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Abstract

By leveraging a dual encoder architecture,
Dense Passage Retrieval (DPR) has outper-
formed traditional sparse retrieval algorithms
such as BM25 in terms of passage retrieval
accuracy. Recently proposed methods have
further enhanced DPR’s performance. How-
ever, these models typically pair each question
with only one positive passage during training,
and the effect of associating multiple positive
passages has not been examined. In this pa-
per, we explore the performance of DPR when
additional positive passages are incorporated
during training. Experimental results show that
equipping each question with multiple positive
passages consistently improves retrieval accu-
racy, even when using a significantly smaller
batch size, which enables training on a single
GPU.

1 Introduction

In information retrieval (IR), passage retrieval
refers to the task of retrieving text segments or
passages that are relevant to a given query. Due
to its ability to narrow down the searching scope,
passage retrieval has become a key component in
open-domain question answering (QA) and web
search engines. Traditional methods such as TF-
IDF and BM25 (Robertson and Walker, 1997) rely
on term frequency to measure text relevance, but
lack the ability to capture the semantic meaning of
sentences. This limitation could lead to poor per-
formance when relative contents are composed of
entirely different tokens (Karpukhin et al., 2020).
Pre-trained language models, such as BERT (De-
vlin et al., 2019) and T5 (Raffel et al., 2020), have
significantly enhanced text representation learning
and demonstrated superior performance in IR tasks
(Nogueira and Cho, 2020; Ni et al., 2022). The
Dense Passage Retrieval (DPR) model (Karpukhin
et al., 2020) employs a dual-BERT encoder archi-
tecture to independently encode questions and pas-

sages into dense vector representations and utilizes
in-batch negatives to improve training efficiency.
DPR outperforms traditional sparse retrieval meth-
ods like BM25, thereby boosting the performance
of end-to-end QA systems and retrieval-augmented
generation models (Lewis et al., 2020). While
several refinement methods have been proposed,
including optimized training strategies (Qu et al.,
2021; Ren et al., 2021b), enhanced similarity mea-
surements (Ren et al., 2021a), and improved train-
ing efficiency (Hofstitter et al., 2021), none have
investigated the impact of associating multiple pos-
itive passages with each question during training.

In this paper, we focus on pairing multiple posi-
tive passages with each question when training the
dual BERT encoder. The intuition is straightfor-
ward: we hypothesize that the dominant number
of negative passages during training (e.g., 1 posi-
tive vs. 255 negatives per question in DPR) may
erode the model’s ability to identify relevant pas-
sages at inference time. By exposing the model to
more positive passages, we reformulate training as
a binary classification task, where the model learns
to distinguish between positive and negative pas-
sages under a smaller positive-negative imbalance.
Experimental results on several QA datasets con-
sistently show that our method improves retrieval
accuracy while significantly reducing the required
batch size, enabling the model to be trained on a
single GPU.

2 Methodology

This section presents the method that incorporates
multiple positive passages with each question to
train the DPR model. As a preliminary step, we
first introduce some background of the DPR model.

2.1 The DPR model

DPR uses two separate encoders, Ep(-) and Eg(-),
to map text passages and questions to a shared



vector space. Both encoders are based on the BERT
(base, uncased) model, and the representation at
the [C'LS] token is used as the output.

The training objective is to ensure that the dis-
tance between relevant question-passage pairs is
smaller than the irrelevant ones. This distance (or
similarity) between a question and a passage is
measured by the inner product of their vector rep-
resentations:

sim(q, p) = Eq(q) " Ep(p) (1)

Suppose there is one positive (relevant) passage
pf and n negative (irrelevant) passages p; I where
j € {1,2,...,n}, for each question g;. DPR is
then optimized using the negative log likelihood
(NLL) of the positive passage:
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During the actual training process, each question
is paired with one positive passage and one hard
negative passage. By taking advantage of the in-
batch negatives trick (Yih et al., 2011), all positive
and negative passages associated with other ques-
tions are treated as negative passages for the current
question, enabling efficient computation and im-
proved performance. Assuming the batch size is
B, for each question-passage training sample, the
ratio of positive passages to negative passages is
roughly 1/2B. In the next subsection, we discuss
the differences that after pairing each question with
multiple positive passages.

2.2 Pairing each question with more positive
passages

Instead of a single positive passage, we pair each
question with m > 1 positive passages to train
the model. After applying in-batch training, there
are (m + 1) x (B — 1) + 1 negative passages for
each question, and the ratio of positive to negative
passages is approximately 1/B, doubling the pro-
portion compared to the original DPR model. We
hypothesize that this provides the model with more
positive feedback during training, which could be
beneficial for improving performance.

Since more positive passages are introduced, we
treat the training process as a binary classification
task, where the model is expected to judge each

passage as either positive or negative with respect
to a question. To optimize the model, we discard
the NLL loss formulated in Eq. (2) and instead use
binary cross-entropy (BCE) loss:
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In Eq. (3), score(q,p) refers to the softmax-
scaled inner product similarity sim(g, p), and o (+)
is the sigmoid function. These configurations are
used to stabilize the training process.

3 Experimental setup

This describes the data used in our experiments and
the training configurations.

3.1 Data preparing

The training datasets and source documents are the
same as those used in (Karpukhin et al., 2020). The
source documents are constructed using Wikipedia
English articles (Dec 20, 2018 dump). These doc-
uments consist of 21,015,324 passages, with each
passage containing 100 words. Details of the train-
ing datasets are provided below.

CuratedTREC (TREC) (Baudi$ and gedivy,
2015) is an improved QA training and benchmark
dataset derived from the TREC QA tracks. Some
answers are expressed using regular expression pat-
terns.

WebQuestions (WebQ) (Berant et al., 2013)
was crafted using Google Suggest API, and all
questions begin with a wh-word.

SQuAD 1.1 (Rajpurkar et al., 2016) contains
107,785 question-answer pairs derived from 536
Wikipedia articles via crowdsourcing.

TriviaQA (Joshi et al., 2017) is a reading com-
prehension dataset consisting of 95,000 trivia ques-
tions. Each question is associated with six evidence
documents on average.

Natural Question (NQ) (Kwiatkowski et al.,
2019) is a real-world question answering bench-
mark dataset with questions mined from Google
search queries and answers annotated from
Wikipedia articles.

We retain the passage selection strategy as
demonstrated in (Karpukhin et al., 2020), and dis-



card samples that could cause the training process
failure. Table 1 lists the actual number of questions
in each dataset for training the model.

Dataset questions used for training
TREC 1,117
WebQ 2,448
SQUAD 70,096
TriviaQA 60,368
NQ 58,880

Table 1: Questions used for training the model in each
dataset.

3.2 Training setup

We pair each question with up to 3 positive pas-
sages and 1 hard negative passage, and use the
in-batch negative trick to train the model. Since
some questions have fewer than 3 associated posi-
tive passages, we dynamically assign the maximum
available number of positives for those cases. The
batch size is set to 16, with 100 training epochs for
TREC and WebQ, and 40 for SQuAD, TriviaQA,
and NQ. We use the Adam optimizer with a learn-
ing rate of 10~°, linear scheduling with warm-up,
and a dropout rate of 0.1. All experiments were
conducted on a single NVIDIA RTX 5080 GPU
with 16 GB of VRAM.

4 Experiment results

This section demonstrates the evaluation results
of the proposed model along with analysis of its
effectiveness.

4.1 Main results

The top k& (k € {20,100}) retrieval accuracy of
different models are shown in Table 2. DPR™ de-
notes our proposed model, while the others are
from (Karpukhin et al., 2020). Single and Multi
indicate whether the model was trained on individ-
ual or combined datasets (all but except SQuAD).
BM25 + DPR is a linear combination of the BM25
and DPR models, as described in (Karpukhin et al.,
2020).

The results show that DPR™ achieves the best
performance on the NQ, TriviaQA, and WebQ
datasets, even without multi-dataset training or
BM25 model combination. Notably, our model out-
performs the Single DPR baseline on all datasets
except SQUAD, clearly confirming its effectiveness.
Additionally, thanks to a significantly smaller batch
size, our model can be trained on a single GPU

with 16 GB of VRAM, whereas training the orig-
inal DPR model with a batch size of 128 requires
8 x 32 GB GPUs. This highlights the improved
efficiency of DPR ™.

We suspect that the low performance of DPR™
on the SQuAD dataset is due to an inadequate num-
ber of positive passages. Based on the number of
positive passages associated with each question, we
classified the questions into three groups, as shown
in Table 3. In the table, p; denotes the number of
questions paired with only one positive passage;
the same terminology applies to ps and p3. The
symbol § represents the proportion of ps in the to-
tal. As illustrated in the table, only 49.1% of the
questions in the SQuAD dataset are paired with
three positive passages. This data deficiency may
hinder DPR* from fully exploiting the benefits of
multiple positive passages during training.

4.2 Ablation study

We selected the TREC dataset and varied the max-
imum number of positive passages per question
to 1, 2, and 3, respectively, to examine the impact
of positive passages on performance. We also in-
cluded the results of DPR-Single (Karpukhin et al.,
2020) trained with a batch size of 16 to assess the
influence of using the BCE training loss. For sim-
plicity, we reused the same encoded source files
from our previous experiments. The final results
are presented in Table 4.

In Table 4, DPR]", DPRJ, and DPR] represent
DPR™ trained with 1, 2, and 3 positive passages
associated with each question, respectively. We
observe that performance improves as more posi-
tive passages are incorporated, and the difference
between DPR-Single and DPRT is relatively small.
The improvement becomes more pronounced in
terms of top-100 accuracy. These results suggest
that the BCE loss has only a subtle impact on per-
formance, whereas pairing each question with more
positive passages leads to clear performance gains.

5 Conclusion

In this paper, we present a simple yet effective strat-
egy that pairs multiple positive passages with each
question to enhance the DPR model. By formulat-
ing training as a binary classification task, where
each passage is judged as positive or negative, the
model is optimized using the BCE loss. Empiri-
cal results demonstrate that the proposed method
consistently improves retrieval accuracy while sig-



.. . Top-20 Top-100
Training Retriever — —
NQ TriviaQA WQ TREC SQuAD | NQ TriviaQA WQ TREC SQuAD
None BM25 59.1 66.9 55.0 709 68.8 73.7 76.7 71.1  84.1 80.0
DPR 78.4 79.4 732 798 63.2 854 85.0 814 89.1 77.2
Single BM25 + DPR | 76.6 79.8 71.0 852 71.5 83.8 84.5 80.5 927 81.3
DPR™ 80.4 79.9 76.5 83.6 52.7 86.8 85.6 834 927 69.2
Multi DPR 79.4 78.8 75.0 89.1 51.6 86.0 84.7 829 939 67.6
BM25 + DPR | 78.0 79.9 747  88.5 66.2 83.9 84.4 823 9.1 78.6

Table 2: Top-20 and Top-100 retrieval accuracy across test datasets. The accuracy is calculated as the percentage of
top 20/100 retrieved passages that contain the answer. Single and Multi denote that the retriever was trained using
one or combined datasets (all excluding SQuAD). Bold numbers indicate the best performance.

question count

Dataset )

D1 D2 D3 total
TREC 82.1% 89 111 920 1,120
WebQ 74.1% 365 273 1,826 2,464
SQUAD 49.1% 14,842 20,834 34,420 70,096
TriviaQA  79.5% 6,336 6,029 48,035 60,400
NQ 677% 9,577 9,455 39,848 58,830

Table 3: Question counts with respect to the number
of positive passages associated with each question in
the training datasets. p;, p2, and p3 denote the number
of questions paired with 1, 2, and 3 positive passages,
respectively. ¢ represents the proportion of ps in the
total number of questions.

Model Top-20 accuracy Top-100 accuracy
DPR-Single 80.8 89

DPR 80.4 89.6

DPR; 83.9 91.6

DPR; 83.6 92.7

Table 4: Top-20 and Top-100 retrieval accuracy for dif-
ferent methods. DPR;" denotes the DPR™ model trained
with ¢ positive passages paired with each question. The
results for DPR-Single are reported using a batch size
of 16 during training.

nificantly reducing the hardware requirements for
training.

Limitations

Due to hardware constraints, we were only able
to train the model with up to three positive pas-
sages per question and a batch size of 16. The
effects of using more positive passages or larger
batch sizes remain unexplored. Further investiga-
tion is required to understand the trade-off between
batch size and the number of positive passages for
optimal performance.

Moreover, while our method is simple and easy
to implement, it may have limitations in further
improving retrieval accuracy compared to more
sophisticated approaches.
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