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Abstract001

By leveraging a dual encoder architecture,002
Dense Passage Retrieval (DPR) has outper-003
formed traditional sparse retrieval algorithms004
such as BM25 in terms of passage retrieval005
accuracy. Recently proposed methods have006
further enhanced DPR’s performance. How-007
ever, these models typically pair each question008
with only one positive passage during training,009
and the effect of associating multiple positive010
passages has not been examined. In this pa-011
per, we explore the performance of DPR when012
additional positive passages are incorporated013
during training. Experimental results show that014
equipping each question with multiple positive015
passages consistently improves retrieval accu-016
racy, even when using a significantly smaller017
batch size, which enables training on a single018
GPU.019

1 Introduction020

In information retrieval (IR), passage retrieval021

refers to the task of retrieving text segments or022

passages that are relevant to a given query. Due023

to its ability to narrow down the searching scope,024

passage retrieval has become a key component in025

open-domain question answering (QA) and web026

search engines. Traditional methods such as TF-027

IDF and BM25 (Robertson and Walker, 1997) rely028

on term frequency to measure text relevance, but029

lack the ability to capture the semantic meaning of030

sentences. This limitation could lead to poor per-031

formance when relative contents are composed of032

entirely different tokens (Karpukhin et al., 2020).033

Pre-trained language models, such as BERT (De-034

vlin et al., 2019) and T5 (Raffel et al., 2020), have035

significantly enhanced text representation learning036

and demonstrated superior performance in IR tasks037

(Nogueira and Cho, 2020; Ni et al., 2022). The038

Dense Passage Retrieval (DPR) model (Karpukhin039

et al., 2020) employs a dual-BERT encoder archi-040

tecture to independently encode questions and pas-041

sages into dense vector representations and utilizes 042

in-batch negatives to improve training efficiency. 043

DPR outperforms traditional sparse retrieval meth- 044

ods like BM25, thereby boosting the performance 045

of end-to-end QA systems and retrieval-augmented 046

generation models (Lewis et al., 2020). While 047

several refinement methods have been proposed, 048

including optimized training strategies (Qu et al., 049

2021; Ren et al., 2021b), enhanced similarity mea- 050

surements (Ren et al., 2021a), and improved train- 051

ing efficiency (Hofstätter et al., 2021), none have 052

investigated the impact of associating multiple pos- 053

itive passages with each question during training. 054

In this paper, we focus on pairing multiple posi- 055

tive passages with each question when training the 056

dual BERT encoder. The intuition is straightfor- 057

ward: we hypothesize that the dominant number 058

of negative passages during training (e.g., 1 posi- 059

tive vs. 255 negatives per question in DPR) may 060

erode the model’s ability to identify relevant pas- 061

sages at inference time. By exposing the model to 062

more positive passages, we reformulate training as 063

a binary classification task, where the model learns 064

to distinguish between positive and negative pas- 065

sages under a smaller positive-negative imbalance. 066

Experimental results on several QA datasets con- 067

sistently show that our method improves retrieval 068

accuracy while significantly reducing the required 069

batch size, enabling the model to be trained on a 070

single GPU. 071

2 Methodology 072

This section presents the method that incorporates 073

multiple positive passages with each question to 074

train the DPR model. As a preliminary step, we 075

first introduce some background of the DPR model. 076

2.1 The DPR model 077

DPR uses two separate encoders, EP (·) and EQ(·), 078

to map text passages and questions to a shared 079
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vector space. Both encoders are based on the BERT080

(base, uncased) model, and the representation at081

the [CLS] token is used as the output.082

The training objective is to ensure that the dis-083

tance between relevant question-passage pairs is084

smaller than the irrelevant ones. This distance (or085

similarity) between a question and a passage is086

measured by the inner product of their vector rep-087

resentations:088

sim(q, p) = EQ(q)
⊤EP (p) (1)089

Suppose there is one positive (relevant) passage090

p+i and n negative (irrelevant) passages p−i,j , where091

j ∈ {1, 2, . . . , n}, for each question qi. DPR is092

then optimized using the negative log likelihood093

(NLL) of the positive passage:094

L(qi, p+i , p
−
i,1, . . . , p

−
i,n) =

− log
esim(qi,p

+
i )

esim(qi,p
+
i ) +

∑n
j=1 e

sim(qi,p
−
i,j)

.
(2)095

During the actual training process, each question096

is paired with one positive passage and one hard097

negative passage. By taking advantage of the in-098

batch negatives trick (Yih et al., 2011), all positive099

and negative passages associated with other ques-100

tions are treated as negative passages for the current101

question, enabling efficient computation and im-102

proved performance. Assuming the batch size is103

B, for each question-passage training sample, the104

ratio of positive passages to negative passages is105

roughly 1/2B. In the next subsection, we discuss106

the differences that after pairing each question with107

multiple positive passages.108

2.2 Pairing each question with more positive109

passages110

Instead of a single positive passage, we pair each111

question with m > 1 positive passages to train112

the model. After applying in-batch training, there113

are (m+ 1)× (B − 1) + 1 negative passages for114

each question, and the ratio of positive to negative115

passages is approximately 1/B, doubling the pro-116

portion compared to the original DPR model. We117

hypothesize that this provides the model with more118

positive feedback during training, which could be119

beneficial for improving performance.120

Since more positive passages are introduced, we121

treat the training process as a binary classification122

task, where the model is expected to judge each123

passage as either positive or negative with respect 124

to a question. To optimize the model, we discard 125

the NLL loss formulated in Eq. (2) and instead use 126

binary cross-entropy (BCE) loss: 127

L(qi, p+i,1, . . . , p
+
i,m, p−i,1, . . . , p

−
i,n) =

−
m∑
k=1

log σ
(

score(qi, p+i,k)
)

−
n∑

j=1

log
(
1− σ

(
score(qi, p−i,j)

)) (3) 128

In Eq. (3), score(q, p) refers to the softmax- 129

scaled inner product similarity sim(q, p), and σ(·) 130

is the sigmoid function. These configurations are 131

used to stabilize the training process. 132

3 Experimental setup 133

This describes the data used in our experiments and 134

the training configurations. 135

3.1 Data preparing 136

The training datasets and source documents are the 137

same as those used in (Karpukhin et al., 2020). The 138

source documents are constructed using Wikipedia 139

English articles (Dec 20, 2018 dump). These doc- 140

uments consist of 21,015,324 passages, with each 141

passage containing 100 words. Details of the train- 142

ing datasets are provided below. 143

CuratedTREC (TREC) (Baudiš and Šedivý, 144

2015) is an improved QA training and benchmark 145

dataset derived from the TREC QA tracks. Some 146

answers are expressed using regular expression pat- 147

terns. 148

WebQuestions (WebQ) (Berant et al., 2013) 149

was crafted using Google Suggest API, and all 150

questions begin with a wh-word. 151

SQuAD 1.1 (Rajpurkar et al., 2016) contains 152

107,785 question-answer pairs derived from 536 153

Wikipedia articles via crowdsourcing. 154

TriviaQA (Joshi et al., 2017) is a reading com- 155

prehension dataset consisting of 95,000 trivia ques- 156

tions. Each question is associated with six evidence 157

documents on average. 158

Natural Question (NQ) (Kwiatkowski et al., 159

2019) is a real-world question answering bench- 160

mark dataset with questions mined from Google 161

search queries and answers annotated from 162

Wikipedia articles. 163

We retain the passage selection strategy as 164

demonstrated in (Karpukhin et al., 2020), and dis- 165
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card samples that could cause the training process166

failure. Table 1 lists the actual number of questions167

in each dataset for training the model.168

Dataset questions used for training
TREC 1,117
WebQ 2,448
SQUAD 70,096
TriviaQA 60,368
NQ 58,880

Table 1: Questions used for training the model in each
dataset.

3.2 Training setup169

We pair each question with up to 3 positive pas-170

sages and 1 hard negative passage, and use the171

in-batch negative trick to train the model. Since172

some questions have fewer than 3 associated posi-173

tive passages, we dynamically assign the maximum174

available number of positives for those cases. The175

batch size is set to 16, with 100 training epochs for176

TREC and WebQ, and 40 for SQuAD, TriviaQA,177

and NQ. We use the Adam optimizer with a learn-178

ing rate of 10−5, linear scheduling with warm-up,179

and a dropout rate of 0.1. All experiments were180

conducted on a single NVIDIA RTX 5080 GPU181

with 16 GB of VRAM.182

4 Experiment results183

This section demonstrates the evaluation results184

of the proposed model along with analysis of its185

effectiveness.186

4.1 Main results187

The top k (k ∈ {20, 100}) retrieval accuracy of188

different models are shown in Table 2. DPR+ de-189

notes our proposed model, while the others are190

from (Karpukhin et al., 2020). Single and Multi191

indicate whether the model was trained on individ-192

ual or combined datasets (all but except SQuAD).193

BM25 + DPR is a linear combination of the BM25194

and DPR models, as described in (Karpukhin et al.,195

2020).196

The results show that DPR+ achieves the best197

performance on the NQ, TriviaQA, and WebQ198

datasets, even without multi-dataset training or199

BM25 model combination. Notably, our model out-200

performs the Single DPR baseline on all datasets201

except SQuAD, clearly confirming its effectiveness.202

Additionally, thanks to a significantly smaller batch203

size, our model can be trained on a single GPU204

with 16 GB of VRAM, whereas training the orig- 205

inal DPR model with a batch size of 128 requires 206

8 × 32 GB GPUs. This highlights the improved 207

efficiency of DPR+. 208

We suspect that the low performance of DPR+ 209

on the SQuAD dataset is due to an inadequate num- 210

ber of positive passages. Based on the number of 211

positive passages associated with each question, we 212

classified the questions into three groups, as shown 213

in Table 3. In the table, p1 denotes the number of 214

questions paired with only one positive passage; 215

the same terminology applies to p2 and p3. The 216

symbol δ represents the proportion of p3 in the to- 217

tal. As illustrated in the table, only 49.1% of the 218

questions in the SQuAD dataset are paired with 219

three positive passages. This data deficiency may 220

hinder DPR+ from fully exploiting the benefits of 221

multiple positive passages during training. 222

4.2 Ablation study 223

We selected the TREC dataset and varied the max- 224

imum number of positive passages per question 225

to 1, 2, and 3, respectively, to examine the impact 226

of positive passages on performance. We also in- 227

cluded the results of DPR-Single (Karpukhin et al., 228

2020) trained with a batch size of 16 to assess the 229

influence of using the BCE training loss. For sim- 230

plicity, we reused the same encoded source files 231

from our previous experiments. The final results 232

are presented in Table 4. 233

In Table 4, DPR+
1 , DPR+

2 , and DPR+
3 represent 234

DPR+ trained with 1, 2, and 3 positive passages 235

associated with each question, respectively. We 236

observe that performance improves as more posi- 237

tive passages are incorporated, and the difference 238

between DPR-Single and DPR+
1 is relatively small. 239

The improvement becomes more pronounced in 240

terms of top-100 accuracy. These results suggest 241

that the BCE loss has only a subtle impact on per- 242

formance, whereas pairing each question with more 243

positive passages leads to clear performance gains. 244

5 Conclusion 245

In this paper, we present a simple yet effective strat- 246

egy that pairs multiple positive passages with each 247

question to enhance the DPR model. By formulat- 248

ing training as a binary classification task, where 249

each passage is judged as positive or negative, the 250

model is optimized using the BCE loss. Empiri- 251

cal results demonstrate that the proposed method 252

consistently improves retrieval accuracy while sig- 253
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Training Retriever
Top-20 Top-100

NQ TriviaQA WQ TREC SQuAD NQ TriviaQA WQ TREC SQuAD
None BM25 59.1 66.9 55.0 70.9 68.8 73.7 76.7 71.1 84.1 80.0

Single
DPR 78.4 79.4 73.2 79.8 63.2 85.4 85.0 81.4 89.1 77.2
BM25 + DPR 76.6 79.8 71.0 85.2 71.5 83.8 84.5 80.5 92.7 81.3
DPR+ 80.4 79.9 76.5 83.6 52.7 86.8 85.6 83.4 92.7 69.2

Multi
DPR 79.4 78.8 75.0 89.1 51.6 86.0 84.7 82.9 93.9 67.6
BM25 + DPR 78.0 79.9 74.7 88.5 66.2 83.9 84.4 82.3 94.1 78.6

Table 2: Top-20 and Top-100 retrieval accuracy across test datasets. The accuracy is calculated as the percentage of
top 20/100 retrieved passages that contain the answer. Single and Multi denote that the retriever was trained using
one or combined datasets (all excluding SQuAD). Bold numbers indicate the best performance.

Dataset δ
question count

p1 p2 p3 total

TREC 82.1% 89 111 920 1,120

WebQ 74.1% 365 273 1,826 2,464

SQUAD 49.1% 14,842 20,834 34,420 70,096

TriviaQA 79.5% 6,336 6,029 48,035 60,400

NQ 67.7% 9,577 9,455 39,848 58,880

Table 3: Question counts with respect to the number
of positive passages associated with each question in
the training datasets. p1, p2, and p3 denote the number
of questions paired with 1, 2, and 3 positive passages,
respectively. δ represents the proportion of p3 in the
total number of questions.

Model Top-20 accuracy Top-100 accuracy

DPR-Single 80.8 89

DPR+
1 80.4 89.6

DPR+
2 83.9 91.6

DPR+
3 83.6 92.7

Table 4: Top-20 and Top-100 retrieval accuracy for dif-
ferent methods. DPR+

i denotes the DPR+ model trained
with i positive passages paired with each question. The
results for DPR-Single are reported using a batch size
of 16 during training.

nificantly reducing the hardware requirements for254

training.255

Limitations256

Due to hardware constraints, we were only able257

to train the model with up to three positive pas-258

sages per question and a batch size of 16. The259

effects of using more positive passages or larger260

batch sizes remain unexplored. Further investiga-261

tion is required to understand the trade-off between262

batch size and the number of positive passages for263

optimal performance.264

Moreover, while our method is simple and easy 265

to implement, it may have limitations in further 266

improving retrieval accuracy compared to more 267

sophisticated approaches. 268
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