

000 001 002 003 004 005 EXPLAINING THE INCONSISTENCY OF 006 PERTURBATION-BASED FIDELITY METRICS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Saliency maps are one of the most widely used post-hoc approaches for interpreting the behavior of Deep Learning models. Yet, assessing their fidelity is difficult in the absence of ground-truth explanations. To address this, numerous fidelity metrics have been introduced. Previous studies have shown that fidelity metrics can behave inconsistently under different perturbations, and a recent work has attempted to estimate the extent of this inconsistency. However, the underlying reasons behind these observations have not been systematically explained. In this work, we revisit this problem and analyze why such inconsistencies arise. We examine several representative fidelity metrics, apply them across diverse models and datasets, and compare their behavior under multiple perturbation types. To formalize this analysis, we introduce two conformity measures that test the assumptions implicit in existing metrics. Our results show that these assumptions often break down, explaining the observed inconsistencies and calling into question the reliability of current practices. We therefore recommend careful consideration of both metric choice and perturbation design when employing fidelity evaluations in eXplainable Artificial Intelligence (XAI).

1 INTRODUCTION

Deep learning (DL) models have shown significant improvement in accuracy as compared to traditional Machine Learning (ML) models. However, such improvements have come at the cost of decreased transparency. Hence, concerns about the transparency, fairness, privacy, and trustworthiness of AI applications arise due to the black-box nature of DL models in high stakes domains like health care, insurance, and law enforcement Rudin (2019), Jacovi et al. (2021), Arrieta et al. (2020). These concerns have led to skepticism about adopting the latest Artificial Intelligence (AI) models in various sectors Cubric (2020), Cam et al. (2019), Güngör (2020). Therefore, research has been dedicated to explaining the decisions of DL models under the umbrella of XAI Arrieta et al. (2020), Selvaraju et al. (2017), Chattopadhyay et al. (2018), Zhou et al. (2016), Ramaswamy et al. (2020), Ribeiro et al. (2016), Broniatowski et al. (2021), Lundberg & Lee (2017).

Saliency maps, such as Class Activation Maps (CAM), are widely used to explain the predictions of Deep Learning (DL) models by highlighting the image regions that are most important for the model's decision Selvaraju et al. (2017), Chattopadhyay et al. (2018). However, disagreements are commonly observed among saliency maps generated using different methods for the same model and the same image, leading to confusion. One can choose the best saliency map with the highest fidelity when compared to the ground truth. However, the absence of actual ground-truth¹ has led to the development of fidelity metrics like, "Area Over the Perturbation Curve" (AOPC) (Samek et al., 2016), Average Drop (AD%), Increase in Confidence (IC%) and Win (W%) (Chattopadhyay et al., 2018), Wang et al. (2020) and "faithfulness" metric (Alvarez Melis & Jaakkola, 2018).

These fidelity metrics, however, suffer from inconsistencies and thus make them unreliable (Tomsett et al., 2020). Fidelity metrics such as AOPC, AD%, IC% and W% and *faithfulness* rely on computing pixel importance rank (PIR) for measuring the fidelity of saliency maps Bora et al. (2026).

¹Human annotation represents the regions of an image from a human perspective (e.g., edges in images), but they do not have any relation to the patterns the DL model is considering for decision making. Thus, human-annotated saliency maps may misrepresent the model's true decision-making process, making them unreliable for evaluating the fidelity of the maps.

054 PIR is calculated by perturbing the pixels (one by one or cumulatively) and noting the change in
 055 the output probability². A greater change in output probability denotes greater importance for a
 056 perturbed pixel. The computed PIR from an image serves as a proxy for ground truth, enabling
 057 the estimation of the fidelity score for saliency maps (Alvarez Melis & Jaakkola, 2018). This ap-
 058 proach is based on the assumption that the change in output probability follows a consistent pattern
 059 across different perturbations, with the output probability varying in proportion to the importance
 060 of the perturbed pixel. If this assumption is not fulfilled, the fidelity metrics' scores would vary for
 061 different perturbations, leading to inconsistency as reported by Tomsett et al.(Tomsett et al., 2020).
 062 Further, Tomsett et al.(Tomsett et al., 2020) observed this inconsistency by analyzing the prediction
 063 probabilities by perturbing pixels with 0 and a random value. While highlighting the inconsistency
 064 in fidelity metrics, Tomsett et al. (Tomsett et al., 2020) emphasize that developers of such metrics
 065 should guide practitioners to examine the sources of variance in metric scores and to understand
 066 how this variability influences the choice of saliency methods for a given model.
 067

068 1.1 RELATED WORKS

069 Prior studies have reported that perturbation-based fidelity metrics can be statistically unreliable
 070 (e.g., Tomsett et al. (2020)). Additionally, FRIES (Bora et al. (2026)) took a complementary ap-
 071 proach and introduced an estimation framework that predicts how inconsistent a metric will be for a
 072 given model–dataset–perturbation setting, using features derived from output probability variations
 073 under perturbations and training a supervised model using it. In contrast, this paper addresses a dif-
 074 ferent question: we seek to explain why these inconsistencies arise in the first place and thereby pro-
 075 vide a lightweight alternative to FRIES without requiring to train a supervised model. We formalize
 076 the assumptions implicitly required by widely used metrics and show, analytically and empirically,
 077 the specific conditions under which those assumptions fail.

078 This paper uses the same foundational primitives that underlie the FRIES framework but with a
 079 different role. In FRIES, those primitives served as features for predictive inconsistency estimation.
 080 However, in this paper they are the central theoretical objects and we use them to explain failure
 081 conditions for fidelity metrics and to define diagnostic conformity measures that directly test the
 082 validity of the metrics' assumptions without training an estimator model.

083 1.2 OUR CONTRIBUTIONS

085 We first theoretically establish the scenarios under which such assumptions are violated. We then
 086 provide two conformity measures that quantify the extent of variances affecting the fidelity metrics.
 087 Both the conformity measures are used to demonstrate the inconsistency of fidelity metrics by using
 088 several perturbations, models and datasets in both normal and adversarial setting. Going beyond the
 089 works of Tomsett et al.(Tomsett et al., 2020) and to generalize our findings, we study the variances
 090 in a comprehensive manner using nine different perturbations that include two inpainting-based
 091 perturbations (Telea (Telea, 2004) and Navier Strokes (Bertalmio et al., 2001)), Gaussian Blur (three
 092 different widths of the Gaussian Kernel) and setting a random value, min, max and mean of the image
 093 pixel values as perturbation values. Further, we show empirically that our conformity measures can
 094 be used in pixel-wise and segment-wise perturbation schemes before using fidelity metrics.

095 Our main contributions to this paper are:

- 097 • We present an approach to explain the inconsistency of fidelity metrics. We show that
 098 before using fidelity metrics, the variances of DL models w.r.t. to the perturbation type
 099 must be studied.
- 100 • Complementing previous works that have observed inconsistencies in fidelity metrics Tom-
 101 sett et al. (2020), and proposed methods to estimate the inconsistency using supervised
 102 learning Bora et al. (2026), this paper explains inconsistency by (i) formalizing the as-
 103 sumptions underpinning common fidelity metrics, (ii) proving where these assumptions
 104 break under realistic perturbations, and (iii) introducing DROP and PSim as lightweight
 105 conformity measures (without requiring to train a supervised model like FRIES) to assess
 106 assumption validity before a fidelity metric is applied.

107 ²All the reported observations in this paper are based on the prediction probability of the top prediction
 class. We will refer to this as the output probability from hereon.

108 • The conformity measures proposed in this work are further used to empirically analyse
 109 three widely used DL models and two adversarially trained DL models on three datasets
 110 using nine perturbation types, and two perturbation schemes (pixel-wise and segment-wise)
 111 for all models.

113 2 PROPOSED APPROACH

115 The fidelity metrics are based on the PIR which assume the drop in output prediction probability
 116 of a DL model to be proportional to the relevance of the perturbed pixel (i.e., more important the
 117 pixel, larger the drop in output probability). The pattern of change (i.e. the proportionate change in
 118 output probability as per the relevance of the perturbed pixel) should ideally hold true for all types
 119 of perturbations as long as the image semantics is preserved under the notion of local neighborhood
 120 Bora et al. (2026). This is based on two aspects:

121 [P1] There is a drop in the output probability when a pixel is perturbed;
 122 [P2] The magnitude of drop in output probability is proportional to the relevance of the pixel.

124 Dissecting these two aspects, we first present the theoretical background on the violation such as-
 125 pects in fidelity metrics and then present the proposed conformity measures in Section 2.2 and
 126 Section 2.3 to explain the inconsistencies.

128 2.1 THEORETICAL FRAMEWORK

130 Let \mathfrak{R} be the ranks of pixel as per importance obtained from a saliency map on an unperurbed
 131 image. \mathfrak{R} can be expressed as follows:

$$\mathfrak{R} = \{a_1, a_2, a_3, a_4, \dots, a_n\} \quad (1)$$

134 where, \mathfrak{R} is the ranked list of pixel importance by any saliency method. $a_1 \rightarrow a_n$ are pixels sorted
 135 in the order of their importance i.e. a greater i denotes greater importance.

136 The assumption on the expected change in output probability by perturbing a pixel can be summa-
 137 rized as:

$$p_0 > p_i^\phi \quad \forall \quad i, \phi \quad (2)$$

141 where, p is the prediction probability of a classification model which takes an image I as input and
 142 returns the probability of the top class. p_0 is the probability of the top class as predicted for the
 143 original i.e. unperturbed image. p_i^ϕ is the prediction probability on an image obtained by perturbing
 144 only the i^{th} pixel of an image I with a perturbation type ϕ .

146 Further, the change in output probabilities of perturbing two pixels i and j , where j is more important
 147 than i , can be summarized given as:

$$\delta p_i^\phi < \delta p_j^\phi \quad \forall \quad i < j \quad (3)$$

151 Where, $\delta p_i^\phi = p_0 - p_i^\phi$

152 Utilizing Equation (1) and Equation (3) we can generate the ranked list of probability differences,
 153 denoted as $\mathfrak{R}(\phi)$, for an image perturbed by each pixel and for all i pixels with increasing order of
 154 ranks:

$$\begin{aligned} \mathfrak{R}(\phi) &= \{\delta p_1^\phi, \delta p_2^\phi, \dots, \delta p_i^\phi\} \\ pixels &= \{1, 2, \dots, i\} \text{ and for a given perturbation } \phi \end{aligned} \quad (4)$$

160 The probability changes obtained from Equation (4) can be sorted to get an ordered list of pixels.
 161 This set of ordered pixels, denoted by R_σ , represents the importance ranks of the pixels correspond-
 162 ing to σ . For a perturbation based technique to be applicable in fidelity metrics, the pixel importance

162 ranks should ideally be invariant to different sets of hyper-parameters. This invariance to different
 163 sets of hyper-parameters is defined as below:
 164

$$165 \quad rbo(\mathfrak{R}(\phi), \mathfrak{R}(\psi)) \approx 1 \quad \forall \quad \text{for two perturbations} \quad \phi, \psi \quad (5)$$

167 Where, rbo is Rank Biased Overlap Webber et al. (2010) in our experiments, but it can be any
 168 function that calculates the similarity between two rank lists. Further, without the loss of generality
 169 we can say that Equation (5) should hold true for any set of pixels obtained from a saliency map.
 170

171 Any perturbation based fidelity metric should conform to Point [P1] according to Equation (2) and
 172 should conform to Point [P2] according to Equation (5). To quantify the conformance, we introduce
 173 two new conformity scores which we refer to as $DROP$ (corresponds to Point [P1]) and $PSim$
 174 (corresponds to Point [P2]) as discussed further.

175 2.2 DROP IN PREDICTION PROBABILITY (DROP)

177 The drop in Prediction Probability ($DROP$) metric measures the average number of drops in the
 178 output probability when a pixel is perturbed for an image and a given model \mathcal{M} across all pertur-
 179 bation types \mathcal{N} . Thus, if p_0 represents output probability from a model \mathcal{M} on unperturbed image
 180 and p_s^ϕ represents the output probability on a perturbed image for a perturbation type ϕ on a chosen
 181 pixel s in a set of all pixels \mathcal{S} or a chosen segment of all available segments, $DROP_{\mathcal{M}}$ for a given
 182 model can be computed as:

$$184 \quad 185 \quad DROP_{\mathcal{M}} = \frac{1}{|\mathcal{N}|} \sum_{\phi \in \mathcal{N}} \frac{\sum_{s \in \mathcal{S}} [p_0 \geq p_s^\phi]}{|\mathcal{S}|} \quad (6)$$

187 Where, $[\cdot]$ denotes an indicator function with binary decision. For a complete dataset of K images
 188 and a given model M , the $DROP$ scores from Equation (6) are averaged across all images in a
 189 dataset D . The ideal value of $DROP$ should be 1 with higher value representing higher conformity
 190 to Point [P1].
 191

192 2.3 PIXEL RANK SIMILARITY (PSIM)

194 We define the metric $PSim$ to measure the average similarity of PIRs across all perturbations for
 195 an image. For any two given perturbations (ϕ and ψ from a set of perturbations \mathcal{N}) on an image,
 196 and corresponding PIRs obtained $\mathfrak{R}(\phi), \mathfrak{R}(\psi)$ respectively for a given image, it is expected to have
 197 same ranks for a given model M if the model is consistent. Thus, the average similarity between the
 198 ranks across all perturbations can be computed as:

$$199 \quad 200 \quad PSim_{\mathcal{M}} = \frac{\sum_{\phi \in \mathcal{N}} \sum_{\psi \in \mathcal{N}, \phi \neq \psi} rbo(\mathfrak{R}(\phi), \mathfrak{R}(\psi))}{\frac{|\mathcal{N}| \times (|\mathcal{N}| - 1)}{2}} \quad (7)$$

203 Thus, for any perturbation based fidelity metric to be consistent, $PSim$ should have an ideal value
 204 of 1. However, higher values i.e., closer to 1 suggest higher conformance to Point [P2].
 205

206 3 IMPLEMENTATION DETAILS

208 3.1 APPROACH OVERVIEW

210 Figure 1 shows our implementation where we obtain the prediction probabilities for a given model
 211 on unperturbed and a set of perturbed images. The prediction probabilities are used to evaluate the
 212 conformance using Drop in Prediction Probability (DROP) for Point [P1] and Pixel Rank Simi-
 213 larity (PSim) for Point [P2]. The approach for measuring the conformity scores is further described
 214 in Algorithm 1. While Algorithm 1 computes the conformity scores for the pixel-wise perturba-
 215 tion scheme, the same can be applied to the segment-wise perturbation scheme without the loss of
 generality.

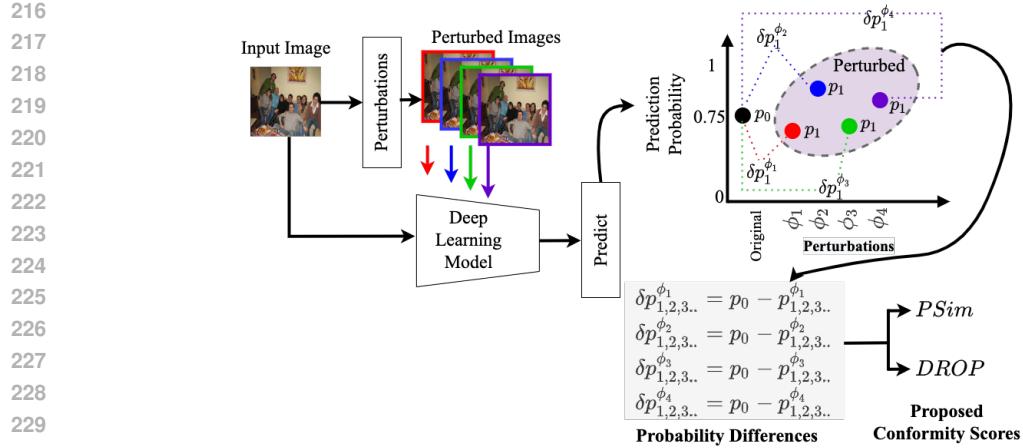


Figure 1: Proposed approach for estimating conformity scores of the deep learning models using the prediction probabilities on perturbed images.

We first determine the prediction probability of a given model M on an unperturbed image (i.e., p_0) and then perturb the selected pixels one by one for a given perturbation ϕ_1 to obtain $p_1, p_2, p_3 \dots$ to determine the $\delta p_1, \delta p_2, \delta p_3 \dots$ for the perturbation ϕ_1 . The same perturbation scheme can be extended to segments without any change. $DROP$ and $PSim$ are then calculated for each image and for the whole dataset as described in Equation (6) and Equation (7) respectively.

Algorithm 1 Algorithm for calculating $DROP$ and $PSim$

```

240
241    $p_0 \leftarrow \text{model.predict}(I)$                                       $\triangleright$  Unperturbed image  $I$ 
242    $\{i\} \leftarrow S$                                                   $\triangleright i$  pixel in  $S$  pixels
243    $\phi \leftarrow \{\Phi\}$                                                $\triangleright$  set of all perturbation types
244    $\mathcal{L} \leftarrow []$ 
245    $\mathcal{L}$                                                                 $\triangleright$  List of pixel importance ranks from all perturbation types
246    $\delta\mathcal{P} \leftarrow []$                                                $\triangleright \delta\mathcal{P}$  is the  $DROP$  score
247   for all  $\phi$  do
248      $\delta P \leftarrow []$ 
249     for all  $i$  in  $\{S\}$  do
250        $I_i^\phi \leftarrow \text{perturb\_image}(I_i, \phi)$                        $\triangleright$  for  $i^{th}$  pixel in image  $I$ 
251        $p_i^\phi \leftarrow \text{model.predict}(I_i^\phi)$ 
252        $\delta p_i^\phi = p_0 - p_i^\phi$ 
253        $\delta P.append(\delta p_i^\phi)$ 
254     end for
255      $\delta\mathcal{P.append}(|\{\delta P \geq 0\}|)$                                       $\triangleright$  Append count of  $\delta P \geq 0$ 
256      $l \leftarrow \text{argsort}(\delta P)$ 
257      $\mathcal{L.append}(l)$ 
258   end for
259    $rbo\_score \leftarrow \text{pairwise\_rbo}(\mathcal{L})$ 
260   return  $\mu(\delta\mathcal{P}), \mu(rbo\_score)$                                       $\triangleright$   $DROP$  (Equation (6)) and  $PSim$  (Equation (7)) scores
261
262
263
```

4 EXPERIMENTAL SETUP

We use three pre-trained, and two adversarially trained image classification models, and three well-known datasets in our experiments. We conduct our analysis on InceptionV3 Szegedy et al. (2016), Xception Chollet (2017), and ResNet50 He et al. (2016) initialized with ImageNet weights. For, adversarial models we used the weights of adversarially trained ResNet50 architecture viz., ImageNet L2-norm (ResNet50) with $\epsilon = 3$ and ImageNet Linf-norm (ResNet50) with $\epsilon = 8/255$ (refer Engstrom et al. (2019) for details). Imagenette from tensorflow.org et.al., Oxford-IIIT Pet Dataset

270 Parkhi et al. (2012) and PASCAL VOC 2007 Everingham et al. are used to conduct our experiments.
 271 The Imagenette dataset is a subset of the Imagenet et.al. dataset with ten easily classified classes.
 272 We used the validation part of this dataset for our experiments, which has around 3925 images. The
 273 Oxford-IIIT Pet Dataset Parkhi et al. (2012) and PASCAL VOC 2007 Everingham et al. datasets
 274 did not have train and test splits. Hence, we considered all the images for these two datasets, i.e.,
 275 7390 of the Oxford-IIIT Pet dataset and 4952 of the PASCAL VOC 2007 dataset. For each model,
 276 *predict* was called for $(3925 + 7390 + 4952) \text{ images} \times 50 \text{ pixels} \times 9 \text{ perturbatiotypes} \times 2 \text{ perturbationschemes}$ values, approximately, 15 million times, and in total, *predict* was called
 277 approximately 75 million times. Further, our goal was not to be exhaustive with different datasets
 278 and models but to understand the impact of perturbations to evaluate the fidelity of saliency maps
 279 from the perspective of PIR. Our code was written in Python 3.10 and Tensorflow 2.9 and for com-
 280 puting we leveraged A100 GPUs.
 281

282 4.1 PERTURBATION DETAILS

283 We considered nine different perturbation types i.e., two inpainting based perturbations for all our
 284 experiments. Specifically, we used Telea Telea (2004) and Navier Strokes Bertalmio et al. (2001)),
 285 Gaussian Blur (three different widths of the Gaussian Kernel) and setting a random value, min, max
 286 and mean of the image pixel values as pixel values (as used by Tomsett et al. (2020), and Bora
 287 et al. (2026)). The perturbations are represented as 'IT' (Telea inpainting), 'IN' (Navier Strokes in-
 288 painting), 'FR' (setting pixel value randomly), 'U0' (image min), 'U1' (image max), 'U0.5' (image
 289 mean), 'G3' (Gaussian blur with kernel widths of 0.3), 'G9' (Gaussian blur with kernel widths of
 290 0.9) and 'G1.5' (Gaussian blur with kernel widths of 1.5). Further, we perturb the pixels/segments
 291 using two perturbation schemes viz., pixel-wise and segment-wise. We used Quickshift Vedaldi &
 292 Soatto (2008) segmentation algorithm to compute the segments for segment-wise perturbations. We
 293 use the property that a subset of a ranked order list maintains the original ranking and select 50
 294 random pixels (refer to proof in Section S2). The same argument was extended to segments in our
 295 analysis.
 296

297 5 RESULTS AND DISCUSSION

300 5.1 DROP AND PSIM SCORES FOR ALL PERTURBATIONS

301 Table 1 shows the *DROP* and *PSim* values for different models over different datasets for pixel-
 302 wise and segment-wise perturbation scheme. The chosen models, i.e., Inception V3, Xception, and
 303 ResNet50 pretrained with Imagenet weights. As seen in Table 1, it can be observed that the *DROP*
 304 values were around 0.5 to 0.6 for all models across datasets. This indicates that only for 50 % to 60%
 305 of the pixels, the probability dropped after perturbation but for other pixels the output probability
 306 increases. This invalidates Point [P1] of the assumption in Section 2. Further, Table 1 shows the
 307 *PSim* values for all the models over all datasets. As seen from the table, the *PSim* values are
 308 small, but as per Equation (7), they should have been ≈ 1 . This invalidates Point [P2] of the
 309 assumption in Section 2. Further, this observation is consistent for all three models and across all
 310 datasets for segment-wise perturbation scheme as seen in Table 1. Thus, for different perturbations,
 311 the mentioned models will not conform to the assumptions made by the perturbation based fidelity
 312 metrics.

313 Further, we show the *DROP* and *PSim* scores for the adversarially trained ResNet50 models
 314 for both perturbation schemes in Table 2. Both *DROP* and *PSim* scores are much lower than
 315 1 in all cases, and hence, adversarial training does not necessarily result in consistency of fidelity
 316 metrics. Due to the unavailability of adversarially trained models for Inception_V3 and Xception
 317 architectures, we had to limit our experiments to ResNet50 architecture. Hence, we refrain from
 318 making conclusive remarks regarding the consistency of fidelity metrics with respect to adversarially
 319 trained models.
 320

321 5.2 DROP FOR INDIVIDUAL PERTURBATIONS

322 We present the distribution of *DROP* scores for Inception V3, Resnet50, and Xception models in
 323 the Imagenette dataset for pixel-wise perturbation scheme in Figure S2. For all perturbations, except

324
 325 Table 1: *DROP* and *PSim* scores across all datasets, models, perturbations for pixel-wise pertur-
 326 bation scheme and segment-wise perturbation scheme. The results are shown as Mean \pm Standard
 327 Deviation. Ideal value *DROP* and *PSim* should be 1 and higher the better.

Dataset		Inception	Xception	ResNet
Pixel-wise perturbation				
Imagenette	<i>DROP</i>	0.504 \pm 0.131	0.514 \pm 0.134	0.643 \pm 0.153
	<i>PSim</i>	0.432 \pm 0.181	0.431 \pm 0.185	0.570 \pm 0.298
Oxford Pets	<i>DROP</i>	0.507 \pm 0.130	0.504 \pm 0.138	0.636 \pm 0.132
	<i>PSim</i>	0.428 \pm 0.183	0.430 \pm 0.186	0.582 \pm 0.289
VOC2007	<i>DROP</i>	0.511 \pm 0.115	0.550 \pm 0.180	0.512 \pm 0.132
	<i>PSim</i>	0.643 \pm 0.130	0.433 \pm 0.189	0.573 \pm 0.301
Segment-wise perturbation				
Imagenette	<i>DROP</i>	0.515 \pm 0.135	0.518 \pm 0.126	0.553 \pm 0.111
	<i>PSim</i>	0.310 \pm 0.181	0.269 \pm 0.142	0.329 \pm 0.179
Oxford Pets	<i>DROP</i>	0.507 \pm 0.120	0.516 \pm 0.095	0.546 \pm 0.107
	<i>PSim</i>	0.255 \pm 0.129	0.307 \pm 0.179	0.309 \pm 0.181
VOC2007	<i>DROP</i>	0.542 \pm 0.102	0.517 \pm 0.091	0.529 \pm 0.100
	<i>PSim</i>	0.267 \pm 0.166	0.294 \pm 0.179	0.299 \pm 0.182

341
 342 Table 2: *DROP* and *PSim* scores for adversarially trained ResNet50 models (Linf-norm and L2-
 343 norm) for pixel-wise and segment-wise perturbation schemes. The results are shown as Mean \pm
 344 Standard Deviation. (*Higher scores are better with ideal being closer to 1)

Pixel-wise Perturbation				
Dataset	L2-norm(<i>DROP</i>)	Linf-norm(<i>DROP</i>)	L2-norm(<i>PSim</i>)	Linf-norm(<i>PSim</i>)
Imagenette	0.555 \pm 0.374	0.555 \pm 0.357	0.237 \pm 0.140	0.209 \pm 0.097
Oxford Pets	0.580 \pm 0.369	0.567 \pm 0.369	0.217 \pm 0.133	0.186 \pm 0.116
VOC2007	0.528 \pm 0.383	0.546 \pm 0.371	0.243 \pm 0.124	0.181 \pm 0.106
Segment-wise Perturbation				
Dataset	L2-norm(<i>DROP</i>)	Linf-norm(<i>DROP</i>)	L2-norm(<i>PSim</i>)	Linf-norm(<i>PSim</i>)
Imagenette	0.574 \pm 0.238	0.526 \pm 0.220	0.321 \pm 0.173	0.301 \pm 0.146
Oxford Pets	0.541 \pm 0.218	0.567 \pm 0.213	0.318 \pm 0.165	0.326 \pm 0.182
VOC2007	0.557 \pm 0.186	0.517 \pm 0.181	0.292 \pm 0.148	0.289 \pm 0.155

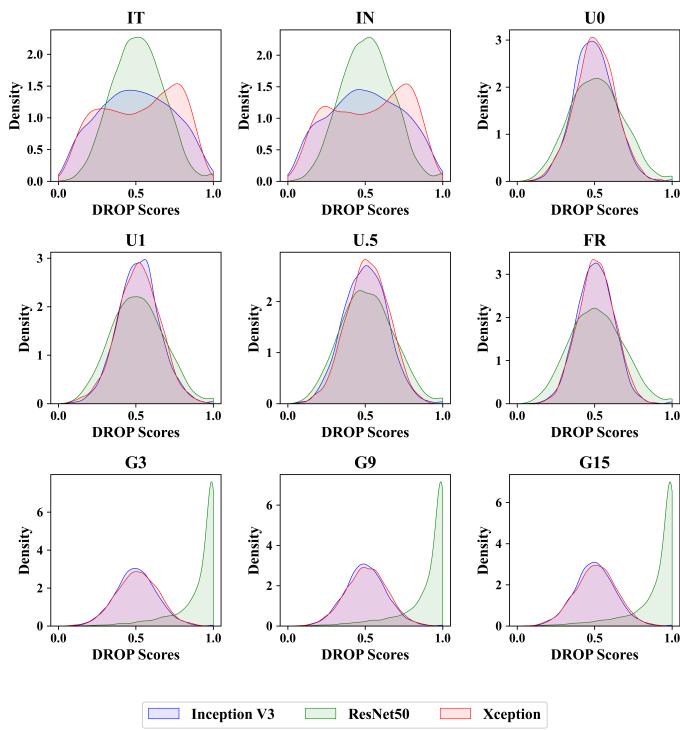
354
 355 the variants of Gaussian Blur, the *DROP* scores have the highest density at around 0.5. However,
 356 the variations of the Gaussian Blur for the ResNet50 model seem to be closer to 1. This pattern is
 357 similar for other datasets (please refer to Section S3 in supplementary for exhaustive plots). Further,
 358 we estimated the probability of the *DROP* scores to be closer to 1 (i.e., above the cut-offs of 0.80,
 359 0.85, 0.90, and 0.95) by using Kernel Density Estimation (KDE), with Scott’s rule Scott (2015) for
 360 bandwidth calculation, owing to its non-parametric nature. The estimated probabilities for *DROP*
 361 scores to be above the cutoffs across all datasets, models, and perturbation types and schemes were
 362 low, but the variants of Gaussian Blur showed relatively higher probabilities than other perturbations
 363 (refer Figure S25 in supplementary for details). We observe a similar trend for the segment-wise
 364 perturbation scheme (refer Figure S26 in supplementary). This demonstrates empirically that fidelity
 365 metrics have low conformity to Point [P1] and our KDE based cutoff estimations further evidence
 366 for our claim.

367 368 5.3 PSIM FOR INDIVIDUAL PAIRS OF PERTURBATIONS

369
 370 The pairwise *PSim* scores for all perturbation pairs corresponding to the Inception V3 model on
 371 the Imagenette dataset are shown for the pixel-wise perturbation scheme in Figure 3. Most of the
 372 perturbation pairs have low *PSim* scores, but for the three pairs of Gaussian Blur (i.e., G3_G9,
 373 G3_G15, and G9_G15) and the pair for inpainting (IT vs. IN), the *PSim* scores are relatively higher.
 374 We show the *PSim* scores for all perturbation pairs on all dataset: model combinations in Section S4
 375 of supplementary. Additionally, we estimated the probability of *PSim* scores to be above the cutoff
 376 threshold of 0.80, 0.85, 0.90, and 0.95 using KDE (like Section 5.2). The estimated probabilities for
 377 *PSim* scores to be higher than the cutoff thresholds were low in all situations (refer to Section S6
 in supplementary for details). It was observed that in none of the scenarios, *PSim* score is ≈ 1 ,

378 indicating low conformity to Point [P1]. Hence, the ranks of the pixels/segments (as mentioned in
 379 Section 2.1) would vary for different perturbation types and lead to inconsistency in fidelity metrics.
 380

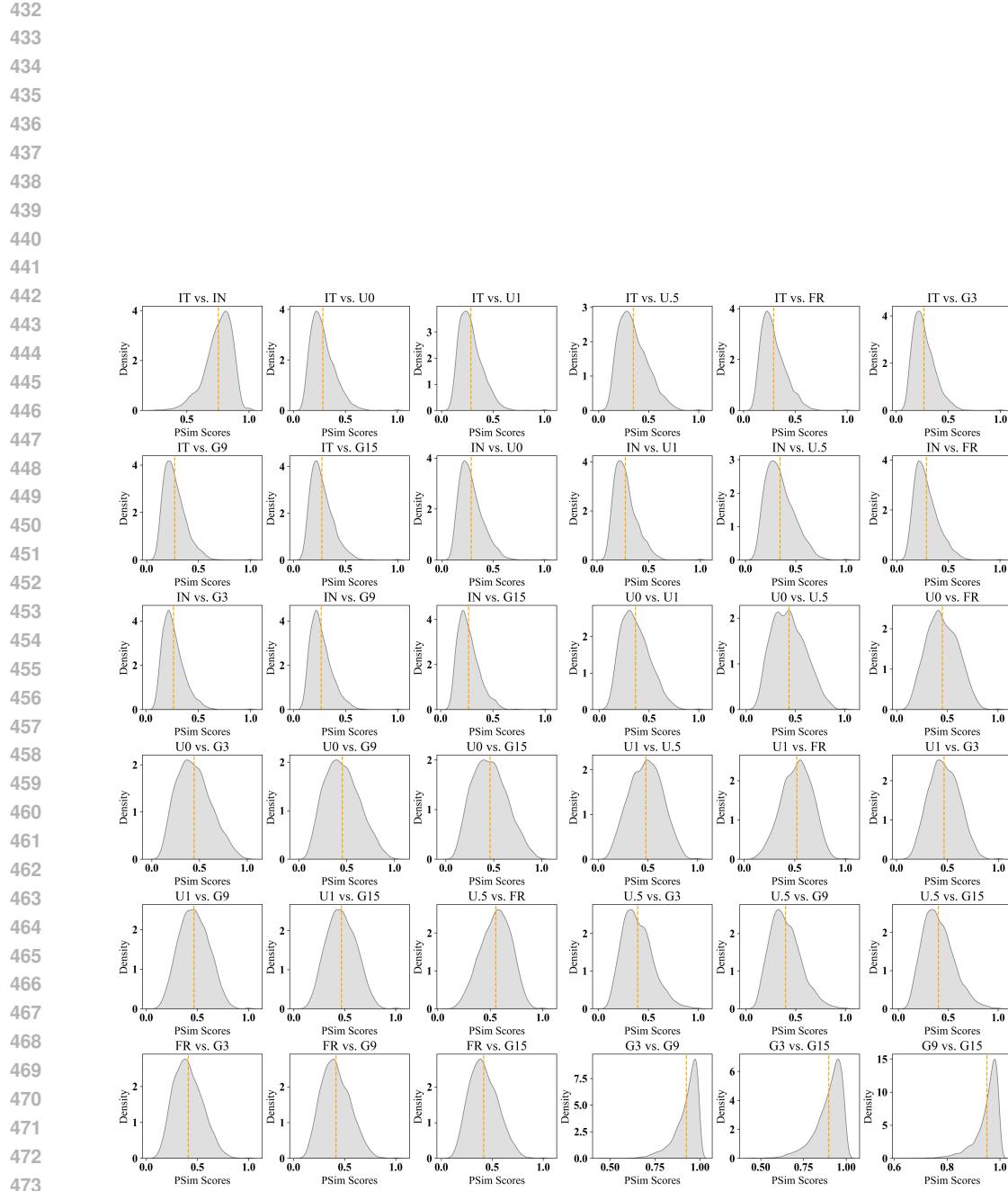
381 From the low probabilities observed in Section 5.2, and Section 5.3, it can be established that fidelity
 382 metrics have low conformity to Point [P1] and Point [P2] and hence are not consistent across a wide
 383 variety of perturbations. As such, it is imperative to specify the perturbation type to be used when
 384 reporting the fidelity scores from these fidelity metrics. The perturbation type can be determined
 385 using domain-related theoretical reasoning and/or empirically. Further, we also observed that, out
 386 of the perturbation types considered, Gaussian Blur was relatively consistent compared to other
 387 perturbation types as it had higher scores for both conformity measures.
 388



412 Figure 2: Distribution of *DROP* scores across all models, perturbation types using pixel-wise per-
 413 turbation scheme for Imagenette Dataset
 414
 415

416 6 CONCLUSION AND FUTURE WORK

417 The prediction probabilities of DL models vary significantly for the same image and model across
 418 the perturbations we considered. This results in a violation of the two assumptions of fidelity met-
 419 rics: a drop in the output probability upon perturbing an image and no variance in PIR for different
 420 perturbations. Hence, fidelity metrics that rely on the mentioned assumptions become unreliable.
 421 Prior work has primarily framed unreliability at the metric level and attempted to estimate inconsis-
 422 tency, but our results show that it is fundamentally a model–perturbation interaction phenomenon.
 423 Beyond computing *DROP* and *PSim*, we used KDE-based tail-probability estimates to quantify how
 424 often these metrics approach 1; the consistently low probabilities provide robust evidence that both
 425 metrics fall well below the ideal value of 1. We therefore recommend using our proposed metrics as
 426 a precondition before any saliency-fidelity analysis, and consistently reporting the exact perturbation
 427 type and parameters alongside fidelity scores. Additionally, for fidelity metrics to be meaningful,
 428 the perturbation must be theoretically justified rather than setting pixels to arbitrary values, such as
 429 0 or 1. Among the perturbations we tested, Gaussian blur exhibited comparatively consistent be-
 430 havior. Future work should account for the violations discussed in this work while devising fidelity
 431 metrics and extend this analysis to adversarially trained models and additional architectures using
 432 our conformity measures.
 433



475 Figure 3: Distribution of pairwise $PSim$ scores for all perturbation types for Inception V3 model
476 using pixel-wise perturbation scheme on Imagenette Dataset

486 REFERENCES
487

488 David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
489 neural networks. *Advances in neural information processing systems*, 31, 2018.

490 Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik,
491 Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Benjamins, et al.
492 Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges to-
493 ward responsible ai. *Information fusion*, 58:82–115, 2020.

494 Marcelo Bertalmio, Andrea L Bertozzi, and Guillermo Sapiro. Navier-stokes, fluid dynamics, and
495 image and video inpainting. In *Proceedings of the 2001 IEEE Computer Society Conference on*
496 *Computer Vision and Pattern Recognition. CVPR 2001*, volume 1, pp. I–I. IEEE, 2001.

497

498 Revoti Prasad Bora, Philipp Terhörst, Raymond Veldhuis, Raghavendra Ramachandra, and Ki-
499 ran Raja. Fries: Framework for inconsistency estimation of saliency metrics. *Pattern*
500 *Recognition*, 171:112136, 2026. ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2025.112136>. URL <https://www.sciencedirect.com/science/article/pii/S0031320325007964>.

501

502

503 David A Broniatowski et al. Psychological foundations of explainability and interpretability in
504 artificial intelligence. *NIST, Tech. Rep*, 2021.

505

506 Arif Cam, Michael Chui, and Bryce Hall. Global ai survey: Ai proves its worth, but few scale
507 impact. 2019.

508

509 Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
510 cam++: Generalized gradient-based visual explanations for deep convolutional networks. In *2018*
511 *IEEE winter conference on applications of computer vision (WACV)*, pp. 839–847. IEEE, 2018.

512

513 François Chollet. Xception: Deep learning with depthwise separable convolutions. In *Proceedings*
514 *of the IEEE conference on computer vision and pattern recognition*, pp. 1251–1258, 2017.

515

516 Marija Cubric. Drivers, barriers and social considerations for ai adoption in business and manage-
517 ment: A tertiary study. *Technology in Society*, 62:101257, 2020.

518

519 Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras. Robustness
520 (python library), 2019. URL <https://github.com/MadryLab/robustness>.

521

522 Jeremy Howard et.al. Imagenette. <https://github.com/fastai/imagenette>.

523

524 M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
525 PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. <http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html>.

526

527 H Güngör. Creating value with artificial intelligence: A multi-stakeholder perspective. *Journal of*
528 *Creating Value*, 6(1):72–85, 2020.

529

530 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
531 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
532 770–778, 2016.

533

534 Alon Jacovi, Ana Marasović, Tim Miller, and Yoav Goldberg. Formalizing trust in artificial intel-
535 ligence: Prerequisites, causes and goals of human trust in ai. In *Proceedings of the 2021 ACM*
536 *conference on fairness, accountability, and transparency*, pp. 624–635, 2021.

537

538 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances*
539 *in neural information processing systems*, 30, 2017.

540

541 Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *IEEE*
542 *Conference on Computer Vision and Pattern Recognition*, 2012.

543

544 Harish Guruprasad Ramaswamy et al. Ablation-cam: Visual explanations for deep convolutional
545 network via gradient-free localization. In *Proceedings of the IEEE/CVF Winter Conference on*
546 *Applications of Computer Vision*, pp. 983–991, 2020.

540 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
 541 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference*
 542 *on knowledge discovery and data mining*, pp. 1135–1144, 2016.

543

544 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
 545 use interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.

546 Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert
 547 Müller. Evaluating the visualization of what a deep neural network has learned. *IEEE transactions*
 548 *on neural networks and learning systems*, 28(11):2660–2673, 2016.

549

550 David W Scott. *Multivariate density estimation: theory, practice, and visualization*. John Wiley &
 551 Sons, 2015.

552 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 553 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 554 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 555 2017.

556 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
 557 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on*
 558 *computer vision and pattern recognition*, pp. 2818–2826, 2016.

559

560 Alexandru Telea. An image inpainting technique based on the fast marching method. *Journal of*
 561 *graphics tools*, 9(1):23–34, 2004.

562 Richard Tomsett, Dan Harborne, Supriyo Chakraborty, Prudhvi Gurram, and Alun Preece. Sanity
 563 checks for saliency metrics. In *Proceedings of the AAAI conference on artificial intelligence*,
 564 volume 34, pp. 6021–6029, 2020.

565

566 Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking. In *Proc. of*
 567 *10th ECCV*, pp. 705–718. Springer, 2008.

568

569 Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and
 570 Xia Hu. Score-cam: Score-weighted visual explanations for convolutional neural networks. In
 571 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*,
 572 pp. 24–25, 2020.

573

574 William Webber, Alistair Moffat, and Justin Zobel. A similarity measure for indefinite rankings.
 575 *ACM Transactions on Information Systems (TOIS)*, 28(4):1–38, 2010.

576

577 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
 578 features for discriminative localization. In *Proceedings of the IEEE conference on computer*
 579 *vision and pattern recognition*, pp. 2921–2929, 2016.

580

581

582

583

584

585

586

587

588

589

590

591

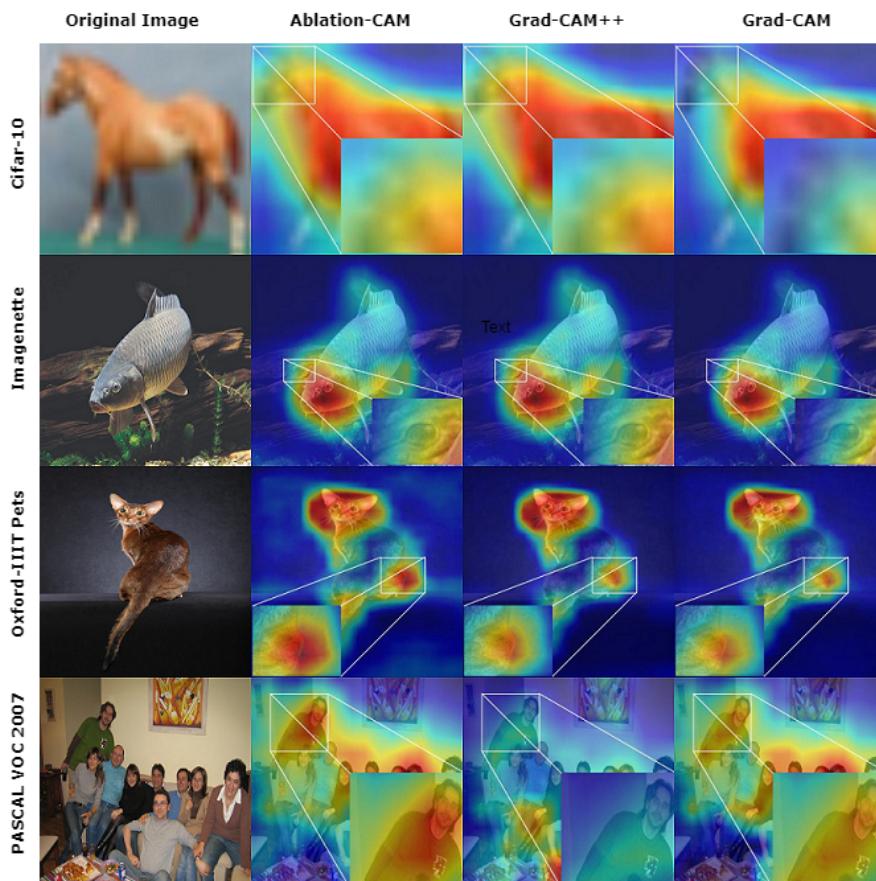
592

593

594 **A APPENDIX: EXAMINING WHY PERTURBATION-BASED FIDELITY**
 595 **METRICS ARE INCONSISTENT**
 596

597 **S1 CAM DISAGREEMENTS**
 598

600 The illustration in Figure S1 presents saliency maps on randomly sampled images from the CIFAR-
 601 10, Imagenette, Oxford-IIIT Pets and PASCAL VOC 2007 datasets for pretrained ResNet50 model
 602 (imagenet weights) using AblationCAM Ramaswamy et al. (2020), GradCAM++ Chattopadhyay
 603 et al. (2018) and GradCAM Selvaraju et al. (2017). It can be noted from Figure S1, the saliency maps
 604 generated using AblationCAM and GradCAM++ show a high degree of agreement, highlighting the
 605 importance of the body, neck, and head of the horse for an image from Cifar-10 dataset (1st row).
 606 However, the saliency map generated using GradCAM completely misses highlighting the head of
 607 the horse. In the 2nd row it can be observed that AblationCAM and GradCAM++ highlight not only
 608 the head of the fish but also other areas in the background as compared to GradCAM. Similarly,
 609 the saliency maps generated for the Oxford-IIIT Pets dataset image (3rd row) and PASCAL VOC 2007
 610 image (4th row) show high inconsistency.



639 Figure S1: Disagreement between saliency maps generated using Ablation-CAM, Grad-CAM++
 640 and Grad-CAM for ResNet50 model with imagenet weights. Each row represents a randomly chosen
 641 image from CIFAR-10, Imagenette, Oxford-IIIT Pets and PASCAL VOC 2007 datasets and their
 642 corresponding saliency maps
 643

648 **S2 PIXEL/SIGMENT SELECTION AND RANKING**
649650 Selection of pixels/segments for our analysis is another critical aspect for our analysis. As the
651 size of the input images are typically 299×299 , 224×224 or 600×600 pixels for models, it is
652 computationally expensive to conduct an analysis on all pixels. We therefore conduct our analysis
653 on a subset of pixels which were randomly selected (based on Tomsett et al. (2020) and Bora et al.
654 (2026)). Our approach to randomly select the pixels can be further justified from a theoretical
655 perspective as explained below.656 Let Q be a set of pixels such that $|Q| > 1$. We can define a hypothetical function $\psi(Q)$ that measures
657 the importance of Q for the decision-making process of the model as:

658
$$\psi : Q \rightarrow \{1, 2, \dots, |Q|\} \subseteq \mathbb{R}$$

659

660 where \mathbb{R} is the set of all real numbers and a greater value of $\psi(Q)$ indicates greater importance.661 We can define an image \mathbb{A} as an ordered set of pixels sorted according to their importance using
662 function ψ .
663

664
$$\mathbb{A} = \{a_1^u, a_2^v, a_3^w, \dots, a_i^z\} \quad (8)$$

665

666 where, R_0 is the ordered set of pixels. $1 \rightarrow i$ are importance for the pixel index/ids $u \rightarrow z$ generates
667 by ψ i.e. $\psi(a^u) = 1$, $\psi(a^v) = 2 \dots \psi(a^z) = i$ etc, where a greater value of $\psi(Q)$ indicates greater
668 importance of the pixel set Q in the image.669 Let us assume that \mathbb{B} is a randomly selected subset of pixels. Thus \mathbb{B} can be defined as below:

670
$$\mathbb{B} = \{a_1^x, a_2^y, a_3^z, \dots, a_j^n\} \subseteq \mathbb{A} \quad \text{s.t.} \quad (9)$$

671
$$a^e \neq a^f \quad \text{for} \quad e \neq f$$

672

673 where e and f are two random pixels. Let us assume that the order of pixels in \mathbb{A} and \mathbb{B} are different.
674 This implies according to induction:

675
$$\begin{aligned} \exists \quad (a^p, a^q) \in \mathbb{B} \quad \text{s.t.} \\ 676 \quad \psi(a^p) > \psi(a^q) \in \mathbb{B} \quad \wedge \quad \psi(a^p) < \psi(a^q) \in \mathbb{A} \end{aligned} \quad (10)$$

677

678 However, $\psi(a^p) > \psi(a^q) \in \mathbb{B}$ and $\psi(a^p) < \psi(a^q) \in \mathbb{A}$ cannot be true at the same time, we
679 can by mathematical induction deduce that $\nexists (a^p, a^q) \in \mathbb{B}$ that satisfy both conditions given in
680 Equation (10). As such the order of pixels as per their importance are same in both \mathbb{A} and \mathbb{B} .
681 We leverage this property that the order of importance of the pixels do not change even in randomly
682 selected (without repetition) subsets for our analysis. If the selected pixels have the same importance
683 ranks, their relative orders are not considered to affect the rank correlation.685 **S3 DROP PLOTS FOR ALL DATASETS**
686687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

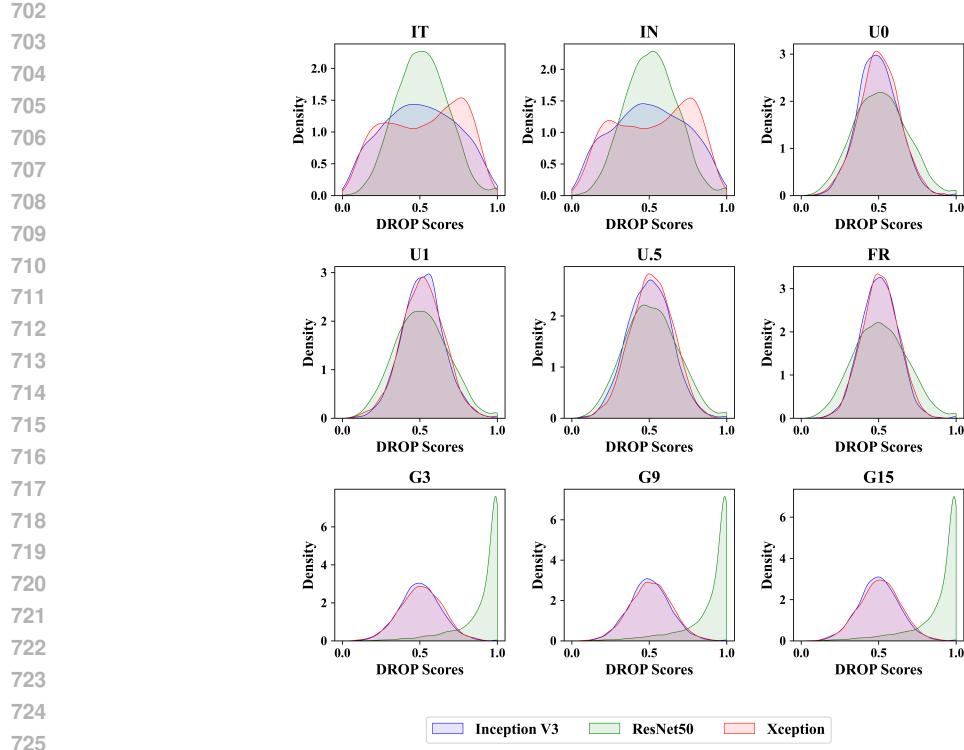


Figure S2: Distribution of *DROP* scores across all models, perturbation types using pixel-wise perturbation scheme for Imagenette Dataset

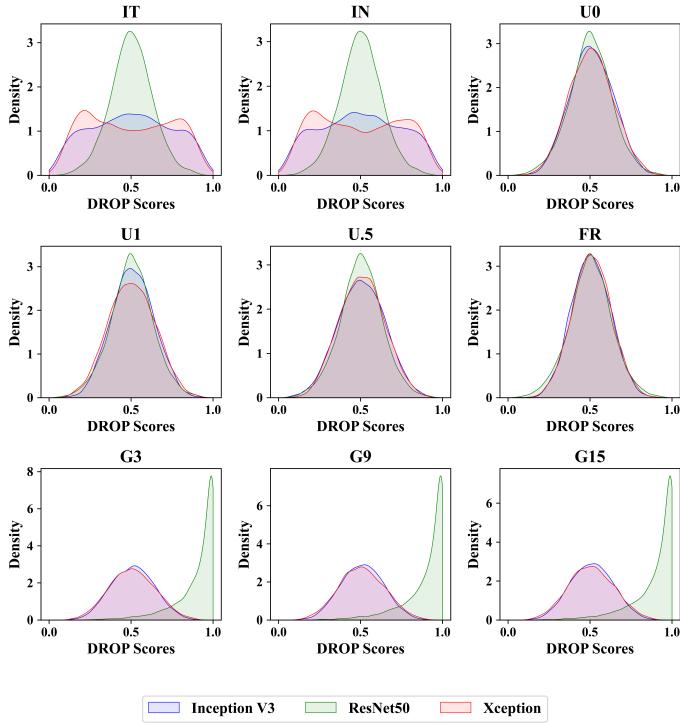


Figure S3: Distribution of *DROP* scores across all models, perturbation types using pixel-wise perturbation scheme for Oxford-IIIT Pets Dataset

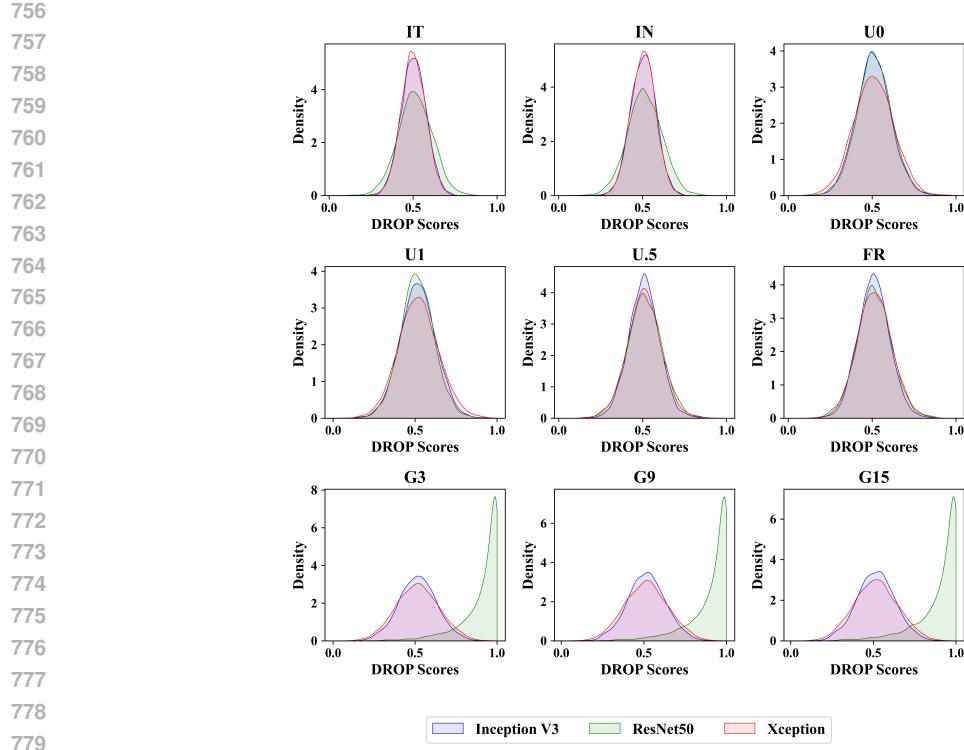


Figure S4: Distribution of *DROP* scores across all models, perturbation types using pixel-wise perturbation scheme for PASCAL VOC 2007 Dataset

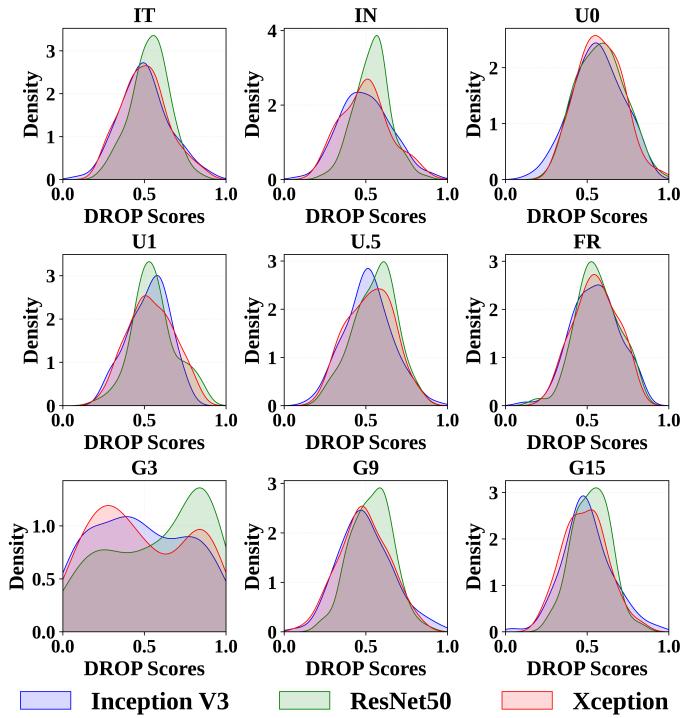


Figure S5: Distribution of *DROP* scores across all models, perturbation types using segment-wise perturbation scheme for Imagenette Dataset

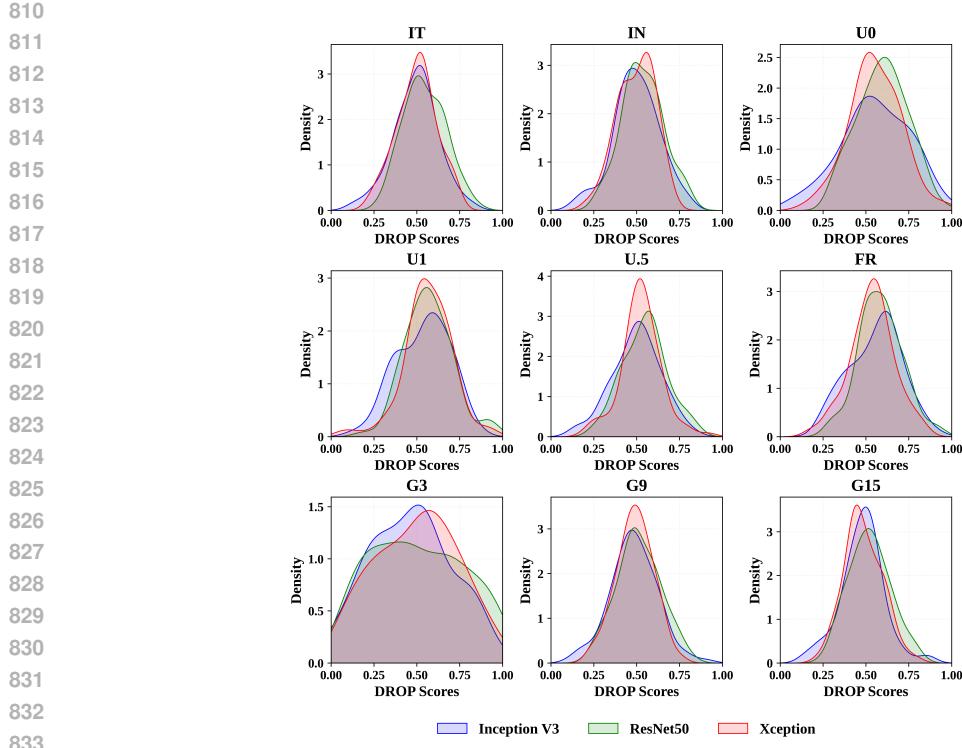


Figure S6: Distribution of *DROP* scores for all perturbations for Oxford-IIIT Pets Dataset for segment-wise perturbation scheme.

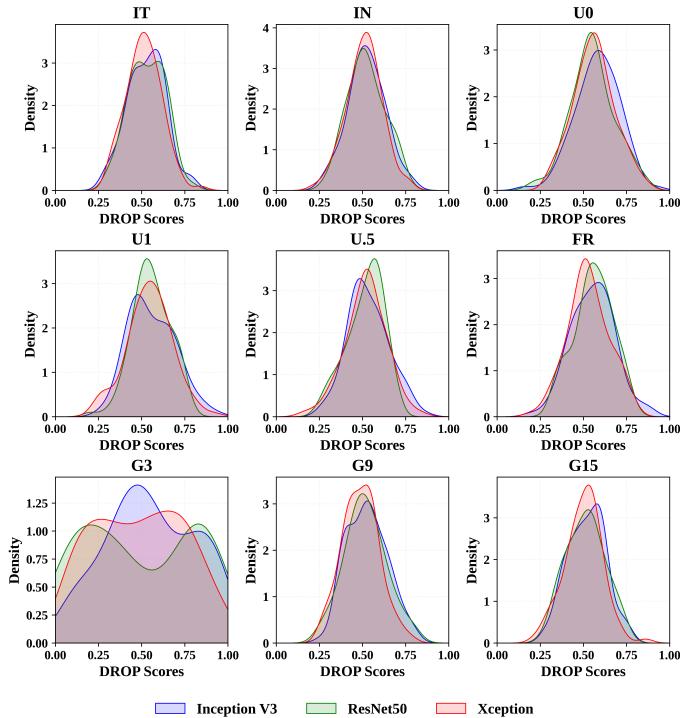
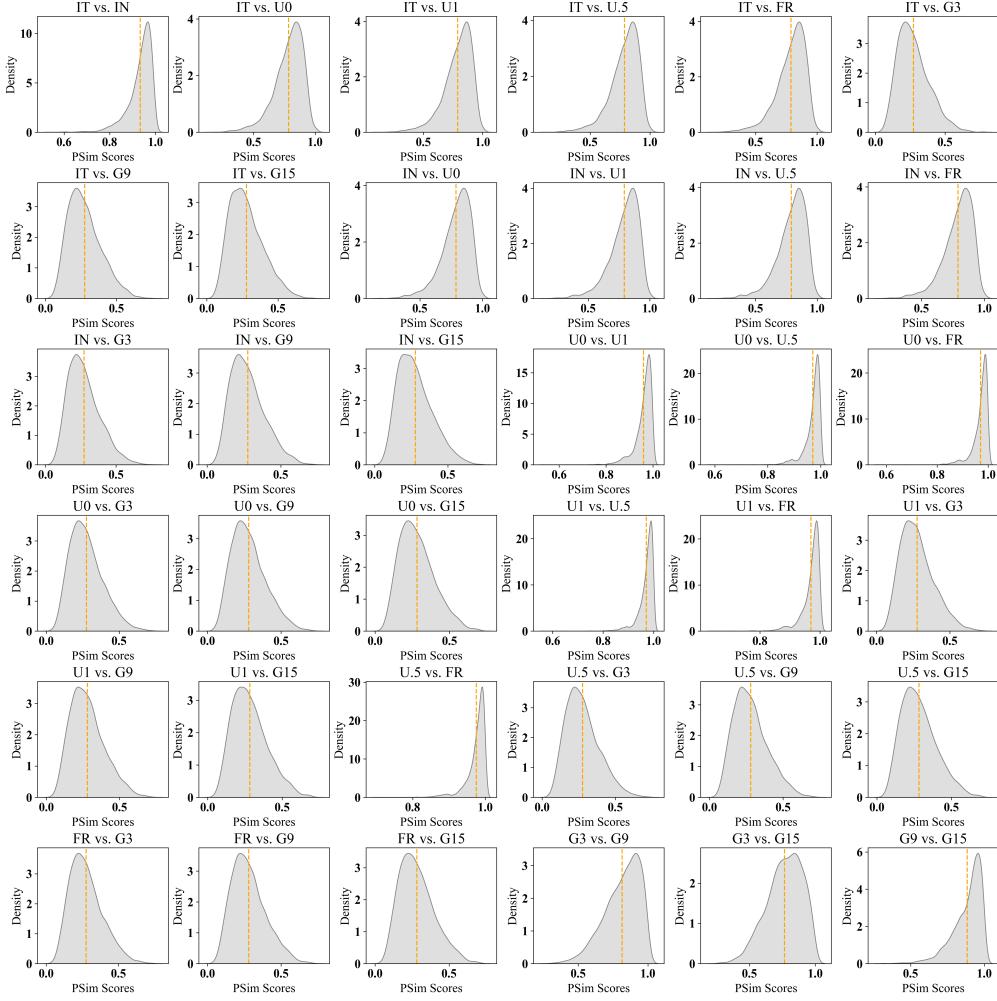


Figure S7: Distribution of *DROP* scores for all perturbations for PASCAL VOC Dataset for segment-wise perturbation scheme.

864 S4 PAIRWISE PSIM PLOTS FOR ALL DATASETS
865899 Figure S8: Distribution of pairwise $PSim$ scores for all perturbations for Resnet50 model on Imagenette Dataset for pixel-wise perturbation scheme.
900901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

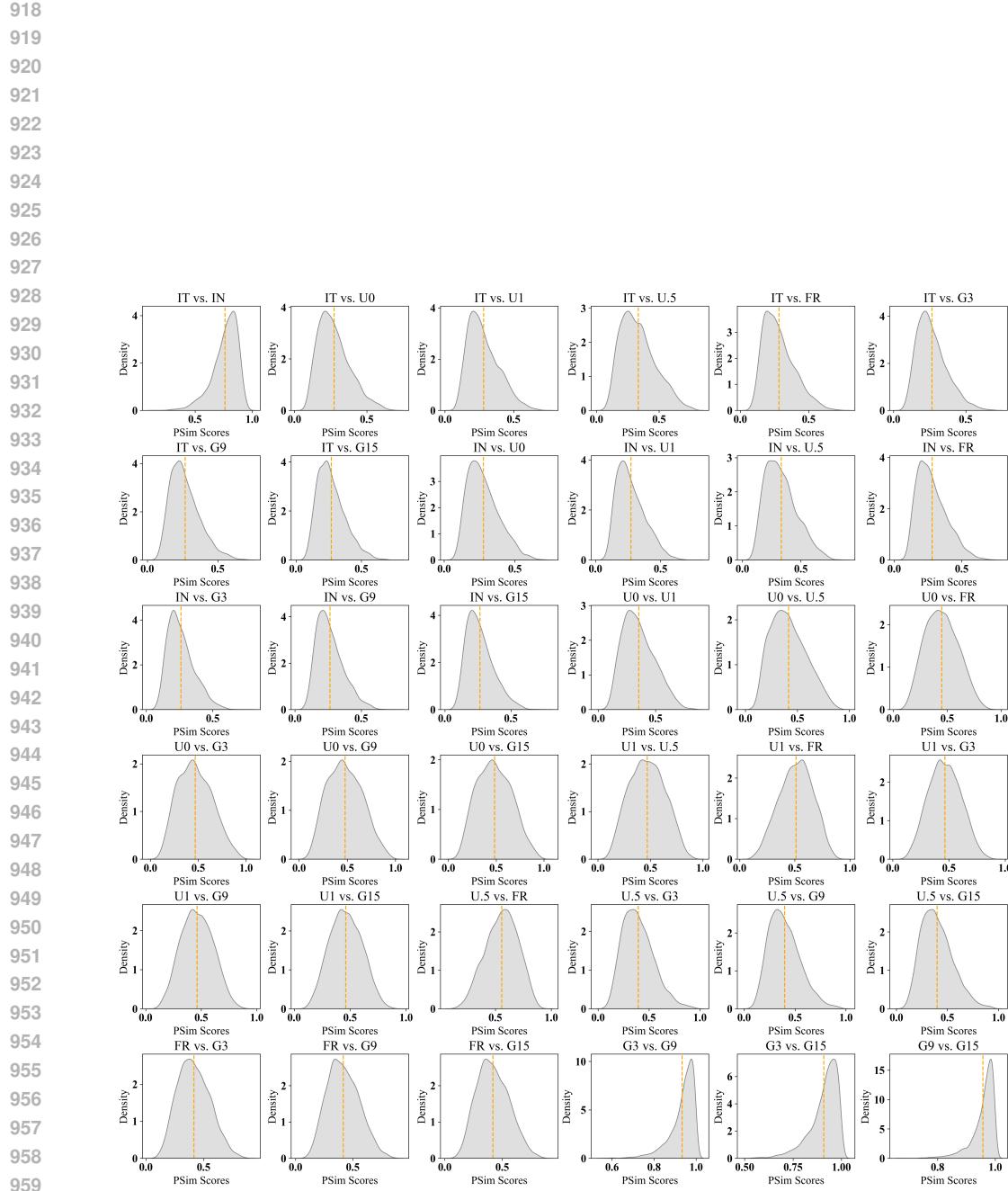


Figure S9: Distribution of pairwise *PSim* scores for all perturbations for Xception model on ImageNet dataset for pixel-wise perturbation scheme.

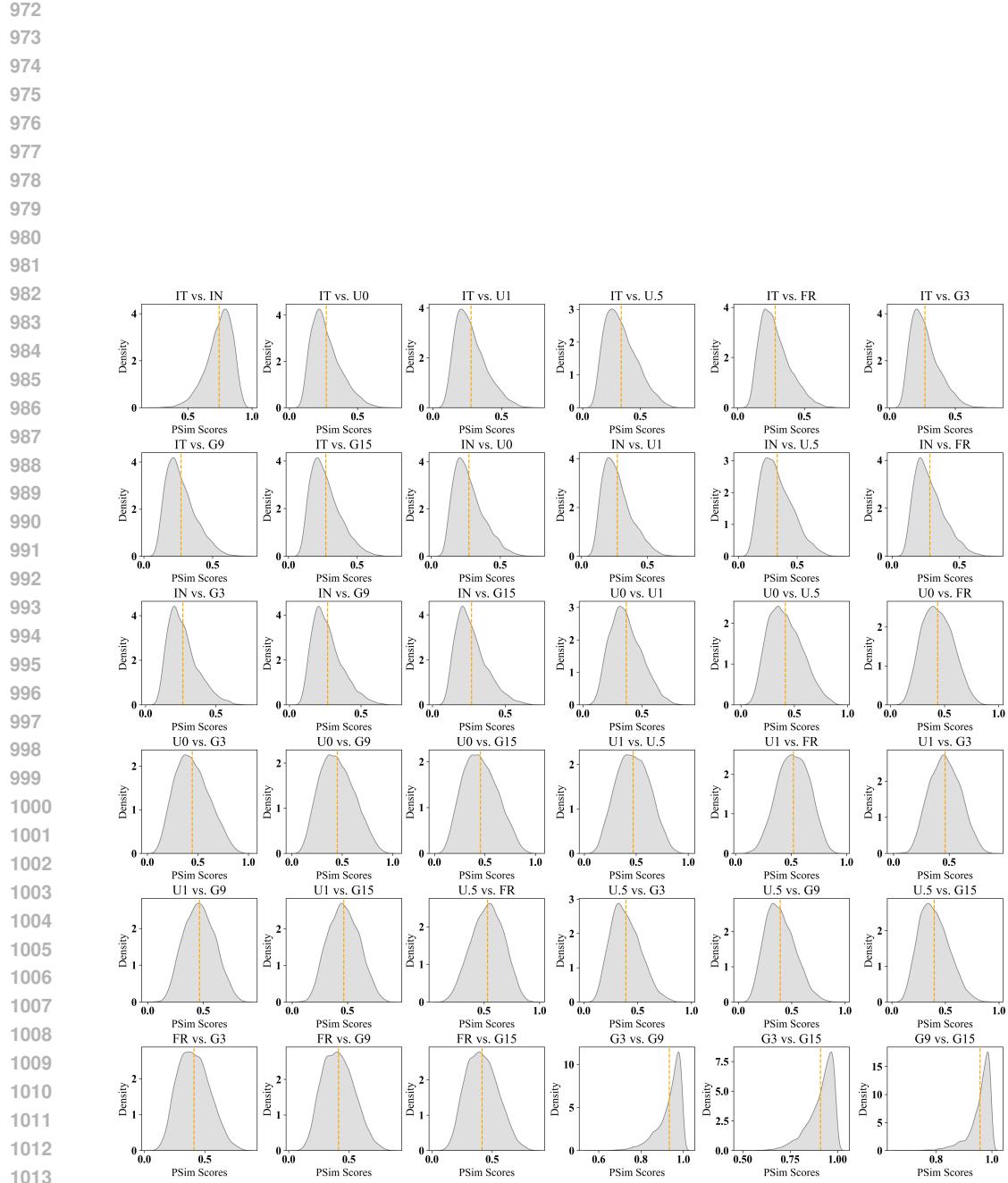


Figure S10: Distribution of pairwise $PSim$ scores for all perturbations for Inception V3 model on Oxford-IIIT Pets Dataset for pixel-wise perturbation scheme.

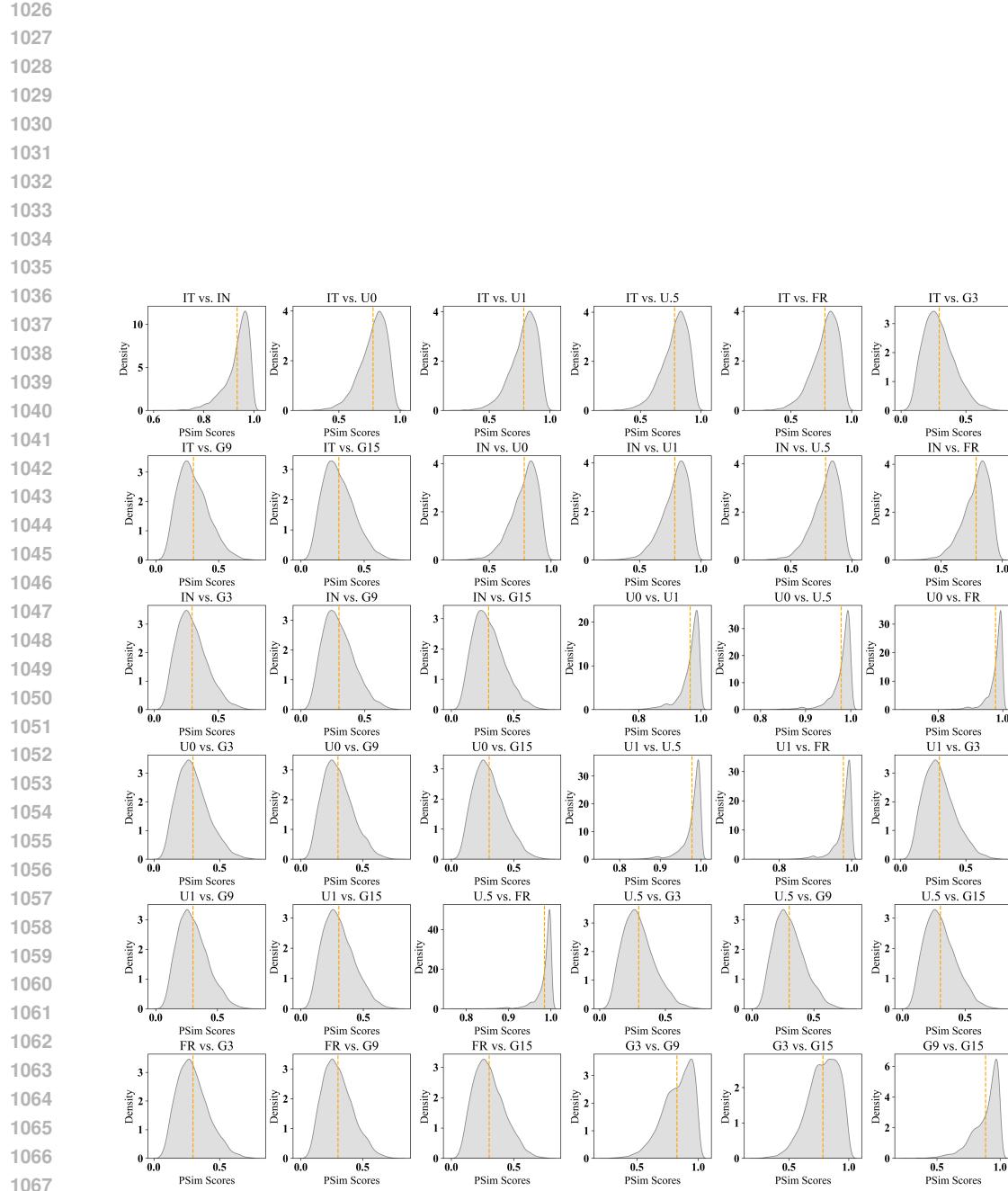


Figure S11: Distribution of pairwise $PSim$ scores for all perturbations for Resnet50 model on Oxford-IIIT Pets Dataset for pixel-wise perturbation scheme.

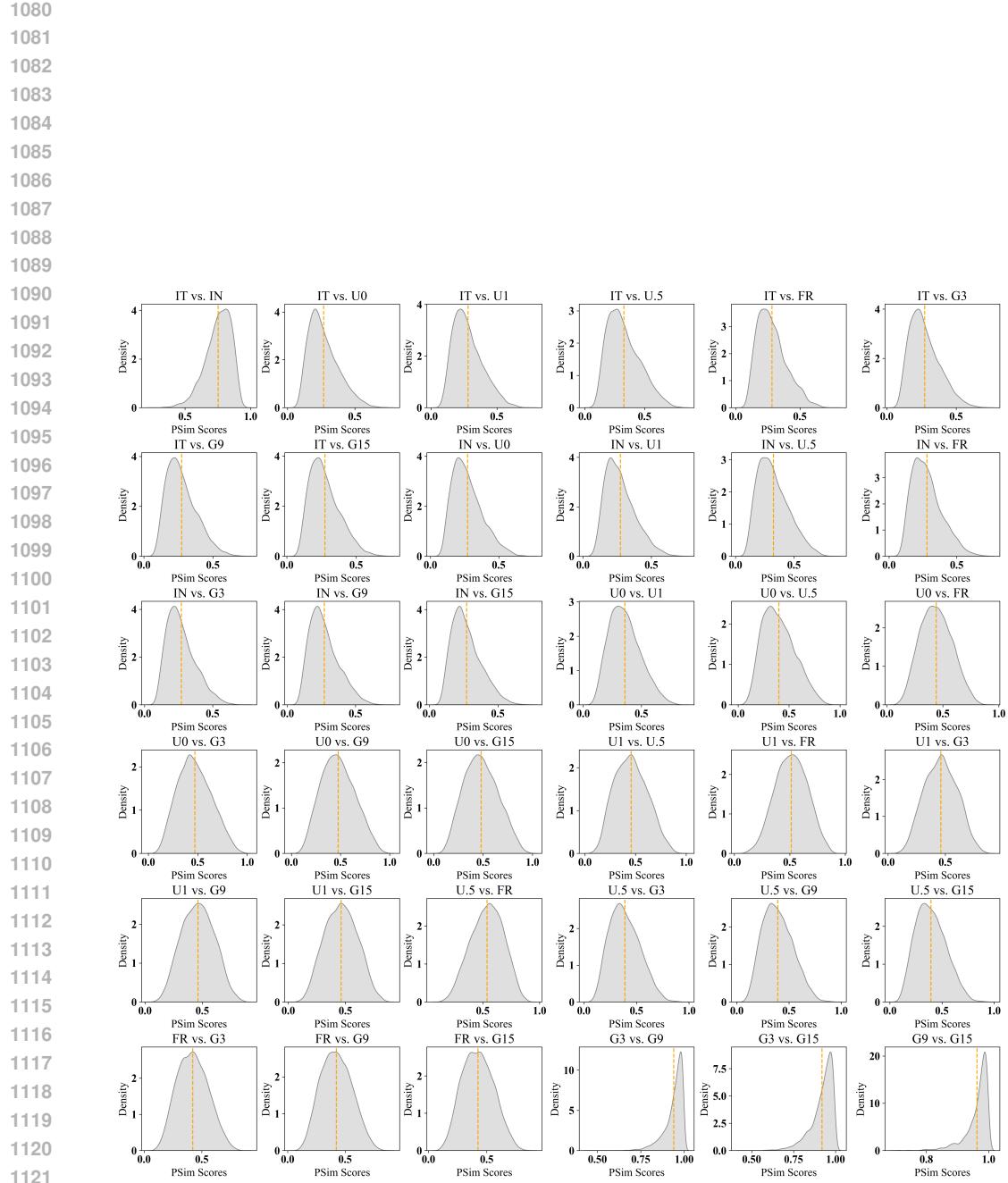


Figure S12: Distribution of pairwise $PSim$ scores for all perturbations for Xception model on Oxford-IIIT Pets Dataset for pixel-wise perturbation scheme.

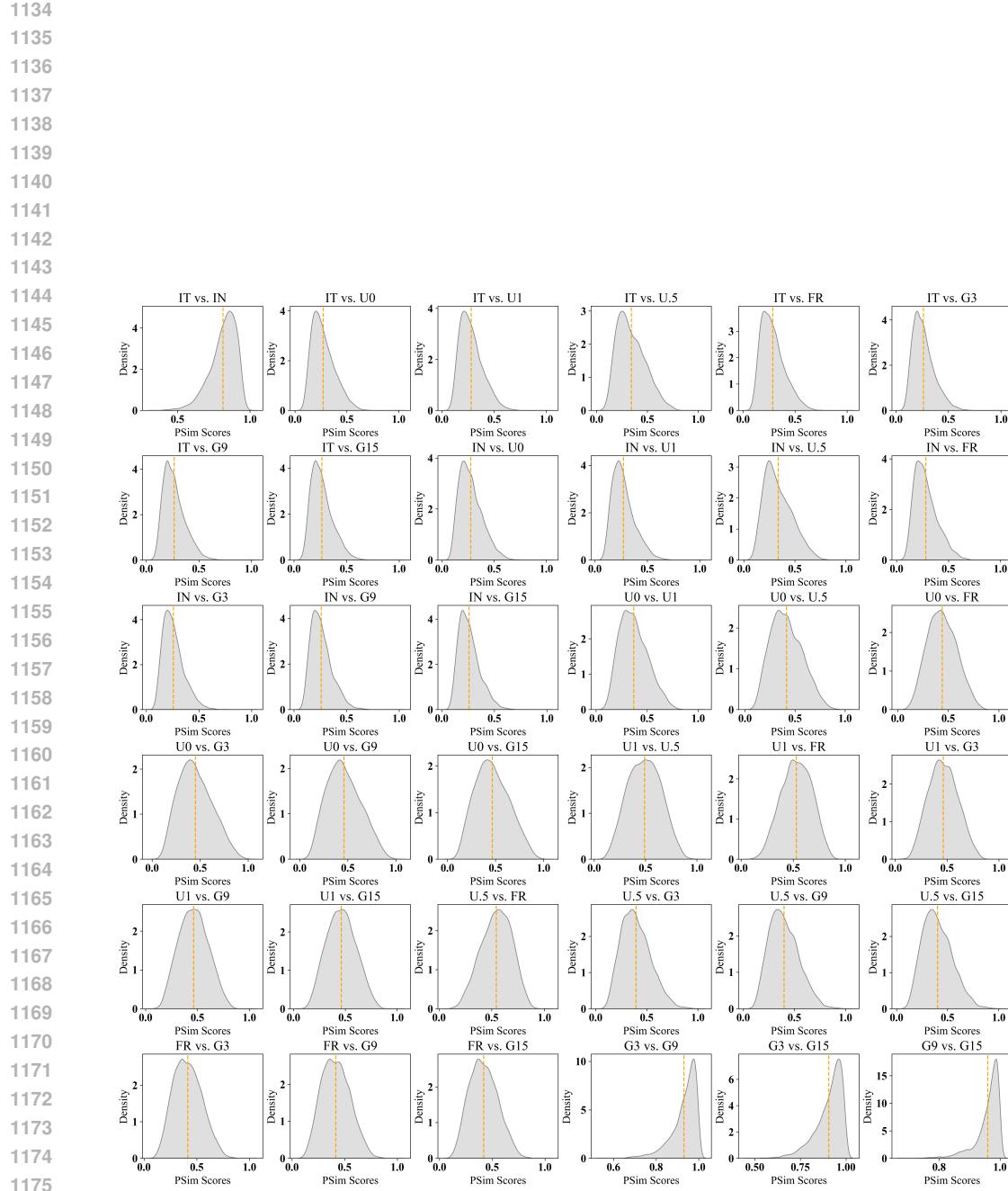


Figure S13: Distribution of pairwise $PSim$ scores for all perturbations for Inception V3 model on PASCAL VOC Dataset for pixel-wise perturbation scheme.

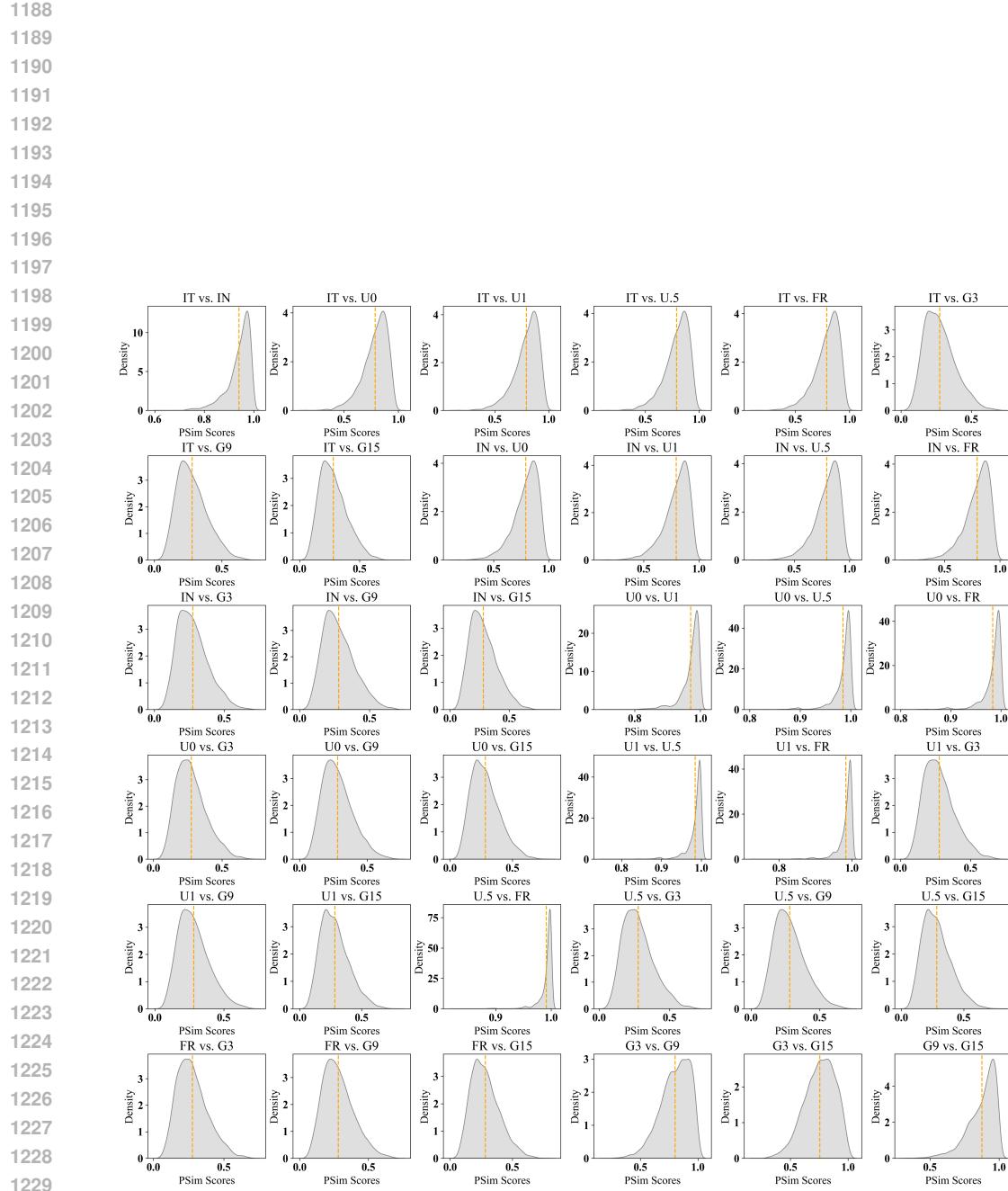


Figure S14: Distribution of pairwise $PSim$ scores for all perturbations for Resnet50 model on PASCAL VOC Dataset for pixel-wise perturbation scheme.

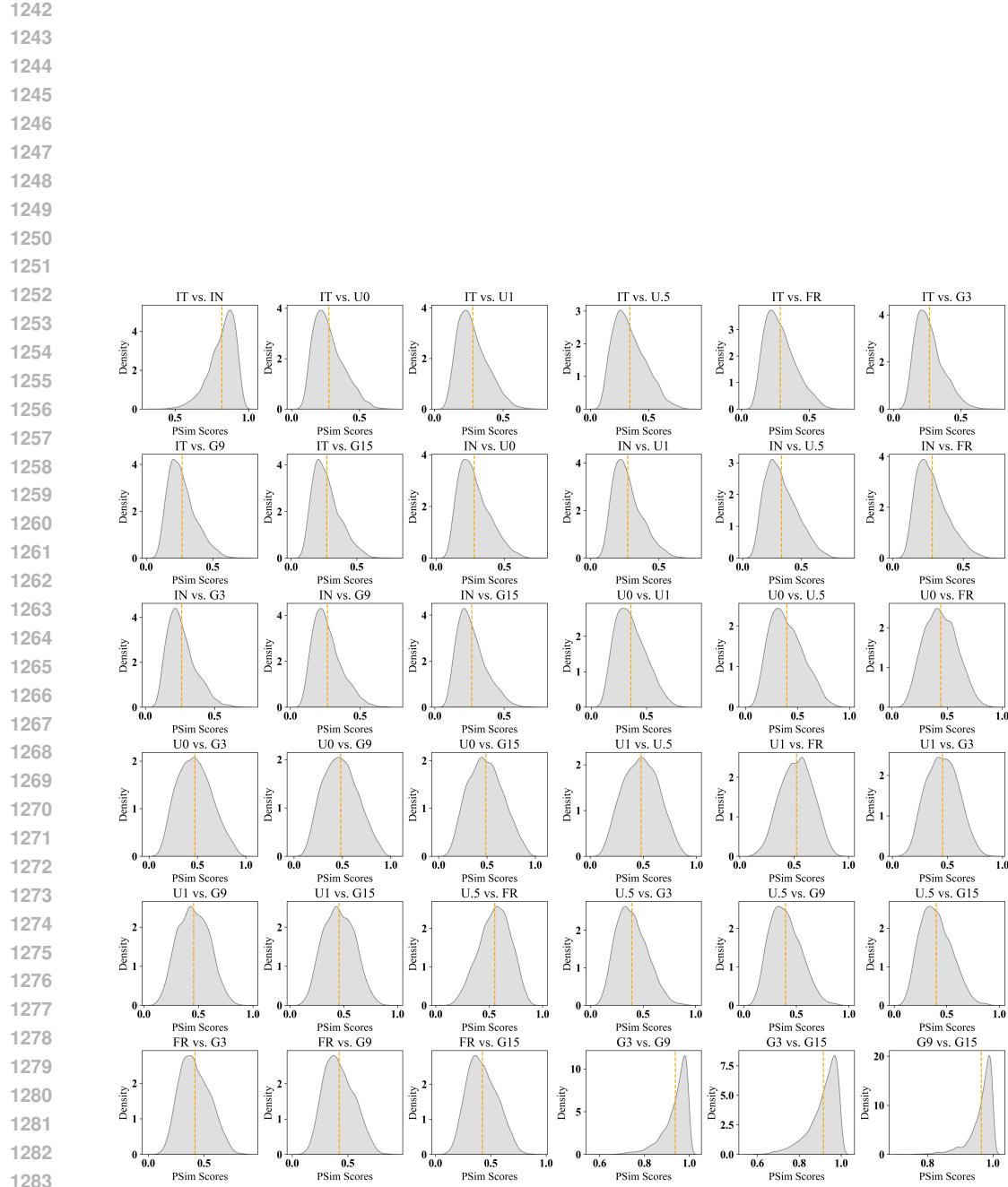


Figure S15: Distribution of pairwise $PSim$ scores for all perturbations for Xception model on PASCAL VOC Dataset for pixel-wise perturbation scheme.

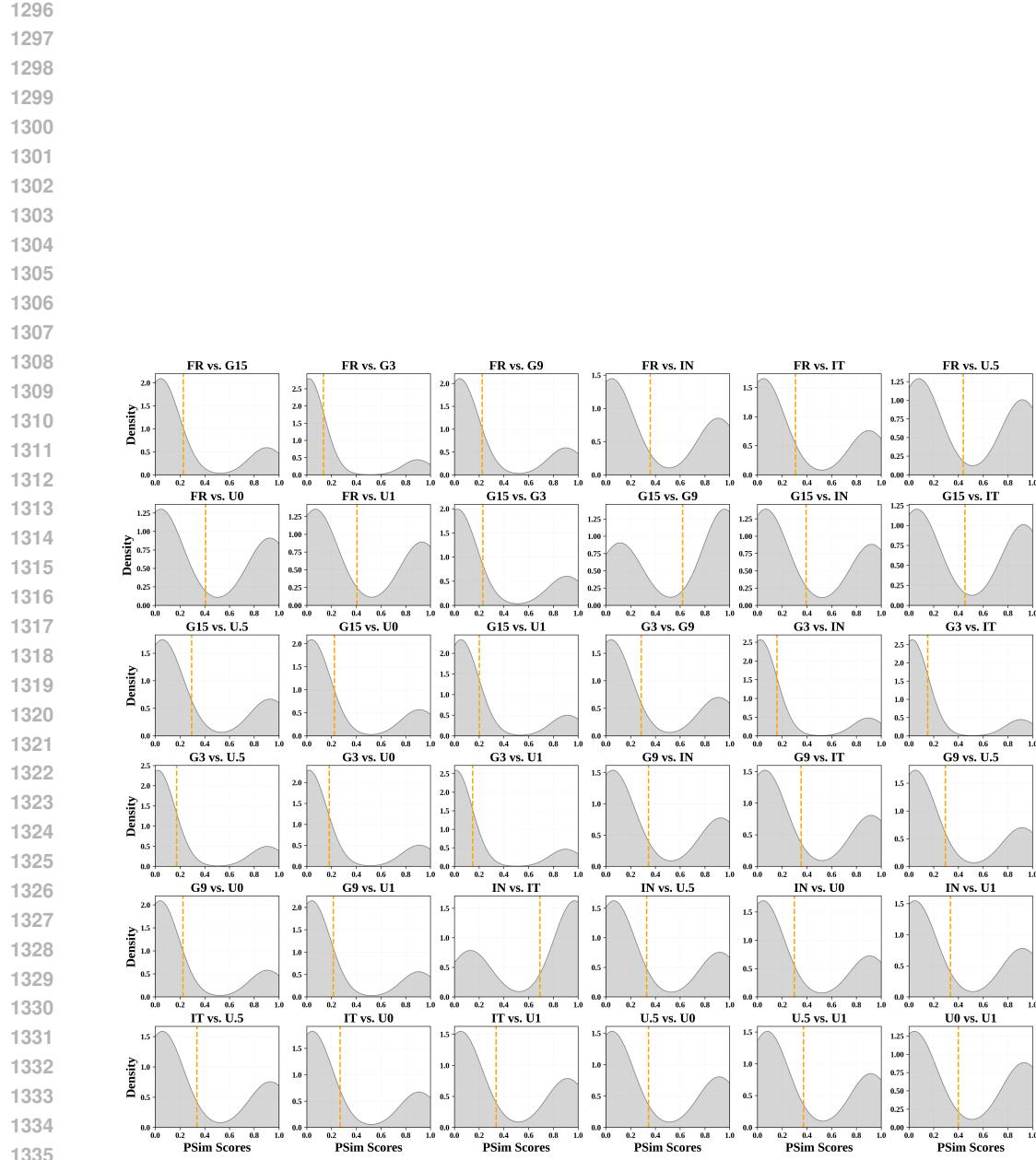


Figure S16: Distribution of pairwise $PSim$ scores for all perturbations for Inception V3 model on Oxford-IIITH Dataset for segment-wise perturbation scheme.

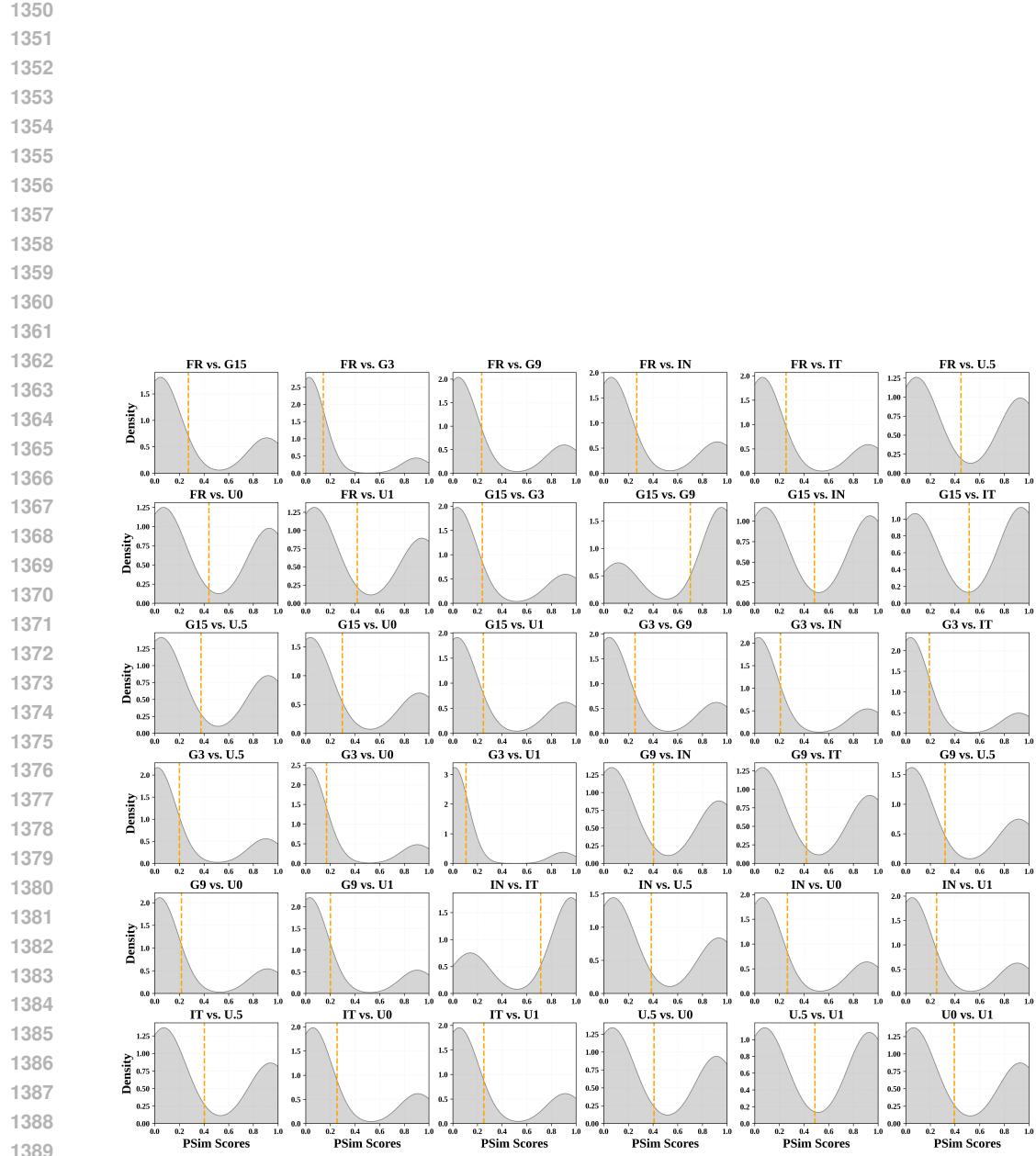


Figure S17: Distribution of pairwise $PSim$ scores for all perturbations for Resnet50 model on Oxford-IIITH Dataset for segment-wise perturbation scheme.

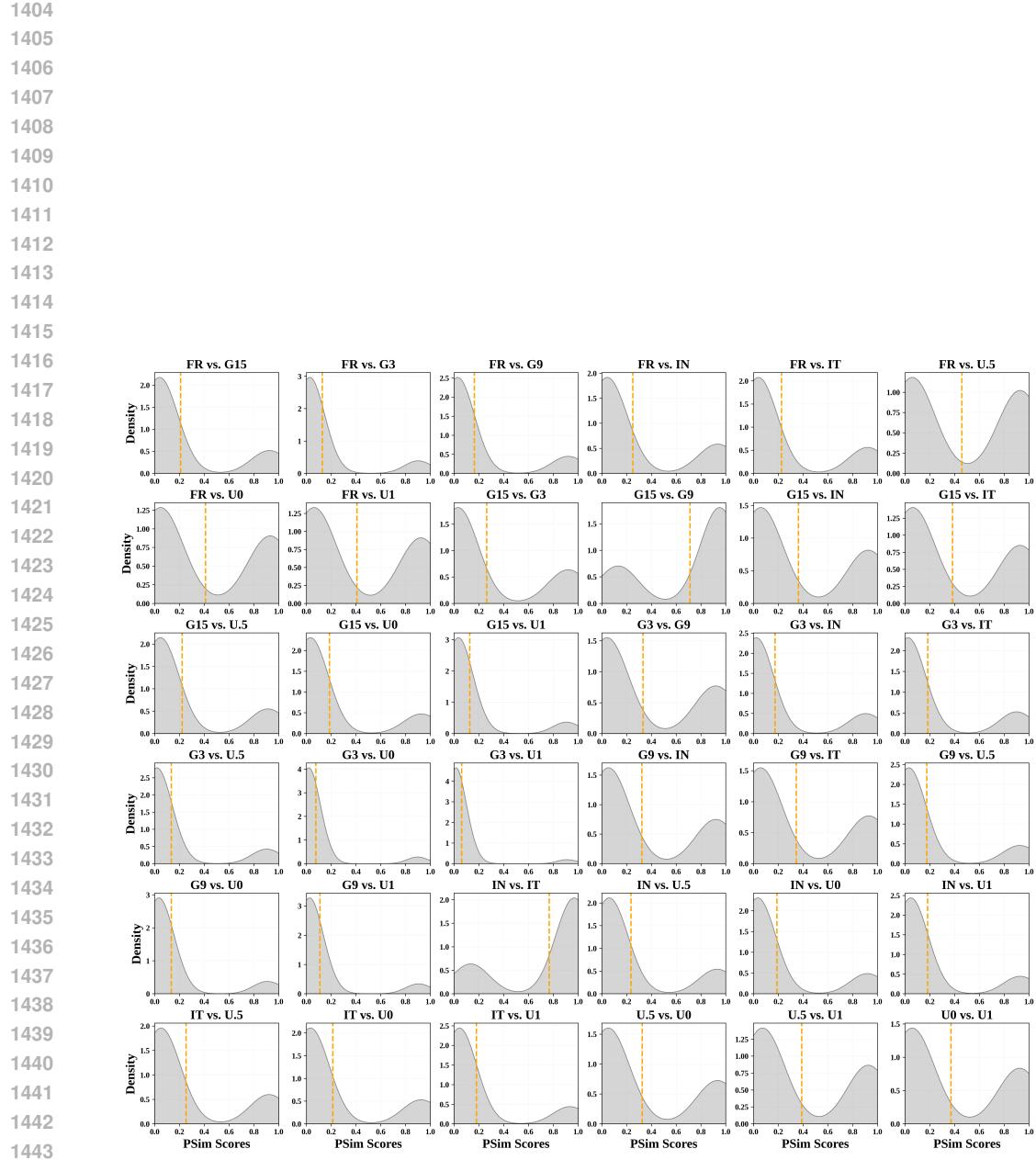


Figure S18: Distribution of pairwise $PSim$ scores for all perturbations for Xception model on Oxford-IIITH Dataset for segment-wise perturbation scheme.

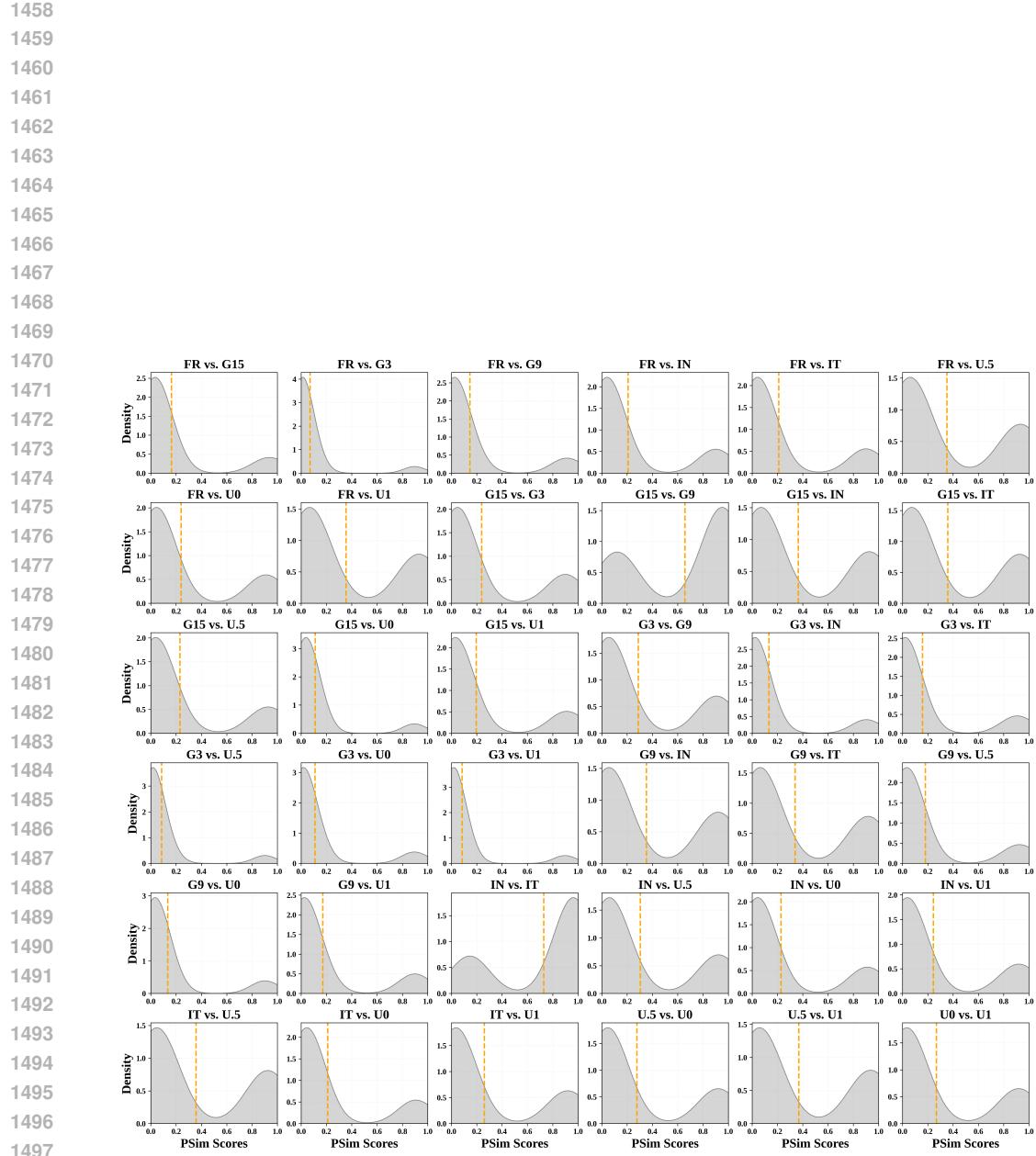


Figure S19: Distribution of pairwise $PSim$ scores for all perturbations for Inception V3 model on Oxford-IIITH Dataset for segment-wise perturbation scheme.

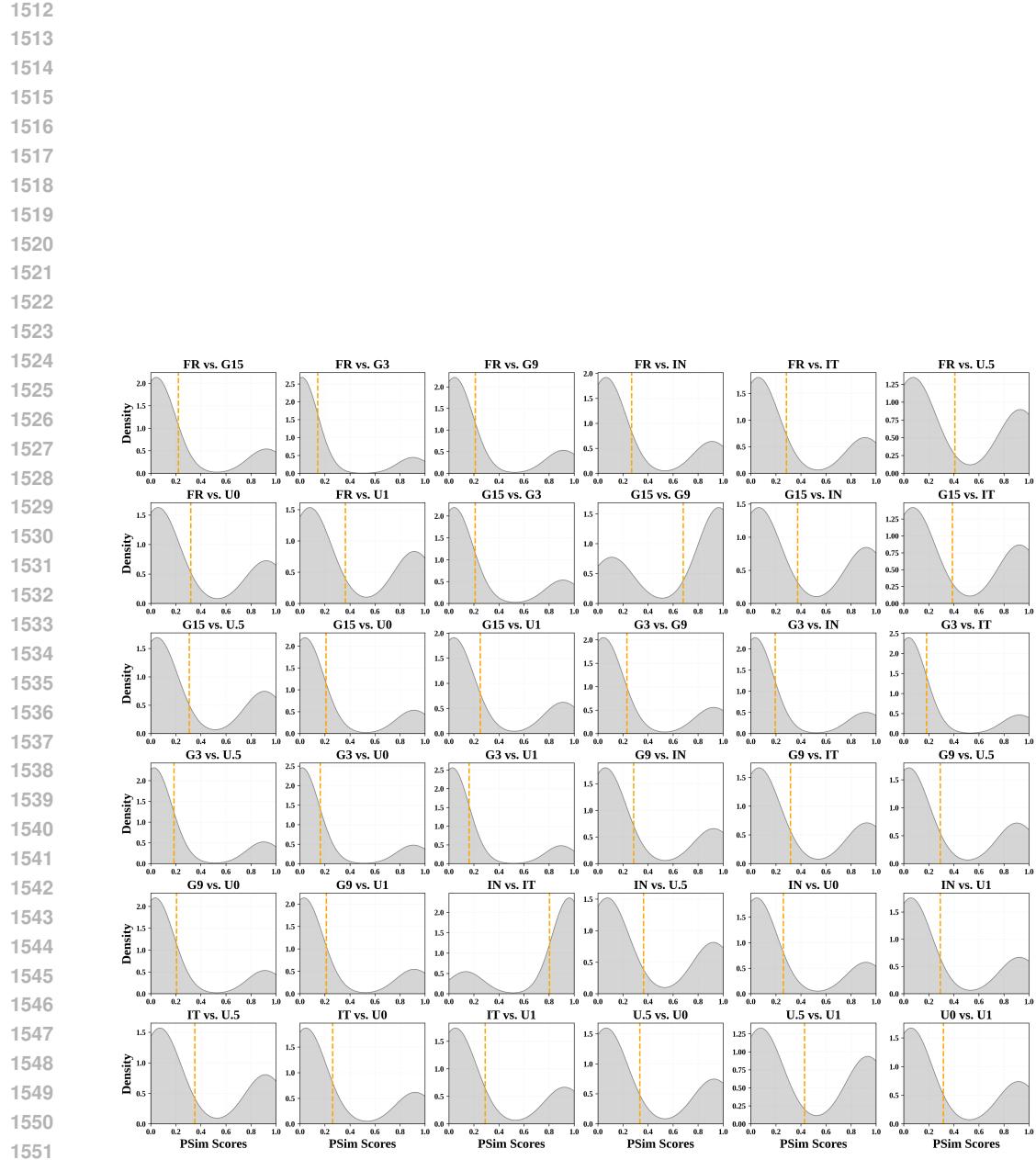


Figure S20: Distribution of pairwise $PSim$ scores for all perturbations for Resnet50 model on Oxford-IIITH Dataset for segment-wise perturbation scheme.

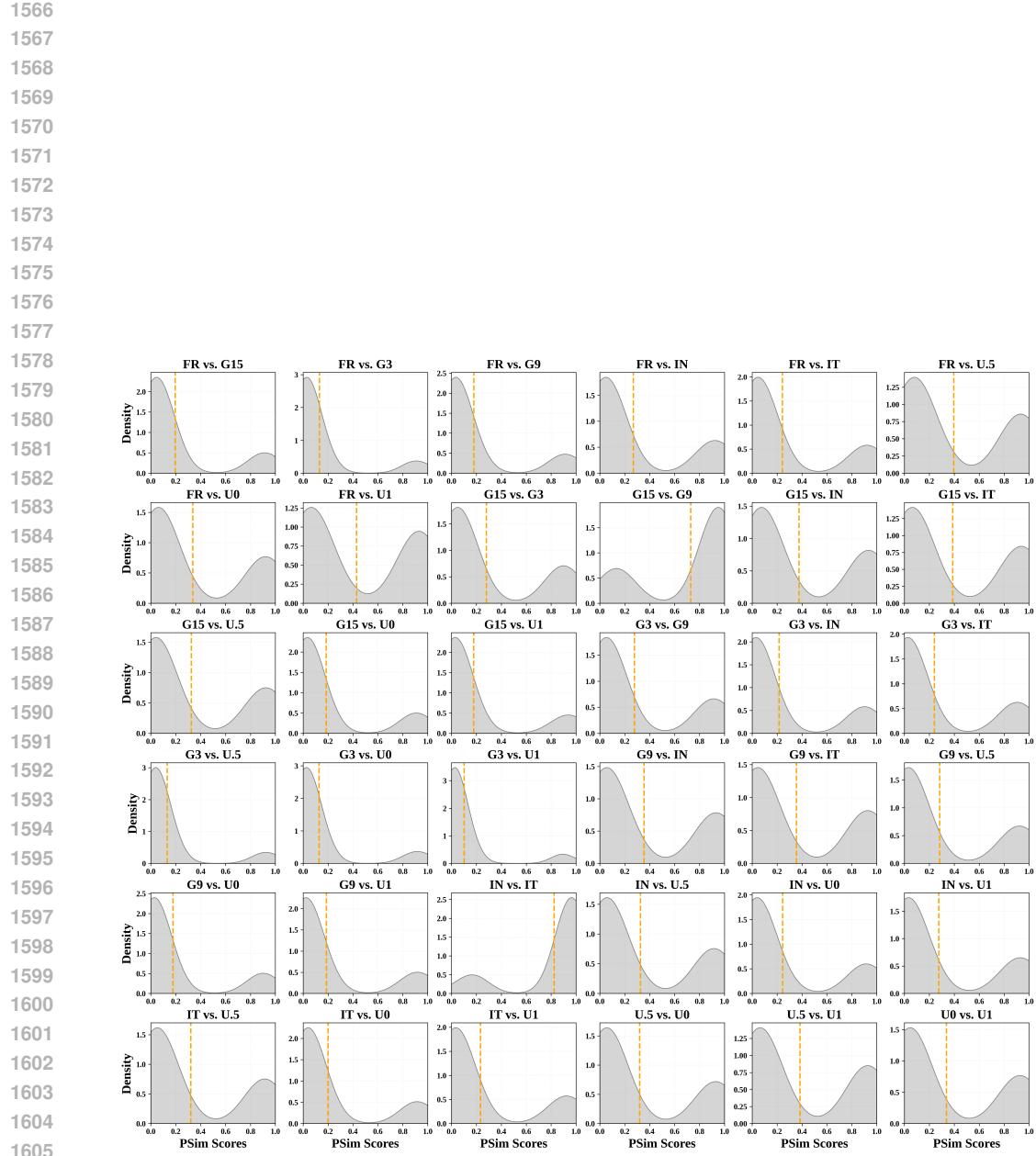


Figure S21: Distribution of pairwise $PSim$ scores for all perturbations for Xception model on Oxford-IIITH Dataset for segment-wise perturbation scheme.

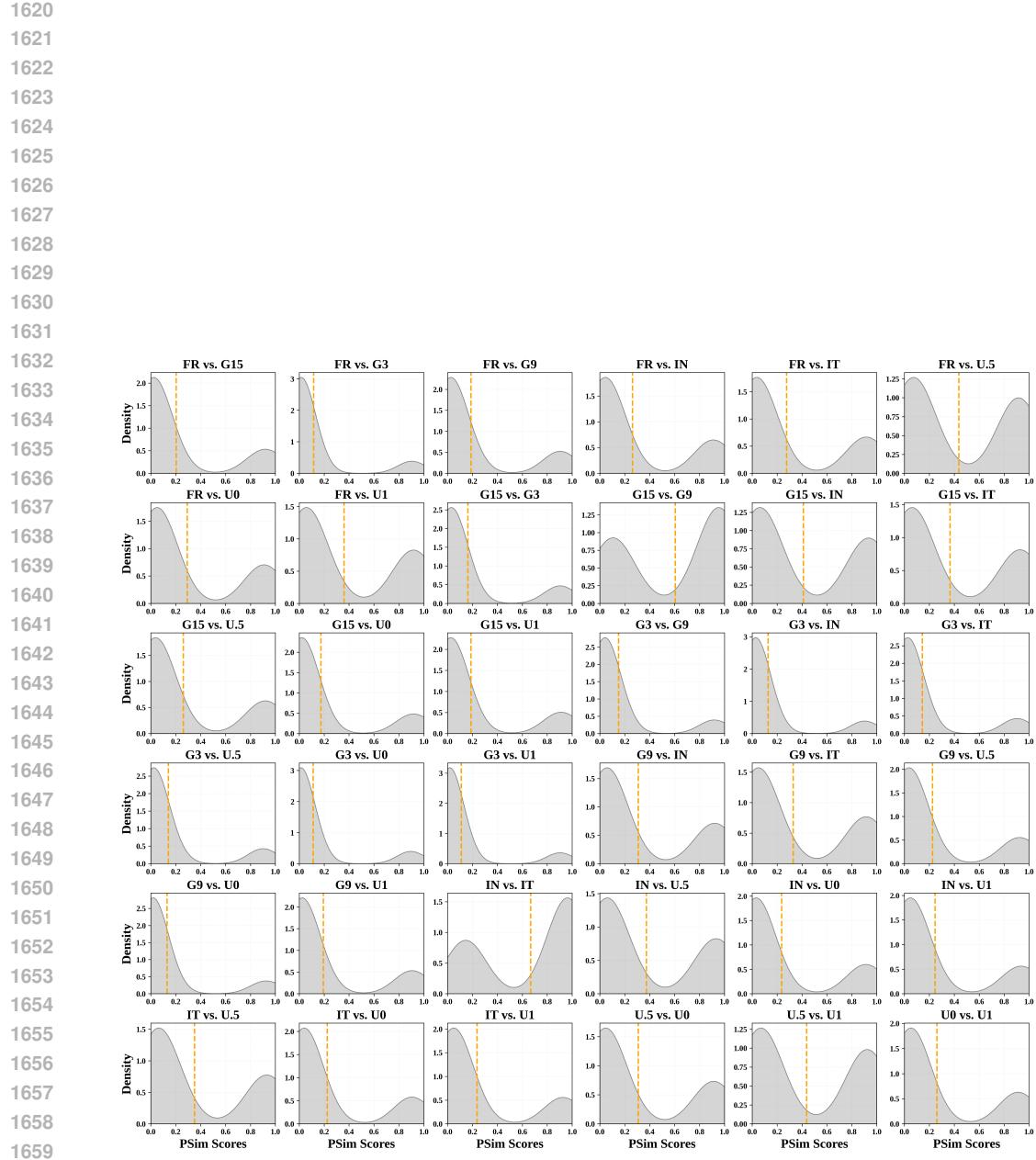


Figure S22: Distribution of pairwise $PSim$ scores for all perturbations for Inception V3 model on PASCAL VOC Dataset for segment-wise perturbation scheme.

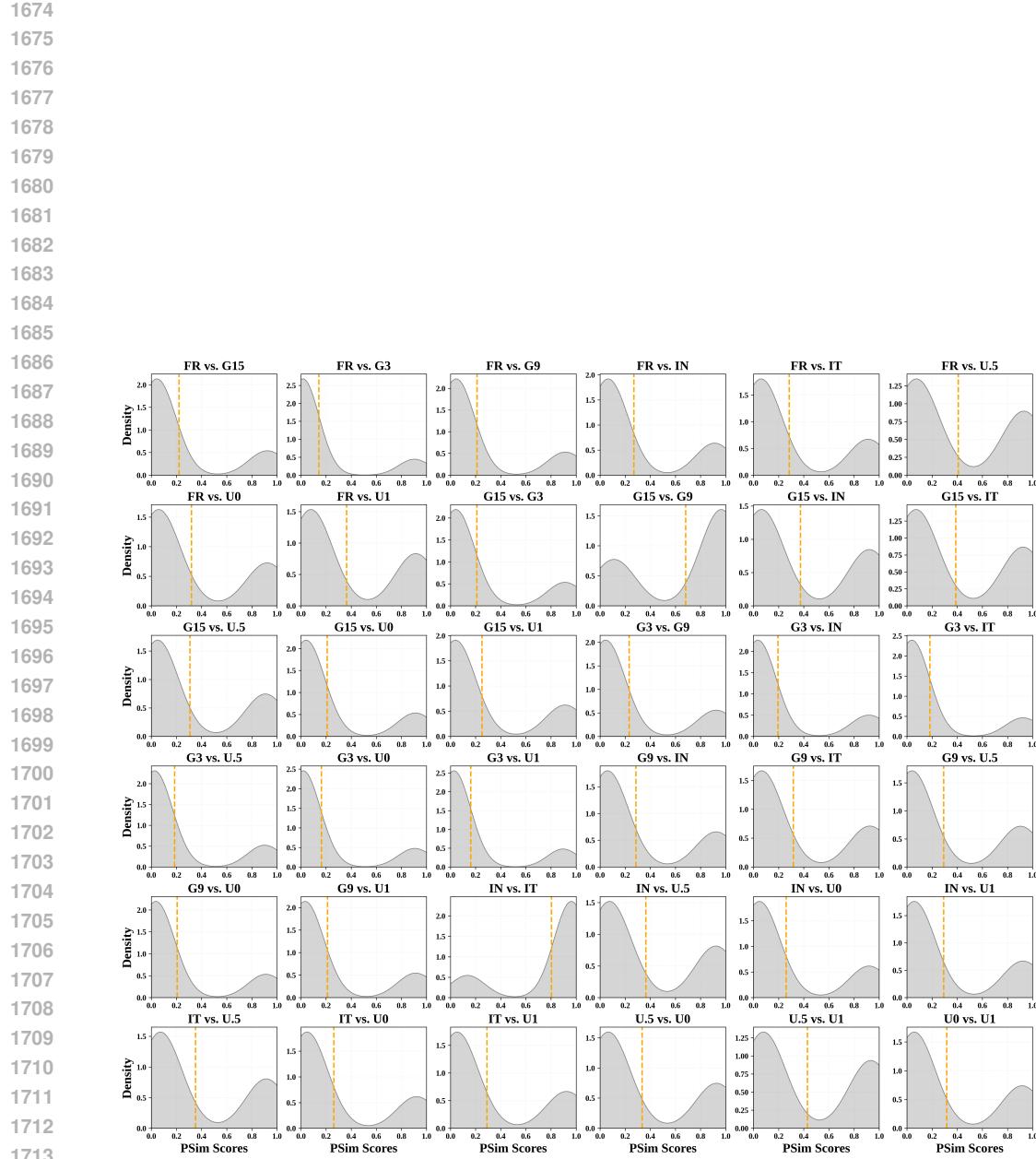


Figure S23: Distribution of pairwise $PSim$ scores for all perturbations for Resnet50 model on PASCAL VOC Dataset for segment-wise perturbation scheme.

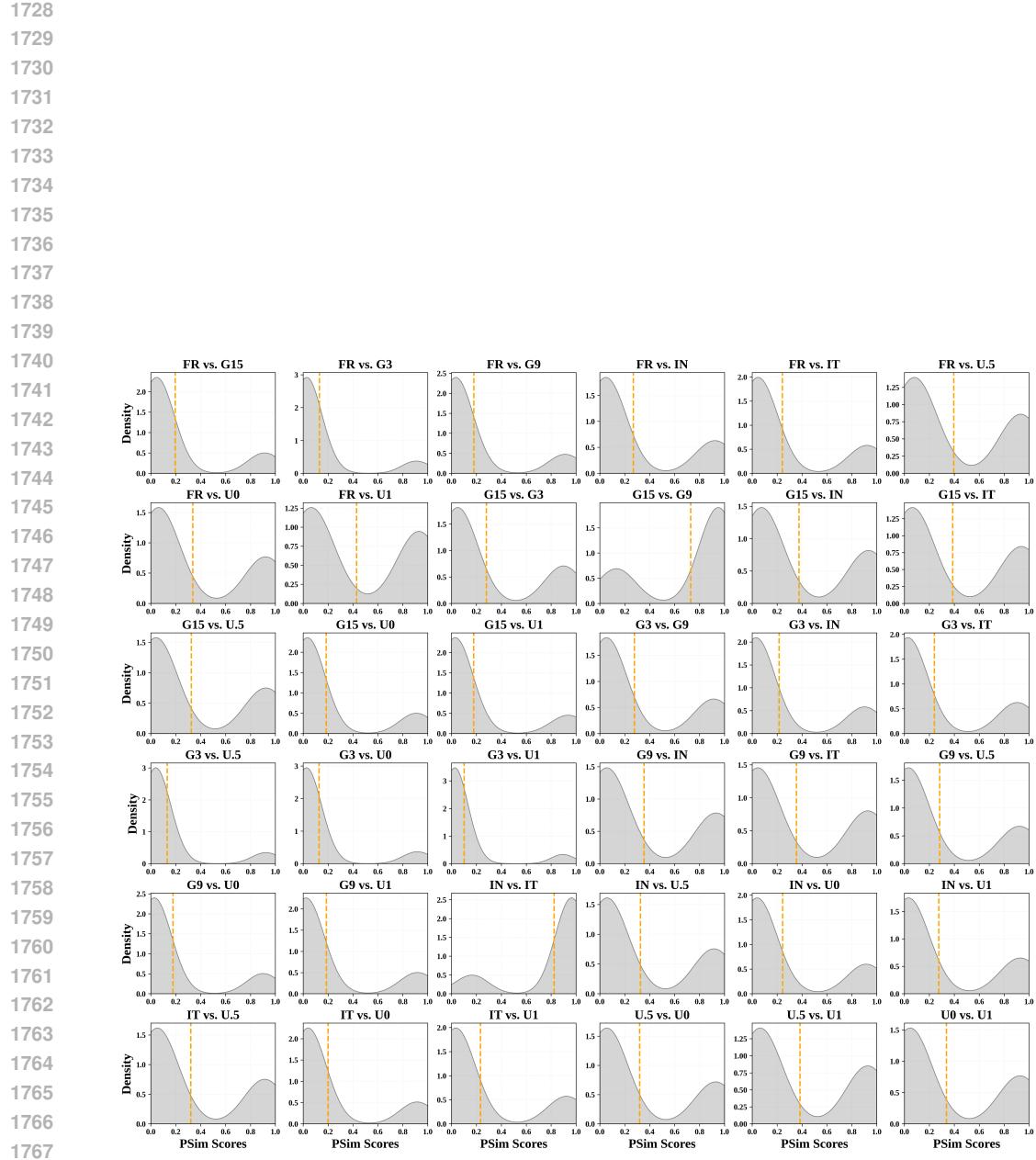


Figure S24: Distribution of pairwise $PSim$ scores for all perturbations for Xception model on PASCAL VOC Dataset for segment-wise perturbation scheme.

S5 PROBABILITY ESTIMATION OF DROP FOR HIGHER CONFORMITY

Imagenette - Inception V3										Imagenette - Xception										Imagenette - ResNet50										
Perturbation Types					Cutoff Values					Perturbation Types					Cutoff Values					Perturbation Types					Cutoff Values					
IT	0.043	0.023	0.0099	0.0031	U0	0.036	0.017	0.0056	0.0011	IT	0.042	0.042	0.018	0.0062	0.0015	IT	0.015	0.0051	0.001	8.6e-05	IT	0.017	0.0067	0.0018	0.00018	IT	0.015	0.0051	0.001	8.6e-05
IN	0.04	0.022	0.011	0.0037	U0	0.077	0.034	0.011	0.0024	IN	0.042	0.035	0.019	0.0092	0.0017	IN	0.084	0.041	0.017	0.0062	IN	0.017	0.0067	0.0018	0.00018	IN	0.017	0.0067	0.0018	0.00018
U1	0.0095	0.0015	0.00012	4.1e-06	U1	0.064	0.035	0.019	0.0022	U1	0.04	0.012	0.0022	0.00022	0.0022	U1	0.065	0.029	0.0079	0.0012	U1	0.065	0.029	0.0079	0.0012	U1	0.065	0.029	0.0079	0.0012
U5	0.039	0.019	0.0084	0.0032	FR	0.052	0.017	0.0034	0.00036	U5	0.031	0.012	0.0028	0.0004	0.0004	FR	0.032	0.008	0.0012	9.6e-05	U5	0.032	0.011	0.0023	0.00025	U5	0.032	0.011	0.0023	0.00025
G3	0.19	0.15	0.11	0.073	G3	0.22	0.17	0.12	0.082	G3	0.22	0.13	0.065	0.033	0.0053	FR	0.044	0.012	0.0016	0.00011	G3	0.31	0.24	0.18	0.12	FR	0.044	0.012	0.0016	0.00011
G9	0.055	0.034	0.019	0.0093	G9	0.027	0.011	0.003	0.00053	G9	0.02	0.0083	0.0021	0.00027	0.00027	G15	0.15	0.056	0.0015	7.7e-05	G9	0.024	0.011	0.0039	0.00082	G9	0.024	0.011	0.0039	0.00082
G15	0.041	0.024	0.013	0.0058	0.8	0.85	0.9	0.95	0.8	0.85	0.9	0.95	0.8	0.85	0.9	0.95	0.8	0.85	0.9	0.95	0.8	0.85	0.9	0.95	0.8	0.85	0.9	0.95		

Figure S25: Estimated probabilities of *DROP* scores for dataset, model, perturbation types using pixel-wise perturbation scheme for different cutoffs.

Imagenette - Inception V3										Imagenette - Xception										Imagenette - ResNet50										
Perturbation Types					Cutoff Values					Perturbation Types					Cutoff Values					Perturbation Types					Cutoff Values					
IT	0.043	0.023	0.0099	0.0031	U0	0.077	0.034	0.011	0.0024	IN	0.04	0.022	0.011	0.0037	0.0027	IT	0.015	0.0051	0.001	8.6e-05	IN	0.017	0.0067	0.0018	0.00018	IN	0.017	0.0067	0.0018	0.00018
IN	0.04	0.022	0.011	0.0037	U1	0.0095	0.0015	0.00012	4.1e-06	U0	0.064	0.035	0.019	0.0092	0.0017	U0	0.084	0.041	0.017	0.0062	U1	0.065	0.029	0.0079	0.0012	U1	0.065	0.029	0.0079	0.0012
U1	0.0095	0.0015	0.00012	4.1e-06	FR	0.052	0.017	0.0034	0.00036	U5	0.031	0.012	0.0028	0.0004	0.0004	FR	0.032	0.008	0.0012	9.6e-05	U5	0.032	0.011	0.0023	0.00025	U5	0.032	0.011	0.0023	0.00025
U5	0.039	0.019	0.0084	0.0032	G3	0.19	0.15	0.11	0.073	G3	0.22	0.17	0.12	0.082	0.0053	G3	0.31	0.24	0.18	0.12	G3	0.31	0.24	0.18	0.12	G3	0.31	0.24	0.18	0.12
G9	0.055	0.034	0.019	0.0093	G9	0.027	0.011	0.003	0.00053	G9	0.02	0.0083	0.0021	0.00027	0.00027	G15	0.15	0.056	0.0015	7.7e-05	G9	0.024	0.011	0.0039	0.00082	G9	0.024	0.011	0.0039	0.00082
G15	0.041	0.024	0.013	0.0058	0.8	0.85	0.9	0.95	0.8	0.85	0.9	0.95	0.8	0.85	0.9	0.95	0.8	0.85	0.9	0.95	0.8	0.85	0.9	0.95	0.8	0.85	0.9	0.95		

Figure S26: Estimated probabilities of *DROP* scores for dataset, model, perturbation types using segment-wise perturbation scheme for different cutoffs.

S6 PROBABILITY ESTIMATION OF PSIM FOR HIGHER CONFORMITY



Figure S27: Probabilities of $PSim$ score to be above 0.80 for different perturbation pairs across all dataset: model combinations.

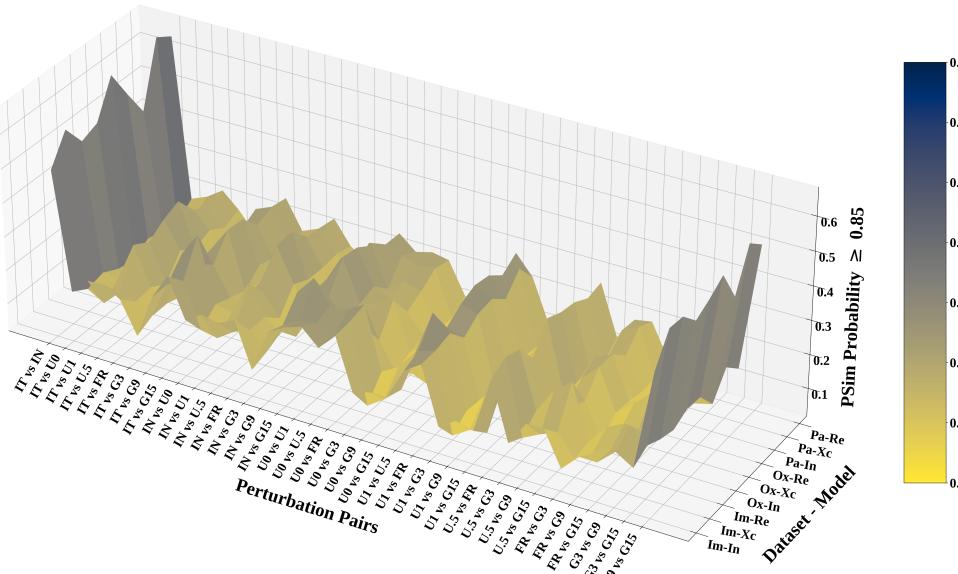


Figure S28: Probabilities of $PSim$ score to be above 0.85 for different perturbation pairs across all dataset: model combinations.

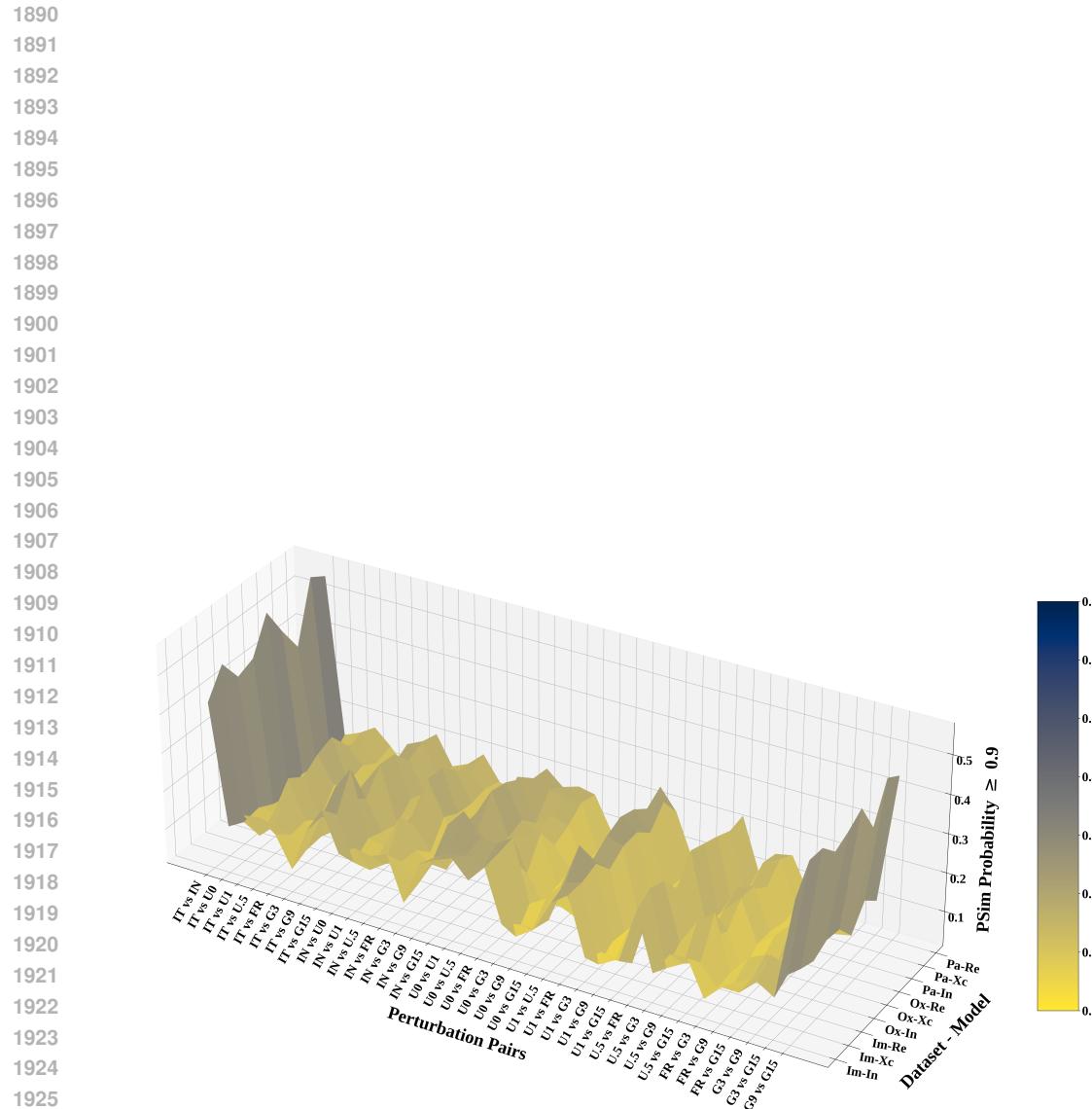


Figure S29: Probabilities of $PSim$ score to be above 0.90 for different perturbation pairs across all dataset: model combinations.

