurt VBench scores but leads us to prefer using the value distillation loss variant.

ϕ Transformation Characterization. The complexity of the ϕ transformation function can have
notable impact on the expressiveness of the linear/hybrid attention as well as the corresponding
compute cost, as shown in Fig. 3. As it is observable in Tab. 6, it appears that a 2-layer MLP with
polynomial degree of 2 constitutes a competitive variation while being the most efficient.

6 CONCLUSION AND FUTURE WORK

In this work, we introduced attention surgery, a framework for efficiently replacing self-
attention—the most computationally expensive component in transformer blocks—with linear or
hybrid counterparts, while requiring only moderate compute and data. We demonstrated that this
approach enables efficient variants of video diffusion models that achieve performance competitive
with state-of-the-art baselines on the widely used VBench benchmark. Looking ahead, combin-
ing linearity with causality in attention mechanisms could enable RNN-like video diffusion models
whose attention cost does not grow with video length. Exploring causal formulations of linear and
hybrid attention is therefore an exciting direction for future research.
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A APPENDIX

A.1 TRAINING DETAILS AND HYPERPARAMETERS

Except for the ablation studies we characterize ϕ with a 2-layer MLP and a polynomial degree of 2,
and make two separate transformations for keys and queries (ϕk and ϕq) per hybrid block.

Pretraining distillation stage. We train each block independently and all the parameters are frozen
except for the ϕk and ϕq , for which we use the AdamW optimizer Loshchilov & Hutter (2019), batch
size of 1 and a learning rate of 1e-3, with the value distillation objective, as detailed in equation 7
to train. To extract teacher activations for distillation, we sample using 50 denoising steps with
a guidance scale of 5, employing the Euler Ancestral Discrete Scheduler to integrate the reverse
diffusion process.

Finetuning. Within the finetuning process, we finetune all parameters of the hybrid DiT, including
the ϕ’s, the feed-forward MLP, etc., with a batch size of 16, AdamW optimizer and a learning rate
of 1e-5 and bf16 mixed precision training. The model is trained for only 1000 iterations.

A.2 QUALITATIVE SAMPLES

Figures 8 to 25 show uniformly spaced frames from videos generated by the original Wan2.1 1.3B
and different variations of our hybrid attention models (15×R2, 15×R4, 15×R8, 20×R4, and
20×R8), for 18 different prompts on the original 480×832 resolution. All the videos corresponding
the demonstrated frames, are available as video files in the attached supplementary materials.

A.3 DETAILED VBENCH COMPARISON

Figure 7 shows a selected subset of our hybrid models compared to the original Wan2.1 1.3B model,
on each of the comparison dimensions. The experiment is with the full VBench set and at the
original 480×832 resolution.

A.4 DETAILED VBENCH-2.0 COMPARISON

Tabs. 7 to 9 demonstrate fine-grained results on the recent VBench-2.0 benchmark at original res-
olution of 480×832. We generated videos with the original Wan2.1 1.3B model and our 15×R2
modification using the same sampler hyperparameters. We observe that our hybrid model experi-
ences an insignificant drop in performance as measured by Total score.

A.5 USE OF LARGE LANGUAGE MODELS

We used Microsoft Copilot (a large language model) to aid in polishing the writing of this sub-
mission. The model was employed solely for improving clarity and readability; all ideas, technical
content, and conclusions are our own.

Method
Human
Identity

Dynamic Spatial
Relationship

Complex
Landscape

Instance
Preservation

Multi-View
Consistency

Human
Clothes

Dynamic
Attribute

Complex
Plot

Wan2.1 1.3B∗ 63.5 25.1 16.4 86.0 9.6 97.9 49.1 11.3
Attention Surgery (15×R2) 62.7 25.1 18.4 84.8 7.1 97.1 44.0 13.2

Table 7: VBench-2.0 results (part 1/3).

Method Mechanics
Human

Anatomy
Composition

Human
Interaction

Motion
Rationality

Material Diversity
Motion Order
Understanding

Wan2.1 1.3B∗ 72.4 80.6 48.4 71.7 40.8 69.4 49.1 32.0
Attention Surgery (15×R2) 66.4 77.0 46.4 70.3 41.4 67.3 48.5 33.7

Table 8: VBench-2.0 results (part 2/3).

Method
Camera
Motion

Thermotics
Creativity

Score
Commonsense

Score
Controllability

Score
Human Fidelity

Score
Physics
Score

Total
Score

Wan2.1 1.3B∗ 32.1 61.7 48.7 63.4 34.0 80.7 53.3 56.0
Attention Surgery (15×R2) 29.0 70.5 47.5 63.1 33.4 79.0 52.8 55.1

Table 9: VBench-2.0 results (part 3/3).
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temporal flickering
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overall consistency

quality_score

semantic_score
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Original Wan2.1 1.3B

Figure 7: Radar plot comparing a subset of our hybrid models with the original Wan 1.3B model on
the full VBench set and 480×832 resolution
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Figure 8: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid variations
for input prompt A person is grooming dog
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Figure 9: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid variations
for input prompt a person and a toothbrush
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Figure 10: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt A panda drinking coffee in a cafe in Paris, in cyberpunk style
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Figure 11: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt A boat sailing leisurely along the Seine River with the Eiffel Tower in back-
ground
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Figure 12: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt a black cat
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Figure 13: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt A cute fluffy panda eating Chinese food in a restaurant
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Figure 14: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt A cute happy Corgi playing in park, sunset, with an intense shaking effect
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Figure 15: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt a dog running happily
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Figure 16: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt A fat rabbit wearing a purple robe walking through a fantasy landscape.
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Figure 17: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt A panda drinking coffee in a cafe in Paris, in cyberpunk style
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Figure 18: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt a teddy bear is swimming in the ocean
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Figure 19: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt A person is taking a shower
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Figure 20: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt A person is using computer
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Figure 21: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt happy dog wearing a yellow turtleneck, studio, portrait, facing camera, dark
background
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Figure 22: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt Iron Man flying in the sky
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Figure 23: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt raceway
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Figure 24: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt this is how I do makeup in the morning.
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Figure 25: Qualitative videos comparing original Wan2.1 1.3B model to our various hybrid varia-
tions for input prompt Vampire makeup face of beautiful girl, red contact lenses.
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