

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 LIGHTWEIGHT GRAPH-FREE CONDENSATION WITH MLP-DRIVEN OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph condensation aims to compress large-scale graph data into a small-scale one, enabling efficient training of graph neural networks (GNNs) while preserving strong test performance and minimizing storage demands. Despite the promising performance of existing graph condensation methods, they still face two-fold challenges, i.e., *bi-level optimization inefficiency & rigid condensed node label design*, significantly limiting both efficiency and adaptability. To address such challenges, in this work, we propose a novel approach: **LIGHT**weight **Graph-Free** Condensation with MLP-driven optimization, named **LIGHTGFC**, which condenses large-scale graph data into a structure-free node set in a simple, accurate, yet highly efficient manner. Specifically, our proposed LIGHTGFC contains three essential stages: (S1) Proto-structural aggregation, which first embeds the structural information of the original graph into a proto-graph-free data through multi-hop neighbor aggregation; (S2) MLP-driven structural-free pretraining, which takes the proto-graph-free data as input to train an MLP model, aligning the structural condensed representations with node labels of the original graph; (S3) Lightweight class-to-node condensation, which condenses semantic and class information into representative nodes via a class-to-node projection algorithm with a lightweight projector, resulting in the final graph-free data. Extensive experiments show that the proposed LIGHTGFC achieves state-of-the-art accuracy across multiple benchmarks while requiring minimal training time (as little as 2.0s), highlighting both its effectiveness and efficiency.

1 INTRODUCTION

Graph Neural Networks (GNNs) have witnessed rapid development due to their strong learning capabilities for graph structural data (Kipf, 2016; Zheng et al., 2025; Liu et al., 2025; Xu et al., 2018a; Wu et al., 2019). Existing GNN models have been applied to extensive graph learning tasks and applications, such as social network analysis (Brody et al., 2021; Kipf, 2016; Wu et al., 2020), molecular representation (Xu et al., 2018a; Ying et al., 2021; 2018), transportation systems (Wang et al., 2024b;a), etc. However, in real-world scenarios, continual growth in the scale of graph data has led to a significant increase in storage and computational costs, posing a greater demand for efficient data condensation and processing techniques. To this end, graph condensation has been introduced to generate a small-scale synthetic graph from a large-scale original graph (Gao et al., 2025b; Jin et al., 2021; Li et al., 2023; Zheng et al., 2023; Liu et al., 2024; 2022; 2023), enabling GNNs trained on the condensed graph to serve as a compact substitute for the original, while preserving comparable performance on the original test graphs.

Existing mainstream graph condensation methods can be broadly categorized into three classes: gradient matching (Jin et al., 2021; Li et al., 2023), trajectory matching (Zheng et al., 2023; Liu et al., 2024), and distribution matching (Liu et al., 2022; 2023). Despite promising condensation performance, these matching-based methods either use gradients/trajectories of GNN training to match the learning behaviors of the

047 large-scale graph trained GNN with the condensed graph trained GNN, or match representation information
 048 to preserve the distribution consistency between the original graph and the condensed graph. However, while
 049 effective to some extent, such strategies still encounter two-fold challenges:

050 **■ C1: Complexity of bi-level optimization**, where condensed graph node features and structures, together
 051 with the newly trained GNN model, must be jointly optimized in a nested inner-outer loop. This requires
 052 repeatedly training and updating both the GNN and the condensed graph, resulting in low training efficiency
 053 and contradicting the objective of graph condensation.

054 **■ C2: Underestimation of condensed label design**, as existing methods typically adopt a predefined label
 055 distribution identical to the original graph (e.g., under a 10% condensation ratio with a three-class distri-
 056 bution of 60/20/20, 100 nodes are reduced to 10 nodes with three-class labels 6/2/2). However, such rigid
 057 preservation may not be optimal, since the label distribution of the condensed graph should ideally be refined
 058 according to the relative importance of nodes during condensation, rather than strictly mirroring the original
 059 node class distribution. In light of these, a natural question arises:

060 **Question:** *Is it possible to deconstruct the complex bi-level optimization, while simultaneously considering the con-
 061 densed graph data with class-aware node label importance?*

063 To answer this question and address these challenges, in this work, we propose a novel approach:
 064 **LIGHT**weight **G**raph-**F**ree **C**ondensation with MLP-driven optimization, named **LIGHTGFC**. Our method
 065 condenses large-scale graph data into a structure-free node set in a simple, accurate, and highly efficient man-
 066 ner. By deconstructing complex bi-level optimization with a single MLP-driven process, **LIGHTGFC** first
 067 performs data-centric structural condensation, and then learns a lightweight node feature projector that mod-
 068 els condensed node label distributions through class-aware similarity. Specifically, our proposed **LIGHTGFC**
 069 contains three essential stages: (1) *Proto-structural aggregation*, which first embeds the structural informa-
 070 tion of the original graph into a proto-graph-free data through multi-hop neighbor aggregation, preventing
 071 loss of critical topology information in subsequent condensation; (2) *MLP-driven structural-free pretrain-
 072 ing*, which takes the proto-graph-free data as input to train an MLP model, aligning the structural condensed
 073 representations with node labels of the original graph; (3) *Lightweight class-to-node condensation*, which
 074 condenses semantic and class information into representative nodes via a class-to-node projection algorithm.
 075 A lightweight projector is optimized using a prototype-aware feature alignment loss and a label-aware model
 076 adaptation loss, resulting in the final graph-free data. Extensive experiments on five widely used graph con-
 077 densation benchmarks demonstrate that our method delivers strong condensation performance, achieving
 078 superior node classification accuracy while significantly reducing training time. In summary, our contribu-
 079 tions are listed in threefold:

- 080 **• Lightweight Condensation.** We first propose a lightweight structure-free graph condensation frame-
 081 work, named **LIGHTGFC**, which condenses large-scale graphs into compact node sets via MLP-driven
 082 optimization, overcoming bi-level inefficiency and rigid label design while preserving structural semantics
 083 and class discriminability;
- 084 **• Three-stage Pipeline.** We design a concise three-stage pipeline for **LIGHTGFC** covering: S1: Proto-
 085 structural aggregation, to embed original topology into proto-graph-free data; S2: MLP-driven structure-
 086 free pretraining, to align condensed representations with original node labels, and S3: Lightweight class-
 087 to-node condensation, to generate representative nodes with adaptive optimization objectives;
- 088 **• Effectiveness & Efficiency.** Extensive experiments on five widely used graph condensation benchmarks
 089 demonstrate that **LIGHTGFC** achieves superior node classification (up to 8% improvement) accuracy
 090 while reducing training time (as little as 2.0s), with expressive performance and efficiency.

091 2 RELATED WORK

092 **Graph Condensation.** Mainstream graph condensation methods can be categorized into three groups: gra-
 093 dient matching (Jin et al., 2021; Yang et al., 2023), trajectory matching (Zheng et al., 2023; Zhang et al.,

2024), and distribution matching (Liu et al., 2022; Gao et al., 2025a). For gradient matching methods, typically, GCond (Jin et al., 2021) aligns the GNN training gradients on the original and synthetic graphs, and SGDD (Yang et al., 2023) uses the graphon approximation to implement optimal transport for Laplacian energy distribution matching. For trajectory matching methods, the pioneering method SFGC (Zheng et al., 2023), which creatively synthesizes graph-free data, matches the GNN training trajectories by scores. GEOM (Zhang et al., 2024) expands this idea by enforcing cross-graph consistency. For distribution matching methods, GCDM (Liu et al., 2022) takes the original feature matrix as a distribution over the receptive fields of nodes. CGC (Gao et al., 2025a) adopts a feature enhancement and condensation strategy to obtain graph-free data. GCPA (Li et al.) and DisCo (Xiao et al., 2025) both train the feature distribution of nodes, the former uses feature adaptation, and the latter relies on the MLP model after decoupling. ProStack (Bai et al., 2025) employs a graph memory mechanism to store feature distributions and topological structures for progressive condensation at different compression ratios. For other hybrid condensation methods, Bonsai (Gupta et al., 2024) introduces a computation tree to capture the diverse computational structures of GNNs; SNTK (Xu et al., 2023) leverages the Neural Tangent Kernel to guide the condensation process.

3 METHODOLOGY

Notations. The large-scale graph data, which needs to be condensed, is denoted as $\mathcal{G} = (\mathbf{X}, \mathbf{A}, \mathbf{Y})$, where $\mathbf{X} \in \mathbb{R}^{N \times d}$ denotes the N number of nodes with d -dimensional features, $\mathbf{A} \in \mathbb{R}^{N \times N}$ denotes the adjacency matrix with the edge connections and $\mathbf{Y} \in \mathbb{R}^{N \times C}$ denotes the C -classes of node labels. In this paper, we propose a graph-free graph condensation paradigm designed to synthesize a compact set of graph nodes. The condensed graph is defined as $\mathcal{G}' = (\mathbf{X}', \mathbf{A}', \mathbf{Y}')$, where $\mathbf{X}' \in \mathbb{R}^{N' \times d}$ denotes the N' number of nodes with d -dimensional features with $N' << N$ and $\mathbf{A}' \in \mathbb{R}^{N' \times N'}$ is the adjacency matrix of the condensed graph structure, and $\mathbf{Y}' \in \mathbb{R}^{N' \times C}$ denotes the C -classes of node labels. Existing methods leverage the predefined condensation ratio r to synthesize the nodes of the condensation graph, $N' = \sum_{c=1}^C (r \cdot N_c)$, and $N_c = p_c \cdot N$ is the number of nodes for the c -th class in the original graph with the node class distribution proportion p_c .

Graph Condensation with Bi-level Optimization. Given a GNN model parameterized by θ , most existing graph condensation is defined as a bi-level optimization objective. Specifically, taking the original graph $\mathcal{G} = (\mathbf{X}, \mathbf{A}, \mathbf{Y})$ as input, the graph condensation requires simultaneously learning two objectives: (1) A condensation graph $\mathcal{G}' = (\mathbf{X}', \mathbf{A}', \mathbf{Y}')$ by aligning the learning behavior of the original graph trained GNN $_{\phi_{\mathcal{G}}}$ and the condensed graph trained GNN $_{\theta_{\mathcal{G}'}^*}$, through a matching loss $\mathcal{L}_{\text{match}}(\cdot)$; (2) A new-trained GNN $_{\theta_{\mathcal{G}'}^*}$ model for optimizing condensed graph class learning through a classification loss $\mathcal{L}_{\text{cls}}(\cdot)$. The formula of the bi-level problem is as follows:

$$\min_{\mathcal{G}'} \mathcal{L}_{\text{match}}[\text{GNN}_{\theta_{\mathcal{G}'}^*}(\mathcal{G}), \text{GNN}_{\phi_{\mathcal{G}}}(\mathcal{G}')], \quad \text{s.t.} \quad \theta_{\mathcal{G}'}^* = \arg \min_{\theta_{\mathcal{G}'}} \mathcal{L}_{\text{cls}}[\text{GNN}_{\theta_{\mathcal{G}'}}(\mathbf{X}', \mathbf{A}'), \mathbf{Y}'], \quad (1)$$

where $\theta_{\mathcal{G}'}^*$ is the optimal parameters of the model trained on \mathcal{G}' . Furthermore, existing methods with graph structure condensation usually optimize a parameterized graph structure module $g(\cdot, \psi)$ through $\mathbf{A}' = \arg \min_{\psi} \mathcal{L}_{\text{gsl}}[g(\mathbf{X}', \psi)]$. Consequently, the training process requires the simultaneous and iterative optimization of the GNN parameters θ , graph structure module parameter ψ , and the condensed graph \mathcal{G}' .

3.1 OVERALL FRAMEWORK

Figure 2 presents the overall framework of our proposed LIGHTGFC, which comprises three essential stages: (S1) Proto-structural aggregation, (S2) MLP-driven structural-free pretraining, and (S3) Lightweight class-to-node condensation. Specifically, given the original large-scale graph data, we first sent it to S1, a proto-structural aggregation, to comprehensively aggregate multi-hop neighbors, thereby implicitly embedding the raw structural information into the proto-graph-free data. Then, the obtained proto-graph-free data would

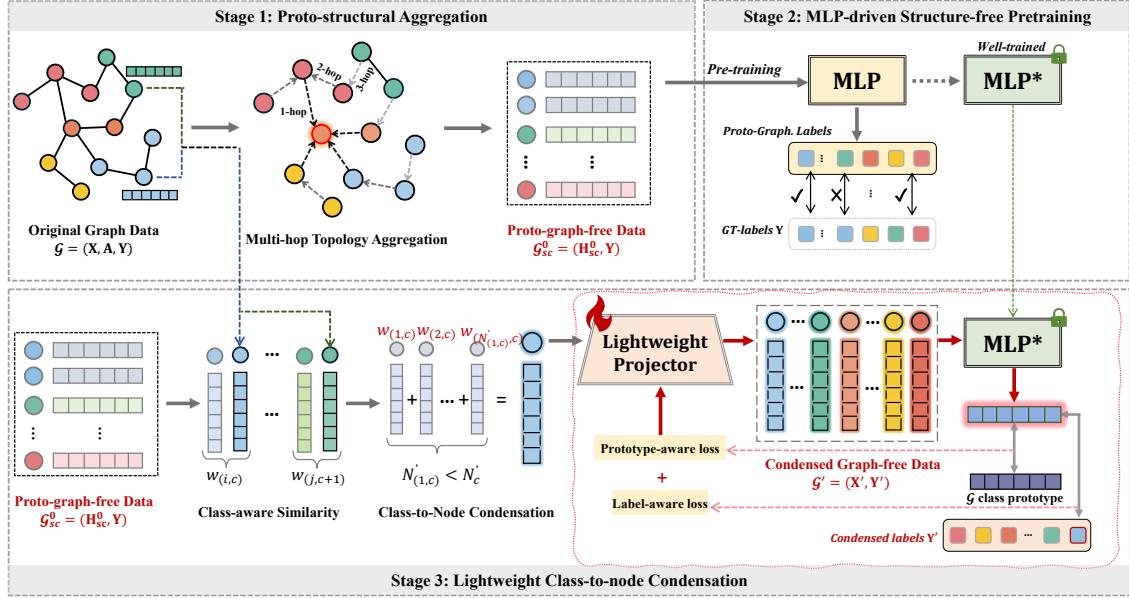


Figure 1: Overall framework of the proposed light-weight graph-free condensation method LIGHTGFC.

be fed into S2, MLP-driven structural-free pretraining, where an MLP model is trained to compile with the structure-free condensation and align the structure-condensed representations with node labels of the original graph. After that, we conduct S3, a lightweight class-to-node condensation, which condenses the proto-graph-free data through similarity-based node feature mapping to synthesize class-aware graph-free data. A parameterized condensed feature projector is followed to map the class-aware graph-free node set under two constraints: label-aware model adaptation loss and a prototype-aware feature alignment loss, leading to the final condensed graph-free data.

3.2 PROTO-STRUCTURAL AGGREGATION

To address the complexity of bi-level optimization in graph condensation, we first propose to introduce the structure-free condensation through the proto-structural aggregation module, so that the original topological structure can be implicitly embedded within the graph-free node features. Given the original large-scale graph, $\mathcal{G} = (\mathbf{X}, \mathbf{A}, \mathbf{Y})$, we first capture structural information by aggregating multi-hop information from neighbor nodes through the typical graph convolutional operation as:

$$\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-\frac{1}{2}} (\mathbf{A} + \mathbf{I}_N) \tilde{\mathbf{D}}^{-\frac{1}{2}}, \quad \mathbf{H}_{k-1} = \hat{\mathbf{A}}^{(k)} \cdot \mathbf{X}, \quad (2)$$

where \mathbf{I}_N is the identity matrix denoting self-connections and $\tilde{\mathbf{D}}$ is the degree matrix. By multi-hop topology aggregation, we get the aggregation feature matrix \mathbf{H}_{k-1} ($k = 1, 2, \dots, K$), where k is the k -hop neighbor nodes. For the initial feature matrix, we have $\mathbf{H}_0 = \mathbf{X}$.

After the primitive capture of structural information in the original graph, we calculate the global average aggregation to obtain the *proto-graph-free data* \mathcal{G}_{sc}^0 with the balanced and comprehensive topological structure condensation, as follows:

$$\mathcal{G}_{sc}^0 = (\mathbf{H}_{sc}^0, \mathbf{Y}), \text{ where } \mathbf{H}_{sc}^0 = \frac{1}{K} \sum_k^K \mathbf{H}_{k-1}. \quad (3)$$

188 Here, $\mathbf{H}_{sc}^0 \in \mathbb{R}^{N \times d}$ and K denotes the breadth of the neighbor nodes. In this stage, the proto-structural
 189 aggregation stage yields a structure-condensed node feature matrix that explicitly encodes topological infor-
 190 mation in the original graph.
 191

192 3.3 MLP-DRIVEN STRUCTURAL-FREE PRETRAINING

194 After the proto-structural aggregation, we shift the attention from training GNN models to training an MLP
 195 model. When the proto-graph-free data \mathcal{G}_{sc}^0 has implicitly embedded the topological structure information,
 196 it still needs to be aligned with node labels in the original graph. In this process, it is necessary to preserve
 197 the classification ability of the condensed node features. In light of this, we propose to utilize the MLP as
 198 a structure-free model expert, enabling it to perform node classification without relying on graph structure.
 199 To achieve this goal, we propose an MLP-driven structural-free pretraining stage, where the MLP model
 200 parametrized by ϕ is trained to preserve the feature adaptability of \mathcal{G}_{sc}^0 through the supervision from node
 201 class labels \mathbf{Y} in the original graph. The optimization objective can be defined as minimizing the cross-
 202 entropy loss \mathcal{L}_{ce} as:
 203

$$\min_{\phi} \mathcal{L}_{ce}(\text{MLP}_{\phi}(\mathbf{H}_{sc}^0), \mathbf{Y}). \quad (4)$$

205 3.4 LIGHTWEIGHT CLASS-TO-NODE CONDENSATION

207 Different from the existing node-centric condensation methods that directly allocate the number of nodes in
 208 the condensed graph according to the original label distribution, which can not fully reflect the importance
 209 relationship of the feature and structure for each class. We propose a stage of lightweight class-to-node
 210 condensation, which aims to adaptively adjust the class proportions based on their overall influence reflected
 211 in node labels. After this adjustment, the number of nodes assigned to each class is determined by its
 212 relative importance, ensuring that influential classes are better represented in the condensed graph. Hence,
 213 our class-to-node condensation balances the distribution of classes in quantitative proportion and structural
 214 importance, which leads to a more faithful preservation of class semantics in the condensed graph-free data.
 215

216 Specifically, we calculate the feature discrepancy between our derived $\mathbf{H}_{sc}^0 \in \mathcal{G}_{sc}^0$ and the original graph
 217 $\mathbf{X} \in \mathcal{G}$ as follows:
 218

$$w^c = \sum_{\mathbf{x}_i \in \mathcal{V}_c} w_i^c, \text{ where } w_i^c = 1 - \text{Dist} \left[\mathbf{x}_i^c, \mathbf{h}_{(i,sc)}^{0,c} \right], \quad (5)$$

219 where $\mathbf{x}_i \in \mathbf{X}$ and $\mathbf{h}_{(i,sc)}^{0,c} \in \mathbf{H}_{sc}^0$ denoting the original graph node feature and the proto-graph-free data
 220 node feature, respectively. \mathcal{V}_c is defined as the set of nodes in the graph which belong to class c . Moreover,
 221 $w_c \in \mathbb{R}^1$ is a scalar, denoting the class-aware similarity as the weight value for each class c , and $\text{Dist}[\cdot, \cdot]$ is
 222 the discrepancy metric function. In our work, we use the cosine similarity $\cos(\cdot)$. Such similarity measures
 223 the degree of variation in node features introduced by our proposed proto-structural condensation, relative to
 224 the original graph topology. Nodes with high w_i^c capture richer structural information from their neighbors,
 225 implying that they are more central and informative within the original graph.

226 Such class-aware similarity determines the proportion of nodes of that class in the condensed graph with
 227 $|\mathcal{V}_c| = N'_c = w_c \cdot N'$. For each class, the condensed graph-free feature vector is aggregated by the features
 228 of nodes in the proto-graph-free data according to their respective weights, so we have:
 229

$$\mathbf{h}_{(j,cg)}^c = \sum_{i=1}^{(p_c \cdot N) / (w_c \cdot N')} \frac{w_i^c}{w_c} \cdot \mathbf{h}_{(i,sc)}^{0,c}, \quad \mathbf{H}_{cg} = \left\{ \mathbf{h}_{(j,cg)}^c \mid j = 1, \dots, N'_c, c = 1, \dots, C \right\}, \quad (6)$$

233 Where $(p_c \cdot N) / (w_c \cdot N')$ denotes the number of condensed graph nodes obtained by aggregating the nodes
 234 of the original graph for c -th class. Therefore, we obtain the initial feature matrix of condensed graph-free

235 data $\mathbf{H}_{\text{cg}} \in \mathbb{R}^{N' \times C}$. Meanwhile, we obtain the node labels $y'_j = c, j \in N'_c$, according to the weighted
 236 node class distribution. Furthermore, the label vector of the condensed graph-free data can be synthesized
 237 $\mathbf{Y}' = \{y'_j\}_{j=1}^{N'_c} \in \mathbb{R}^{N' \times 1}$. In this way, we obtain the initial condensed graph-free data $\mathcal{G}_{\text{sc}}^1 = (\mathbf{H}_{\text{cg}}, \mathbf{Y}')$.
 238

239 Although \mathbf{H}_{cg} preserves structural aggregation from the original graph, it is still limited by the initial con-
 240 densed representation from two aspects: (a) it may not align well with the semantic space required for
 241 downstream learning, and (b) it lacks discriminative power since class information is not explicitly opti-
 242 mized. To address this, we introduce a *lightweight projector*, parametrized by a learnable matrix \mathbf{M} , to
 243 further map \mathbf{H}_{cg} into a task-adaptive feature space, so that we obtain the final condensed graph-free data:

$$244 \quad 245 \quad \mathcal{G}' = (\mathbf{X}', \mathbf{Y}'), \text{ where } \mathbf{X}' = \mathbf{P} \cdot \mathbf{H}_{\text{cg}}. \quad (7)$$

246 This projector is optimized with a prototype-aware feature alignment and label-aware model adaptation
 247 losses, to further enhance the semantic consistency and improve the effectiveness of the final condensed
 248 graph-free data.

249 ■ *Label-aware Model Adaption Loss*. To ensure that the explicit information embedded from the original
 250 graph by the pretrained model MLP_ϕ^* is effectively transferred to the condensed graph, we design a model
 251 adaptation loss as:

$$252 \quad \mathcal{L}_{\text{adapt}} = \text{Cross-entropy}(\text{MLP}_\phi^*(\mathbf{X}'), \mathbf{Y}'). \quad (8)$$

253 ■ *Prototype-aware Feature Alignment Loss*. To mitigate information loss during this process and maintain
 254 the original feature distribution, the feature vector of each condensed node $\mathbf{x}'_i \in \mathcal{G}'$ is enforced to align with
 255 the class mean feature from the original graph $\mathbf{x}_i \in \mathcal{G}$. Based on this principle, we have:

$$257 \quad 258 \quad 259 \quad 260 \quad \mathcal{L}_{\text{align}} = \sum_{c=1}^C \left\| \frac{1}{N'_c} \sum_{i:y'_i=c} \mathbf{x}'_i - \frac{1}{N_c} \sum_{i:y_i=c} \mathbf{x}_i \right\|_2^2. \quad (9)$$

261 Therefore, the total loss function is,

$$262 \quad 263 \quad \mathcal{L}_{\text{total}} = \alpha \cdot \mathcal{L}_{\text{adapt}} + \beta \cdot \mathcal{L}_{\text{align}}, \quad (10)$$

264 where α and β are hyper-parameters to control the weights of two optimization objectives.
 265

266 4 EXPERIMENTS

267 We evaluate the proposed LIGHTGFC for the condensation performance on the node classification, gen-
 268 eralization ability, complexity and efficiency, as well as the ablation study in terms of each submodule in
 269 LIGHTGFC. Specifically, our objective is to answer the following questions: **Q1**: What is the condensa-
 270 tion performance of our proposed LIGHTGFC compared with existing baseline methods? **Q2**: How well
 271 does our LIGHTGFC perform on different GNN architectures in terms of generalization ability? **Q3**: In
 272 terms of condensation time consumption and memory usage, does LIGHTGFC achieve good performance
 273 with lightweight efficiency? **Q4**: What is the performance of each submodule within our LIGHTGFC in the
 274 ablation study? **Q5**: How sensitive are the hyperparameters that influence the performance of LIGHTGFC?
 275

276 4.1 EXPERIMENTAL SETUP

277 **Datasets & Baselines.** We use widely used node-level graph condensation datasets covering: Three trans-
 278 ductive datasets, Cora, Citeseer (Kipf, 2016) and Ogbn-Arxiv (Hu et al., 2020), and two inductive datasets,
 279 Flickr (Zeng et al., 2019) and Reddit (Lee et al., 2009). Detailed statistics are summarized in Appendix A.2.
 280

282 Table 1: Node classification accuracy (ACC \pm std%) comparison between our LIGHTGFC *vs.* baseline meth-
 283 ods on different datasets under various condensation ratios. The best results are bold, and the second-best results are underlined.
 284 ‘OOM’ indicates out-of-memory on NVIDIA 4090D GPU with 24 GB.

285 Datasets	Ratios	GCond-X	GCDM-X	SNTK-X	SFGC	GEOM	CGC-X	GCPA	DisCo	ProStack	Bonsai	LIGHTGFC (ours)	Whole Datasets
287 Cora	1.30%	75.9 \pm 1.2	81.3 \pm 0.4	82.2 \pm 0.5	80.1 \pm 0.4	80.3 \pm 1.1	83.4 \pm 0.3	82.1 \pm 0.6	76.9 \pm 0.8	82.5 \pm 0.0	83.2 \pm 0.3	89.0 \pm 0.3	81.2 \pm 0.2
	2.60%	75.7 \pm 0.9	81.4 \pm 0.1	82.4 \pm 0.5	81.7 \pm 0.5	81.5 \pm 0.8	83.4 \pm 0.4	82.9 \pm 1.0	78.7 \pm 0.3	83.0 \pm 0.0	84.6 \pm 0.2	90.6 \pm 0.9	
	5.20%	76.0 \pm 0.9	82.5 \pm 0.3	82.1 \pm 0.1	81.6 \pm 0.8	82.2 \pm 0.4	82.8 \pm 1.0	82.3 \pm 0.7	78.8 \pm 0.5	83.2 \pm 0.0	85.5 \pm 0.7	89.8 \pm 0.4	
289 Citeseer	0.90%	71.4 \pm 0.8	69.0 \pm 0.5	69.9 \pm 0.4	71.4 \pm 0.5	71.1 \pm 0.2	72.1 \pm 0.2	75.4 \pm 0.4	70.2 \pm 0.3	72.4 \pm 0.0	76.5 \pm 0.7	81.8 \pm 0.3	71.7 \pm 0.1
	1.80%	69.8 \pm 1.1	71.9 \pm 0.5	69.9 \pm 0.5	72.4 \pm 0.4	71.3 \pm 0.1	72.6 \pm 0.2	74.8 \pm 0.3	71.6 \pm 0.5	72.7 \pm 0.0	77.1 \pm 0.2	82.8 \pm 0.3	
	3.60%	69.4 \pm 1.4	72.8 \pm 0.6	69.1 \pm 0.4	70.6 \pm 0.7	72.1 \pm 1.0	71.4 \pm 0.4	74.9 \pm 0.1	72.1 \pm 0.1	73.1 \pm 0.0	75.6 \pm 0.5	83.2 \pm 0.5	
291 Arxiv	0.05%	61.3 \pm 0.5	61.0 \pm 0.1	63.9 \pm 0.3	65.5 \pm 0.7	64.7 \pm 0.4	64.0 \pm 0.1	67.2 \pm 0.3	64.0 \pm 0.7	65.2 \pm 0.0	59.6 \pm 0.6	67.6 \pm 0.2	71.4 \pm 0.1
	0.25%	64.2 \pm 0.4	61.2 \pm 0.1	65.5 \pm 0.1	66.1 \pm 0.4	67.5 \pm 0.3	66.3 \pm 0.3	67.7 \pm 0.2	65.9 \pm 0.5	68.0 \pm 0.0	58.9 \pm 0.7	68.1 \pm 0.3	
	0.50%	63.1 \pm 0.5	62.5 \pm 0.1	65.7 \pm 0.4	66.8 \pm 0.4	67.6 \pm 0.2	67.0 \pm 0.1	68.1 \pm 0.3	66.2 \pm 0.1	68.9 \pm 0.0	66.1 \pm 0.1	67.7 \pm 0.1	
293 Flickr	0.10%	45.9 \pm 0.1	46.0 \pm 0.1	46.6 \pm 0.3	46.6 \pm 0.2	46.1 \pm 0.5	46.7 \pm 0.2	47.2 \pm 0.3	46.2 \pm 0.4	-	46.2 \pm 0.5	47.2 \pm 0.5	47.2 \pm 0.1
	0.50%	45.0 \pm 0.2	45.6 \pm 0.1	46.7 \pm 0.1	47.0 \pm 0.1	46.2 \pm 0.2	47.0 \pm 0.1	47.1 \pm 0.1	47.0 \pm 0.1	-	47.3 \pm 0.4	47.3 \pm 0.5	
	1.00%	45.0 \pm 0.1	45.4 \pm 0.3	46.6 \pm 0.2	47.0 \pm 0.1	46.7 \pm 0.1	47.0 \pm 0.1	47.2 \pm 0.1	46.8 \pm 0.3	-	46.9 \pm 0.0	47.4 \pm 0.2	
296 Reddit	0.05%	88.4 \pm 0.4	86.5 \pm 0.2	OOM	89.7 \pm 0.2	90.1 \pm 0.2	90.3 \pm 0.2	90.5 \pm 0.3	91.4 \pm 0.2	92.0 \pm 0.0	82.3 \pm 0.3	92.1 \pm 0.3	93.9 \pm 0.0
	0.10%	89.3 \pm 0.1	87.2 \pm 0.1	OOM	90.0 \pm 0.2	90.4 \pm 0.1	90.8 \pm 0.0	93.0 \pm 0.1	91.8 \pm 0.3	92.4 \pm 0.0	86.1 \pm 0.2	91.8 \pm 0.4	
	0.20%	88.8 \pm 0.4	88.8 \pm 0.1	OOM	89.9 \pm 0.4	90.9 \pm 0.1	91.4 \pm 0.1	92.9 \pm 0.2	91.7 \pm 0.3	92.7 \pm 0.0	88.2 \pm 0.6	91.7 \pm 0.7	

298 Table 2: The generalization ability comparison between baseline methods and LIGHTGFC.
 299

300 Datasets	Models	GCOND	SFGC	GCDM	DisCo	SGDD	CGC	LIGHTGFC (ours)
301 Cora (r = 2.6%)	MLP	73.1	81.1	69.7	59.5	76.8	70.7	81.6
	GCN	80.1	81.1	77.2	78.6	79.8	83.2	89.3
	SAGE	78.2	81.9	73.4	75.6	80.4	67.7	82.7
	SGC	79.3	79.1	75.0	75.0	78.5	79.9	89.1
	GIN	66.5	72.9	63.9	74.2	72.8	80.6	46.7
	JKNet	80.7	79.9	77.8	78.7	76.9	81.3	88.9
306 Ogbn-arxiv (r = 0.5%)	MLP	43.8	46.6	41.8	49.5	36.9	40.9	50.3
	GCN	64.0	66.8	61.7	66.2	65.6	64.0	67.5
	SAGE	55.9	63.8	53.0	64.2	53.9	47.9	59.2
	SGC	63.6	63.8	60.1	64.9	62.2	63.9	66.4
	GIN	60.1	61.9	58.4	63.2	59.1	59.3	64.9
310 Reddit (r = 0.2%)	JKNet	61.6	65.7	57.2	66.2	60.1	62.6	66.9
	MLP	48.4	45.4	40.5	44.8	55.2	42.9	49.3
	GCN	91.7	87.8	83.3	92.6	91.8	89.6	92.7
	SAGE	73.0	77.9	55.0	84.4	89.0	71.9	85.9
	SGC	92.2	87.6	79.9	92.3	92.5	91.0	92.3

315 We compare our approach with the baseline graph condensation methods for node classification, which
 316 mainly cover two categories: (1) Graph condensation methods, including GEOM (Zhang et al., 2024), Bon-
 317 sai (Gupta et al., 2024), ProStack (Bai et al., 2025), and DisCo (Xiao et al., 2025); and (2) Condensation
 318 methods for graph-free data, including: GCond-X (Jin et al., 2021), GCDM-X (Liu et al., 2022), SNTK-
 319 X (Xu et al., 2023), SFGC (Zheng et al., 2023), CGC-X (Gao et al., 2025a), GCPA (Li et al.). Following
 320 GCond (Jin et al., 2021), we set three compression ratios for each dataset to conduct experiments. We eval-
 321 uate the generalization ability in various model architectures, including an MLP and four more distinct GNN
 322 models: SAGE (Hamilton et al., 2017), SGC (Wu et al., 2019), GIN (Xu et al., 2018a), and JKNet (Xu
 323 et al., 2018b). The average node classification accuracy (ACC%) and the corresponding standard deviation
 324 (\pm std%) in 10 runs are reported.

325 4.2 OVERALL CONDENSATION PERFORMANCE

326 In Table 1, the node classification performance of the graphs condensed by LIGHTGFC and the baseline
 327 methods. In general, we could observe that our LIGHTGFC achieves the highest prediction accuracy in 12

329 Table 3: Ablation components (\checkmark \times) and performance. ‘PAlign’ denotes the prototype-aware feature alignment, ‘LAdapt’ denotes
 330 the label-aware model adaption, and ‘SC’ denotes the node-class similarity-based condensation. Best results are in bold.

331 Variants	332 Idx0 (Ours.)	333 Idx1	334 Idx2	335 Idx3	336 Idx4
	337 PAlign / LAdapt / SC $\checkmark \checkmark \checkmark$	338 PAlign / LAdapt / SC $\checkmark \times \times$	339 PAlign / LAdapt / SC $\times \checkmark \checkmark$	340 PAlign / LAdapt / SC $\times \times \checkmark$	341 PAlign / LAdapt / SC $\checkmark \checkmark \times$
Cora ($r = 2.60\%$)	89.0	86.3	76.1	66.2	80.2
Citeseer ($r = 1.80\%$)	82.9	78.3	63.3	53.0	68.9
Arxiv ($r = 0.25\%$)	67.4	62.1	60.5	58.4	60.7
Flickr ($r = 0.5\%$)	47.0	45.9	44.5	43.3	45.0
Reddit ($r = 0.10\%$)	92.4	72.8	59.1	56.9	66.7

388 cases out of the 15 condensation scenarios and datasets, which demonstrates the superior effectiveness of our
 389 proposed LIGHTGFC. Specifically, compared with graph-free condensation methods (SFGC, CGC-X, and
 390 GCPA), our proposed LIGHTGFC delivers stronger results by aggregating and preserving richer topolog-
 391 ical information within condensed nodes, where the advantage stems from its proto-structural aggregation
 392 submodule. Relative to other latest methods (DisCo, ProStack, and Bonsai), our method exhibits stronger
 393 stability across multiple datasets. LIGHTGFC achieves SOTA in four datasets (Cora, Citeseer, Arxiv, and
 394 Flickr), while both Bonsai and ProStack only achieve the second-best performance on two datasets.

395 Especially in the Cora and Citeseer dataset of all ratio, LIGHTGFC achieves the SOTA performance and
 396 outperforms the second-highest accuracy by 5% (Bonsai 84.6% vs. ours 90.6%). The two datasets have a
 397 more complex feature matrix, which not only can maintain efficient training of feature distributions, but also
 398 can accommodate more feature alignment and model adaption information, leading to the significant im-
 399 provement of our proposed method. It shows the powerful representation capabilities of the data condensed
 400 by LIGHTGFC, especially in complex feature graph datasets. In the Flickr dataset, the situation is exactly
 401 the opposite. Simple feature matrix have limited capacity to accommodate sophisticated information, so
 402 the improvement is quite limited. For Ogbn-Arxiv and Reddit, which have more classes, the class-to-node
 403 condensation plays a key role in balancing the synthesis process of each class. In summary, the experi-
 404 mental results above show that our proposed method could balance the influence of feature and topology
 405 information in graph-free data on the downstream classification task.

357 358 4.3 GENERALIZATION ABILITY AND EFFICIENCY

360 **Generalization Ability.** As shown in Table 2, we train a diverse set of model architectures on condensed
 361 data condensed by LIGHTGFC and the baseline methods, including GCN, SAGE, SGC, GIN and JKNet, and
 362 evaluate the original test graph node classification performance. The experimental results demonstrate that
 363 the graphs produced by LIGHTGFC exhibit a better generalization performance compared to the baseline
 364 methods in most GNN architectures. These GNN architectures have different focus. GCN and SGC require
 365 the graph to possess discriminative features; GIN and JKNet are necessary to preserve local or more global
 366 topological information. So, it proves that our proposed LIGHTGFC achieves a good balance in features,
 367 local and global structures, and multi-scale information. In summary, we attribute the strong generalization
 368 capability of our proposed LIGHTGFC to our class-to-node condensation process. Compared to the previous
 369 baseline approach, the class-to-node condensation we proposed can aggregate feature information by the
 370 similarity between a certain node and its class label, which improves the generalization robustness.

371 **Efficiency.** We compare the condensation time consumption (in seconds) of LIGHTGFC and the baseline
 372 methods with NVIDIA 4090D GPU in 500 epochs. From the observation of Figure 2a, LIGHTGFC signif-
 373 icantly outperforms conventional methods, achieving the best time efficiency in all five datasets. Compared
 374 to others, the increase in the condensation time of LIGHTGFC remains moderate as the data scale expands
 375 (from Arxiv to Flickr and Reddit). We also compare the dynamic memory analysis of our method and other
 376 approaches: GEOM, which represents distribution matching; GCPA, which reflects the graph-free condens-

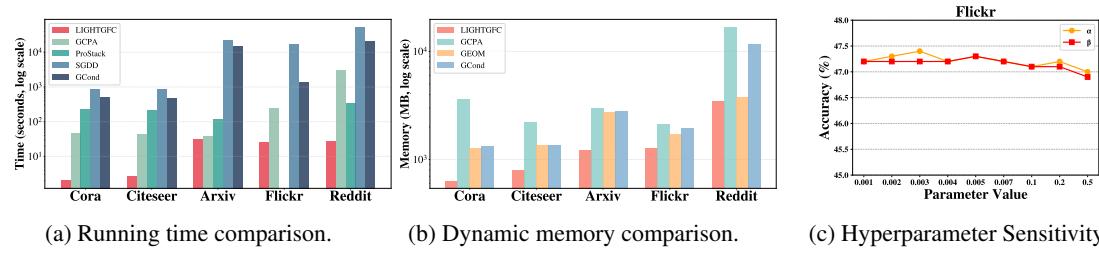


Figure 2: Overall comparison of condensation time, memory, and sensitivity across datasets.

sation method; and GCond, the most representative bi-level compression method. In Figure 2b, LIGHTGFC achieves the best performance in all datasets, which significantly saves more than half memory in Cora, Citeseer, Arxiv, and Reddit. Our graph-free method only trains on the node feature matrix, using a single variable reduces memory consumption. We attribute the efficiency of our proposed LIGHTGFC to proto-structural aggregation submodule, which embeds topological information within the feature matrix, eliminates the extensive running time costs, leading to significant acceleration in speed.

4.4 IN-DEPTH EXPERIMENTAL ANALYSIS

Ablation Study. To validate the effectiveness of each component within LIGHTGFC, we disabled individual loss components and replaced the condensation method in the ablation study. As detailed in Table 3, we created several variants of the model (Idx1-Idx3), which individually disable the components of the prototype-aware feature alignment and the label-aware model adaption. For Idx4, we replaced the similarity class-to-node condensation with the standard K-Center method. Given these results, we have the following essential observations. First, prototype-aware feature alignment has a significant impact, which preserves the original graph topological information and feature discriminability within the condensed graph-free data. Second, label-aware model adaption has been proven to be a vital component for maintaining a balanced feature distribution for each class in the class-to-node condensation. Finally, the results confirm that the similarity class-to-node condensation serves as the fundamental basis of LIGHTGFC, upon which both loss optimization modules are built to achieve optimal performance.

Hyperparameter Analysis. To determine the influence of hyperparameter on experimental precision, we analyze two essential hyperparameters, α and β adjust the scale of total optimization loss in Eq.(10). As illustrated in the corresponding Figure 2c, we selected the most representative dataset and performed multiple sets of experiments with varying hyperparameter configurations. The results indicate that, while extreme values can affect the outcome, the model performance remains relatively stable in a wide range of settings. It demonstrates that the modules of feature adaptation and feature alignment have stable feature matrix optimization, which shows a stronger hyper-parameter robustness to sensitivity of LIGHTGFC.

5 CONCLUSION

In this work, we introduced LIGHTGFC, a lightweight structure-free graph condensation framework that effectively addresses the inefficiency of bi-level optimization and the rigidity of condensed label design. By decomposing the condensation process into three stages—proto-structural aggregation, MLP-driven structure-free pretraining, and lightweight class-to-node condensation—LIGHTGFC provides a simple yet powerful pipeline for generating compact graph-free data. Extensive experiments on multiple benchmarks demonstrate that LIGHTGFC achieves state-of-the-art accuracy while drastically reducing training time, highlighting both its effectiveness and efficiency. In future work, we aim to extend the applicability of graph condensation tailored to different downstream graph learning tasks, e.g., graph classification and link prediction, or diverse graph data types, e.g., multi-relational graphs and dynamic graphs.

423 ETHICS STATEMENT
424425 This work complies with the ICLR Code of Ethics. And we promises that our study does not involve human
426 subjects, personally identifiable information, or sensitive data. All datasets used are publicly available and
427 commonly employed in prior research, which can download on PyTorch Geometric (PyG) (Fey & Lenssen,
428 2019) and DGL (Wang et al., 2019). We have carefully considered potential ethical concerns, including
429 fairness, bias, privacy, and possible misuse of our proposed method. We encourage responsible use of our
430 approach within appropriate research contexts.
431432 REPRODUCIBILITY STATEMENT
433434 We are committed to ensuring the reproducibility of our results. Specifically, we provide following: (1)
435 Experimental settings: GNN model architectures, and training procedures are documented in Section 4.1;
436 (2) Software and hardware: we use Intel(R) Core(TM) i9-14900KF CPU and NVIDIA 4090D GPU; And
437 Linux (Ubuntu 20.04.6 LTS (GNU/Linux 5.15.0-139-generic x86 64)) with PyTorch Version 1.13.1+cu117
438 and PyTorch Geometric Version 2.6.1. To ensure the reproducibility of this work, we will release the code
439 after this work is accepted.
440441 REFERENCES
442

- 443 Yibing Bai, Min Gao, Zongwei Wang, Xinyi Gao, and Wentao Li. Progressive stacking for scalable graph
444 condensation. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data
445 Mining* V. 2, pp. 83–94, 2025.
- 446 Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? *arXiv preprint
447 arXiv:2105.14491*, 2021.
- 449 Matthias Fey and Jan Eric Lenssen. Pytorch geometric: Deep learning on irregularly structured input data. In
450 *Proceedings of the International Conference on Learning Representations (ICLR) Workshop on Repre-
451 sentation Learning on Graphs and Manifolds*, 2019. URL <https://arxiv.org/abs/1903.02428>.
- 453 Xinyi Gao, Guanhua Ye, Tong Chen, Wentao Zhang, Junliang Yu, and Hongzhi Yin. Rethinking and accel-
454 erating graph condensation: A training-free approach with class partition. In *Proceedings of the ACM on
455 Web Conference 2025*, pp. 4359–4373, 2025a.
- 456 Xinyi Gao, Junliang Yu, Tong Chen, Guanhua Ye, Wentao Zhang, and Hongzhi Yin. Graph condensation:
457 A survey. *IEEE Transactions on Knowledge and Data Engineering*, 2025b.
- 459 Mridul Gupta, Samyak Jain, Vansh Ramani, Hariprasad Kodamana, and Sayan Ranu. Bonsai: Gradient-free
460 graph condensation for node classification. *arXiv preprint arXiv:2410.17579*, 2024.
- 462 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. *Advances
463 in neural information processing systems*, 30, 2017.
- 464 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
465 Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in neural
466 information processing systems*, 33:22118–22133, 2020.
- 468 Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozhen Liu, Jiliang Tang, and Neil Shah. Graph condensation for
469 graph neural networks. *arXiv preprint arXiv:2110.07580*, 2021.

- 470 TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint*
 471 *arXiv:1609.02907*, 2016.
- 472
- 473 Daniel D Lee, P Pham, Y Largman, and A Ng. Advances in neural information processing systems 22. *Tech*
 474 *Rep*, 2009.
- 475 Xinglin Li, Kun Wang, Hanhui Deng, Yuxuan Liang, and Di Wu. Attend who is weak: Enhancing graph
 476 condensation via cross-free adversarial training. *arXiv preprint arXiv:2311.15772*, 2023.
- 477
- 478 Yuan Li, Jun Hu, Zemin Liu, Bryan Hooi, Jia Chen, and Bingsheng He. Adapting precomputed features for
 479 efficient graph condensation. In *Forty-second International Conference on Machine Learning*.
- 480 Mengyang Liu, Shanchuan Li, Xinshe Chen, and Le Song. Graph condensation via receptive field distribu-
 481 tion matching. *arXiv preprint arXiv:2206.13697*, 2022.
- 482
- 483 Yating Liu, Xin Zheng, Yi Li, and Yanqing Guo. Test-time adaptation on recommender system with data-
 484 centric graph transformation. *International Joint Conference on Artificial Intelligence (IJCAI)*, 2025.
- 485 Yilun Liu, Ruihong Qiu, and Zi Huang. Cat: Balanced continual graph learning with graph condensation.
 486 In *2023 IEEE International Conference on Data Mining (ICDM)*, pp. 1157–1162. IEEE, 2023.
- 487
- 488 Zhanyu Liu, Chaoyi Zeng, and Guanjie Zheng. Graph data condensation via self-expressive graph structure
 489 reconstruction. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data*
 490 *Mining*, pp. 1992–2002, 2024.
- 491
- 492 Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qipeng Guo,
 493 Hao Zhang, Haibin Lin, Chao Ma, Ziyue Qiao, Zhen Zhang, Zheng Zhang, George Karypis, Jinyang Li,
 494 and Alexander Smola. Deep graph library: Towards efficient and scalable deep learning on graphs. In
 495 *Proceedings of the International Conference on Learning Representations (ICLR) Workshop on Repre-
 496 sentation Learning on Graphs and Manifolds*, 2019. URL <https://arxiv.org/abs/1909.01315>.
- 497
- 498 Yu Wang, Ji Cao, Wenjie Huang, Zhihua Liu, Tongya Zheng, and Mingli Song. Spatiotemporal gated traffic
 499 trajectory simulation with semantic-aware graph learning. *Information Fusion*, 108:102404, 2024a.
- 500
- 501 Yu Wang, Tongya Zheng, Shunyu Liu, Zunlei Feng, Kaixuan Chen, Yunzhi Hao, and Mingli Song.
 502 Spatiotemporal-augmented graph neural networks for human mobility simulation. *IEEE Transactions*
 503 *on Knowledge and Data Engineering*, 36(11):7074–7086, 2024b.
- 504
- 505 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
 506 graph convolutional networks. In *International conference on machine learning*, pp. 6861–6871. Pmlr,
 507 2019.
- 508
- 509 Zhiyuan Wu, Dechang Pi, Junfu Chen, Meng Xie, and Jianjun Cao. Rumor detection based on propagation
 510 graph neural network with attention mechanism. *Expert systems with applications*, 158:113595, 2020.
- 511
- 512 Zhenbang Xiao, Yu Wang, Shunyu Liu, Bingde Hu, Huiqiong Wang, Mingli Song, and Tongya Zheng.
 513 Disentangled condensation for large-scale graphs. In *Proceedings of the ACM on Web Conference 2025*,
 514 pp. 4494–4506, 2025.
- 515
- 516 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
 517 *arXiv preprint arXiv:1810.00826*, 2018a.
- 518
- 519 Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
 520 Representation learning on graphs with jumping knowledge networks. In *International conference on*
 521 *machine learning*, pp. 5453–5462. pmlr, 2018b.

517 Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, and Hanghang Tong.
518 Kernel ridge regression-based graph dataset distillation. In *Proceedings of the 29th ACM SIGKDD Con-*
519 *ference on Knowledge Discovery and Data Mining*, pp. 2850–2861, 2023.

520
521 Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and Jianxin Li.
522 Does graph distillation see like vision dataset counterpart? *Advances in Neural Information Processing*
523 *Systems*, 36:53201–53226, 2023.

524 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
525 Liu. Do transformers really perform badly for graph representation? *Advances in neural information*
526 *processing systems*, 34:28877–28888, 2021.

527 Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
528 graph representation learning with differentiable pooling. *Advances in neural information processing*
529 *systems*, 31, 2018.

531 Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
532 Graph sampling based inductive learning method. *arXiv preprint arXiv:1907.04931*, 2019.

533 Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin, and Yang
534 You. Navigating complexity: Toward lossless graph condensation via expanding window matching. *arXiv*
535 *preprint arXiv:2402.05011*, 2024.

537 Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui Pan.
538 Structure-free graph condensation: From large-scale graphs to condensed graph-free data. *Advances*
539 *in Neural Information Processing Systems*, 36:6026–6047, 2023.

540 Xin Zheng, Wei Huang, Chuan Zhou, Ming Li, and Shirui Pan. Test-time graph neural dataset search with
541 generative projection. In *Forty-second International Conference on Machine Learning*, 2025.

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

A APPENDIX

This is the Appendix of submission ‘Lightweight Graph-Free Condensation With MLP-Driven Optimization’. In this appendix, we provide dataset statistics, more visualization results, as well as time complexity analysis.

A.1 USE OF LLMs

During the writing process of this paper, we conservatively employed the Large Language Models (LLMs) exclusively for improving grammar, readability, and formatting. We guarantee that LLMs had no involvement in any technical content, including problem formulation, theoretical results, algorithms, and experiments, were entirely designed, implemented, and verified by the authors. No parts of the research ideas, results, or analysis were generated by an LLM.

A.2 DATASET STATISTICS

We provide details of the statistics of the original dataset in Table 4.

Table 4: Details of dataset statistics.

Dataset	Train/Val/Test Nodes	Nodes	Edges	Features	Classes
Cora	140/500/1,000	2,708	5,429	1,433	7
CiteSeer	120/500/1,000	3,327	4,732	3,703	6
Ogbn-arxiv	90,941/29,799/48,603	169,343	1,166,243	128	40
Flickr	44,625/22,312/22,313	89,250	899,756	500	7
Reddit	153,431/23,831/55,703	232,965	57,307,946	602	41

A.3 VISUALIZATION ANALYSIS

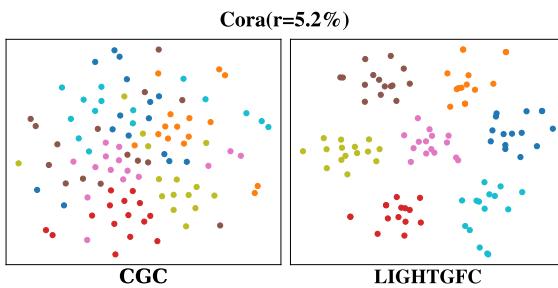


Figure 3: The T-SNE visualization of CGC and LIGHTGFC in Cora.

We present a T-SNE visualization of the data condensed by both the CGC model and our LIGHTGFC model on the Cora dataset (ratio = 5.2%) in Figure 3. The visual comparison of the two shows that the data produced by LIGHTGFC exhibit a much clearer and more distinct clustering distribution. It shows that our method can effectively capture high-quality node features and preserve implicit topological structures, which directly translates to its superior performance on downstream tasks.

A.4 TIME COMPLEXITY ANALYSIS

The pipeline of LIGHTGFC consists of two core stages: proto-structural aggregation and lightweight class-to-node condensation. The time complexity analysis is derived accordingly.

611 According to the graph theory, the original graph can be denoted as $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is the set of graph
 612 nodes and \mathcal{E} is the set of graph edges, the number of nodes is $N_v = |\mathcal{V}|$, the number of edges is $N_e = |\mathcal{E}|$,
 613 with d -dimensional feature. The number of nodes in the condensed graph is N'_v , where $N'_v \ll N_v$.
 614

615 In proto-structural aggregation, LIGHTGFC aims to embed topological information into node features. Each
 616 node representation is updated by aggregating features from its neighbors, which incurs a time complexity
 617 of $O(N_e \cdot d)$. LIGHTGFC performs this operation only once as an initialization step, avoiding repetitive
 618 processing of the graph structure during condensation. Hence, the time complexity of this stage is $O(N_e \cdot d)$.
 619

620 In lightweight class-to-node condensation, after obtaining structure-aware node features, LIGHTGFC reformulates
 621 the task as condensing a graph-free dataset. The core operations involve computing node weights.
 622 Specifically, the similarity between the original and aggregated features is calculated for all N_v nodes, yielding
 623 a complexity of $O(N_v \cdot d)$. Node weights are derived, and weighted feature aggregation is performed
 624 within each class, which is again dominated by $O(N_v \cdot d)$.
 625

626 By combining the two stages, the total time complexity of LIGHTGFC is: $O((N_v + N_e) \cdot d)$.
 627

628 In most graphs the number of edges N_e is typically larger than the number of nodes N_v , the complexity can
 629 be simplified to: $O(N_e \cdot d)$.
 630

631 The efficiency of LIGHTGFC is evident in this linear complexity, which scales proportionally with the
 632 graph size (in terms of both nodes and edges). Moreover, by decoupling topology encoding from the
 633 condensation step, LIGHTGFC achieves substantial efficiency gains. The one-time feature aggregation replaces
 634 repeated adjacency matrix operations during iterative optimization, allowing the condensation process to be
 635 conducted entirely in feature space, thereby enabling faster execution and greater scalability.
 636

637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657