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ABSTRACT

The quality of pretraining data determines the capabilities of language models, yet
identifying high-quality data among billions of web documents remains computa-
tionally prohibitive. We introduce Compel, a simple and scalable data processing
step that isolates high-quality text using lightweight, compression-based signals.
Our key insight is that the compression ratio of text serves as a robust, model-free
proxy for information density: low compression ratios typically reflect repetitive
or boilerplate content, whereas high ratios may indicate noisy or unnatural text
(e.g., HTML spam or phone numbers). Compel improves dataset quality by
retaining only those documents whose compression ratios fall within a chosen
range, determined empirically from high-quality reference datasets, without relying
on additional model training or heuristic classifiers. Compel improves bench-
mark performance by around 0.5–1.1% across leading open web-scale datasets
- DCLM, FineWeb, and FineWeb-EDU - all while requiring only a fraction of
the computational resources of traditional filtering methods. These results show
that compression-based filtering is a practical, compute-efficient complement to
prevailing quality controls, capable of boosting pretraining data quality.

1 INTRODUCTION

Recent advances in language models have been driven by pretraining on massive web-scale corpora
(Brown et al., 2020; Du et al., 2022; Hoffmann et al., 2022; Raffel et al., 2020a; Xie et al., 2023).
However, the sheer size of these datasets—often comprising trillions of tokens—makes efficient data
selection both crucial and challenging (Albalak et al., 2024).

Carefully curated pretraining data improves downstream performance, as shown by corpora like
FineWeb-EDU (Penedo et al., 2024) and DCLM (Li et al., 2024). These datasets rely on multi-stage
filtering pipelines—combining language identification, duplication and toxicity checks, and scoring
heuristics based on LLMs or perplexity (Gehman et al., 2020; Lee et al., 2022; Marion et al., 2023;
Albalak et al., 2024). While these pipelines are effective, the notion of “high quality” remains
under-defined, and existing filters often reflect implicit or task-specific assumptions (Longpre et al.,
2023). As pretraining datasets grow to tens of trillions of tokens, we need fast and interpretable
signals to help identify high-quality data at scale.

This raises a core question: How can we identify high quality data cheaply and quickly?

There are likely many promising answers to this question. In this work, we introduce a novel approach
that is complementary to existing methods and easily integrates into current filtering pipelines. We
propose Compel, a scalable and lightweight filtering method that uses a document’s compression
ratio as a proxy for information density. In information theory, data compression involves encoding
information using fewer bits than the original representation, effectively reducing redundancy without
losing essential content (Shannon, 1948). Our key insight is that data compression provides a
surprisingly effective signal for identifying high-quality text. Intuitively, well-edited, information-rich
documents contain meaningful content that is neither overly repetitive nor excessively noisy. These
documents tend to compress moderately. In contrast, boilerplate or repetitive content compress too
well (e.g., thousands of identical HTML tags), while noisy or synthetic data compress poorly due to its
lack of structure. By discarding documents with extremely low or high compression ratios, Compel
improves the overall information density of a corpus. We calibrate filtering thresholds using high-
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Figure 1: Figure 1: Compel filters low-quality documents using compression ratio. (1) Start
with a web-scale input corpus. (2) Compute the compression ratio (CR) of each document using LZ4
compression. (3) Discard documents with CR outside a calibrated quality band (e.g., [0.65, 0.80]).
(4) Retain the filtered corpus for pretraining. (5) Pretrain Language Models with improved dataset.
Compel improves data quality using a fast, model-free signal that requires no training, inference, or
supervision.

quality reference datasets and show that this lightweight filter can further enhance performance—even
when applied on top of state-of-the-art heuristic or model-based filtering.

We validate our method on three leading pretraining corpora—FineWeb, FineWeb-EDU, and
DCLM—each of which employs a distinct filtering strategy. Across 13 downstream tasks, models
trained on Compel-filtered data consistently outperform those trained on the original corpora. These
improvements are robust and achieved at negligible computational cost. While the resulting accuracy
gains are relatively modest (+0.5–1.1 points), recent studies have shown that even small consistent
gains from lightweight filters can be substantial at scale, offering considerable efficiency benefits
when applied to trillion-token datasets (Raffel et al., 2020a; Wenzek et al., 2020; et al., 2024a).

2 RELATED WORK

Data selection pipelines for pretraining large models typically involve a sequence of filtering stages to
manage the scale and heterogeneity of web-derived corpora. Common goals include removing unde-
sirable content-such as duplicated boilerplate, SEO spam, or template-heavy pages-and maximizing
overall data quality.

Language filtering. Language identification is usually performed using lightweight classifiers such
as fastText or langdetect (Raffel et al., 2020b; Soldaini et al., 2024; Conneau & Lample, 2019; Xue
et al., 2021; Laurençon et al., 2022; Grave et al., 2018). These methods are efficient but require
careful threshold tuning to avoid excessive false positives or negatives.

Heuristic filtering. Surface-level heuristics such as document length or the presence of blacklisted
terms are commonly used (Rae et al., 2021; Raffel et al., 2020b; Aghajanyan et al., 2022). These are
computationally cheap but often fail to capture more nuanced indicators of quality.

Quality filtering. Retaining educational, human-written text is a key objective in many pipelines.
Classifier-based approaches typically train fastText models or hashed-feature classifiers on curated
datasets (Du et al., 2022; Longpre et al., 2023), while perplexity-based methods score documents
using language models trained on high-quality corpora (Wenzek et al., 2020; Wettig et al., 2024).
Despite strong performance, these methods face limitations: (1) reference corpora may encode
cultural or demographic preferences, introducing bias that can marginalize certain dialects, domains,
or communities (Gururangan et al., 2022; Xu et al., 2021), thereby reinforcing existing inequities
in model behavior and (2) the notion of “quality” remains inherently subjective and task-dependent
(Longpre et al., 2023). In contrast, Compel sidesteps these challenges by avoiding reliance on
human-annotated or culturally-specific reference corpora, instead using a purely statistical signal
(compression ratio) that generalizes across domains.

LM-based quality filtering Recent approaches have employed language models for data refinement.
For instance, (et al., 2024b) introduced Web Rephrase Augmented Pre-training (WRAP), which
uses instruction-tuned models to paraphrase web documents into styles like Wikipedia or question-
answer formats, enhancing data quality and training efficiency. Similarly, (Su et al., 2024) presented
Nemotron-CC, a refined dataset derived from Common Crawl, combining classifier ensembling,
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Figure 2: Beginning characters of representative examples excluded for low compression ratio (left),
kept by Compel (middle), and excluded for high compression ratio (right). Compel retains the
informative mid-range while filtering boilerplate or noisy text.

synthetic data rephrasing, and reduced reliance on heuristic filters to balance data quality and quantity.
While effective, these methods are computationally intensive, requiring substantial resources for
model inference and data generation.

Compression-based data selection. The link between data compression and language modeling
has long been observed (Shannon, 1951). Recent studies reinforce this connection: LMs can act
as powerful compressors (Delétang et al., 2023), and generalization ability may correlate with
compression capacity (Huang et al., 2024). (Pandey, 2024) proposes a data-dependent scaling law
based on gzip compressibility. Compression has recently emerged as a scalable, embedding-free
signal for data selection and quality estimation. (Yin et al., 2024) selects diverse alignment data
by scoring examples based on their incremental compressed size, optimizing corpus diversity. ZIP-
FIT (Obbad et al., 2024) uses Normalized Compression Distance (NCD) to filter source data for
fine-tuning tasks, outperforming neural embeddings in settings such as code and autoformalization.

Compel differs from ZIP and ZIP-FIT in both goal and design. ZIP aims to construct diverse,
low-redundancy subsets for alignment by selecting examples with low incremental compressed size,
relying on early-stage training signals and task-specific assumptions. ZIP-FIT, in contrast, optimizes
similarity to a target task distribution using pairwise Normalized Compression Distance. Compel,
by comparison, is a general-purpose filter designed for broad pretraining use: it discards overly
redundant or noisy documents based purely on raw compression ratio. It requires no task-specific
supervision, no pairwise comparisons, and no access to model loss signals. Its simplicity and speed
make it especially attractive for trillion-token pipelines.

3 COMPRESSION RATIO AS A SIGNAL OF DATA QUALITY

We propose compression ratio as a lightweight, model-free proxy for textual data quality. Let x be
a document and c(x) its compressed representation using a lossless compression algorithm c. We
define the compression ratio of a string x as:

CR(x) =
num_bytes(c(x))
num_bytes(x)

where num_bytes(·) denotes the number of bytes. In this work, we use the LZ4 compressor 1,
selected for its speed and streaming compatibility. While we would like to try more compressors,
and while using different compressors is cheap and fast, pretraining LMs is not. Thus, due to a
limited compute budget, we chose to prioritize a single compressor on multiple datasets and multiple
language models, over multiple compressors on fewer datasets and LMs because strong evidence for 1
compressor is better than weak evidence for multiple compressors. To the best of our knowledge, our
results do not rely on any specifics of LZ4, and so we conjecture that other compressors would work
equally well; however, experiments would necessary to test this and we sadly lacked the compute
required.

1https://lz4.github.io/lz4/
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Figure 3: Compression ratio distributions across datasets. High-quality datasets like DCLM
exhibit tight compression ratio distributions, while noisier corpora like C4 and Twitter show broader
or skewed distributions. Each plot represents compression ratio distributions across 1 million samples
from the respective dataset, computed using LZ4. Top left: C4 (minimally filtered) skews lower
with heavy tails. Top right: FineWeb-Edu shows a more centralized distribution. Bottom left:
DCLM (highly curated) peaks sharply near 0.75. Bottom right: Twitter (noisy, informal) skews high,
reflecting structural noise and short, unstructured content.

Figure 5 shows examples of documents across different compression ratio bands. Manual examination
suggests that documents with compression ratios in a Goldilocks zone seem to correspond with
higher quality text. Low compression ratio documents frequently exhibit repetitive, templated text
or keyword stuffing, while those with high compression ratios often feature noise, mixed-language
content, or irregular formatting. The intermediate range consistently contains structured, coherent,
and informative text.

While these qualitative insights are compelling, we seek a more rigorous quantitative assessment. To
do this, we propose examining how compression ratio distributions change across datasets known
to vary widely in quality. Specifically, we ask: Do higher-quality datasets systematically exclude
documents at the extremes of compression ratio distributions?

To quantitatively investigate this, we analyze compression ratios over a random sample of 1 million
documents from each of four corpora: C4, FineWeb-Edu, DCLM, and Twitter. These datasets span a
broad spectrum of curation strategies and observed downstream quality. C4 is a minimally filtered
Common Crawl dataset (Dodge et al., 2021); FineWeb-Edu applies heuristic and classifier-based
filtering (Penedo et al., 2024); DCLM undergoes model-based filtering(Li et al., 2024); and Twitter
consists of informal, noisy, and unstructured web content(Mohammad et al., 2018; Barbieri et al.,
2018). Figure 3 clearly illustrates that as perceived dataset quality improves, compression ratio
distributions become narrower and more centralized. Lower-quality datasets like C4 have broader
distributions with substantial tails, whereas higher-quality datasets such as DCLM exhibit tight,
centralized distributions, effectively dropping documents with extreme compression ratios.

These correlational observations strongly motivate a causal exploration: whether actively filtering doc-
uments based on compression ratio can concretely enhance downstream language model performance.
This causal hypothesis is explored further in Section 3.1.

3.1 ALIGNMENT WITH EXISTING QUALITY SIGNALS

Figure 4 provides compelling evidence that compression ratio aligns closely with decisions made by
the FineWeb-EDU quality classifier. Documents accepted by this classifier predominantly occupy an
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Figure 4: Compression ratio mirrors many decisions made by the FineWeb–EDU quality
classifier. We plot kernel–density estimates of the LZ4 compression ratio for one million randomly-
sampled documents that the classifier keeps (blue) versus discards (red). Lower ratios indicate text
that is highly compressible (repetitive/boiler-plate), whereas very high ratios often correspond to
noisy or degenerate content.

intermediate compression ratio range (approximately 0.65–0.80), reflecting text that is sufficiently
informative yet neither overly repetitive nor excessively noisy. Conversely, documents discarded by
the classifier display a broader compression ratio distribution, encompassing both highly repetitive
(low compression) and noisy or irregular (high compression) extremes.

This alignment underscores compression ratio’s utility as an intuitive, distributional proxy for textual
quality, capturing much of the information implicitly leveraged by more computationally demanding,
model-based classifiers. Nevertheless, the notable overlap between the "kept" and "discarded"
distributions indicates inherent limitations of rigid thresholding strategies. Many documents near the
decision boundaries remain challenging to classify accurately via compression ratio alone.

4 COMPEL : A METHOD FOR IMPROVING PRETRAINING DATA QUALITY

4.1 DESIDERATA

An effective data selection method for large-scale language model pretraining should satisfy the
following criteria:

• Performance: It should improve downstream accuracy or generalization relative to unfiltered
or naively filtered data.

• Scalability: It must operate efficiently over trillions of tokens.
• Simplicity: The method should be easy to implement, interpret, and integrate into existing

preprocessing pipelines.

Compel is designed with these criteria in mind. It is an embedding-free, compression-based filtering
method that improves data quality using a single, interpretable scalar: compression ratio. It requires
no training, inference, or human labels.

4.2 BACKGROUND: COMPRESSION ALGORITHMS

Lossless compression algorithms reduce file size by exploiting redundancy in the input. In this work,
we utilize LZ4 a fast, block-based compressor that employs LZ77-style sliding-window encoding.
LZ4 is streaming-compatible and operates over raw byte strings, making it ideal for large-scale
filtering pipelines. Unlike perplexity scores or embedding distances, compression operates without
tokenization, external supervision, or model inference.
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4.3 FILTERING CRITERIA

Based on empirical observations from Section 3, we define a quality band of compression ratios:
τmin = 0.65 and τmax = 0.80. Let D = {x1, x2, . . . , xN} be a collection of documents in a
pretraining corpus. Documents with CR(x) ∈ [τmin, τmax] are retained. Those falling outside this
range are discarded. These threshold values were selected based on the inter-quartile ranges observed
in high-quality datasets like DCLM and FineWeb-EDU, where well-structured, information-dense
documents tend to fall within this band. This provides a simple, domain-agnostic filter that effectively
removes both overly redundant and noisy examples.

4.4 EFFICIENCY

Compel is highly efficient and trivially parallelizable. On a machine with 500 CPUs, the filter
processes over 40,000 documents per second using LZ4 compression—an order of magnitude faster
than typical perplexity- or classifier-based quality filters.

5 EXPERIMENTS

5.1 PRETRAINING CORPORA

We evaluate Compel on three widely-used corpora for language model pretraining:

• FineWeb (Penedo et al., 2024): A 15-trillion-token web crawl filtered with domain heuristics
and safety constraints.

• FineWeb-EDU (Penedo et al., 2024): A 1.3-trillion-token educational subset extracted
using a synthetic LLM classifier trained on LLaMA 3 70B-Instruct annotations.

• DCLM (Li et al., 2024): A 4-trillion-token corpus derived from Common Crawl, curated to
support high-accuracy model training with limited compute.

For each corpus, we construct a Compel-filtered variant by removing documents whose LZ4 com-
pression ratio falls outside the calibrated range:

τmin = 0.65, τmax = 0.80.

Compression is applied to raw byte-level representations using a single pass over the dataset. Filtering
is performed prior to tokenization and shuffling.

5.2 MODEL CONFIGURATIONS

For each Compel-filtered variant, we train two decoder-only Transformer models based on the LLaMA
Touvron et al. (2023) architecture with rotary position embeddings and grouped-query attention. The
1.4B model has 16 layers, a hidden size of 2048, intermediate size of 7168, 16 attention heads, and
8 key/value heads. The 8B model consists of 32 layers, a hidden size of 4096, intermediate size
of 14336, 32 attention heads, and 8 key/value heads. Both models are configured with a maximum
sequence length of 4096. These values were selected based on standard configurations shown
to perform well at this scale in prior open-source models. The 8B model follows the LLaMA3
hyperparameters (Touvron et al., 2023), which are tuned for stability and efficiency at high model
capacity. All models are trained from scratch without weight reuse or initialization from pretrained
checkpoints.

5.3 TRAINING PROTOCOL

The 1.4B model is trained for 10,000 steps using a batch size of 1024 and sequence length of 4096,
totaling 42 billion tokens. The 8B model is trained for 40,000 steps under the same sequence length
and batch size, totaling 167 billion tokens. Training is performed on TPU v4-128 pods.

We use AdamW optimization for all models. The 1.4B model uses a learning rate of 3 × 10−4

with weight decay of 0.1. The 8B model follows the LLaMA 3 hyperparameters: a learning rate of
2 × 10−3, weight decay 0.05, and 5000 warmup steps. All models are trained with cosine decay
schedules and dropout rate of 0.1
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5.4 EVALUATION SUITE

We evaluate each model using the standardized lm-eval-harness framework(Biderman et al.,
2024), following zero-shot protocols on a diverse set of 13 natural language processing benchmarks:

• Commonsense and Reasoning: COPA(Roemmele et al., 2011), CommonsenseQA(Talmor
et al., 2018), PIQA(Bisk et al., 2020), ARC(Easy/Challenge)(Clark et al., 2018), AGIEval-
LSAT-AR(Zhong et al., 2023)

• Reading Comprehension: BoolQ(Clark et al., 2019), OpenBookQA(Mihaylov et al., 2018),
WinoGrande(Sakaguchi et al., 2021), WSC273(Levesque et al., 2012), LAMBADA(Paperno
et al., 2016)

• Multichoice QA: HellaSwag(0-shot, 10-shot)(Zellers et al., 2019)

Metrics. We report task-standard metrics for each dataset, primarily multiple-choice question-
answering accuracy. We aggregate results using unweighted macro-average accuracy over all tasks.

6 RESULTS

We evaluate Compel across three widely-used, large-scale pretraining datasets—FineWeb, FineWeb-
EDU, and DCLM—using two LLaMA-style model scales: 1.4 billion (1.4B) and 8 billion (8B)
parameters. We measure model performance using macro-average accuracy across a suite of 13
diverse downstream benchmarks (see Section 5.4). The detailed benchmark results are summarized
in Table 1, with key findings discussed below.

6.1 IMPACT OF COMPRESSION-BASED FILTERING AT 1.4B SCALE

Table 1: Results for 1.4B-parameter models across datasets. Compel improves on 9 out of 13
benchmarks for FineWeb, 9 out of 13 for FineWeb-EDU and 11 out of 13 benchmarks for DCLM

Benchmark FineWeb FineWeb + Compel FineWeb-EDU FineWeb-EDU + Compel DCLM DCLM + Compel

WSC273 0.571 0.604 0.571 0.550 0.630 0.637
Winogrande 0.528 0.534 0.532 0.525 0.528 0.539
PIQA 0.708 0.712 0.687 0.702 0.705 0.710
OpenBookQA 0.196 0.192 0.244 0.258 0.222 0.230
LAMBADA 0.369 0.379 0.337 0.339 0.499 0.501
HellaSwag (10-shot) 0.362 0.365 0.365 0.364 0.371 0.378
HellaSwag (0-shot) 0.365 0.369 0.378 0.384 0.375 0.379
COPA 0.630 0.730 0.690 0.730 0.690 0.710
CommonsenseQA 0.201 0.188 0.216 0.197 0.199 0.207
BoolQ 0.591 0.593 0.571 0.606 0.507 0.462
ARC-Easy 0.537 0.536 0.623 0.634 0.609 0.614
ARC-Challenge 0.230 0.218 0.282 0.296 0.276 0.265
AGIEval LSAT-AR 0.230 0.239 0.248 0.257 0.217 0.222
Macro avg. 0.424 0.435 0.442 0.449 0.466 0.470

FineWeb As shown in Table 1, Compel-filtered models improve accuracy on 9 out of 13 tasks
compared to the heavily-filtered FineWeb baseline, yielding a notable macro-average accuracy
increase of 1.1 points (from 42.4% to 43.5%). The largest improvements occur in commonsense
reasoning benchmarks, notably COPA (+10%) and WSC273 (+3.3%), suggesting that removing
documents outside the calibrated compression ratio range effectively eliminates subtle forms of noise,
enhancing models’ reasoning capabilities.

FineWeb-EDU Even though FineWeb-EDU is already filtered via strong classifier-based heuristics,
COMPEL further enhances model performance. As Table 1 indicates, COMPEL filtering leads to
improved accuracy on 9 of 13 tasks, resulting in a 0.7-point increase in macro-average accuracy (from
44.2% to 44.9%). Notable gains are observed on COPA (+4%) and BoolQ (+3.5%).

DCLM DCLM represents the current gold standard in dataset quality. Nevertheless, Table 1
reveals that Compel still offers improvements on 11 of 13 tasks, yielding a 0.4-point increase in
macro-average accuracy (from 46.6% to 47.0%).
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6.2 EFFECTIVENESS OF COMPEL AT LARGER MODEL SCALE (8B)

Our 8B experiments demonstrate that Compel’s effectiveness persists at scale: it improves both
macro and micro average accuracy despite the increased capacity and learning dynamics of larger
models. This suggests that Compel’s benefits are not confined to small or medium-scale settings.
Instead, compression-based filtering enhances training efficiency even when models have greater
capacity to absorb noise, indicating that the quality improvements it introduces are fundamental rather
than compensatory. As model sizes continue to grow, such lightweight filters can play an increasingly
important role in optimizing compute budgets while preserving or improving performance.

Task-level results reveal notable improvements in tasks such as BoolQ (+5.5%) and CommonsenseQA
(+2.6%), despite minor regressions on ARC-Challenge (–2.4%) and WSC273 (–1.1%). These results
highlight that Compel filtering scales effectively with increased model size, preserving or enhancing
model capabilities and improving data efficiency without added computational complexity.

Table 2: Results on 8B models trained on FineWeb. COMPEL preserves downstream accuracy
while improving perplexity.

Benchmark FineWeb FineWeb + Compel

WSC273 0.809 0.798
Winogrande 0.682 0.679
PIQA 0.793 0.791
OpenBookQA 0.310 0.310
LAMBADA 0.638 0.648
HellaSwag (10-shot) 0.556 0.561
HellaSwag (0-shot) 0.562 0.562
COPA 0.860 0.850
CommonsenseQA 0.189 0.215
BoolQ 0.683 0.738
ARC-Easy 0.705 0.732
ARC-Challenge 0.396 0.372
AGIEval LSAT-AR 0.204 0.213

Macro avg. 0.570 0.572
Micro avg. 0.587 0.593

7 COMPEL QUALITATIVELY SELECTS HIGHER QUALITY TEXT

To better understand the kinds of documents filtered by compression ratio, we visualize examples
from each compression band: low (<0.65), Compel-kept (0.65–0.80), and high (>0.80). We display
the beginning lines of real web documents from each region, as shown in Figure 5.

The low-compression examples are dominated by boilerplate keyword stuffing and templated text
(e.g., location-specific service listings repeated verbatim). High-compression examples tend to be
noisy, short, or include artifacts like mixed-language metadata or hexadecimal tables. In contrast, doc-
uments retained by Compel exhibit higher information density and structural coherence—typically
consisting of fluent, formal descriptions, educational explanations, or open-source project write-ups.

Qualitatively, Compel effectively discards content at both ends of the redundancy–entropy spectrum,
keeping the center band where well-edited, human-authored text lies. This confirms the value of
compression ratio as a simple yet powerful signal for improving pretraining data quality.

8 DISCUSSION AND LIMITATIONS

Compel was designed to address a fundamental challenge in large-scale language model training:
identifying and filtering high-quality data from internet-scale corpora without incurring the cost of
large models, supervision, or inference. While individual gains from Compel filtering are modest
(+0.5–1.1 points), our results demonstrate that these gains are consistent across datasets and model
sizes, achieved with negligible computational overhead.
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Figure 5: Beginning characters of representative examples excluded for low compression ratio (left),
kept by Compel (middle), and excluded for high compression ratio (right). Compel retains the
informative mid-range while filtering boilerplate or noisy text.

Prior work has shown that small, reproducible accuracy improvements can have outsize benefits at
scale (et al., 2023; 2024a; Tirumala et al., 2023). For example, a 1-point improvement in accuracy at
trillion-token scale can eliminate the need for hundreds of thousands of additional training steps or
significantly reduce reliance on larger, more costly models.

By offering a simple, domain-agnostic filter that integrates seamlessly into existing pipelines,
Compel provides a practical path toward higher-quality data at minimal cost—helping bridge
the gap between dataset scale and dataset quality.

Our approach has several limitations. First, compression thresholds were manually tuned based on
observed distributions from reference corpora, which may not generalize optimally across diverse
datasets or content domains. While these thresholds proved broadly effective, our analysis did
not systematically explore their sensitivity or optimality due to computational constraints. Future
work could automate this process by using adaptive threshold selection techniques that optimize
filtering performance on small validation sets or leverage unsupervised clustering over compression
distributions.

Second, applying a fixed, global compression threshold across entire corpora inherently ignores
variability across different content types or domains. More granular, adaptive filtering—especially
tailored to specific domains such as code repositories, news, or social media content—could yield
further performance gains.

Third, we positioned Compel as a final refinement step in existing filtering pipelines. Although this
demonstrated its complementary nature and consistent improvements, we believe compression-based
filtering may provide greater value when applied earlier in data pipelines. Early-stage filtering can
reduce the amount of data subject to more expensive processing, making full pipelines more efficient.

Finally, the inherent simplicity of compression ratio as a scalar metric means it cannot capture
semantic or nuanced linguistic content distinctions. Hybrid approaches that combine compression-
based signals with lightweight semantic or lexical features could address this shortcoming, refining
dataset quality further without incurring significant computational overhead.

Together, these limitations point to several promising directions: (1) adaptive thresholding based
on unsupervised signal analysis, (2) domain-specific calibration, (3) early-stage integration into
multi-pass pipelines, and (4) hybrid filters that combine compression with complementary lightweight
signals.

9 CONCLUSION

Compel introduces a fast, model-free filtering signal that improves data quality across diverse
corpora and model scales. As pretraining datasets continue to grow, compression-based filtering
offers a practical path toward scalable, efficient, and interpretable data selection.

9
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A APPENDIX / SUPPLEMENTAL MATERIAL

Optionally include supplemental material (complete proofs, additional experiments and plots) in
appendix. All such materials SHOULD be included in the main submission.
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