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Abstract

We introduce a principled method for performing zero-shot transfer in reinforce-
ment learning (RL) by exploiting approximate models of the environment. Zero-
shot transfer in RL has been investigated by leveraging methods rooted in gen-
eralized policy improvement (GPI) and successor features (SFs). Although com-
putationally efficient, these methods are model-free: they analyze a library of
policies—each solving a particular task—and identify which action the agent
should take. We investigate the more general setting where, in addition to a library
of policies, the agent has access to an approximate environment model. Even
though model-based RL algorithms can identify near-optimal policies, they are
typically computationally intensive. We introduce h-GPI, a multi-step extension of
GPI that interpolates between these extremes—standard model-free GPI and fully
model-based planning—as a function of a parameter, h, regulating the amount of
time the agent has to reason. We prove that h-GPI’s performance lower bound
is strictly better than GPI’s, and show that h-GPI generally outperforms GPI as
h increases. Furthermore, we prove that as h increases, h-GPI’s performance
becomes arbitrarily less susceptible to sub-optimality in the agent’s policy library.
Finally, we introduce novel bounds characterizing the gains achievable by h-GPI as
a function of approximation errors in both the agent’s policy library and its (possi-
bly learned) model. These bounds strictly generalize those known in the literature.
We evaluate h-GPI on challenging tabular and continuous-state problems under
value function approximation and show that it consistently outperforms GPI and
state-of-the-art competing methods under various levels of approximation errors.

1 Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018) algorithms have achieved remarkable per-
formance in challenging tasks both in the model-free (Bellemare et al., 2020; Wurman et al., 2022)
and the model-based (Bryant et al., 2022; Wu et al., 2022) settings. In these problems, agents are
typically trained to optimize one particular reward function (a task). However, designing agents that
can adapt their decision-making policies to solve novel tasks in a zero-shot manner—i.e., without
requiring any further learning—remains an important open problem.

Various principled and efficient policy transfer methods, which combine previously-acquired policies
to solve new tasks in a zero-shot manner, have been proposed based on the combination of successor
features (SFs) and generalized policy improvement (GPI) (Barreto et al., 2017; Borsa et al., 2019;
Barreto et al., 2020; Kim et al., 2022). On the one hand, SFs allow agents to efficiently evaluate the
performance of given policies in arbitrary sets of tasks. On the other hand, GPI extends the classic
policy improvement procedure (Sutton and Barto, 2018) by analyzing a library of previously-learned
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policies—each solving a particular task—and identifying a novel policy that simultaneously improves
upon all policies in the agent’s library.
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Figure 1: h-GPI combines online planning with
GPI leveraging a learned model.

We introduce h-GPI, a multi-step extension of
GPI that interpolates between these extremes–
—standard model-free GPI and fully model-
based planning—–as a function of a parame-
ter, h, regulating the amount of time the agent
has to reason. An h-GPI policy is computed
by performing online planning for h steps, us-
ing an approximate model, and then employing
GPI on all states reachable in h steps to iden-
tify (in a zero-shot manner) which actions the
agent should take thereafter. See Figure 1 for an
example.

Our work is partially motivated by the observa-
tion that state-of-the-art model-based RL algo-
rithms (Hafner et al., 2019, 2021) often adapt
poorly to local changes in the environment (Wan et al., 2022). Furthermore, environment models may
have been learned and thus might be inaccurate. These observations underscore the risks involved in
relying solely on approximate models for long-horizon planning scenarios, as model errors compound
and may lead to catastrophic outcomes. Unlike techniques for dealing with approximate models,
our method additionally exploits GPI’s capabilities of efficiently performing zero-shot transfer in
a model-free manner. Other approaches—similar in nature to h-GPI—make use of models and
GPI-based techniques. Thakoor et al. (2022), for example, introduced GGPI, a method that learns
state visitation models induced by particular policies to rapidly evaluate policies under a given, known
reward function. The authors show that performing GPI over a particular type of non-stationary policy
produces behaviors that outperform those in the agent’s library policy. h-GPI, by contrast, learns
a different type of model: an environment model, which is used to perform planning—i.e., action
selection—rather than policy evaluation. Moreover, h-GPI exploits GPI to perform bootstrapping
from all states reachable in h steps. In Section 5, we contrast our method with other related techniques,
highlighting the unique aspects of our approach.

In this paper, we introduce the first principled method capable of exploiting approximate models and
producing a multi-step extension of GPI with formal guarantees. We prove that h-GPI’s performance
lower bound is strictly better than GPI’s, and show that h-GPI generally outperforms GPI as h
increases. Furthermore, we prove that as h increases, h-GPI’s performance becomes arbitrarily
less susceptible to value function approximation errors in the agent’s policy library. Finally, we
introduce novel bounds characterizing the gains achievable by h-GPI as a function of approximation
errors in both the agent’s policy library and its (possibly learned) model. We empirically evaluate
h-GPI in challenging tabular and continuous-state problems with value function approximation. Our
findings show that it consistently outperforms both GPI and other state-of-the-art methods under
various levels of approximation errors. These results, combined with our method’s formal guarantees,
indicate that h-GPI is an important first step towards bridging the gap between model-free GPI-based
methods and fully model-based planning algorithms—while being robust to approximate models of
the environment and value function estimation errors.

2 Background

Before introducing our contributions, we review key concepts and definitions related to model-free
and model-based RL, SFs, and GPI.

2.1 Reinforcement learning

RL problems (Sutton and Barto, 2018) are typically modeled as Markov decision processes (MDPs).
An MDP is a tuple M ≜ (S,A, p, r, µ, γ), where S is a state space, A is an action space, p(·|s, a)
denotes the distribution over next states conditioned on a state and action, r : S ×A× S 7→ R is a
reward function, µ is an initial state distribution, and γ ∈ [0, 1) is a discount factor. Let St, At, and
Rt = r(St, At, St+1) be random variables corresponding to the state, action, and reward, respectively,
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at time step t ≥ 0. The goal of an RL agent is to learn a policy π : S 7→ A that maximizes the
expected discounted sum of rewards (return)

∑∞
t=0 γ

tRt. The action-value function of a policy π is
qπ(s, a) ≜ Eπ[

∑∞
i=0 γ

iRt+i|St = s,At = a], where Eπ[·] denotes the expectation over trajectories
induced by π and p. Given qπ, a greedy policy can be defined as π′(s) ∈ argmaxa q

π(s, a). It
is guaranteed that qπ

′
(s, a) ≥ qπ(s, a), for all (s, a) ∈ S × A. Computing qπ and π′ is done by

processes known, respectively, as policy evaluation and policy improvement. Repeatedly alternating
between policy evaluation and policy improvement steps is known to lead to an optimal policy, π∗(s),
which maximizes the expected return from all states s ∈ S (Puterman, 2014).

2.2 Successor features and GPI

The successor features (SFs) framework (Barreto et al., 2017) allows agents to efficiently evaluate
the performance of a given policy when deployed under any linearly-representable reward functions,
rw(s, a, s′) = ϕ(s, a, s′) ·w, where ϕ(s, a, s′) ∈ Rd are reward features and w ∈ Rd are weights.
A controlled Markov process (S,A, p, µ, γ), i.e., an MDP without a reward function, when combined
with reward features ϕ : S ×A× S 7→ Rd, induces a family of MDPs:

Mϕ ≜ {M = (S,A, p, rw, µ, γ) | rw(s, a, s′) = ϕ(s, a, s′) ·w}. (1)

Notice that the family of MDPsMϕ represents all possible tasks (each defined by a reward function)
that can be defined in the environment associated with the corresponding controlled Markov process.
Given a policy π, its corresponding SFs, ψπ(s, a) ∈ Rd, for a state-action pair (s, a) are defined as

ψπ(s, a) ≜ Eπ

[ ∞∑
i=0

γiϕt+i | St = s,At = a

]
, (2)

where ϕt ≜ ϕ(St, At, St+1). Importantly, notice that given the SFs ψπ(s, a) of a policy π, it is
possible to directly compute the action-value function qπw(s, a) of π, under any linearly-expressible
reward functions, rw, as follows:1

qπw(s, a) = Eπ

[ ∞∑
i=0

γiϕt+i ·w | St = s,At = a

]
= ψπ(s, a) ·w. (3)

The equation described above—which uses SFs to evaluate a given policy under different reward
functions—represents a process known as generalized policy evaluation (GPE) (Barreto et al., 2020).
Notice that this process can be extended to the case where an agent has access to a set of previously-
learned policies, Π = {πi}ni=1, and their corresponding SFs, Ψ = {ψπi}ni=1. Then, given any
πi ∈ Π, GPE can be used to efficiently evaluate πi under any arbitrary reward function of interest,
rw, via Equation (3): qπi

w (s, a) = ψπi(s, a) ·w.

Generalized policy improvement. GPI generalizes the standard policy improvement process
(discussed in Section 2.1). It assumes access to a set of policies (and corresponding action-value
functions) and uses it to directly identify a novel policy optimizing a particular reward function, rw.
Importantly, the novel policy is guaranteed to outperform all original policies the agent had access to.
Definition 1. (Barreto et al., 2020) Given a set of policies Π and a reward function rw, generalized
policy improvement (GPI) is the process by which a policy, π′, is identified such that

qπ
′

w (s, a) ≥ max
π∈Π

qπw(s, a) for all (s, a) ∈ S ×A. (4)

Based on Equation (4) and the reward decomposition rw(s, a, s′) = ϕ(s, a, s′) ·w, a generalized
policy, π : S ×W 7→ A, can then be defined as follows:

πGPI(s;w) ∈ argmax
a∈A

max
π∈Π

qπw(s, a). (5)

Let qGPI
w (s, a) be the action-value function of policy πGPI(·;w). The GPI theorem (Barreto et al.,

2017) shows that πGPI(·;w) satisfies Definition 1, and so Equation (5) can be used to identify a policy
guaranteed to perform at least as well as any other policies πi ∈ Π, when tackling a new task, w.
This theorem can be extended to cases where the agent only has access to an approximation of the
action-value function, q̂πi , of a policy πi (Barreto et al., 2018).

1Notice that the definition of SFs satisfies a form of the Bellman equation, where the features ϕt play the
role of rewards. Thus, SFs can be learned through standard temporal-difference learning algorithms.
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2.3 Model-based RL

In model-free RL, agents do not have access to the environment state transition and reward functions,
p and r, and must, instead, learn a policy solely based on samples obtained while interacting with
the environment. Given an MDP, we denote m ≜ (p, r) as its model. In model-based RL, an agent
is given (or has to learn) an approximate model, m̂ ≈ m. Agents may exploit models in different
ways; for example, (i) to perform background planning (i.e., generating simulated experiences to
more rapidly learn a policy or value function, as in Dyna-style algorithms (Van Seijen and Sutton,
2013; Janner et al., 2019; Pan et al., 2019)); and (ii) to perform online planning (Barto et al., 1995;
Chua et al., 2018; Efroni et al., 2020; Hansen et al., 2022).

In online planning methods, agents use a model to estimate the value of states by simulating
the outcomes of a particular sequence of actions. This is also known as “unrolling the model
forwards”, from the current state, for a given number of time steps. Typically, online planning
procedures are performed from every state the agent encounters, as in model-predictive control
(MPC) algorithms (Camacho and Alba, 2013; Chua et al., 2018). Importantly, recent work—such
as that of Wan et al. (2022)—has shown that state-of-the-art model-based RL algorithms (Hafner
et al., 2019, 2021) often fail catastrophically when deployed in settings where the environment (e.g.,
the MDP’s reward function) may change. This observation underscores the risks involved in relying
solely on approximate models for long-horizon planning scenarios, since it is well-known that model
errors compound.

We address these limitations by introducing a zero-shot transfer technique based on online planning.
Our technique interpolates between standard model-free GPI and fully model-based planning accord-
ing to a parameter, h, regulating the amount of time the agent has to reason using an approximate
model. Unlike previous methods that require re-learning or adapting models to tackle novel tasks, our
technique exploits approximate models and SFs to solve any tasks (defined as linearly-expressible
reward functions) without requiring any further learning. Importantly, it has strong theoretical
guarantees regarding its performance lower bound under various types of approximation errors.

3 Multi-step generalized policy improvement

We now introduce our main contribution, h-GPI. This is a multi-step extension of GPI that combines
online planning with approximate environment models to efficiently perform zero-shot transfer.

We start by defining the Bellman optimality operator T ∗ (and its multi-step variant) applied to action-
value functions q ∈ Q, where Q is the space of action-value functions. To simplify notation, given a
model m ≜ (p, r), we denote Em[·] as the expectation operator with respect to St+1 ∼ p(.|St, At)

and Rt ≜ r(St, At, St+1). Similarly, we write r(s, a) ≜ ESt+1∼p(·|s,a)[r(s, a, St+1)] for brevity.

Definition 2. (Single- and multi-step Bellman optimality operators). Given a model m = (p, r), the
single-step Bellman optimality operator, T ∗ : Q 7→ Q, is defined as:

T ∗q(s, a) ≜ Em

[
r(s, a) + γmax

a′∈A
q(St+1, a

′)|St = s,At = a

]
. (6)

The repeated application of T ∗ for h steps gives rise to the h-step Bellman operator, denoted
(T ∗)hq(s, a) ≜ T ∗ · · · T ∗

h-times
q(s, a). Efroni et al. (2018) showed that (T ∗)h can be written as follows:

(T ∗)hq(s, a) ≜ Em

[
r(s, a) + γmax

a′∈A
(T ∗)h−1q(St+1, a

′)|St = s,At = a

]
(7)

= max
µ1...µh−1

Em

[
h−1∑
k=0

γkr(St+k, µk(St+k)) + γh max
a′∈A

q(St+h, a
′)|St = s, µ0(s) = a

]
,

(8)

where µi is any policy (in an arbitrary policy space) the agent could choose to deploy at time i.

It is well known that T ∗ is a contraction mapping and its fixed-point (for any initial q ∈ Q) is
limh→∞(T ∗)hq(s, a) = q∗(s, a) (Puterman, 2014).

We now introduce our first contribution: h-step generalized policy improvement, or h-GPI:

4



Definition 3. Let Π = {πi}ni=1 be a set of policies and m = (p, r) be a model. Then, given a
horizon h ≥ 0, the h-GPI policy on state s is defined as

πh-GPI(s) ∈ argmax
a∈A

(T ∗)h max
π∈Π

qπ(s, a) (9)

= argmax
a∈A

max
µ1,...,µh−1

Em

[
h−1∑
k=0

γkr(St+k, µk(St+k))

online planning

+γh max
a′∈A

max
π∈Π

qπ(St+h, a
′)

GPI

|µ0(St) = a

]

(10)
where µi is any policy (in an arbitrary policy space) the agent could choose to deploy at time i.

Intuitively, h-GPI identifies a policy that returns the best possible action, a, by first planning with
model m for h steps and then using GPI to estimate the future returns achievable from all states
reachable in h steps. This is in contrast with standard GPI policies, which can only reason about
the future returns achievable from the current state, St, if following a given policy in Π. h-GPI, by
contrast, uses a model to reason over the decisions made at states within h steps from s, as well
as states, St+h, reachable after h steps. This makes it possible for h-GPI to produce policies that
exploit the model-free, zero-shot return estimates produced by GPI when evaluating states beyond
a given horizon h; in particular, states that would otherwise not be considered by the standard
GPI procedure when determining return-maximizing actions. Notice, furthermore, that h-GPI by
construction interpolates between model-free GPI and fully model-based planning:

h-GPI induces policies that interpolate between (i) standard model-free GPI (when h = 0) and
(ii) fully model-based planning (when h→∞).

In practice, agents seldom have access to the true model, m, of an MDP, and instead rely on
approximate models, m̂. The application of the Bellman operator under an approximate model, m̂,
rather than the true MDP model, m, can be represented mathematically by replacing m with m̂ in
Equation (6). This gives rise to a model-dependent Bellman optimality operator, which we call T ∗

m̂. In
what follows, we introduce Theorem 1, which extends the original GPI theorem (Barreto et al., 2017)
and allows us to characterize the gains achievable by h-GPI as a function of approximation errors
in both the agent’s policy library (Π) and its (possibly learned) model m̂. Notice that Theorem 1
generalizes the original GPI theorem, which is recovered when h = 0.

Theorem 1. Let Π = {πi}ni=1 be a set of policies, {q̂πi}ni=1 be approximations of their respective
action-value functions, and m̂ = (p̂, r̂) be an approximate model such that, for all πi ∈ Π and all
(s, a) ∈ S ×A,

|qπi(s, a)− q̂πi(s, a)| ≤ ϵ,
∑
s′

|p(s′|s, a)− p̂(s′|s, a)| ≤ ϵp, and |r(s, a)− r̂(s, a)| ≤ ϵr. (11)

Recall once again the definition of h-GPI (Definition 3):

πh-GPI(s) ∈ argmax
a∈A

(T ∗
m̂)h max

π∈Π
q̂π(s, a). (12)

Then,

qh-GPI(s, a) ≥ (T ∗)h max
π∈Π

qπ(s, a)− 2

1− γ
(γhϵ+ c(ϵr, ϵp, h)) (13)

≥ max
π∈Π

qπ(s, a)− 2

1− γ
(γhϵ+ c(ϵr, ϵp, h)), (14)

where c(ϵr, ϵp, h) =
1−γh

1−γ (ϵr + γϵpv
∗
max), and v∗max ≜ |maxs,a q

∗(s, a)|.

Theorem 1 characterizes the performance lower bound of h-GPI as a function of the number of
planning steps, h, and the approximation errors in the agent’s model and action-value functions
(i.e., errors ϵ, ϵp, and ϵr).
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Note that since (T ∗)h maxπ∈Π qπ(s, a) ≥ maxπ∈Π qπ(s, a), h-GPI’s performance lower bound
is strictly better than GPI’s (h = 0) assuming no model approximation errors (ϵr = ϵp = 0).
Furthermore, notice that as h→∞, (T ∗)h maxπ∈Π qπ(s, a) converges to q∗ and the approximation
error term (γhϵ) in Equation (13) disappears. In other words, as h increases, h-GPI’s performance
becomes arbitrarily less susceptible to sub-optimality in the agent’s policy library. This implies that
the planning horizon h trades off between two conflicting objectives. On the one hand, increasing
the planning horizon h improves the performance of the h-GPI policy because the error term (ϵ)
associated with value function approximations errors becomes irrelevant. On the other hand, longer
horizons worsen h-GPI’s performance lower bound since they increase its dependency on errors
arising from approximate models. Intuitively, for small values of h, the agent relies more heavily on
the assumption that its estimates {q̂πi}ni=1 are correct, given that these estimates are discounted by
γh. For large values of h, by contrast, the approximate model error term, c(ϵr, ϵp, h), increases, and
the agent relies more heavily on the assumption that its (learned) model is approximately correct.

Next, we introduce a novel upper-bound on the discrepancy between the value, qh-GPI
w , of the h-GPI

policy under a particular reward function, and the optimal action-value function, q∗w. Notice that, as
in Theorem 1, we can recover the standard GPI bound when setting h = 0.2

Theorem 2. Let Π = {π∗
i }ni=1 be a set of optimal policies with respect to reward weights {wi}ni=1

and w be arbitrary reward weights. Let m̂ = (p̂, r̂w) be an approximate model and {q̂π
∗
i

w }ni=1 be
approximations to the action-value functions of policies in Π, under the reward function rw, such
that for all πi ∈ Π and all (s, a) ∈ S ×A,

|qπ
∗
i

w (s, a)− q̂
π∗
i

w (s, a)| ≤ ϵ,
∑
s′

|p(s′|s, a)− p̂(s′|s, a)| ≤ ϵp, and |rw(s, a)− r̂w(s, a)| ≤ ϵr.

(15)
We now extend the definition of h-GPI (Definition 3) to the case where this policy is defined under the
assumption of an MPD with reward function rw:

πh-GPI(s;w) ∈ argmax
a∈A

(T ∗
m̂)h max

π∈Π
q̂πw(s, a). (16)

Let ϕmax ≜ maxs,a ||ϕ(s, a)||. Then, it follows that

q∗w(s, a)− qh-GPI
w (s, a) ≤ 2

1− γ
(ϕmax min

i
||w −wi||+ γhϵ+ c(ϵr, ϵp, h)), (17)

where c(ϵr, ϵp, h) =
1−γh

1−γ (ϵr + γϵpv
∗
max).

Theorem 2 precisely characterizes the optimality gap (i.e., the maximum difference) between
the action-value function induced by h-GPI (qh-GPI

w (s, a)) and the optimal action-value function
(q∗w(s, a)), as a function of (i) the reward weights {wi}ni=1 for which the policies in the agent’s
library, Π, are optimal; (ii) approximation errors in action-value functions {q̂π

∗
i

w }ni=1; and (iii)
approximation errors in the model m̂ = (p̂, r̂w).

3.1 h-GPI under (learned) approximate models for zero-shot transfer

Recall that our goal is to perform zero-shot policy transfer to solve any tasks M ∈Mϕ (Equation (1)).
In order to employ h-GPI on any given reward function of the form rw(St, At, St+1) = ϕt ·w, we
propose learning a model, m̂ = (p̂, ϕ̂), that approximates both the state transition function, p, and
reward features, ϕ. The key insight is that this model implicitly induces the space of all MDP models
m = (p, rw), based on (arbitrary) reward weights w ∈ Rd. This allows employing RL model-based
methods to multi-task settings without the need to re-train the model when solving new tasks defined
by different reward functions. In Algorithm 1, we present a high-level description of how the h-GPI
policy πh-GPI(s,w) can be computed given a model m̂ = (p̂, ϕ̂), SFs {ψ̂πi}ni=1, and horizon h ≥ 0.

Tabular setting. In the tabular case, models can be learned via maximum likelihood estimates:
m̂(s′,ϕ|s, a) ≈ N(s,a,ϕ,s′)

N(s,a) , where N(s, a,ϕ, s′) is the number of times the agent experienced the

2The proofs of Theorem 1 and Theorem 2 can be found in Appendix A.
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Algorithm 1: h-GPI with Successor Features

Input :Model m̂ = (p̂, ϕ̂), SFs {ψ̂πi}ni=1, planning horizon h ≥ 0, state s, reward weights w.
1 for action a ∈ A do
2 Let St = s, µ0(s) = a

3 Compute (T ∗
m̂)h maxπ∈Π q̂πw(s, a)←

max
µ1...µh−1

Em̂

[∑h−1
k=0 γ

kϕ̂t+k(Ŝt+k, µk(Ŝt+k)) ·w + γh max
a′∈A

max
π∈Π

ψ̂
π
(Ŝt+h, a

′) ·w
]

4 Return: πh-GPI(s;w) ∈ argmaxa∈A(T ∗
m̂)h maxπi∈Π q̂πi

w (s, a)

transition (s, a,ϕ, s′) and N(s, a) is the number of times the agent selected action a in state s. To
efficiently compute the action given by the policy πh-GPI(s,w) (line 3 of Algorithm 1), we extend the
Forward-Backward Dynamic Programming (FB-DP) algorithm (Efroni et al., 2020) to the discounted-
SFs setting, in order to compute h-lookahead policies in real-time. The corresponding pseudocode
can be found in Appendix B. Notably, given a state s, FB-DP time complexity is O(N |A||S tot

h |),
where N is the maximal number of accessible states in one step (maximal “nearest neighbors” from
any state), and S tot

h is total reachable states in h time steps from state s. Note that while we chose to
extend FB-DP due to its efficiency and closed-form formulation, other planning techniques could
have been used (e.g., Monte Carlo tree search (Tesauro and Galperin, 1996; Silver et al., 2017)).

Continuous-states setting. In the continuous-state setting, we extend the class of models composed
of ensembles of probabilistic neural networks (Chua et al., 2018) to the SFs setting. These models
are used in state-of-the-art single-task model-based RL algorithms (Janner et al., 2019; Yu et al.,
2021). The learned model m̂φ(s

′,ϕ|s, a), parameterized by φ, is composed of an ensemble of n
neural networks, {m̂φi

}ni=1, each of which outputs the mean and diagonal covariance matrix of a
multivariate Gaussian distribution: mφi

(St+1,ϕt | St, At) = N (µφi
(St, At),Σφi

(St, At)). Each
model in the ensemble is trained in parallel to minimize the following negative log-likelihood loss
function, using different bootstraps of experiences in a buffer B = {(St, At,ϕt, St+1)|t ≥ 0}:
L(φ) = E(St,At,ϕt,St+1)∼B[− logmφ(St+1,ϕt|St, At)]. In practice, we use as B the buffer with
experiences the agent collected while training the SFs for the training tasks. In order to compute the
h-GPI policy in this setting, we approximate the expectation over next states by averaging over the
predictions of the components of the ensemble (Chua et al., 2018).

We employ universal successor features approximators (USFAs) (Borsa et al., 2019) to learn SFs
in the function approximation setting. Given sufficiently expressive USFAs, we can evaluate the
value function of any policy πz (optimal for task z) in any task w ∈ Rd by simply computing
q̂πz
w (s, a) ≈ ψ̂(s, a, z) ·w. Furthermore, when using a USFA to generalize to a new task w′, GPI

(Equation 5) becomes: πGPI(s;w) ∈ argmaxa∈A maxw∈M ψ̂(s, a,w) ·w′, whereM is typically
a set of weight vectors used when training the USFA. Notably, we only require a single USFA ψ̂ and
a single model m̂ to perform h-GPI given any M ∈Mϕ, in contrast to other approaches that require
learning a complex model for each policy in the library (Thakoor et al., 2022).

Notice that although we assume that during training the agent can observe and add to its buffer B the
features ϕt at each time step t, our method could also be applied to the setting where the features
are learned beforehand in a pre-training phase (Hansen et al., 2020; Carvalho et al., 2023). Learning
appropriate reward features ϕ is an important but orthogonal problem to the one tackled in this paper.

4 Experiments

We conduct tabular and deep RL experiments in three different domains to evaluate the effectiveness
of h-GPI as a method for zero-shot policy transfer.

Environments. First, we consider the tabular FourRoom domain (Barreto et al., 2017). To make this
domain more challenging, we made its transition function stochastic by including a 10% chance of
the agent moving to a random direction after taking any action. In FourRoom, the reward features
ϕt ∈ R3 correspond to binary vectors indicating whether the agent collected each of the three types
of objects in the map. The second domain is Reacher (Alegre et al., 2022a), which consists of a
robotic arm that can apply torque to each of its two joints. The features ϕt ∈ R4 are proportional
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Figure 2: Median, IQM, and mean normalized returns over a set of test tasks in the stochastic
FourRoom domain. h-GPI performance significantly improves as h increases.

to the distance of the tip of the arm to four different targets. Finally, we extend the FetchPush
domain (Plappert et al., 2018), which consists of a fetch robotic arm that must move a block to a
target position on top of a table by pushing the block with its gripper. The reward features ϕt ∈ R4

are the negative distances of the block to each of the four target locations. The action space was
discretized in the same way as usually done in Reacher. Importantly, the state space of this domain
is high-dimensional (S ⊂ R19) and its dynamics are significantly more complex than Reacher’s. A
more detailed description of the domains can be found in Appendix B.
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Figure 3: h-GPI, under various levels of
errors in the SFs, as a function of h.

Baselines. We compare h-GPI with standard GPI (Barreto
et al., 2017), which is equivalent to h-GPI when h = 0.
To showcase the importance of combining model-based
planning with model-free action-value estimates, we in-
clude an SF-based MPC approach, which is equivalent
to h-GPI but without GPI bootstrapping at time step h.
That is, given a task w, it selects the first action from a se-
quence of actions that maximizes Em̂[

∑h−1
k=0 γ

kϕ̂t+k ·w],
and re-plans at every time step. In the function approxima-
tion case with USFAs, we also compare with Constrained
GPI (CGPI) (Kim et al., 2022). CGPI is a state-of-the-art
method that computes lower and upper bounds for the op-
timal value on new tasks and uses them to constrain value
approximation errors when following the GPI policy.

Based on the theoretical properties introduced in Section 3, we expect the following hypotheses
to hold. H1: h-GPI performance better generalizes to unseen test tasks than standard GPI and, in
general, improves as we increase h. H2: h-GPI is more robust to approximation errors in the learned
SFs than GPI, and such errors have a decreasing impact as h increases. Additionally, we investigate
whether H3: h-GPI can be scaled up to solve problems with high-dimensional state spaces. In each
experiment, we report the median, interquartile mean (IQM), and mean normalized returns with their
95% stratified bootstrap confidence intervals (Agarwal et al., 2021), which are obtained by evaluating
agents trained with 20 different random seeds on a set of test tasks. For fairness of comparison, we
used the same agents for evaluating each method. We follow previous works (Borsa et al., 2019; Kim
et al., 2022) and use as training tasks the weight vectors that form the standard basis of Rd in all
three domains. In FourRoom, we use 32 weights vectors equally spaced from the weight simplex
{w |∑d

i=1 wi = 1, wi ≥ 0} as test tasks. For Reacher and FetchPush, we follow Kim et al. (2022)
and use weight vectors defined by {−1, 1}d as test tasks. Notice that this results in many tasks with
negative weights, which are significantly different than the training tasks.

In Figure 2, we can observe that h-GPI is able to outperform GPI even with small planning horizons
(see, e.g., 1-GPI). As h increases, the performance on the test tasks consistently increases. This is in
accordance with Theorem 1 and H1. Notice that even with a small planning horizon of h = 2, h-GPI
is capable of matching the performance of SF-MPC even when SF-MPC is allowed to plan for ten
times longer (i.e., h = 20).

Next, to investigate H2, we evaluate h-GPI after artificially adding Gaussian noise with different
standard deviations to the learned SFs of each of the agent’s policies for every state and action.
We can notice (in Figure 3) that standard GPI (h = 0) catastrophically fails under all levels of
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Figure 4: Median, IQM, and mean normalized returns over test tasks in the Reacher domain.
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Figure 5: Median, IQM, and mean normalized returns over test tasks in the FetchPush domain.

approximation errors. In all cases, h-GPI can closely approximate the same performance levels as
those resulting from settings with no added noise. To do so, it suffices to use a sufficiently large h. In
other words, h-GPI successfully and effectively identifies policies that are robust to noise due to its
ability to combine model-free GPI generalization and planning under approximate/imperfect models
for h steps. This is consistent with our theoretical results that show that value function approximation
errors impact the performance’s lower bound by a factor of γh.

In Figures 4 and 5, we show the results in the Reacher and FetchPush domains, respectively. Given
a test task w′, let GPI-ST be the policy that uses both the source/training (S) and target (T) tasks,
M∪ {w′}, as input to the USFA when performing GPI. Similarly, we refer to GPI as the policy
that performs GPI only over the training tasksM. The CGPI policy was unable to significantly
improve performance over GPI-ST, which we hypothesize may be due to USFA errors in the training
tasks, or due to overly small minimum rewards used in its upper-bound. Both are known limitations
of CGPI (Kim et al., 2022). In both domains with function approximation using USFAs, h-GPI
outperforms the competing methods, which supports H1 and H3. In the FetchPush domain, in
particular, SF-MPC is allowed to plan for up to h=15 steps; that is, three times longer than the
maximum horizon we allow h-GPI to plan. Again, h-GPI consistently outperforms it (and other
baselines) even when allowed to plan for significantly fewer steps. Interestingly, in the FetchPush
domain, h-GPI’s performance slightly decreases for intermediate values of h, which suggests that its
policy is being affected by model approximation errors. Even so, the mean returns achieved, for all
values of h are higher than the ones achieved by GPI. This demonstrates the robustness of h-GPI to
approximate models of the environment and function approximation errors.

5 Discussion and related work

We now discuss the works most closely related to h-GPI. Further discussions can be found in
Appendix C.

GPI and SFs. Previous works have extended GPI to safe RL (Gimelfarb et al., 2021; Feng et al., 2023),
maximum-entropy RL (Hunt et al., 2019), unsupervised RL (Hansen et al., 2020), and hierarchical
RL (e.g., via the options framework) (Barreto et al., 2019; Machado et al., 2023). Recently, Thakoor
et al. (2022) introduced Geometric GPI (GGPI). GGPI uses geometric horizon models (GHMs)
to learn the discounted future state-visitation distribution induced by particular policies to rapidly
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evaluate policies under a given, known reward function. The authors show that performing GPI over a
particular type of non-stationary policy produces behaviors that outperform those in the agent’s library
policy. h-GPI, by contrast, learns a different type of model: an environment model, which is used to
perform planning—i.e., action selection—rather than policy evaluation. Additionally, GGPI requires
learning separate GHMs for each policy in the library, whereas h-GPI can operate with a single model
that predicts the next reward features, alongside a single USFA. Secondly, GGPI assumes that the
reward function is known a priori, while we exploit SFs to generalize over all linear rewards given
reward features. Bagot et al. (2023) introduced GPI-Tree Search (GPI-TS), which is closely related
to h-GPI. GPI-TS uses GPI bootstrapping as backup value estimates at the leaf nodes of Monte Carlo
tree search. However, GPI-TS does not employ SFs and was only designed to tackle single-task
settings. Moreover, it assumes an oracle model of the environment. We, by contrast, exploit learned
models to perform zero-shot transfer over multiple tasks and show how approximation errors in
the model affect the performance of the h-GPI policy (see Theorems 1 and 2). Kim et al. (2022)
introduced Constrained GPI (CGPI), which uses lower and upper bounds of the value of a new task to
constrain the action-value estimates used when selecting the GPI policy’s action. Although CGPI is
able to deal with generalization errors in the values given by USFAs for target tasks, it is sensitive to
errors in the value estimates for the training tasks. h-GPI, by contrast, can deal with approximation
errors in the value functions of the source/base policies. Other works have studied methods for
constructing a policy library for use with GPI (Zahavy et al., 2021; Nemecek and Parr, 2021; Alver
and Precup, 2022; Alegre et al., 2022a) and for learning different SF-based representations (Lehnert
and Littman, 2020; Touati and Ollivier, 2021). These methods solve important orthogonal problems
and could potentially be combined with h-GPI.

Multi-step RL algorithms. Multi-step RL methods were extensively studied for policy evaluation,
both in the model-free (Hessel et al., 2018; van Hasselt et al., 2018) and the model-based settings (Yao
et al., 2009; Janner et al., 2019). Model value expansion algorithms (Feinberg et al., 2018; Buckman
et al., 2018; Abbas et al., 2020) are a significant example of the latter. In this work, by contrast,
we introduce a multi-step method for policy improvement in transfer learning settings. GX-Chen
et al. (2022) introduced the η-return mixture, a new backup target for better credit assignment, which
combines bootstrapping with standard value estimates and SFs, as a function of a parameter η. Efroni
et al. (2018) studied multi-step greedy versions of the well-known dynamic programming (DP) policy
iteration and value iteration algorithms (Bertsekas and Tsitsiklis, 1996), and Efroni et al. (2020)
proposed a multi-step greedy real-time DP algorithm that replaces 1-step greedy policies with a
h-step lookahead policy. Our work is also related to the techniques introduced by Sikchi et al. (2022)
and Hansen et al. (2022), which combine planning and bootstrapping with learned value estimates.
However, unlike h-GPI, these methods do not address the multi-policy and zero-shot transfer settings.
We also note that there exists neuroscientific evidence that multi-step planning occurs in the brains
of humans and other animals (Miller and Venditto, 2021). Finally, we believe that our work also
shares similarities with the investigation performed by Tomov et al. (2021) on how model-free and
model-based mechanisms are combined in human behavior.

6 Conclusions

We introduced h-GPI, a multi-step extension of GPI that interpolates between standard model-free
GPI and fully model-based planning. Through novel theoretical and empirical results, we showed that
h-GPI effectively exploits approximate models to solve novel tasks in a zero-shot manner. Notably,
in our experiments, and consistent with the introduced theorems, we showed that h-GPI is less
susceptible to value approximation errors and that it outperforms standard GPI and state-of-the-art
competing baselines. Our findings hold even in high-dimensional problems where imperfect learned
models are used. These results, combined with our method’s strong formal guarantees, indicate that
h-GPI is an important first step towards bridging the gap between model-free GPI-based methods
and model-based planning algorithms—while also being robust to approximation errors.
Limitations and future work. The main limitation of h-GPI is that it can introduce computational
overhead for large values of h. In future work, this can be tackled by designing heuristics for use
when performing online planning, or via principled methods to dynamically select the best value of h.
Another interesting direction is to integrate uncertainty estimation techniques (e.g., implicit value
ensemble (Filos et al., 2022)) into the h-GPI policy to further reduce the impact of high model or
value function approximation errors. Finally, regarding potential direct negative societal impacts of
this work, we do not anticipate any.
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Appendix

A Proofs of theoretical results

We start by defining the Bellman optimality operator, T ∗, and its multi-step variant, when applied
to action-value functions q ∈ Q, where Q is the space of action-value functions. To simplify
notation, given the (true) model, m ≜ (p, r), of the underlying MDP, we denote Em[·] as the
expectation operator with respect to St+1 ∼ p(.|St, At) and Rt ≜ r(St, At, St+1). Similarly, we
write r(s, a) ≜ ESt+1∼p(·|s,a)[r(s, a, St+1)] for brevity.
Definition (2). (Single- and multi-step Bellman optimality operators). Given an MDP’s model
m = (p, r), the single-step Bellman optimality operator, T ∗ : Q 7→ Q, is defined as:

T ∗q(s, a) ≜ Em[r(s, a) + γmax
a′∈A

q(St+1, a
′)|St = s,At = a]. (18)

The repeated application of T ∗ for h steps gives rise to the h-step Bellman operator, denoted as
(T ∗)hq(s, a) ≜ T ∗ · · · T ∗

h-times
q(s, a). Efroni et al. (2018) showed that (T ∗)h can be written as follows:

(T ∗)hq(s, a) ≜ Em

[
r(s, a) + γmax

a′∈A
(T ∗)h−1q(St+1, a

′)|St = s,At = a

]
(19)

= max
µ1...µh−1

Em

[
h−1∑
k=0

γkr(St+k, µk(St+k)) + γh max
a′∈A

q(St+h, a
′)|St = s, µ0(s) = a

]
,

(20)

where µi is any policy (in an arbitrary policy space) the agent could choose to deploy at time i.

Definition 4. (Bellman evaluation operator). Given an MDP’s model m = (p, r) and a policy π, the
single-step Bellman evaluation operator, T π : Q 7→ Q, is defined as:

T πq(s, a) ≜ Em [r(s, a) + γq(St+1, π(St+1))|St = s,At = a] . (21)

It is well known that T ∗ and T π are contraction mappings and their fixed-point (for any initial q ∈ Q)
are limh→∞(T ∗)hq(s, a) = q∗(s, a) and limh→∞(T π)hq(s, a) = qπ(s, a), respectively (Puterman,
2014).

Notice that in the definitions above, since m is the (true) model of a given MDP, we chose to omit m
when writing the corresponding Bellman operators to make the notation more succinct. Formally,
though, one could alternatively denote these operators as T ∗

m and T π
m , respectively. In what follows,

we always omit m whenever the corresponding operators are defined with respect to the true model
of an MDP.

The Bellman optimality operator induced by an approximate model, m̂ = (p̂, r̂), of the true underlying
transition and reward functions, p and r, of a given MDP, is defined as:

T ∗
m̂q(s, a) ≜ Em̂[r̂(s, a) + γmax

a′∈A
q(St+1, a

′)|St = s,At = a] (22)

= r̂(s, a) + γ
∑
s′

p̂(s′|s, a)max
a′∈A

q(s′, a′). (23)
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Now, recall our definition of h-step generalized policy improvement, or h-GPI:

Definition (3). Let Π = {πi}ni=1 be a set of policies and m = (p, r) be a model. Then, given a
horizon h ≥ 0, the h-GPI policy on state s is defined as

πh-GPI(s) ∈ argmax
a∈A

(T ∗
m)h max

π∈Π
qπ(s, a) (24)

= argmax
a∈A

max
µ1,...,µh−1

Em

[ h−1∑
k=0

γkr(St+k, µk(St+k))

online planning

+γh max
a′∈A

max
π∈Π

qπ(St+h, a
′)

GPI

|µ0(St) = a

]
(25)

where µi is any policy (in an arbitrary policy space) the agent could choose to deploy at time i.

Intuitively, an h-GPI policy identifies the best possible action, At, when in state St, by first planning
with model m for h steps and then using GPI to estimate the future returns achievable from all states
reachable in h steps. This is in contrast with standard GPI policies, which can only reason about
the future returns achievable from the current state, St, if following a given policy in Π. h-GPI,
by contrast, uses a model to reason over the decisions made at states within h steps from St, as
well as states St+h reachable after h steps. This makes it possible for h-GPI to produce policies
that exploit the model-free, zero-shot return estimates produced by GPI when evaluating states
beyond a given horizon h; in particular, states that would otherwise not be considered by the standard
GPI procedure when determining return-maximizing actions. Notice, furthermore, that h-GPI—by
construction—interpolates between model-free GPI and fully model-based planning:

h-GPI induces policies that interpolate between (i) standard model-free GPI (when h = 0) and
(ii) fully model-based planning (when h→∞).

Next, we introduce a few lemmas that will subsequently allow us to (i) precisely characterize the
performance lower bound of an h-GPI policy; (ii) show that it is strictly better than GPI’s performance
lower bound; (iii) prove that as h increases, h-GPI’s performance becomes arbitrarily less susceptible
to sub-optimality in the agent’s policy library.

The following lemma characterizes the loss introduced by applying the multi-step Bellman optimality
operator, (T ∗)h, to an approximate action-value function, q̂π(s, a).
Lemma 1. Let Π = {πi}ni=1 be a set of policies, and {q̂πi}ni=1 be approximations to their respective
action-value functions such that, for all πi ∈ Π and for all (s, a) ∈ S ×A,

|qπi(s, a)− q̂πi(s, a)| ≤ ϵ. (26)

Then,
(T ∗)h max

π∈Π
q̂π(s, a) ≥ (T ∗)h max

π∈Π
qπ(s, a)− γhϵ. (27)

Proof.

(T ∗)h max
π∈Π

q̂π(s, a) = max
µ1...µh−1

E

[
h−1∑
k=0

γkr(St+k, µk(St+k)) + γh max
a′∈A

max
π∈Π

q̂π(St+h, a
′)|St = s, µ0(s) = a

]
(28)

≥ max
µ1...µh−1

E

[
h−1∑
k=0

γkr(St+k, µk(St+k)) + γh max
a′∈A

max
π∈Π

(qπ(St+h, a
′)− ϵ)|St = s, µ0(s) = a

]
(29)

= max
µ1...µh−1

E

[
h−1∑
k=0

γkr(St+k, µk(St+k)) + γh max
a′∈A

max
π∈Π

qπ(St+h, a
′)|St = s, µ0(s) = a

]
− γhϵ

(30)

= (T ∗)h max
π∈Π

qπ(s, a)− γhϵ. (31)

Above, (28) and (31) are due to the definition of (T ∗)h introduced in Equation (20).
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The next lemma characterizes the loss incurred by applying the Bellman optimality operator induced
by an approximate model m̂, (T ∗

m̂)h, to an action-value function, qπ , of a policy π.
Lemma 2. Let m̂ = (p̂, r̂) be an approximate model such that, for all (s, a) ∈ S ×A,∑

s′

|p(s′|s, a)− p̂(s′|s, a)| ≤ ϵp and |r(s, a)− r̂(s, a)| ≤ ϵr. (32)

Let v∗max ≜ |maxs,a q
∗(s, a)|. Then, for any policy π and h ≥ 0,

|(T ∗)hqπ(s, a)− (T ∗
m̂)hqπ(s, a)| ≤ c(ϵr, ϵp, h), (33)

where

c(ϵr, ϵp, h) =
1− γh

1− γ
(ϵr + γϵpv

∗
max). (34)

Proof.∣∣(T ∗)hqπ(s, a)− (T ∗
m̂)hqπ(s, a)

∣∣ =∣∣∣∣∣r(s, a) + γ
∑
s′

p(s′|s, a)max
a′∈A

(T ∗)h−1qπ(s′, a′)− r̂(s, a)− γ
∑
s′

p̂(s′|s, a)max
a′∈A

(T ∗
m̂)h−1qπ(s′, a′)

∣∣∣∣∣
(35)

≤ ϵr + γ

∣∣∣∣∣∑
s′

p(s′|s, a)max
a′∈A

(T ∗)h−1qπ(s′, a′)−
∑
s′

p̂(s′|s, a)max
a′∈A

(T ∗
m̂)h−1qπ(s′, a′)

∣∣∣∣∣ (36)

= ϵr + γ

∣∣∣∣∑
s′

p(s′|s, a)max
a′∈A

(T ∗)h−1qπ(s′, a′) +
∑
s′

p̂(s′|s, a)max
a′∈A

(T ∗)h−1qπ(s′, a′)

−
∑
s′

p̂(s′|s, a)max
a′∈A

(T ∗)h−1qπ(s′, a′)−
∑
s′

p̂(s′|s, a)max
a′∈A

(T ∗
m̂)h−1qπ(s′, a′)

∣∣∣∣ (37)

= ϵr + γ

∣∣∣∣∑
s′

p̂(s′|s, a)
(
max
a′∈A

(T ∗)h−1qπ(s′, a′)−max
a′∈A

(T ∗
m̂)h−1qπ(s′, a′)

)
+
∑
s′

(p(s′|s, a)− p̂(s′|s, a))max
a′∈A

(T ∗)h−1qπ(s′, a′)

∣∣∣∣ (38)

≤ ϵr + γmax
s′,a′

∣∣∣∣(T ∗)h−1qπ(s′, a′)− (T ∗
m̂)h−1qπ(s′, a′)

∣∣∣∣
+ γ

∑
s′

∣∣∣∣p(s′|s, a)− p̂(s′|s, a)
∣∣∣∣ ∣∣∣∣max

a′∈A
(T ∗)h−1qπ(s′, a′)

∣∣∣∣ (39)

≤ ϵr + γmax
s′,a′

∣∣(T ∗)h−1qπ(s′, a′)− (T ∗
m̂)h−1qπ(s′, a′)

∣∣+ γϵpv
∗
max. (40)

In the proof above, all terms shown in blue refer to approximate quantities—such as an ap-
proximate model of the environment or an approximate transition function. In the proof above,
(35) follows from the recursive definition of (T ∗)h showed in Equation (19). In (37), we add
and subtract

∑
s′ p̂(s

′|s, a)maxa′∈A(T ∗)h−1qπ(s′, a′). (39) is obtained due to the property that∑
s′ p̂(s

′|s, a)f(s′) ≤ maxs′ f(s
′), for any function f . Finally, (40) is due to (T ∗)h−1qπ(s′, a′) ≤

v∗max.

We now show how to rewrite the inequality (40) recursively. Let ∆h(s, a) ≜ |(T ∗)hqπ(s, a) −
(T ∗

m̂)hqπ(s, a)|, for all (s, a) ∈ S ×A. Then, by replacing the definition of ∆h in (40), we obtain:

∆h(s, a) ≤ ϵr + γmax
s′,a′

∆h−1(s
′, a′) + γϵpv

∗
max. (41)

Because inequality (41) holds for any (s, a), it also holds for the maximizer. Thus, we can omit (s, a),
and define ∆h ≜ maxs,a ∆h(s, a). The inequality (41) then becomes:

∆h ≤ ϵr + γ∆h−1 + γϵpv
∗
max. (42)
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Now we use the fact that, by definition, ∆0(s, a) = |qπ(s, a)− qπ(s, a)| = 0, to recursively expand
inequality (42):

∆h ≤
h−1∑
k=0

γk(ϵr + γϵpv
∗
max) (43)

=
1− γh

1− γ
(ϵr + γϵpv

∗
max). (44)

Finally, by using (44) and recalling the definition of ∆h (i.e., ∆h ≜ maxs,a ∆h(s, a)), we can
directly prove that

max
s,a

∆h(s, a) ≜ max
s,a
|(T ∗)hqπ(s, a)− (T ∗

m̂)hqπ(s, a)| ≤ 1− γh

1− γ
(ϵr + γϵpv

∗
max). (45)

The result above bounds the difference between the action-value functions resulting from applying
the Bellman optimality operator (defined with respect to the true model of the MDP) h times, and the
action-value function resulting from applying the Bellman optimality operator (defined with respect
to an approximate model, m̂) h times. This allows us to precisely characterize—when repeatedly
using the Bellman optimality operator over an initial action-value function—the maximum error
incurred by using an approximate model of the environment.

The next two lemmas provide intermediate results that will be used in the proofs of Theorem 1 and
Theorem 2.
Lemma 3. Let Π = {πi}ni=1 be a set of policies, {q̂πi}ni=1 be approximations to their respective
action-value functions, and m̂ = (p̂, r̂) be an approximate model such that, for all πi ∈ Π and for all
(s, a) ∈ S ×A, the following holds:

|qπi(s, a)− q̂πi(s, a)| ≤ ϵ,
∑
s′

|p(s′|s, a)− p̂(s′|s, a)| ≤ ϵp, and |r(s, a)− r̂(s, a)| ≤ ϵr. (46)

Recall the definition of h-GPI (Definition 3):

πh-GPI(s) ∈ argmax
a∈A

(T ∗
m̂)h max

π∈Π
q̂π(s, a). (47)

Then, it follows that:

T πh-GPI
(T ∗

m̂)h max
π∈Π

q̂π(s, a) ≥ (T ∗)h+1 max
π∈Π

qπ(s, a)− γ(γhϵ+ c(ϵr, ϵp, h)). (48)

Proof.

T πh-GPI
(T ∗

m̂)h max
π∈Π

q̂π(s, a) = E
[
r(s, a) + γ(T ∗

m̂)h max
π∈Π

q̂π(St+1, π
h-GPI(St+1))|St = s,At = a

]
(49)

= E
[
r(s, a) + γmax

a′∈A
(T ∗

m̂)h max
π∈Π

q̂π(St+1, a
′)|St = s,At = a

]
(50)

≥ E
[
r(s, a) + γmax

a′∈A

(
(T ∗

m̂)h max
π∈Π

qπ(St+1, a
′)− γhϵ

)
|St = s,At = a

]
(51)

≥ E
[
r(s, a) + γmax

a′∈A

(
(T ∗)h max

π∈Π
qπ(St+1, a

′)− c(ϵr, ϵp, h)− γhϵ
)
|St = s,At = a

]
(52)

≥ E
[
r(s, a) + γmax

a′∈A
(T ∗)h max

π∈Π
qπ(St+1, a

′)|St = s,At = a

]
− γ(γhϵ+ c(ϵr, ϵp, h))

(53)

= (T ∗)h+1 max
π∈Π

qπ(s, a)− γ(γhϵ+ c(ϵr, ϵp, h)). (54)
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Above, (49) is due to the definition of the Bellman evaluation operator (21), and (50) is due to the
definition of the h-GPI policy (47). Finally, (51) is due to Lemma 1 and (52) follows from the use of
Lemma 2.

Lemma 4. Let Π = {πi}ni=1 be a set of policies, {q̂πi}ni=1 be approximations to their respective
action-value functions, and m̂ = (p̂, r̂) be an approximate model such that, for all πi ∈ Π, and for
all (s, a) ∈ S ×A:

|qπi(s, a)− q̂πi(s, a)| ≤ ϵ,
∑
s′

|p(s′|s, a)− p̂(s′|s, a)| ≤ ϵp, and |r(s, a)− r̂(s, a)| ≤ ϵr. (55)

Recall the definition of h-GPI (Definition 3):

πh-GPI(s) ∈ argmax
a∈A

(T ∗
m̂)h max

π∈Π
q̂π(s, a). (56)

Then,

T πh-GPI
(T ∗

m̂)h max
π∈Π

q̂π(s, a) ≥ (T ∗
m̂)h max

π∈Π
q̂π(s, a)− γhϵ(1 + γ)− c(ϵr, ϵp, h)(1 + γ). (57)

Proof.

T πh-GPI
(T ∗

m̂)h max
π∈Π

q̂π(s, a) ≥ (T ∗)h+1 max
π∈Π

qπ(s, a)− γ(γhϵ+ c(ϵr, ϵp, h)) (58)

≥ (T ∗)h max
π∈Π

qπ(s, a)− γ(γhϵ+ c(ϵr, ϵp, h)) (59)

≥ (T ∗
m̂)h max

π∈Π
qπ(s, a)− c(ϵr, ϵp, h)− γ(γhϵ+ c(ϵr, ϵp, h)) (60)

≥ (T ∗
m̂)h max

π∈Π
q̂π(s, a)− γhϵ− c(ϵr, ϵp, h)− γ(γhϵ+ c(ϵr, ϵp, h))

(61)

= (T ∗
m̂)h max

π∈Π
q̂π(s, a)− γhϵ(1 + γ)− c(ϵr, ϵp, h)(1 + γ). (62)

Above, (58) is by Lemma 3, (59) is due to the monotonicity of T ∗ (i.e. T ∗qπ(s, a) ≥ qπ(s, a)), and
(60) is by Lemma 2.

We now use Lemmas 1, 2, and 4 to introduce Theorem 1, which extends the original GPI theo-
rem (Barreto et al., 2017) and allows us to characterize the gains achievable by h-GPI as a function
of approximation errors in both the agent’s policy library, Π, and its (possibly learned) model, m̂.
Notice that Theorem 1 generalizes the original GPI theorem, which is recovered when h = 0.

Theorem (1). Let Π = {πi}ni=1 be a set of policies, {q̂πi}ni=1 be approximations of their respective
action-value functions, and m̂ = (p̂, r̂) be an approximate model such that (as previously-assumed in
Lemmas 2 and 3), for all πi ∈ Π and all (s, a) ∈ S ×A,

|qπi(s, a)− q̂πi(s, a)| ≤ ϵ,
∑
s′

|p(s′|s, a)− p̂(s′|s, a)| ≤ ϵp, and |r(s, a)− r̂(s, a)| ≤ ϵr. (63)

Recall once again the definition of h-GPI (Definition 3):

πh-GPI(s) ∈ argmax
a∈A

(T ∗
m̂)h max

π∈Π
q̂π(s, a). (64)

Then,

qh-GPI(s, a) ≥ (T ∗)h max
π∈Π

qπ(s, a)− 2

1− γ
(γhϵ+ c(ϵr, ϵp, h)) (65)

≥ max
π∈Π

qπ(s, a)− 2

1− γ
(γhϵ+ c(ϵr, ϵp, h)), (66)

where c(ϵr, ϵp, h) =
1−γh

1−γ (ϵr + γϵpv
∗
max).

19



Proof.

qh-GPI(s, a) = lim
k→∞

(T πh-GPI
)k(T ∗

m̂)h(max
π∈Π

q̂π(s, a)) (67)

≥ (T ∗
m̂)h(max

π∈Π
q̂π(s, a))− lim

k→∞

k∑
i=0

γi(γhϵ(1 + γ) + c(ϵr, ϵp, h)(1 + γ)) (68)

= (T ∗
m̂)h(max

π∈Π
q̂π(s, a))− γhϵ(1 + γ)

1− γ
− c(ϵr, ϵp, h)(1 + γ)

1− γ
(69)

≥ (T ∗
m̂)h(max

π∈Π
qπ(s, a))− γhϵ− γhϵ(1 + γ)

1− γ
− c(ϵr, ϵp, h)(1 + γ)

1− γ
(70)

≥ (T ∗)h(max
π∈Π

qπ(s, a))− c(ϵr, ϵp, h)− γhϵ− γhϵ(1 + γ)

1− γ
− c(ϵr, ϵp, h)(1 + γ)

1− γ
(71)

= (T ∗)h(max
π∈Π

qπ(s, a))− 2

1− γ
(γhϵ+ c(ϵr, ϵp, h)). (72)

Above, (67) is due to the fixed-point of limk→∞(T πh-GPI
)kq(s, a) being qh-GPI(s, a) for any q. (68)

is due to the repeated application of Lemma 4. Finally, (70) is due to Lemma 1, and (71) is due to
Lemma 2.

Theorem 1 characterizes the performance lower bound of h-GPI as a function of the number of
planning steps, h, and the approximation errors in the agent’s model and action-value functions
(i.e., errors ϵ, ϵp, and ϵr).

Note that since (T ∗)h maxπ∈Π qπ(s, a) ≥ maxπ∈Π qπ(s, a), h-GPI’s performance lower bound
is strictly better than GPI’s (h = 0) assuming no model approximation errors (ϵr = ϵp = 0).
Furthermore, notice that as h→∞, (T ∗)h maxπ∈Π qπ(s, a) converges to q∗ and the approximation
error term (γhϵ) in Equation (13) disappears. In other words, as h increases, h-GPI’s performance
becomes arbitrarily less susceptible to sub-optimality in the agent’s policy library. This implies that
the planning horizon h trades off between two conflicting objectives. On the one hand, increasing
the planning horizon h improves the performance of the h-GPI policy because the error term (ϵ)
associated with value function approximations errors becomes irrelevant. On the other hand, longer
horizons worsen h-GPI’s performance lower bound since they increase its dependency on errors
arising from approximate models. Intuitively, for small values of h, the agent relies more heavily on
the assumption that its estimates {q̂πi}ni=1 are correct, given that these estimates are discounted by
γh. For large values of h, by contrast, the approximate model error term, c(ϵr, ϵp, h), increases, and
the agent relies more heavily on the assumption that its (learned) model is approximately correct.
Theorem (2). Let Π = {π∗

i }ni=1 be a set of optimal policies with respect to reward weights {wi}ni=1

and w be arbitrary reward weights. Let m̂ = (p̂, r̂w) be an approximate model and {q̂π
∗
i

w }ni=1 be
approximations to the action-value functions of policies in Π, under the reward function rw, such
that for all πi ∈ Π and all (s, a) ∈ S ×A,

|qπ
∗
i

w (s, a)− q̂
π∗
i

w (s, a)| ≤ ϵ,
∑
s′

|p(s′|s, a)− p̂(s′|s, a)| ≤ ϵp, and |rw(s, a)− r̂w(s, a)| ≤ ϵr.

(73)
We now extend the definition of h-GPI (Definition 3) to the case where this policy is defined under the
assumption of an MPD with reward function rw:

πh-GPI(s;w) ∈ argmax
a∈A

(T ∗
m̂)h max

π∈Π
q̂πw(s, a). (74)

Let ϕmax ≜ maxs,a ||ϕ(s, a)||. Then, it follows that

q∗w(s, a)− qh-GPI
w (s, a) ≤ 2

1− γ
(ϕmax min

i
||w −wi||+ γhϵ+ c(ϵr, ϵp, h)), (75)

where c(ϵr, ϵp, h) =
1−γh

1−γ (ϵr + γϵpv
∗
max).
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Proof. The proof is an extension of Theorem 2 of Barreto et al. (2017) to the case where we use
our Theorem 1 (i.e., we apply the bound introduced earlier to characterize the relation between the
performance of h-GPI and the model and action-value function approximation errors), rather than
using the GPI theorem, as defined by Barreto et al. (2017):

q∗w(s, a)− qh-GPI
w (s, a) ≤ q∗w(s, a)− (T ∗)h max

π∈Π
qπw(s, a) +

2

1− γ
(γhϵ+ c(ϵr, ϵp, h)) (76)

≤ q∗w(s, a)−max
π∈Π

qπw(s, a) +
2

1− γ
(γhϵ+ c(ϵr, ϵp, h)) (77)

≤ 2

1− γ
min
i

max
s,a
|rw(s, a)− rwi

(s, a)|+ 2

1− γ
(γhϵ+ c(ϵr, ϵp, h))

(78)

=
2

1− γ
min
i

max
s,a
|ϕ(s, a) ·w − ϕ(s, a) ·wi|+

2

1− γ
(γhϵ+ c(ϵr, ϵp, h))

(79)

=
2

1− γ
min
i

max
s,a
|ϕ(s, a) · (w −wi)|+

2

1− γ
(γhϵ+ c(ϵr, ϵp, h)) (80)

≤ 2

1− γ
min
i

max
s,a
||ϕ(s, a)|| ||w −wi||+

2

1− γ
(γhϵ+ c(ϵr, ϵp, h)) (81)

=
2

1− γ
ϕmax min

i
||w −wi||+

2

1− γ
(γhϵ+ c(ϵr, ϵp, h)) (82)

=
2

1− γ
(ϕmax min

i
||w −wi||+ γhϵ+ c(ϵr, ϵp, h)). (83)

Above, (76) is due to Theorem 1 and (77) is due to the monotonicity of T ∗. Finally, (78) is due
to the application of Lemma 1 of Barreto et al. (2017), and (81) is due to the Cauchy-Schwarz’s
inequality.

Theorem 2, above, allows us to characterize h-GPI’s performance (under approximation errors) with
respect to the optimum action-value function, given an arbitrary reward function, rw:

Theorem 2 precisely characterizes the optimality gap (i.e., the maximum difference) between
the action-value function induced by h-GPI (qh-GPI

w (s, a)) and the optimal action-value function
(q∗w(s, a)), as a function of (i) the reward weights {wi}ni=1 for which the policies in the agent’s
library, Π, are optimal; (ii) approximation errors in action-value functions {q̂π

∗
i

w }ni=1; and (iii)
approximation errors in the model m̂ = (p̂, r̂w).

B Experimental details

In this section, we provide a detailed description of the practical implementation of h-GPI, as well
as details of the domains used in our experiments. The code necessary to reproduce our results is
available in the Supplemental Material.

B.1 Computing h-GPI policies with SFs and Forward-Backward Dynamic Programming

In this section, we show how to extend the Forward-Backward Dynamic Programming (FB-DP)
algorithm (Efroni et al., 2020) to the discounted-SFs setting, in order to compute h-GPI policies
efficiently. The algorithm is described in Algorithm 3.

The algorithm works by first computing the sets of states achievable from the current state, s, after
t = 0, ..., h time steps (line 1 of Algorithm 3). The complete procedure is described in the Forward-
Pass algorithm (Algorithm 2). Next, the algorithm for computing h-GPI policies (Algorithm 3)
assigns the value of states reachable in h steps using GPI bootstrapping with the SFs estimates (line
3). The values of states reachable in t = 1, ..., h − 1 time steps are then computed via dynamic
programming (lines 4–5). Finally, the h-GPI action is identified in lines 6–8.

21



Regarding Algorithm 3, we first note that, given a state s, the algorithm’s time complexity is
O(N |A||S tot

h |), where N is the maximal number of accessible states in one step (i.e., maximal
“nearest neighbors” from any state), and |S tot

h | is the total number of reachable states in h time steps
from state s.

Note that while we chose to extend the original FB-DP algorithm to design a practical procedure
for computing h-GPI policies, due to its efficiency and closed-form formulation, other planning
techniques could have been used (e.g., Monte Carlo Tree Search (Tesauro and Galperin, 1996; Silver
et al., 2017)).

Algorithm 2: Forward-Pass

Input :Model m̂ = (p̂, ϕ̂), planning
horizon h ≥ 0, state s.

1 S0 ← {s}, St ← {}∀t ∈ {1, . . . , h}
2 for t = 1, ..., h do
3 for st−1 ∈ St−1 do
4 St ← St ∪

{s′ | ∃ a s.t. p̂(s′|st−1, a) > 0}
5 Return: {St}ht=0

Algorithm 3: h-GPI with SFs and FB-DP

Input :Model m̂ = (p̂, ϕ̂), SFs {ψ̂πi}ni=1,
planning horizon h ≥ 0, state s,
reward vector w.

1 {St}ht=0 ← ForwardPass(m̂, h, s)
2 for s ∈ Sh do
3 vh(s)← maxa∈A maxπ∈Π ψ̂

π
(s, a) ·w

4 for t = h−1, ..., 1 do
5 for s ∈ St do
6 vt(s)← maxa∈A[ϕ̂(s, a) ·w +

γ
∑

s′ p̂(s
′|s, a)vt+1(s)]

7 for a ∈ A do
8 (T ∗

m̂)h maxπ∈Π q̂πw(s, a)←
[ϕ̂(s, a) ·w + γ

∑
s′ p̂(s

′|s, a)v1(s)]
9 Return: argmaxa(T ∗

m̂)h maxπ∈Π q̂πw(s, a)

B.2 Environments

Below, we describe the three domains used in our experiments—all of which are depicted in Figure 6.

Figure 6: The FourRoom, Reacher, and FetchPush domains.

FourRoom. The Four Room domain (Barreto et al., 2017; Gimelfarb et al., 2021) is a gridworld
with dimensions of 13 × 13, consisting of four rooms separated by walls. At each time step
t, the agent occupies a cell and can move in one of four directions, denoted by the action set
A = {up, down, left, right}. Differently from related works, we introduced a 10% chance of the
agent moving to a random direction, rather than the direction given by the selected action. This
makes the state transition function, p, stochastic. If the destination cell happens to be a wall, the
agent remains in its current cell. The grid contains three different types of objects, as illustrated in the
leftmost figure in Figure 6. There are four instances of each object type distributed throughout the grid.
The state space is defined as the concatenation of the agent’s current x-y coordinates and a set of binary
variables indicating whether each object has been picked up or not: S = {0, 1, ..., 12}2 × {0, 1}12.
The features ϕ(s, a, s′) ∈ {0, 1}3 are one-hot encoded vectors that indicate the type of object present
in the current cell. If there are no objects in the current cell, the corresponding features are set to zero.
The goal cell which the agent has to reach is located at the upper-right of the map. It contains one
instance of each object, and entering this cell results in the termination of the episode. In this domain,
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a discount factor of γ = 0.95 was used. In our experiments, we used the implementation available on
MO-Gymnasium (Alegre et al., 2022b).

Reacher. The Reacher domain is a classic domain in the SFs literature (Barreto et al., 2017;
Gimelfarb et al., 2021; Nemecek and Parr, 2021; Alegre et al., 2022a). It consists of a two-joint
robot arm that must reach different target locations with the tip of its arm (see the middle figure
in Figure 6). The agent’s state space S ⊂ R6 consists of the sine and cosine of the angles of the
central and elbow joints, as well as their angular velocities. The agent’s initial state is the one shown
in the middle figure in Figure 6. The action space, originally continuous, is discretized using 3
bins per dimension corresponding to maximum positive torque (+1), negative torque (-1), and zero
torque for each actuator. This results in a total of 9 possible actions: A = {−1, 0,+1}2. Each
feature ϕ(s, a, s′) ∈ R4 is defined as ϕi(s, a, s

′) = 1− 4∆(targeti), i = 1...4, where ∆(targeti) is
the Euclidean distance between the tip of the robot’s arm and the i-th target’s location. We used a
discount factor of γ = 0.9 in this domain. We used the implementation of this domain available on
MO-Gymnasium (Alegre et al., 2022b), which is based on the MuJoco robotics simulator (Todorov
et al., 2012).

FetchPush. Finally, we extended the FetchPush domain (Plappert et al., 2018), which consists of
a Fetch robotic arm that must move a block to a given target position on top of a table by pushing
the block with its gripper (see the rightmost figure in Figure 6). Importantly, the state space of
this domain, S ⊂ R19, is high-dimensional, and its dynamics are significantly more complex than
that of Reacher’s. In our experiments, we removed from the states all information related to the
position of targets, as these are irrelevant since targets have fixed locations. We discretized the
action space similarly to how this was done when defining the Reacher domain. The reward features
ϕ(s, a, s′) ∈ R4 correspond to the negative distances between the block and each of the four target
locations on the table. Our implementation of this domain is an adaptation of the one available in
Gymnasium-Robotics (de Lazcano et al., 2023).

B.3 Parameters

In the FourRoom experiments, the SFs of each policy were learned similarly as in Alegre et al.
(2022a), using Q-learning and 5 Dyna updates per time step. Each policy was trained for 106 time
steps using a learning rate of 0.1 and epsilon-greedy exploration with a probability of selecting a
random action linearly decayed from 1 to 0.05 during half of the training period.

In the Reacher and FetchPush domains, we used multi-layer perception (MLP) neural networks to
learn universal successor feature approximators (USFAs) (Borsa et al., 2019). The USFAs, ψ̂(s, a,w),
were modeled using MLPs with 4 layers of 256 neurons and ReLU non-linear activations. We used
the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 3 · 10−4, and mini-batches
of size 256. Recall that (as discussed in the main paper), we used vectors that form the standard
basis of Rd as training reward weights,M, where d is the dimension of the reward features vector
ϕ. In our implementation, we also adopted popular DQN extensions to speed up and stabilize
learning, such as prioritized experience replay (Schaul et al., 2016; Fujimoto et al., 2020) and Double
Q-learning (Hasselt et al., 2016) with a target neural network updated after every 200 time steps.
In both domains (Reacher and FetchPush), we trained the USFAs for a total of 2 · 105 time steps.
In Reacher, the epsilon-greedy exploration rate was kept fixed at 0.05, while in FetchPush, it was
linearly decayed from 1 to 0.05.

We used an ensemble of n=7 probabilistic neural networks in both the Reacher and FetchPush
environments to learn the model mφ(St+1,ϕt|St, At). In the Reacher domain, each network was an
MLP with 3 layers with 200 neurons each. In the FetchPush domain, we used an MLP with 4 layers
with 400 neurons each. The probabilistic neural networks used to approximate the model were trained
with early stopping based on a holdout validation subset with instances drawn from the experience
buffer B—as commonly done when training such networks (Chua et al., 2018; Janner et al., 2019). In
Figure 7, we depict the mean validation loss of the learned models both in the Reacher and FetchPush
domains. As can be seen, the learned model rapidly becomes fairly accurate.

Compute. For the tabular experiments, we used an Intel i7-8700 CPU @ 3.20GHz computer with
32GB of RAM. For the experiments involving the function approximation setting, we used computers
with NVIDIA A100-PCIE-40GB GPUs. For each random seed, the training period used for training
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Figure 7: Mean validation loss of the learned environment model, m̂φ(s
′, ϕ|s, a), throughout the

training phase during which Π is constructed (Left: Reacher domain; Right: FetchPush domain).

USFAs was of approximately 6.5 hours. We used the JAX library (Bradbury et al., 2018) for the
implementation of neural networks.

C Related work

In this section, we discuss in more detail works that are related to h-GPI.

GPI and SFs. Previous works have extended GPI to safe RL (Gimelfarb et al., 2021; Feng et al., 2023),
maximum-entropy RL (Hunt et al., 2019), unsupervised RL (Hansen et al., 2020), and hierarchical
RL (e.g., via the options framework) (Barreto et al., 2019; Machado et al., 2023). Recently, Thakoor
et al. (2022) introduced Geometric GPI (GGPI). GGPI uses geometric horizon models (GHMs)
to learn the discounted future state-visitation distribution induced by particular policies to rapidly
evaluate policies under a given, known reward function. The authors show that performing GPI over
a particular type of non-stationary policy produces behaviors that outperform those in the agent’s
library policy. h-GPI, by contrast, learns a different type of model: an environment model, which is
used to perform planning—i.e., action selection—rather than policy evaluation. Additionally, GGPI
requires learning separate GHMs for each policy in the library, whereas h-GPI can operate with
a single model that predicts the next reward features, alongside a single USFA. Secondly, GGPI
assumes that the reward function is known a priori, while we exploit SFs to generalize over all
linear rewards given reward features. Bagot et al. (2023) introduced GPI-Tree Search (GPI-TS),
which is closely related to h-GPI. GPI-TS uses GPI bootstrapping as backup value estimates at
the leaf nodes of a Monte Carlo tree search. However, GPI-TS does not employ SFs and was only
employed in single-task settings. Moreover, it assumes an oracle model of the environment. We,
by contrast, employ learned models to perform zero-shot transfer over multiple tasks, and we show
how approximation errors in the model affect the performance of the h-GPI policy (see Theorems 1
and 2). Kim et al. (2022) introduced Constrained GPI (CGPI), which uses lower and upper bounds
of the expected return of the optimal policy for a new task to constrain the action-values used when
selecting the GPI policy’s actions. Although CGPI is robust with respect to generalization errors
in the values predicted by USFAs for new target tasks, it is sensitive to approximation errors in the
values of the training tasks. h-GPI, by contrast, can inherently deal with approximation errors in the
values of source/base policies. Other works have studied methods for constructing a policy library for
use with GPI (Zahavy et al., 2021; Nemecek and Parr, 2021; Alver and Precup, 2022; Alegre et al.,
2022a). These methods solve important orthogonal problems, and could potentially be combined
with h-GPI.

Model-based RL and SFs. Russek et al. (2017) proposed a Dyna-style algorithm that performs
background planning to update tabular successor representations (SRs) (Dayan, 1993). Momennejad
et al. (2017) argued that this algorithm could better model human behavior on tasks with changing
rewards when compared to pure model-free or model-based approaches. In this paper, by contrast, we
employed online planning and leveraged GPI and SFs—both of which generalize SRs to continuous-
state problems. Other works have studied methods for learning SF-based representations (Lehnert and
Littman, 2020; Touati and Ollivier, 2021). Studying the behavior of h-GPI under different types of
reward feature representations is an interesting direction for future research. We believe that our work
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also shares similarities with the investigation performed by Tomov et al. (2021) on how model-free
and model-based mechanisms are combined in human behavior.

Multi-step RL algorithms. Multi-step RL methods were extensively studied in the context of policy
evaluation, both in the model-free (Hessel et al., 2018; van Hasselt et al., 2018) and the model-based
settings (Yao et al., 2009; Janner et al., 2019). Model value expansion algorithms (Feinberg et al.,
2018; Buckman et al., 2018; Abbas et al., 2020) are a representative example of the latter type of
approach. In this paper, by contrast, we introduced a multi-step method for policy improvement,
designed specifically to tackle transfer-learning settings. GX-Chen et al. (2022) introduced the
η-return mixture, a new backup target for better credit assignment, which combines bootstrapping
with standard value estimates and SFs, as a function of a parameter η. Efroni et al. (2018) studied
multi-step greedy versions of the classic policy iteration and value iteration (Bertsekas and Tsitsiklis,
1996) dynamic programming (DP) algorithms. Efroni et al. (2020) proposed a multi-step greedy
real-time DP algorithm that replaces 1-step greedy policies (used in policy improvement) with an
h-step lookahead policy. The technique introduced in our paper is also related to the works of Sikchi
et al. (2022) and Hansen et al. (2022), which combine planning and bootstrapping with a learned value
estimate. However, unlike h-GPI, the abovementioned approaches did not address the multi-policy
and zero-shot transfer settings. Another interesting use of multi-step prediction models is the work of
Filos et al. (2022). In that work, the authors defined a measure of epistemic uncertainty based on
the disagreement between the values resulting from applying the model-induced Bellman evaluation
operator for different numbers of steps. Finally, we also emphasize to the interested reader that there
exists neuroscientific evidence that multi-step planning occurs in the brains of humans and other
animals (Miller and Venditto, 2021).
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