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ABSTRACT

Generation of synthetic tabular data plays an important role in privacy-preserving
data sharing, training data augmentation, data imputation, and algorithm devel-
opment in various domains such as healthcare and finance. Achieving both high
predictive performance and model traceability in tabular data generation is chal-
lenging for neural-network-based algorithms due to their inherent model opacity.
To overcome this limitation, we present a novel approach for generating synthetic
tabular data called TabGFN. It employs generative flow networks for feature gen-
eration and uses the critic network of the Wasserstein generative adversarial net-
work with gradient penalty as its reward function. Through simultaneous and
iterative training of the flow network and reward function, TabGFN explores a
directed acyclic graph of the generative state space, yielding a generative model
that represents conditional relationships and feature order. Benchmark tests on
diverse datasets demonstrate that the quality of the synthetic data by TabGFN is
superior or comparable to that of state-of-the-art algorithms. Moreover, the entire
generation process is traceable, as its individual steps are explicitly provided. This
traceability enables the discovery of mutual dependencies between features, lead-
ing to an interpretable model, which is crucial for high-stakes decision-making.
Thus, the proposed approach offers an effective solution for generating tabular
data, providing both high-quality synthesis and traceability.

1 INTRODUCTION

Generating synthetic data from tabular data is an active research area. Typically, high-value in-
dustries such as healthcare and finance are the main producers and consumers of tabular data. A
large portion of tabular data is human-generated and refined, resulting in significant costs, which
presents challenges in data creation, collection, and sharing. This has led to a high demand for data
augmentation and generation techniques. State-of-the-art (SOTA) neural-network-based techniques,
such as the generative adversarial network (GAN) (Goodfellow et al., 2014) and denoising diffusion
probabilistic model (DDPM) (Ho et al., 2020), have been applied to tabular data generation, demon-
strating success with unstructured data such as images. Notable examples include CTGAN (Xu
et al., 2019), medGAN (Choi et al., 2017), and tableGAN (Park et al., 2018), all grounded in the
GAN. More recently, a diffusion-based method, TabDDPM (Kotelnikov et al., 2023), has exhibited
SOTA performance. However, these approaches have the limitation of the generator functioning as
a black-box model, lacking traceability. GANBLR (Zhang et al., 2021), based on both GAN and
Bayesian networks, provides interpretability but its generative performance does not match that of
SOTA models.

The features constituting tabular data inherently contain more condensed information than those
constituting unstructured data. Therefore, there have been efforts to interpret models to understand
the interactions between features. A notable example is the model-agnostic interpretation method
SHAP (Lundberg & Lee, 2017). Additionally, SOTA predictive models such as XGBoost (Chen
& Guestrin, 2016) and LightGBM (Ke et al., 2017) provide feature importance by analyzing the
decision tree splits. Although the classic graphical model, such as the Bayesian network, may un-
derperform compared with various modern machine learning algorithms, its inherent interpretability
has led to ongoing proposals for methods to learn the optimal structure (Kitson et al., 2023).
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Figure 1: Overview of generation process in TabGFN. The generation procedure of spiral data points
distributed in a two-dimensional plane is used as an example. (a) Explicit feature generation process
of TabGFN, where the policy provides the probabilities of the next feature. (b) Feature determination
process in the reward space, where a high-reward mode is approached through feature determination.

Generative flow networks (GFlowNets) (Bengio et al., 2021) have recently emerged as a ground-
breaking generative model, demonstrating achievements in domains such as molecule genera-
tion (Bengio et al., 2021), DNA sequence generation (Jain et al., 2022), and discrete image gen-
eration (Zhang et al., 2022). GFlowNets learn a stochastic policy to produce compositional objects
such as molecules. The generated objects are sampled with a probability proportional to a given
non-negative reward. GFlowNets treat the creation process as a directed acyclic graph (DAG) and
interpret the stochastic process along the DAG as a flow of rewards.

GFlowNets can be used to represent a joint distribution as a chain of conditional distributions (Ben-
gio et al., 2023). The state (DAG node) in GFlowNets determines transitions (DAG edges) based on
a learned policy as a conditional probability. By considering action sampling for state transitions as
sampling a feature and corresponding category, it is possible to modify GFlowNets to capture the
conditional distribution between features in tabular data. Furthermore, the transition probabilities in
GFlowNets are explicitly provided, enabling traceability in the tabular data generation process (see
Figure 1a).

To generate samples over the joint distribution of features, GFlowNets requires information about
the joint distribution in the form of rewards. In GFlowNets, the reward acts as the unnormalized
probability of creating an object. In the Wasserstein GAN with gradient penalty (WGAN-GP) (Gul-
rajani et al., 2017), a critic network plays the role of discriminator, serving as a value function to
criticize the quality of the generated samples. TabGFN employs it as a reward function and learns
to generate samples with probabilities proportional to the scores from the critic network, resulting
in the generation of high-quality data.

In this study, we propose TabGFN, a tabular data generation algorithm that employs GFlowNets and
the critic network of WGAN-GP to approximate the unnormalized distribution of real data. TabGFN
models the conditional distribution between features using GFlowNets and chains them explicitly
over the reward space, providing a traceable generation process.

The results of experiments conducted on 26 simulated and real-world datasets indicate that data gen-
erated by TabGFN are competitive with data generated by existing generative models. In addition,
we provide examples of an interpretation of the generation process to demonstrate the advantages of
the traceable generation process of TabGFN.

The main contributions of this study are summarized as follows:

(1) We propose TabGFN, a novel tabular data generation method employing GFlowNets and
the critic network of WGAN-GP, and a joint training framework

(2) Competitive benchmark results are obtained by TabGFN across various simulated and real-
world datasets.

(3) Demonstrating the traceability of the generation process in TabGFN.
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2 RELATED WORK

Statistical methods have been proposed based on Bayesian networks (Heckerman, 1997) and
SMOTE (Chawla et al., 2002). Recent methods based on neural networks can be divided into two
approaches: GAN-based and diffusion-based methods, both of which are prominent in image gen-
eration.

2.1 GAN-BASED APPROACH

The GAN framework consists of a generator that produces synthetic data and a discriminator that
distinguishes generated and real data. The generator aims to produce high-quality data that can
deceive the discriminator by adversarial training against it.

GAN has achieved great success in unstructured data generation and has been applied to tabular
data. Prominent results include medGAN, which employs an auto-encoder as the generator, and
tableGAN, which uses a convolutional neural network in the generator. However, a critical problem
with the vanilla GAN framework is its inability to accurately approximate imbalanced feature dis-
tributions, with the model often struggling to generate infrequently occurring categories (Xu et al.,
2019). CTGAN addresses this problem by using a conditional generator, in which a random categor-
ical feature and its corresponding category are sampled from real data. The generator is constrained
to generate new data while preserving the sampled category. For continuous features, CTGAN uti-
lizes a Gaussian mixture model to identify clusters in the given data and then applies a mode-specific
normalization method that normalizes differently for each cluster.

In a typical GAN framework, the generator encodes data from random noise, which makes the gen-
erator a black-box model. GANBLR considers the importance of interpretability in tabular data
generation and employs K-dependence Bayesian estimators (KDB) as its generator model. By ex-
ploiting the characteristics of the Bayesian network, it offers an interpretable generative model.
However, due to the computational cost of Bayesian network structure learning, there is a limitation
on the depth of feature dependencies. Furthermore, the quality of the generated data does not match
that of SOTA models.

2.2 DIFFUSION-BASED APPROACH

The diffusion-based approach is inspired by the recent success of DDPM in image generation (Ho
et al., 2020). DDPM adopts a generative framework motivated by physical processes where parti-
cles disperse over time, eventually diffusing into random noise (Sohl-Dickstein et al., 2015). DDPM
models this diffusion process by iteratively adding random noise to the original data as time pro-
gresses. It also proposes a reverse diffusion process, starting from random noise and aiming to
reconstruct the original data. This reverse process unfolds in the form of a Markov chain. Conse-
quently, the reverse process develops the joint distribution of features from random noise. TabDDPM
is the most recently proposed method for tabular data modeling using diffusion. It processes con-
tinuous and categorical features using the diffusion techniques of vanilla DDPM and multinomial
DDPM (Hoogeboom et al., 2021), respectively. Given that DDPM has achieved SOTA performance
in image generation, it has also proven to be effective in tabular data generation. However, although
TabDDPM can generate high-quality data, it faces challenges related to traceability.

3 BACKGROUND

3.1 GFLOWNETS

GFlowNets are a generative model over a DAG G = (S,A). Nodes S represent partially constructed
objects (states), including a unique initial state s0 and set of terminal states χ. Edges A correspond to
stochastic state transitions (actions) over the state. The leaf nodes of the DAG are the target objects
to be generated, denoted by x = sn ∈ χ. Each target object x is associated with a reward obtained
from a fixed value function R : χ 7→ R≥ 0. A trajectory τ from the initial state s0 to the terminal
state sn is expressed as follows: τ = (s0 → s1 → · · · → sn). The transition from the non-terminal
state si to the next state si+1 is represented as PF (si+1|si), and the generation probability of τ is
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formulated as follows:

PF (τ) = PF (s1|s0)PF (s2|s1) · · ·PF (sn|sn−1). (1)

In this context, the transition probability PF is referred to as the forward policy.

The objective of GFlowNets is to generate a target object x with a probability proportional to the
magnitude of a given reward, that is, P (x) ∝ R(x). GFlowNets consider the initial state of the
DAG as the source and each terminal state as the sink in a flow network. They consider the reward
assigned to each terminal state as an amount of flow and train the policy PF to distribute the flow
from the source to each sink according to the given reward. The flow originating from the source
ultimately equals the total flow entering each sink; thus, the total flow Z is defined as follows:

Z =
∑
x∈χ

R(x). (2)

Moreover, with the definition of Z in Equation 2, the formulation of the forward policy, trajectory,
and reward can be unified as R(x) = Z

∑
τ=(s0→···→sn=x) PF (τ). It should be noted that there

may be multiple trajectories that lead to a given target object x.

The trajectory balance loss (Malkin et al., 2022) was employed to train the model to estimate the flow
along a single trajectory τ . The training is guided by the flow consistency constraint, which ensures
that the forward flow from the initial state s0 to the terminal state sn following the forward policy
PF (τ) and the backward flow from the terminal state sn to the initial state s0 following the backward
policy PB(τ) have equal magnitudes. As the forward flow is ZPF (τ) and the backward flow is
R(x)PB(τ), the trajectory balance loss LTB(τ) that unifies them can be expressed as follows:

LTB(τ) =

[
log

Zθ

∏n−1
i=0 PF (si+1|si; θ)

R(x)
∏n−1

i=0 PB(si|si+1; θ)

]2

. (3)

The quantity of flow Z at the initial state s0 is parameterized by a learnable scalar parameter Zθ, and
the forward and backward policies are parameterized as PF (−|−; θ) and PB(−|−; θ), respectively.

3.2 DISCRIMINATOR OF GAN FRAMEWORK

The GAN framework consists of a generator model for capturing the data distribution, and a dis-
criminator model for estimating the probability that a given sample originates from the training data
versus from the generator. In the vanilla GAN, the discriminator is trained using Kullback-Leibler
divergence (KL divergence) and is designed as a binary classifier to determine whether a given
data point is real or synthetic. The generator G and discriminator D are trained using the minimax
framework based on the following value function V (G,D),

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (4)

where pdata and pz represent the distribution of real data, and latent variable z, respectively. The
generator G learns the data distribution indirectly through the discriminator D by adversarial train-
ing.

4 TABGFN

The process of constructing objects in GFlowNets is analogous to the process of generating tabular
data instances by determining each feature sequentially. GFlowNets estimate the possible actions
to be taken from the current state as a conditional distribution and proceed to the next state through
stochastic sampling. Similarly, TabGFN estimates the conditional distribution over the current fea-
ture and decides the next feature. The generation process of TabGFN represents the joint distribution
of features as a chain of conditional distributions, as expressed in Equation 1.

4.1 STATE REPRESENTATION

The state of TabGFN represents not only the determination status of the features but also the cate-
gories of the determined features. In TabGFN, each categorical feature is represented as a one-hot
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Figure 2: Trajectory sampling process of TabGFN. Forward trajectory sampling starts at initial
state s0 and proceeds according to forward policy PF . In each state transition, a feature f and the
corresponding category are sampled. The generation process ends once it reaches the terminal state
sk. Backward trajectory sampling starts from the given data and proceeds over backward policy PB

until it reaches the initial state s0.

vector, and undetermined features are represented as zero-filled vectors. A feature f with cardinality
C, and category c is represented as follows:

f = [δ1, · · · , δC ], where δi =

{
1, if i = c

0, if i ̸= c or c is undefined
. (5)

Therefore, a state consisting of k features is represented as follows: s = [f1, · · · , fk]. It should be
noted that the initial state s0 is a distinct state in which all features are undetermined, as illustrated
in Figure 2. GFlowNets handle a discrete action space; thus, TabGFN requires the discretization of
continuous features.

4.2 GENERATION PROCESS

The generation process of TabGFN starts from the initial state s0 and involves a series of action
sampling procedures to select features and their corresponding categories as illustrated in Figure 2.
Importantly, each step (state transition) explicitly occurs according to the conditional distribution
estimated through the forward policy PF as expressed in Equation 1. Given the determined features,
the probabilities of the subsequent features and categories are explicitly provided. This sequential
feature determination process is a key feature of TabGFN, providing traceability in its generation
process. This traceability is consistently available even when using the backward policy to sample
trajectories from the given data.

4.3 REWARDS

In GFlowNets, the reward represents the unnormalized probability associated with object generation.
Therefore, the reward function of TabGFN induces the policy to learn the distribution of the real
dataset.

WGAN-GP proposes a training method that addresses the training instability of the vanilla GAN by
replacing the KL divergence with the Wasserstein distance. The objective function of WGAN-GP is
as follows:

Lcritic = Ex∼Pr
[Dϕ(x)]− Ex̃∼Pg

[Dϕ(x̃)] + λEx̂∼Px̂
[(||∇x̂Dϕ(x̂)||2 − 1)2], (6)

where Pr represents the distribution of real data, and Pg denotes those of generated data. WGAN-GP
introduces a gradient penalty, enforcing the Lipschitz constraint. Here, Px̂ in the gradient penalty
term refers to sampling along straight lines between samples from the data distributions Pr and Pg .

In this context, the critic network Dϕ is trained by maximizing Lcritic for assessing the quality of a
given sample. Specifically, the output of the critic network Dϕ is a numerical score correlated with
the quality of the given sample (Gulrajani et al., 2017). TabGFN uses the critic network Dϕ as a
reward function R(x;ϕ) during training; thus, the policy of TabGFN tends to generate high-quality
samples.
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Algorithm 1 Critic-GFN joint training of TabGFN
Require: Training dataset xt

1: repeat
2: c ∼ Bernoulli(α)
3: if c = 1 then
4: Sample forward trajectory, τ ∼ PF (s0) ▷ train from real data
5: else
6: Sample backward trajectory from data, τ ∼ PB(xt) ▷ train from generated data
7: end if
8: Update θ with LsubTB(τ) ▷ train the policy network
9: Sample forward trajectory τ ∼ PF (s0)
10: Update ϕ with Lcritic(xt, x(τ)), where x(τ) denotes the terminal state of τ ▷ train the reward(critic) network
11: until some convergence conditions

4.4 TRAINING

Madan et al. (2023) generalized the trajectory balance loss (Equation 3) to facilitate training with
partial trajectories. Considering a complete trajectory τ = (s0 → · · · → sn), a partial trajectory
denoted by τi:j = (si → · · · → sj), where 0 ≤ i < j ≤ n. The intermediate states si and sj
act as the source and sink, respectively, of the partial trajectory. To employ the trajectory balance
constraints, the flow at the intermediate states is estimated with F (−; θ). Thus, the trajectory balance
loss is defined as follows:

LsubTB(τi:j) =

[
log

F (si; θ)
∏j−1

t=i PF (st+1|st; θ)
F (sj ; θ)

∏j−1
t=i PB(st|st+1; θ)

]2

. (7)

The flow quantities at source Zθ and sink R(x), in Equation 3, are replaced by F (si) and F (sj),
respectively. During training, if a complete trajectory is available, then

(
n+1
2

)
sub-trajectories can

be obtained. To utilize sub-trajectories of varying lengths for training, weights are assigned to each
sub-trajectory. The objective function is defined as follows:

L =

∑
0≤i<j≤n λ

j−iLsubTB(τi:j)∑
0≤i<j≤n λ

j−i
, (8)

where λ is a hyperparameter that assigns weights to partial trajectories. Training from partial trajec-
tories enables fast convergence.

The training of TabGFN follows a joint training framework that alternates between learning the
policy network and critic network, as described in Algorithm 1. The policy network is updated
with Equations 7, and 8 using the sub-trajectory balance loss. For effective learning of a state space,
TabGFN employs two strategies for trajectory sampling: backward and forward trajectory sampling.
Backward trajectory sampling obtains the trajectory using the backward policy of TabGFN. A com-
plete trajectory is obtained starting from terminal state x, a given data point, and ends with the initial
state s0. Forward trajectory sampling uses the forward policy and starts with the initial state s0 in
an active learning manner. Learning from these complementary trajectories leads to an effective ap-
proximation of PF (τ ; θ) of x and its surroundings in the state space. The critic network is updated
with Equation 6 of WGAN-GP which learns from both real and synthetic data. Figure 3 provides an
overview of the training scheme, which is motivated by research by Zhang et al. (2022).

Figure 3: Overview of the training scheme of TabGFN. The yellow shaded area depicts the training
process for TabGFN, while the blue shaded area depicts the training process for the critic network.
TabGFN is trained using both real and synthetic data generated by the policy.
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5 EXPERIMENTS

5.1 SYNTHESIS TASK

5.1.1 DATASETS

We conducted benchmark tests using 26 datasets, including 10 simulated and 16 real-world
datasets. The simulated datasets consisted of four rule-generated datasets and six Bayesian-
network-generated datasets. Bayesian-network-generated datasets are obtained by the structures
from “bnlearn” (https://www.bnlearn.com/bnrepository/). The real-world datasets
were obtained from the UCI repository (https://archive.ics.uci.edu/) and Kaggle
(https://www.kaggle.com/). Among them, eight datasets consisted solely of categorical
features, while eight consisted of both continuous and categorical features. The details of the
datasets are provided in the appendix.

5.1.2 BASELINES

As baselines, we selected two GAN-based approaches, CTGAN and GANBLR, and a diffusion-
based approach, TabDDPM. GANBLR uses a Bayesian network as a generator. TabDDPM has
achieved SOTA performance.

5.1.3 EVALUATION

The Machine learning efficacy test, proposed by Xu et al. (2019), is a crucial evaluation metric
for assessing the quality of generated datasets and is widely used to assess tabular data generation.
The evaluation methodology is as follows: 1) divide the real dataset into training and test sets; 2)
train the generative model on the training set and generate a synthetic dataset of the same size as
the training set; 3) train a predictive model, such as XGBoost, on the synthetic data; and 4) evaluate
the predictive performance using the test set. If the generative model successfully captures the data
distribution, the performance of the predictive model will be comparable to or even surpass that of
a model trained on the training set. We generated five sets of synthetic data from each generative
model and averaged the machine learning efficacy scores. The macro-averaged F1-score was used
as the evaluation metric, and the results are presented in Table 1.

In addition, we proposed a sample diversity test, to assess the diversity of the generated samples.
High-quality synthetic data should include a wide variety of data samples while avoiding duplicate
instances. The sample diversity test calculates the ratio of unique samples in the synthetic data and
assigns weights based on the quality of the data. These weights are designed to discern diversity from
randomness found in untrained generative models, by calculating the ratio of the machine learning
efficacy scores between the synthetic and real data. The sample diversity scores are provided in
parentheses in Table 1.

5.1.4 RESULTS ANALYSIS

We evaluated TabGFN, TabDDPM, GANBLR, and CTGAN on various simulated and real-world
datasets. On rule-generated datasets, such as balance scale, car, and monk, TabGFN achieves high
performance, while the other methods achieved subpar performance. The rule-generated data have
clear causal relationships in their generation, which TabGFN effectively learned. In contrast, the
performance of TabGFN was inferior on large-scale Bayesian-network-generated datasets, such as
insurance and alarm, possibly due to the critic network. CTGAN, which uses a critic network sim-
ilar to that of TabGFN, also achieved unsatisfactory results, suggesting that the critic network may
struggle to learn certain data distributions. Another possibility lies in the predictive performance
of the model. The subpar performance observed even when trained on real data indicates that the
predictive model may not have sufficiently captured correlations between features.

On real-world datasets, TabGFN achieved comparable performance to that of TabDDPM, even on
datasets including continuous features. While TabDDPM achieved the highest performance by pre-
cisely modeling the joint distribution using DDPM, TabGFN learned the conditional distribution and
the proper dependence order between features in the form of a Markov chain through backward and
forward state exploration.
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Table 1: Machine learning efficacy and diversity test results. REAL denotes results obtained by
training on the training set and evaluating on the test set. The best score is highlighted in bold, while
the diversity scores are in parentheses.

Data REAL TabGFN TabDDPM GANBLR CTGAN
balance scale 0.636 (1.000) 0.838 (0.918) 0.686 (0.426) 0.581 (0.450) 0.585 (0.487)

car 0.935 (1.000) 0.923 (0.649) 0.271 (0.247) 0.780 (0.483) 0.335 (0.280)
monk1 0.972 (1.000) 0.980 (0.590) 0.858 (0.405) 0.811 (0.603) 0.702 (0.575)
monk2 0.819 (1.000) 0.883 (0.656) 0.521 (0.511) 0.628 (0.519) 0.532 (0.511)
monk3 0.958 (1.000) 0.990 (0.599) 0.957 (0.660) 0.967 (0.794) 0.935 (0.814)
sachs 0.737 (0.450) 0.757 (0.567) 0.766 (0.389) 0.741 (0.980) 0.706 (0.517)
asia 0.916 (0.202) 0.916 (0.314) 0.917 (0.162) 0.917 (0.150) 0.916 (0.233)
child 0.815 (0.737) 0.824 (0.909) 0.817 (0.677) 0.791 (0.970) 0.677 (0.584)

insurance 0.555 (0.911) 0.450 (0.810) 0.557 (0.899) 0.515 (0.928) 0.483 (0.838)
alarm 0.741 (0.636) 0.672 (0.886) 0.736 (0.540) 0.646 (0.871) 0.585 (0.530)

mushroom 1.000 (1.000) 0.984 (0.979) 1.000 (0.713) 0.979 (0.979) 0.989 (0.698)
nursery 1.000 (1.000) 0.958 (0.629) 0.922 (0.187) 0.915 (0.522) 0.675 (0.407)

primary tumor 0.442 (0.919) 0.366 (0.824) 0.204 (0.447) 0.303 (0.485) 0.351 (0.715)
soybean 0.931 (0.989) 0.898 (0.948) 0.921 (0.614) 0.828 (0.888) 0.886 (0.895)

spect heart 0.567 (0.813) 0.674 (1.178) 0.632 (0.607) 0.567 (0.965) 0.614 (0.853)
breast cancer 0.578 (0.959) 0.702 (1.192) 0.620 (0.634) 0.591 (1.023) 0.627 (0.926)
house vote 0.942 (0.735) 0.971 (0.839) 0.968 (0.544) 0.974 (1.027) 0.957 (0.748)

lymphography 0.420 (1.000) 0.545 (1.270) 0.415 (0.697) 0.400 (0.953) 0.440 (0.992)
glioma 0.809 (0.998) 0.842 (0.972) 0.842 (1.044) 0.816 (1.008) 0.809 (0.999)

iris 0.956 (0.981) 0.955 (0.888) 0.947 (0.991) 0.700 (0.583) 0.831 (0.870)
mine 0.469 (1.000) 0.571 (0.964) 0.554 (1.108) 0.161 (0.325) 0.321 (0.684)
adult 0.814 (0.999) 0.774 (0.935) 0.788 (0.938) 0.709 (0.870) 0.776 (0.953)
cardio 0.728 (1.000) 0.639 (0.141) 0.729 (1.001) 0.482 (0.660) 0.707 (0.971)
churn 0.751 (1.000) 0.735 (0.973) 0.731 (0.967) 0.539 (0.718) 0.689 (0.918)

diabetes 0.682 (1.000) 0.701 (1.028) 0.707 (1.064) 0.523 (0.767) 0.719 (1.054)
loan 0.988 (1.000) 0.880 (0.891) 0.818 (0.499) 0.477 (0.483) 0.872 (0.883)

overall mean 0.775 (0.897) 0.786 (0.829) 0.726 (0.653) 0.667 (0.731) 0.682 (0.728)

In the sample diversity test, TabDDPM achieved the lowest average performance, while TabGFN
achieved the highest performance. Considering that some of the data included continuous features
and TabGFN can only generate discretized value, this result is particularly noteworthy. These results
demonstrate that the diversity of GFlowNets is well represented in TabGFN.

5.2 TRACEABILITY

The generation process of TabGFN provides traceability. At each step, the forward policy PF of
TabGFN estimates the sampling probability of undetermined features and their respective categories.
Figure 4 displays the forward distributions estimated in the generation process by TabGFN trained on
the balance scale dataset. The balance scale dataset consisted of five features. C denotes the balance
of the scale (L: left, B: balance, R: right), while DL, DR, WL, and WR denote the state of each arm.
D and W represent the distance and weight respectively, with subscript L and R denoting the left
and right arm, respectively. The data generated by TabGFN resulted in C = B, WL = 1, DL=4,
WR = 2, and WD = 2. The weights and distances on both sides of the scale are independent, but
the balance of the scale is dependent on the state of both arms. This dependence was represented in
the generation process. The probability of generating C increased towards the end of the generation
process, as displayed in Figure 4. State s3 had determined features WL = 1, DL = 4, and WR = 2.
The undetermined feature DR is independent of the other variables; thus, the probability of its five
categories appears quite uniform (see row PF (s4|s3)). However, the categorical distribution for C
in the same row did not follow this pattern. The case of C = L occurred only when DR = 1, while
the opposite was possible when DR was 3, 4, and 5. The probability of C = R was approximately
three times that of C = L. The feature sampler determined DR as 2; thus, the probability of C = B
estimated in PF (s5|s4) significantly increased.

Additionally, global feature dependencies can be inferred by analyzing the order of feature genera-
tion. For instance, upon generating a sufficient number of balance scale data instances and averaging
the feature creation sequences, the following order emerged: WL = 1.61, DL = 1.66, WR = 1.68,
DR = 1.58, and C = 3.48. The features related to the state of each arm of the scale exhibited
almost identical generation orders, while C representing the state of the scale was determined last.
This result is consistent with the intuitive understanding that the weight and distance of each scale
arm are independent, whereas the state of the scale is dependent on both the weight and distance of
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Figure 4: Example of the generation process, where TabGFN has trained to generate balance scale
data. Each column represents a feature and its corresponding categories. Red represents high prob-
ability, while green indicates low probability. Each row represents a feature sampling step.

the arms. Based on these examples, we discovered that the traceable process of determining feature
values in TabGFN effectively reflects the dependencies among features. This traceability implies
TabGFN’s capability to serve as an interpretable model.

6 DISCUSSION

We attribute the promising results of TabGFN to its ability to capture complex feature dependencies.
In comparison, CTGAN relies on only a single depth of feature dependencies when building the
conditional generator, while GANBLR’s KDB typically uses one or two. These limited configura-
tions may not sufficiently capture the intricate relationships between features. In contrast, TabGFN
can learn conditional distributions without depth constraints, providing a more sophisticated rep-
resentation. TabDDPM also achieves excellent performance due to its deep representation of joint
probability distributions; however, it struggles to extract explicit relations due to its implicit nature.
In contrast, TabGFN facilitates explicit feature determination and provides traceability, which is
crucial for high-stakes inferences. This traceability arises from the clear representation of feature
determination probabilities, providing insights into the generation process and highlighting the fea-
ture dependencies. This traceability may be a foundational step toward creating an interpretable
model.

Nevertheless, TabGFN has limitations. GFlowNets are limited to discrete action space; conse-
quently, TabGFN is only capable of handling tabular data composed of discretized features. How-
ever, research on GFlowNets for continuous action spaces, as reported by Lahlou et al. (2023),
may lead to extensions to heterogeneous data types. Furthermore, Zaidi et al. (2020) reported that
discretization of continuous features can actually enhance performance in crucial tasks involving
tabular data, such as classification.

More importantly, the policy does not converge to the real data distribution because the critic net-
work does not provide an exact likelihood of the real data distribution. In addition, GANs cannot
guarantee to approximate the data distribution due to the mode collapse (Arora et al., 2018). How-
ever, in practice, the policy may asymptotically approximate the data distribution by learning to
generate samples that obtain high scores from the critic network.

7 CONCLUSION

In this paper, we propose an effective technique for generating tabular data using GFlowNets.
Specifically, we treat the generation process of GFlowNets as a sequential feature determination
process for tabular data instances. The process ensures traceability while generating high-quality
data by learning the dependencies and order of features. TabGFN achieves performance comparable
to that of SOTA techniques such as TabDDPM on various benchmarks. These results demonstrate
the capability of TabGFN for data generation or augment. In future work, we plan to conduct a
theoretical analysis of TabGFN with the critic network. We also intend to extend TabGFN to han-
dle both continuous and categorical features simultaneously. Additionally, we would develop an
interpretation method for TabGFN that exploits its traceability.
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A DATASETS

Table 2 contains detailed information on the 26 benchmark datasets consisting of 10 simulated
and 16 real-world datasets. The balance scale, car, and monk datasets are generated according
to specific rules, while the sachs, asia, child, insurance, and alarm datasets are generated through
Bayesian networks obtained from the “bnlearn” repository (https://www.bnlearn.com/
bnrepository/). The 16 real-world datasets are obtained from the UCI repository (https:
//archive.ics.uci.edu/) and Kaggle (https://www.kaggle.com/), and they are in
various compositions: some datasets consist solely of categorical features, while others include a
mix of both continuous and categorical features. In cases where the original dataset did not provide
a train-test split, we divided the data into training and testing sets using a 7:3 ratio, stratified by the
target feature.

Table 2: Summary of benchmark datasets. # Con and # Cat refer to the number of continuous and
categorical features respectively. # Cls denotes the number of target classes. # Train and # Test
indicate the sizes of training and test datasets. State dims represents the dimension of the state in
TabGFN.

Data # Con # Cat # Cls # Train # Test State dims
balance scale 0 5 3 437 188 23

car 0 7 4 1209 519 25
monk1 0 7 2 124 432 19
monk2 0 7 2 169 432 19
monk3 0 7 2 122 432 19
sachs 0 11 3 2100 900 33
asia 0 8 2 84 36 16
child 0 20 6 21000 9000 60

insurance 0 27 4 7000 3000 88
alarm 0 37 3 7000 3000 105

mushroom 0 22 2 3950 1694 99
nursery 0 9 4 9070 3888 31

primary tumor 0 18 12 86 37 49
soybean 0 36 15 266 296 112

spect heart 0 23 2 80 187 46
breast cancer 0 10 2 193 84 43
house vote 0 17 2 162 70 34

lymphography 0 18 3 102 44 58
glioma 1 23 2 587 252 58

iris 4 1 3 105 45 43
mine 3 1 5 236 102 35
adult 6 9 2 21113 9049 160
cardio 5 7 2 49000 21000 66
churn 6 5 2 7000 3000 71

diabetes 8 1 2 537 231 82
loan 12 2 2 6704 2874 129

B EXPERIMENTAL DETAILS

To ensure the reproducibility of the experimental results, we fixed the random seed for
Python packages including Python random, PyTorch, TensorFlow, Numpy, and XGBoost at
7. For the comparison algorithms, we utilized the code for TabDDPM from https://
github.com/yandex-research/tab-ddpm, for GANBLR from https://github.
com/tulip-lab/open-code/tree/develop/GANBLR, and for CTGAN from https:
//github.com/sdv-dev/CTGAN. The hyperparameters applied in the experiments are de-
scribed in Table 3. The term n-bins refers to the number of bins applied when discretizing continu-
ous variables and is relevant for TabGFN and GANBLR, which can only handle discretized features.
The ’Network’ section specifies the dimensions (dims) and depth of the MLP layers, and these pa-
rameters were consistently applied to the architecture of all neural networks used in the experiments.
The λ in “Lcritic” corresponds to the gradient penalty term in Equation 6. In the section “LsubTB”,
the j − i indicates the maximum length of the partial trajectory; where λ represents the weight for
each partial trajectory (refers to Eqaution 8). The “Train” section describes the learning rate (LR),
mini-batch size (batch), and number of epochs (epoch).
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Table 3: Summary of the hyperparameter configurations during experiments.

Preprocess Network Lcritic LsubTB Train
Data n-bins dims depth λ j − i λ LR batch epoch

balance scale - 100 5 1 5 0.8 0.001 10k 5k
car - 100 3 1 7 0.8 0.005 10k 5k

monk1 - 100 3 1 7 0.8 0.001 10k 5k
monk2 - 100 5 1 7 0.8 0.001 10k 5k
monk3 - 100 5 1 7 0.8 0.001 10k 10k
sachs - 100 3 1 11 0.8 0.005 10k 5k
asia - 100 3 1 8 0.8 0.005 10k 5k
child - 200 7 1 20 0.8 0.001 10k 15k

insurance - 100 3 1 27 0.8 0.001 10k 10k
alarm - 200 7 1 20 0.8 0.001 10k 10k

mushroom - 100 5 1 23 0.8 0.001 10k 10k
nursery - 100 7 1 9 0.8 0.001 10k 5k

primary tumor - 100 5 1 27 0.8 0.001 10k 10k
soybean - 200 7 1 27 0.8 0.0005 10k 35k

spect heart - 100 5 1 23 0.8 0.001 10k 15k
breast cancer - 100 5 1 10 0.8 0.001 10k 15k
house vote - 200 7 1 17 0.8 0.001 10k 15k

lymphography - 300 5 1 18 0.8 0.0005 10k 15k
glioma 10 100 3 1 24 0.8 0.005 10k 5k

iris 10 100 5 1 5 0.8 0.001 10k 15k
mine 10 100 3 1 4 0.8 0.001 10k 15k
adult 10 200 5 1 15 0.8 0.0005 10k 10k
cardio 10 100 5 1 12 0.8 0.001 10k 10k
churn 10 100 5 1 11 0.8 0.001 10k 15k

diabetes 10 100 5 1 9 0.8 0.001 10k 15k
loan 10 100 5 1 14 0.8 0.001 10k 15k

B.1 MACHINE LEARNING EFFICACY TEST

Table 4 presents the results from the machine learning efficacy test, including the mean and standard
deviation across five repeated experiments.

Table 4: Machine learning efficacy test results including standard deviations.

Data TabGFN TabDDPM GANBLR CTGAN
balance scale 0.838 ± 0.025 0.686 ± 0.033 0.581 ± 0.019 0.585 ± 0.033

car 0.923 ± 0.022 0.271 ± 0.023 0.780 ± 0.016 0.335 ± 0.033
monk1 0.980 ± 0.008 0.858 ± 0.035 0.811 ± 0.071 0.702 ± 0.029
monk2 0.883 ± 0.008 0.521 ± 0.030 0.628 ± 0.015 0.532 ± 0.030
monk3 0.990 ± 0.004 0.957 ± 0.027 0.967 ± 0.011 0.935 ± 0.019
sachs 0.757 ± 0.013 0.766 ± 0.006 0.741 ± 0.006 0.706 ± 0.025
asia 0.916 ± 0.000 0.917 ± 0.000 0.917 ± 0.000 0.916 ± 0.000
child 0.824 ± 0.002 0.817 ± 0.003 0.791 ± 0.004 0.677 ± 0.005

insurance 0.450 ± 0.017 0.557 ± 0.015 0.515 ± 0.021 0.483 ± 0.015
alarm 0.672 ± 0.004 0.736 ± 0.005 0.646 ± 0.045 0.585 ± 0.009

mushroom 0.984 ± 0.008 1.000 ± 0.000 0.979 ± 0.023 0.989 ± 0.004
nursery 0.958 ± 0.006 0.922 ± 0.005 0.915 ± 0.004 0.675 ± 0.013

primary tumor 0.366 ± 0.040 0.204 ± 0.077 0.303 ± 0.082 0.351 ± 0.046
soybean 0.898 ± 0.019 0.921 ± 0.013 0.828 ± 0.026 0.886 ± 0.023

spect heart 0.674 ± 0.045 0.632 ± 0.032 0.567 ± 0.044 0.614 ± 0.041
breast cancer 0.702 ± 0.044 0.620 ± 0.038 0.591 ± 0.033 0.627 ± 0.023
house vote 0.971 ± 0.010 0.968 ± 0.006 0.974 ± 0.006 0.957 ± 0.015

lymphography 0.545 ± 0.084 0.415 ± 0.061 0.400 ± 0.055 0.440 ± 0.042
glioma 0.842 ± 0.017 0.842 ± 0.017 0.816 ± 0.048 0.809 ± 0.030

iris 0.955 ± 0.023 0.947 ± 0.020 0.700 ± 0.091 0.831 ± 0.077
mine 0.571 ± 0.014 0.554 ± 0.023 0.161 ± 0.033 0.321 ± 0.046
adult 0.774 ± 0.004 0.788 ± 0.004 0.709 ± 0.027 0.776 ± 0.003
cardio 0.639 ± 0.001 0.729 ± 0.002 0.482 ± 0.049 0.707 ± 0.003
churn 0.735 ± 0.007 0.731 ± 0.005 0.539 ± 0.034 0.689 ± 0.007

diabetes 0.701 ± 0.031 0.707 ± 0.023 0.523 ± 0.077 0.719 ± 0.019
loan 0.880 ± 0.005 0.818 ± 0.005 0.477 ± 0.120 0.872 ± 0.004

Figure 5 presents the results of the machine learning efficacy test according to the epoch cycle
during training. The y-axis of each plot represents the macro-averaged F1 score, while the x-axis
represents the epoch cycle. The graph shows an improving trend in the quality of generation as
training progresses. For GANBLR, which uses a Bayesian network, the training time per epoch is
significantly longer than other algorithms. However, it requires fewer epochs to converge, allowing
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us to set a relatively shorter epoch cycle for experimentation. The results of the Machine Learning
Efficacy Test are based on the epoch that demonstrated the best performance in this graph. The
results of other experiments such as the sample diversity test are also based on the data generated at
that epoch.

Figure 5: Changes in machine learning efficacy score according to training epochs.
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B.2 SAMPLE DIVERSITY TEST

Table 5 presents the results used in the sample diversity Test, displaying the unweighted ratio of
unique samples. The table includes both the average and standard deviation based on five repeated
trials.

Table 5: Unweighted sample diversity scores with standard deviations.

Data TabGFN TabDDPM GANBLR CTGAN
balance scale 0.697 ± 0.012 0.753 ± 0.008 0.493 ± 0.006 0.529 ± 0.009

car 0.657 ± 0.004 0.844 ± 0.006 0.579 ± 0.011 0.781 ± 0.017
monk1 0.586 ± 0.007 0.674 ± 0.032 0.723 ± 0.032 0.797 ± 0.031
monk2 0.609 ± 0.012 0.788 ± 0.022 0.677 ± 0.021 0.788 ± 0.035
monk3 0.580 ± 0.006 0.662 ± 0.033 0.787 ± 0.030 0.834 ± 0.016
sachs 0.538 ± 0.010 0.373 ± 0.010 0.975 ± 0.003 0.539 ± 0.005
asia 0.314 ± 0.021 0.162 ± 0.031 0.150 ± 0.021 0.233 ± 0.012
child 0.899 ± 0.001 0.681 ± 0.005 1.000 ± 0.000 0.703 ± 0.003

insurance 1.000 ± 0.000 0.914 ± 0.002 1.000 ± 0.000 0.964 ± 0.002
alarm 0.977 ± 0.001 0.543 ± 0.003 1.000 ± 0.000 0.672 ± 0.005

mushroom 0.995 ± 0.001 0.713 ± 0.004 1.000 ± 0.000 0.706 ± 0.004
nursery 0.657 ± 0.001 0.716 ± 0.004 0.570 ± 0.005 0.603 ± 0.002

primary tumor 0.995 ± 0.004 0.844 ± 0.026 0.707 ± 0.037 0.900 ± 0.035
soybean 0.983 ± 0.004 0.637 ± 0.013 0.998 ± 0.002 0.941 ± 0.016

spect heart 0.991 ± 0.004 0.552 ± 0.029 0.965 ± 0.023 0.787 ± 0.016
breast cancer 0.981 ± 0.007 0.646 ± 0.014 1.000 ± 0.000 0.854 ± 0.023
house vote 0.814 ± 0.028 0.526 ± 0.027 0.994 ± 0.006 0.737 ± 0.039

lymphography 0.979 ± 0.009 0.704 ± 0.029 1.000 ± 0.000 0.949 ± 0.033
glioma 0.934 ± 0.006 1.000 ± 0.001 1.000 ± 0.000 0.999 ± 0.001

iris 0.888 ± 0.025 1.000 ± 0.000 0.796 ± 0.035 1.000 ± 0.000
mine 0.792 ± 0.012 0.999 ± 0.002 0.947 ± 0.013 1.000 ± 0.000
adult 0.984 ± 0.001 0.975 ± 0.001 1.000 ± 0.000 1.000 ± 0.000
cardio 0.160 ± 0.001 1.000 ± 0.000 0.996 ± 0.000 1.000 ± 0.000
churn 0.994 ± 0.001 0.996 ± 0.000 0.999 ± 0.000 1.000 ± 0.000

diabetes 1.000 ± 0.001 0.999 ± 0.001 1.000 ± 0.000 1.000 ± 0.000
loan 1.000 ± 0.000 0.707 ± 0.006 1.000 ± 0.000 1.000 ± 0.000
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