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ABSTRACT

Saliency maps are one of the most widely used post-hoc approaches for interpret-
ing the behavior of Deep Learning models. Yet, assessing their fidelity is difficult
in the absence of ground-truth explanations. To address this, numerous fidelity
metrics have been introduced. Previous studies have shown that fidelity metrics
can behave inconsistently under different perturbations, and a recent work has
attempted to estimate the extent of this inconsistency. However, the underlying
reasons behind these observations have not been systematically explained. In this
work, we revisit this problem and analyze why such inconsistencies arise. We
examine several representative fidelity metrics, apply them across diverse mod-
els and datasets, and compare their behavior under multiple perturbation types.
To formalize this analysis, we introduce two conformity measures that test the
assumptions implicit in existing metrics. Our results show that these assump-
tions often break down, explaining the observed inconsistencies and calling into
question the reliability of current practices. We therefore recommend careful con-
sideration of both metric choice and perturbation design when employing fidelity
evaluations in eXplainable Artificial Intelligence (XAI).

1 INTRODUCTION

Deep learning (DL) models have shown significant improvement in accuracy as compared to tra-
ditional Machine Learning (ML) models. However, such improvements have come at the cost of
decreased transparency. Hence, concerns about the transparency, fairness, privacy, and trustworthi-
ness of AI applications arise due to the black-box nature of DL models in high stakes domains like
health care, insurance, and law enforcement Rudin (2019), Jacovi et al. (2021), Arrieta et al. (2020).
These concerns have led to skepticism about adopting the latest Artificial Intelligence (AI) models
in various sectors Cubric (2020), Cam et al. (2019), Güngör (2020). Therefore, research has been
dedicated to explaining the decisions of DL models under the umbrella of XAI Arrieta et al. (2020),
Selvaraju et al. (2017), Chattopadhay et al. (2018), Zhou et al. (2016), Ramaswamy et al. (2020),
Ribeiro et al. (2016),Broniatowski et al. (2021), Lundberg & Lee (2017).

Saliency maps, such as Class Activation Maps (CAM), are widely used to explain the predictions
of Deep Learning (DL) models by highlighting the image regions that are most important for the
model’s decision Selvaraju et al. (2017), Chattopadhay et al. (2018). However, disagreements are
commonly observed among saliency maps generated using different methods for the same model
and the same image, leading to confusion. One can choose the best saliency map with the highest
fidelity when compared to the ground truth. However, the absence of actual ground-truth1 has led
to the development of fidelity metrics like, ”Area Over the Perturbation Curve” (AOPC) (Samek
et al., 2016), Average Drop (AD%), Increase in Confidence (IC%) and Win (W%) (Chattopadhay
et al., 2018), Wang et al. (2020) and ”faithfulness” metric (Alvarez Melis & Jaakkola, 2018).

These fidelity metrics, however, suffer from inconsistencies and thus make them unreliable (Tomsett
et al., 2020). Fidelity metrics such asAOPC, AD%, IC% and W% and faithfulness rely on com-
puting pixel importance rank (PIR) for measuring the fidelity of saliency maps Bora et al. (2026).

1Human annotation represents the regions of an image from a human perspective (e.g., edges in images), but
they do not have any relation to the patterns the DL model is considering for decision making. Thus, human-
annotated saliency maps may misrepresent the model’s true decision-making process, making them unreliable
for evaluating the fidelity of the maps.
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PIR is calculated by perturbing the pixels (one by one or cumulatively) and noting the change in
the output probability2. A greater change in output probability denotes greater importance for a
perturbed pixel. The computed PIR from an image serves as a proxy for ground truth, enabling
the estimation of the fidelity score for saliency maps (Alvarez Melis & Jaakkola, 2018). This ap-
proach is based on the assumption that the change in output probability follows a consistent pattern
across different perturbations, with the output probability varying in proportion to the importance
of the perturbed pixel. If this assumption is not fulfilled, the fidelity metrics’ scores would vary for
different perturbations, leading to inconsistency as reported by Tomsett et al.(Tomsett et al., 2020).
Further, Tomsett et al.(Tomsett et al., 2020) observed this inconsistency by analyzing the prediction
probabilities by perturbing pixels with 0 and a random value. While highlighting the inconsistency
in fidelity metrics, Tomsett et al. (Tomsett et al., 2020) emphasize that developers of such metrics
should guide practitioners to examine the sources of variance in metric scores and to understand
how this variability influences the choice of saliency methods for a given model.

1.1 RELATED WORKS

Prior studies have reported that perturbation-based fidelity metrics can be statistically unreliable
(e.g., Tomsett et al. (2020)). Additionally, FRIES (Bora et al. (2026)) took a complementary ap-
proach and introduced an estimation framework that predicts how inconsistent a metric will be for a
given model–dataset–perturbation setting, using features derived from output probability variations
under perturbations and training a supervised model using it. In contrast, this paper addresses a dif-
ferent question: we seek to explain why these inconsistencies arise in the first place and thereby pro-
vide a lightweight alternative to FRIES without requiring to train a supervised model. We formalize
the assumptions implicitly required by widely used metrics and show, analytically and empirically,
the specific conditions under which those assumptions fail.

This paper uses the same foundational primitives that underlie the FRIES framework but with a
different role. In FRIES, those primitives served as features for predictive inconsistency estimation.
However, in this paper they are the central theoretical objects and we use them to explain failure
conditions for fidelity metrics and to define diagnostic conformity measures that directly test the
validity of the metrics’ assumptions without training an estimator model.

1.2 OUR CONTRIBUTIONS

We first theoretically establish the scenarios under which such assumptions are violated. We then
provide two conformity measures that quantify the extent of variances affecting the fidelity metrics.
Both the conformity measures are used to demonstrate the inconsistency of fidelity metrics by using
several perturbations, models and datasets in both normal and adversarial setting. Going beyond the
works of Tomsett et al.(Tomsett et al., 2020) and to generalize our findings, we study the variances
in a comprehensive manner using nine different perturbations that include two inpainting-based
perturbations (Telea (Telea, 2004) and Navier Strokes (Bertalmio et al., 2001)), Gaussian Blur (three
different widths of the Gaussian Kernel) and setting a random value, min, max and mean of the image
pixel values as perturbation values. Further, we show empirically that our conformity measures can
be used in pixel-wise and segment-wise perturbation schemes before using fidelity metrics.

Our main contributions to this paper are:

• We present an approach to explain the inconsistency of fidelity metrics. We show that
before using fidelity metrics, the variances of DL models w.r.t. to the perturbation type
must be studied.

• Complementing previous works that have observed inconsistencies in fidelity metrics Tom-
sett et al. (2020), and proposed methods to estimate the inconsistency using supervised
learning Bora et al. (2026), this paper explains inconsistency by (i) formalizing the as-
sumptions underpinning common fidelity metrics, (ii) proving where these assumptions
break under realistic perturbations, and (iii) introducing DROP and PSim as lightweight
conformity measures (without requiring to train a supervised model like FRIES) to assess
assumption validity before a fidelity metric is applied.

2All the reported observations in this paper are based on the prediction probability of the top prediction
class. We will refer to this as the output probability from hereon.
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• The conformity measures proposed in this work are further used to empirically analyse
three widely used DL models and two adversarially trained DL models on three datasets
using nine perturbation types, and two perturbation schemes (pixel-wise and segment-wise)
for all models.

2 PROPOSED APPROACH

The fidelity metrics are based on the PIR which assume the drop in output prediction probability
of a DL model to be proportional to the relevance of the perturbed pixel (i.e., more important the
pixel, larger the drop in output probability). The pattern of change (i.e. the proportionate change in
output probability as per the relevance of the perturbed pixel) should ideally hold true for all types
of perturbations as long as the image semantics is preserved under the notion of local neighborhood
Bora et al. (2026). This is based on two aspects:

[P1] There is a drop in the output probability when a pixel is perturbed;
[P2] The magnitude of drop in output probability is proportional to the relevance of the pixel.

Dissecting these two aspects, we first present the theoretical background on the violation such as-
pects in fidelity metrics and then present the proposed conformity measures in Section 2.2 and
Section 2.3 to explain the inconsistencies.

2.1 THEORETICAL FRAMEWORK

Let R be the ranks of pixel as per importance obtained from a saliency map on an unperuturbed
image. R can be expressed as follows:

R = {a1, a2, a3, a4, . . . ai} (1)

where, R is the ranked list of pixel importance by any saliency method. a1 → ai are pixels sorted
in the order of their importance i.e. a greater i denotes greater importance.

The assumption on the expected change in output probability by perturbing a pixel can be summa-
rized as:

p0 > pϕi ∀ i, ϕ (2)

where, p is the prediction probability of a classification model which takes an image I as input and
returns the probability of the top class. p0 is the probability of the top class as predicted for the
original i.e. unperturbed image. pϕi is the prediction probability on an image obtained by perturbing
only the ith pixel of an image I with a perturbation type ϕ.

Further, the change in output probabilities of perturbing two pixels i and j, where j is more important
than i, can be summarized given as:

δpϕi < δpϕj ∀ i < j (3)

Where, δpϕi = p0 − pϕi
Utilizing Equation (1) and Equation (3) we can generate the ranked list of probability differences,
denoted as R(ϕ), for an image perturbed by each pixel and for all i pixels with increasing order of
ranks:

R(ϕ) = {δpϕ1 , δp
ϕ
2 . . . δp

ϕ
i } (4)

pixels = {1, 2, . . . i} and for a given perturbation ϕ

The probability changes obtained from Equation (4) can be sorted to get an ordered list of pixels.
This set of ordered pixels, denoted by Rσ , represents the importance ranks of the pixels correspond-
ing to σ. For a perturbation based technique to be applicable in fidelity metrics, the pixel importance
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ranks should ideally be invariant to different sets of hyper-parameters. This invariance to different
sets of hyper-parameters is defined as below:

rbo(R(ϕ),R(ψ)) ≈ 1 ∀ for two perturbations ϕ, ψ (5)

Where, rbo is Rank Biased Overlap Webber et al. (2010) in our experiments, but it can be any
function that calculates the similarity between two rank lists. Further, without the loss of generality
we can say that Equation (5) should hold true for any set of pixels obtained from a saliency map.

Any perturbation based fidelity metric should conform to Point [P1] according to Equation (2) and
should conform to Point [P2] according to Equation (5). To quantify the conformance, we introduce
two new conformity scores which we refer to as DROP (corresponds to Point [P1]) and PSim
(corresponds to Point [P2]) as discussed further.

2.2 DROP IN PREDICTION PROBABILITY (DROP)

The drop in Prediction Probability (DROP ) metric measures the average number of drops in the
output probability when a pixel is perturbed for an image and a given modelM across all pertur-
bation types N . Thus, if p0 represents output probability from a modelM on unperturbed image
and pϕs represents the output probability on a perturbed image for a perturbation type ϕ on a chosen
pixel s in a set of all pixels S or a chosen segment of all available segments, DROPM for a given
model can be computed as:

DROPM =
1

|N |
∑
ϕ∈N

∑
s∈S

[
p0 >= pϕs

]
|S|

(6)

Where, [] denotes an indicator function with binary decision. For a complete dataset of K images
and a given model M , the DROP scores from Equation (6) are averaged across all images in a
dataset D. The ideal value of DROP should be 1 with higher value representing higher conformity
to Point [P1].

2.3 PIXEL RANK SIMILARITY (PSIM)

We define the metric PSim to measure the average similarity of PIRs across all perturbations for
an image. For any two given perturbations (ϕ and ψ from a set of perturbations N ) on an image,
and corresponding PIRs obtained R(ϕ),R(ψ) respectively for a given image, it is expected to have
same ranks for a given model M if the model is consistent. Thus, the average similarity between the
ranks across all perturbations can be computed as:

PSimM =

∑
ϕ∈N

∑
ψ∈N,ϕ̸=ψ rbo(R(ϕ),R(ψ))

|N |×(|N |−1)
2

(7)

Thus, for any perturbation based fidelity metric to be consistent, PSim should have an ideal value
of 1. However, higher values i.e., closer to 1 suggest higher conformance to Point [P2].

3 IMPLEMENTATION DETAILS

3.1 APPROACH OVERVIEW

Figure 1 shows our implementation where we obtain the prediction probabilities for a given model
on unperturbed and a set of perturbed images. The prediction probabilities are used to evaluate the
conformance using Drop in Prediction Probability (DROP) for Point [P1] and Pixel Rank Similar-
ity (PSim) for Point [P2]. The approach for measuring the conformity scores is further described
in Algorithm 1. While Algorithm 1 computes the conformity scores for the pixel-wise perturba-
tion scheme, the same can be applied to the segment-wise perturbation scheme without the loss of
generality.
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Figure 1: Proposed approach for estimating conformity scores of the deep learning models using the
prediction probabilities on perturbed images.

We first determine the prediction probability of a given model M on an unperturbed image (i.e., p0)
and then perturb the selected pixels one by one for a given perturbation ϕ1 to obtain p1, p2, p3 . . .
to determine the δp1, δp2, δp3 . . . for the perturbation ϕ1. The same perturbation scheme can be
extended to segments without any change. DROP and PSim are then calculated for each image
and for the whole dataset as described in Equation (6) and Equation (7) respectively.

Algorithm 1 Algorithm for calculating DROP and PSim
p0 ← model.predict(I) ▷ Unperturbed image I
{i} ← S ▷ i pixel in S pixels
ϕ← {Φ} ▷ set of all perturbation types
L ← []
L ▷ List of pixel importance ranks from all perturbation types
δP ← [] ▷ δP is the DROP score
for all ϕ do

δP ← []
for all i in {S} do

Iϕi ← perturb image(Ii, ϕ) ▷ for ith pixel in image I
pϕi ← model.predict(Iϕi )

δpϕi = p0 − pϕi
δP .append(δpϕi )

end for
δP.append(|{δP ≥ 0}|) ▷ Append count of δP ≥ 0
l← argsort(δP )
L.append(l)

end for
rbo score← pairwise rbo(L)
return µ(δP), µ(rbo score) ▷ DROP (Equation (6)) and PSim (Equation (7)) scores

4 EXPERIMENTAL SETUP

We use three pre-trained, and two adversarially trained image classification models, and three well-
known datasets in our experiments. We conduct our analysis on InceptionV3 Szegedy et al. (2016),
Xception Chollet (2017), and ResNet50 He et al. (2016) initialized with ImageNet weights. For,
adversarial models we used the weights of adversarially trained ResNet50 architecture viz., Ima-
geNet L2-norm (ResNet50) with ϵ = 3 and ImageNet Linf-norm (ResNet50) with ϵ = 8/255 ( refer
Engstrom et al. (2019) for details). Imagenette from tensorflow.org et.al., Oxford-IIIT Pet Dataset
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Parkhi et al. (2012) and PASCAL VOC 2007 Everingham et al. are used to conduct our experiments.
The Imagenette dataset is a subset of the Imagenet et.al. dataset with ten easily classified classes.
We used the validation part of this dataset for our experiments, which has around 3925 images. The
Oxford-IIIT Pet Dataset Parkhi et al. (2012) and PASCAL VOC 2007 Everingham et al. datasets
did not have train and test splits. Hence, we considered all the images for these two datasets, i.e.,
7390 of the Oxford-IIIT Pet dataset and 4952 of the PASCAL VOC 2007 dataset. For each model,
predict was called for (3925 + 7930 + 4952) images × 50 pixels × 9 perturbatiotypes ×
2 perturbationschemes values, approximately, 15 million times, and in total, predict was called
approximately 75 million times. Further, our goal was not to be exhaustive with different datasets
and models but to understand the impact of perturbations to evaluate the fidelity of saliency maps
from the perspective of PIR. Our code was written in Python 3.10 and Tensorflow 2.9 and for com-
puting we leveraged A100 GPUs.

4.1 PERTURBATION DETAILS

We considered nine different perturbation types i.e., two inpainting based perturbations for all our
experiments. Specifically, we used Telea Telea (2004) and Navier Strokes Bertalmio et al. (2001)),
Gaussian Blur (three different widths of the Gaussian Kernel) and setting a random value, min, max
and mean of the image pixel values as pixel values (as used by Tomsett et al. (2020), and Bora
et al. (2026)). The perturbations are represented as ’IT’ (Telea inpainting),’IN’ (Navier Strokes in-
painting), ’FR’ (setting pixel value randomly), ’U0’ (image min), ’U1’ (image max), ’U0.5’ (image
mean), ’G3’ (Gaussian blur with kernel widths of 0.3), ’G9’ (Gaussian blur with kernel widths of
0.9) and ’G1.5’ (Gaussian blur with kernel widths of 1.5). Further, we perturb the pixels/segments
using two perturbation schemes viz., pixel-wise and segment-wise. We used Quickshift Vedaldi &
Soatto (2008) segmentation algorithm to compute the segments for segment-wise perturbations. We
use the property that a subset of a ranked order list maintains the original ranking and select 50
random pixels (refer to proof in Section S2). The same argument was extended to segments in our
analysis.

5 RESULTS AND DISCUSSION

5.1 DROP AND PSIM SCORES FOR ALL PERTURBATIONS

Table 1 shows the DROP and PSim values for different models over different datasets for pixel-
wise and segment-wise perturbation scheme. The chosen models, i.e., Inception V3, Xception, and
ResNet50 pretrained with Imagenet weights. As seen in Table 1, it can be observed that the DROP
values were around 0.5 to 0.6 for all models across datasets. This indicates that only for 50 % to 60%
of the pixels, the probability dropped after perturbation but for other pixels the output probability
increases. This invalidates Point [P1] of the assumption in Section 2. Further, Table 1 shows the
PSim values for all the models over all datasets. As seen from the table, the PSim values are
small, but as per Equation (7), they should have been ≈ 1. This invalidates Point [P2] of the
assumption in Section 2. Further, this observation is consistent for all three models and across all
datasets for segment-wise perturbation scheme as seen in Table 1. Thus, for different perturbations,
the mentioned models will not conform to the assumptions made by the perturbation based fidelity
metrics.

Further, we show the DROP and PSim scores for the adversarially trained ResNet50 models
for both perturbation schemes in Table 2. Both DROP and PSim scores are much lower than
1 in all cases, and hence, adversarial training does not necessarily result in consistency of fidelity
metrics. Due to the unavailability of adversarially trained models for Inception V3 and Xception
architectures, we had to limit our experiments to ResNet50 architecture. Hence, we refrain from
making conclusive remarks regarding the consistency of fidelity metrics with respect to adversarially
trained models.

5.2 DROP FOR INDIVIDUAL PERTURBATIONS

We present the distribution of DROP scores for Inception V3, Resnet50, and Xception models in
the Imagenette dataset for pixel-wise perturbation scheme in Figure S2. For all perturbations, except
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Table 1: DROP and PSim scores across all datasets, models, perturbations for pixel-wise pertur-
bation scheme and segment-wise perturbation scheme. The results are shown as Mean ± Standard
Deviation. Ideal value DROP and PSim should be 1 and higher the better.

Dataset Inception Xception ResNet
Pixel-wise perturbation

Imagenette DROP 0.504±0.131 0.514±0.134 0.643±0.153
PSim 0.432±0.181 0.431±0.185 0.570±0.298

Oxford Pets DROP 0.507±0.130 0.504±0.138 0.636±0.132
PSim 0.428±0.183 0.430±0.186 0.582±0.289

VOC2007 DROP 0.511±0.115 0.550±0.180 0.512±0.132
PSim 0.643±0.130 0.433±0.189 0.573±0.301

Segment-wise perturbation
Imagenette DROP 0.515±0.135 0.518±0.126 0.553±0.111

PSim 0.310±0.181 0.269±0.142 0.329±0.179
Oxford Pets DROP 0.507±0.120 0.516±0.095 0.546±0.107

PSim 0.255±0.129 0.307±0.179 0.309±0.181
VOC2007 DROP 0.542±0.102 0.517±0.091 0.529±0.100

PSim 0.267±0.166 0.294±0.179 0.299±0.182

Table 2: DROP and PSim scores for adversarially trained ResNet50 models (Linf-norm and L2-
norm) for pixel-wise and segment-wise perturbation schemes. The results are shown as Mean ±
Standard Deviation. (*Higher scores are better with ideal being closer to 1)

Pixel-wise Perturbation
Dataset L2-norm(DROP ) Linf-norm(DROP ) L2-norm(PSim) Linf-norm(PSim)
Imagenette 0.555±0.374 0.555±0.357 0.237±0.140 0.209±0.097
Oxford Pets 0.580±0.369 0.567±0.369 0.217±0.133 0.186±0.116
VOC2007 0.528±0.383 0.546±0.371 0.243±0.124 0.181±0.106

Segment-wise Perturbation

Dataset L2-norm(DROP ) Linf-norm(DROP ) L2-norm(PSim) Linf-norm(PSim)
Imagenette 0.574±0.238 0.526±0.220 0.321±0.173 0.301±0.146
Oxford Pets 0.541±0.218 0.567±0.213 0.318±0.165 0.326±0.182
VOC2007 0.557±0.186 0.517±0.181 0.292±0.148 0.289±0.155

the variants of Gaussian Blur, the DROP scores have the highest density at around 0.5. However,
the variations of the Gaussian Blur for the ResNet50 model seem to be closer to 1. This pattern is
similar for other datasets (please refer to Section S3 in supplementary for exhaustive plots). Further,
we estimated the probability of the DROP scores to be closer to 1 (i.e., above the cut-offs of 0.80,
0.85, 0.90, and 0.95) by using Kernel Density Estimation (KDE), with Scott’s rule Scott (2015) for
bandwidth calculation, owing to its non-parametric nature. The estimated probabilities for DROP
scores to be above the cutoffs across all datasets, models, and perturbation types and schemes were
low, but the variants of Gaussian Blur showed relatively higher probabilities than other perturbations
(refer Figure S25 in supplementary for details). We observe a similar trend for the segment-wise
perturbation scheme (refer Figure S26 in supplementary). This demonstrates empirically that fidelity
metrics have low conformity to Point [P1] and our KDE based cutoff estimations further evidence
for our claim.

5.3 PSIM FOR INDIVIDUAL PAIRS OF PERTURBATIONS

The pairwise PSim scores for all perturbation pairs corresponding to the Inception V3 model on
the Imagenette dataset are shown for the pixel-wise perturbation scheme in Figure 3. Most of the
perturbation pairs have low PSim scores, but for the three pairs of Gaussian Blur (i.e., G3 G9,
G3 G15, and G9 G15) and the pair for inpainting (IT vs. IN), the PSim scores are relatively higher.
We show the PSim scores for all perturbation pairs on all dataset:model combinations in Section S4
of supplementary. Additionally, we estimated the probability of PSim scores to be above the cutoff
threshold of 0.80, 0.85, 0.90, and 0.95 using KDE (like Section 5.2). The estimated probabilities for
PSim scores to be higher than the cutoff thresholds were low in all situations (refer to Section S6
in supplementary for details). It was observed that in none of the scenarios, PSim score is ≈ 1,
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indicating low conformity to Point [P1]. Hence, the ranks of the pixels/segments (as mentioned in
Section 2.1) would vary for different perturbation types and lead to inconsistency in fidelity metrics.

From the low probabilities observed in Section 5.2, and Section 5.3, it can be established that fidelity
metrics have low conformity to Point [P1] and Point [P2] and hence are not consistent across a wide
variety of perturbations. As such, it is imperative to specify the perturbation type to be used when
reporting the fidelity scores from these fidelity metrics. The perturbation type can be determined
using domain-related theoretical reasoning and/or empirically. Further, we also observed that, out
of the perturbation types considered, Gaussian Blur was relatively consistent compared to other
perturbation types as it had higher scores for both conformity measures.

Figure 2: Distribution of DROP scores across all models, perturbation types using pixel-wise per-
turbation scheme for Imagenette Dataset

6 CONCLUSION AND FUTURE WORK

The prediction probabilities of DL models vary significantly for the same image and model across
the perturbations we considered. This results in a violation of the two assumptions of fidelity met-
rics: a drop in the output probability upon perturbing an image and no variance in PIR for different
perturbations. Hence, fidelity metrics that rely on the mentioned assumptions become unreliable.
Prior work has primarily framed unreliability at the metric level and attempted to estimate inconsis-
tency, but our results show that it is fundamentally a model–perturbation interaction phenomenon.
Beyond computing DROP and PSim, we used KDE-based tail-probability estimates to quantify how
often these metrics approach 1; the consistently low probabilities provide robust evidence that both
metrics fall well below the ideal value of 1. We therefore recommend using our proposed metrics as
a precondition before any saliency-fidelity analysis, and consistently reporting the exact perturbation
type and parameters alongside fidelity scores. Additionally, for fidelity metrics to be meaningful,
the perturbation must be theoretically justified rather than setting pixels to arbitrary values, such as
0 or 1. Among the perturbations we tested, Gaussian blur exhibited comparatively consistent be-
havior. Future work should account for the violations discussed in this work while devising fidelity
metrics and extend this analysis to adversarially trained models and additional architectures using
our conformity measures.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Distribution of pairwise PSim scores for all perturbation types for Inception V3 model
using pixel-wise perturbation scheme on Imagenette Dataset
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A APPENDIX: EXAMINING WHY PERTURBATION-BASED FIDELITY
METRICS ARE INCONSISTENT

S1 CAM DISAGREEMENTS

The illustration in Figure S1 presents saliency maps on randomly sampled images from the CIFAR-
10, Imagenette, Oxford-IIIT Pets and PASCAL VOC 2007 datasets for pretrained ResNet50 model
(imagenet weights) using AblationCAM Ramaswamy et al. (2020), GradCAM++ Chattopadhay
et al. (2018) and GradCAM Selvaraju et al. (2017). It can be noted from Figure S1, the saliency maps
generated using AblationCAM and GradCAM++ show a high degree of agreement, highlighting the
importance of the body, neck, and head of the horse for an image from Cifar-10 dataset (1st row).
However, the saliency map generated using GradCAM completely misses highlighting the head of
the horse. In the 2nd row it can be observed that AblationCAM and GradCAM++ highlight not only
the head of the fish but also other areas in the background as compared to GradCAM. Similarly, the
saliency maps generated for the Oxford-IIIT Pets dataset image (3rd row) and PASCAL VOC 2007
image (4th row) show high inconsistency.

Figure S1: Disagreement between saliency maps generated using Ablation-CAM, Grad-CAM++
and Grad-CAM for ResNet50 model with imagenet weights. Each row represents a randomly chosen
image from CIFAR-10, Imagenette, Oxford-IIIT Pets and PASCAL VOC 2007 datasets and their
corresponding saliency maps
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S2 PIXEL/SIGMENT SELECTION AND RANKING

Selection of pixels/segments for our analysis is another critical aspect for our analysis. As the
size of the input images are typically 299 × 299, 224 × 224 or 600 × 600 pixels for models, it is
computationally expensive to conduct an analysis on all pixels. We therefore conduct our analysis
on a subset of pixels which were randomly selected (based on Tomsett et al. (2020) and Bora et al.
(2026)). Our approach to randomly select the pixels can be further justified from a theoretical
perspective as explained below.

LetQ be a set of pixels such that |Q| > 1. We can define a hypothetical function ψ(Q) that measures
the importance of Q for the decision-making process of the model as:

ψ : Q→ {1, 2, . . . , |Q|} ⊆ R
where R is the set of all real numbers and a greater value of ψ(Q) indicates greater importance.

We can define an image A as an ordered set of pixels sorted according to their importance using
function ψ.

A = {au1 , av2, aw3 , . . . azi } (8)
where, R0 is the ordered set of pixels. 1→ i are importance for the pixel index/ids u→ z generates
by ψ i.e. ψ(au) = 1, ψ(av) = 2 . . .ψ(az) = i etc, where a greater value of ψ(Q) indicates greater
importance of the pixel set Q in the image.

Let us assume that B is a randomly selected subset of pixels. Thus B can be defined as below:

B = {ax1 , a
y
2, a

z
3, . . . a

n
j } ⊆ A s.t.

ae ̸= af for e ̸= f
(9)

where e and f are two random pixels. Let us assume that the order of pixels in A and B are different.
This implies according to induction:

∃ (ap, aq) ∈ B s.t.
ψ(ap) > ψ(aq) ∈ B ∧ ψ(ap) < ψ(aq) ∈ A

(10)

However, ψ(ap) > ψ(aq) ∈ B and ψ(ap) < ψ(aq) ∈ A cannot be true at the same time, we
can by mathematical induction deduce that ∄ (ap, aq) ∈ B that satisfy both conditions given in
Equation (10). As such the order of pixels as per their importance are same in both A and B.
We leverage this property that the order of importance of the pixels do not change even in randomly
selected (without repetition) subsets for our analysis. If the selected pixels have the same importance
ranks, their relative orders are not considered to affect the rank correlation.

S3 DROP PLOTS FOR ALL DATASETS
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Figure S2: Distribution of DROP scores across all models, perturbation types using pixel-wise
perturbation scheme for Imagenette Dataset

Figure S3: Distribution of DROP scores across all models, perturbation types using pixel-wise
perturbation scheme for Oxford-IIIT Pets Dataset

3



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure S4: Distribution of DROP scores across all models, perturbation types using pixel-wise
perturbation scheme for PASCAL VOC 2007 Dataset

Figure S5: Distribution of DROP scores across all models, perturbation types using segment-wise
perturbation scheme for Imagenette Dataset
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Figure S6: Distribution of DROP scores for all perturbations for Oxford-IIIT Pets Dataset for
segment-wise perturbation scheme.

Figure S7: Distribution of DROP scores for all perturbations for PASCAL VOC Dataset for
segment-wise perturbation scheme.
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S4 PAIRWISE PSIM PLOTS FOR ALL DATASETS

Figure S8: Distribution of pairwise PSim scores for all perturbations for Resnet50 model on Ima-
genette Dataset for pixel-wise perturbation scheme.
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Figure S9: Distribution of pairwise PSim scores for all perturbations for Xception model on Ima-
genette Dataset for pixel-wise perturbation scheme.
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Figure S10: Distribution of pairwise PSim scores for all perturbations for Inception V3 model on
Oxford-IIIT Pets Dataset for pixel-wise perturbation scheme.
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Figure S11: Distribution of pairwise PSim scores for all perturbations for Resnet50 model on
Oxford-IIIT Pets Dataset for pixel-wise perturbation scheme.
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Figure S12: Distribution of pairwise PSim scores for all perturbations for Xception model on
Oxford-IIIT Pets Dataset for pixel-wise perturbation scheme.
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Figure S13: Distribution of pairwise PSim scores for all perturbations for Inception V3 model on
PASCAL VOC Dataset for pixel-wise perturbation scheme.
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Figure S14: Distribution of pairwise PSim scores for all perturbations for Resnet50 model on
PASCAL VOC Dataset for pixel-wise perturbation scheme.
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Figure S15: Distribution of pairwise PSim scores for all perturbations for Xception model on
PASCAL VOC Dataset for pixel-wise perturbation scheme.
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Figure S16: Distribution of pairwise PSim scores for all perturbations for Inception V3 model on
Oxford-IIITH Dataset for segment-wise perturbation scheme.
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Figure S17: Distribution of pairwise PSim scores for all perturbations for Resnet50 model on
Oxford-IIITH Dataset for segment-wise perturbation scheme.
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Figure S18: Distribution of pairwise PSim scores for all perturbations for Xception model on
Oxford-IIITH Dataset for segment-wise perturbation scheme.
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Figure S19: Distribution of pairwise PSim scores for all perturbations for Inception V3 model on
Oxford-IIITH Dataset for segment-wise perturbation scheme.
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Figure S20: Distribution of pairwise PSim scores for all perturbations for Resnet50 model on
Oxford-IIITH Dataset for segment-wise perturbation scheme.
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Figure S21: Distribution of pairwise PSim scores for all perturbations for Xception model on
Oxford-IIITH Dataset for segment-wise perturbation scheme.
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Figure S22: Distribution of pairwise PSim scores for all perturbations for Inception V3 model on
PASCAL VOC Dataset for segment-wise perturbation scheme.
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Figure S23: Distribution of pairwise PSim scores for all perturbations for Resnet50 model on
PASCAL VOC Dataset for segment-wise perturbation scheme.
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Figure S24: Distribution of pairwise PSim scores for all perturbations for Xception model on
PASCAL VOC Dataset for segment-wise perturbation scheme.
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S5 PROBABILITY ESTIMATION OF DROP FOR HIGHER CONFORMITY

Figure S25: Estimated probabilities of DROP scores for dataset, model, perturbation types using
pixel-wise perturbation scheme for different cutoffs.

Figure S26: Estimated probabilities of DROP scores for dataset, model, perturbation types using
segment-wise perturbation scheme for different cutoffs.
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Figure S27: Probabilities of PSim score to be above 0.80 for different perturbation pairs across all
dataset:model combinations.

Figure S28: Probabilities of PSim score to be above 0.85 for different perturbation pairs across all
dataset:model combinations.
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Figure S29: Probabilities of PSim score to be above 0.90 for different perturbation pairs across all
dataset:model combinations.
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Figure S30: Probabilities of PSim score to be above 0.95 for different perturbation pairs across all
dataset:model combinations.
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