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I. OVERVIEW

As robots proliferate in unstructured environments, they face
numerous and often conflicting demands, including interacting
with objects ranging from rigid to soft, moving through
disparate media like water and soil, and performing tasks
that span fine manipulation and heavy lifting [8, 3, 24].
Robots must be adaptable to be effective across such di-
verse challenges. Technological obstacles that hinder robotic
adaptability include: single-use component-centric fabrication
processes that limit the amount of functionality embedded in
a robot; computational design tools that inadequately model
environmental multiphysics and robot dynamics; and fixed
robot structures and control systems that diminish adaptation
capabilities required for unpredictable contexts. To overcome
these barriers, my research focuses on three pillars: 1. “roboti-
fied” structural materials that integrate actuation, sensing, en-
ergy, and control; 2. data-driven design optimization spanning
efficient manufacturing processes to complete robotic systems;
3. adaptive robot structures and controls for locomotion and
manipulation (loco-manipulation). By merging robotics and
materials science, my vision is to develop adaptive robots
that interact with diverse environments, advancing sus-
tainability and productivity for humanity.

II. ROBOTIFIED STRUCTURAL MATERIALS EMBEDDING
MULTIPLE FUNCTIONS

Realizing adaptive machines starts with materials. Unlike
traditional load-bearing robot structures, biological systems
tightly integrate actuation, sensing, energy, and control. Clos-
ing this gap requires embedding these functions into multi-
functional robotic materials [5, 21].

Prior work - expanding soft robot functions: Soft actuators
form the basis of soft robots, enabling them to interact with
their environments [10]. Soft actuators are usually made from
inert materials that confine robots to a single fixed defor-
mation trajectory (e.g. bending in a plane) [7, 4, 20, 13]. I
introduced generalizable methods to expand the workspace of
these robotic building blocks. To unlock myriad trajectories
with a single actuator, I created tensile jamming fibers that
change 30x in tensile stiffness in less than 0.2 sec [22]. When
integrated into soft robots, these active fibers govern surface
strains during inflation for programmable shape adaptation.
For example, a single soft gripper—normally confined to one
grasp mode—can cycle between several modes (Fig. 2A).

Fig. 1. Robots can advance sustainability and productivity for society on
multiple fronts. Embedding robots with multifunctional, reusable structures
extends their utility and lifespan. Optimizing robot lifecycles, from creation to
decommissioning, enhances task performance and minimizes waste. Adaptive
robots with combined locomotion and manipulation skills will tackle haz-
ardous industrial tasks, collect environmental data, and explore other planets.

Future directions: To embed actuation, sensing, energy, and
control into the structures of robots, I will first investigate
how to use a single material system for multiple functions
simultaneously. Unlike research that focuses solely on either
engineering geometry (e.g. metamaterials) [12] or tuning ma-
terial chemistry (e.g. phase transitions) [18], I will work at
the nexus of both approaches. For example, thermoplastic
elastomers—highly moldable materials—could be patterned
into fibers that both drive robot movement and sense deforma-
tion. By exploring physical phenomena from the nanoscale to
the macroscale, I seek to achieve dense multifunctionality in
robotic materials. For instance, longer-term, I see potential in
merging synthetic and living substructures, such as combin-
ing inorganic substrates for computation and actuation with
sensing fungi and energy-producing bacteria to create self-
sustaining robotic materials.

III. DATA-DRIVEN DESIGN OPTIMIZATION FOR EFFICIENT
MANUFACTURING PROCESSES AND ROBOTIC SYSTEMS

Realizing adaptive machines also requires computational
design tools to optimize robots and their fabrication, reducing
waste and enhancing performance. These tools must be accu-
rate and efficient, a challenge amplified by complex environ-



Fig. 2. My prior work: shape-changing material integration with robot systems for multi-task performance. A. Tensile-stiffness modulating jamming
fibers enable a robotic gripper with multiple grasp modes and only a single pressure control input. B. Shape matching with hyperelastic inflatables via an
inverse model that takes as input a target curve and generates material parameters for construction of a prototype. C. Efficient multi-environment locomotion
by switching between specialized limb shapes and gaits. D. Ladder climbing experiment of robot with hooked legs using reinforcement leraning-based control.
E. Design of shape-changing legs that passively adapt to environmental features (tools, knobs, etc.), then lock into place for versatile interactions.

ments and the nonlinearity of stimulus-responsive materials.

Prior work - Inverse design of inflatables: Soft continuum
structures with discrete strain limiters exhibit 3D deformations
that are difficult to model [19, 11, 14]. I introduced a reduced-
order model based on curve kinematics that seeds a finite
element simulation nested within an optimization algorithm.
The inverse deign pipeline outputs strain limiter parameters
for 3D curve matching with inflatables [2], unlocking robotic
functionalities such as shape matching for self-tying knots
(Fig. 2B). Crucially, this approach yields inflatable blueprints
that can be zero-shot transferred to actual hardware, and takes
an order of magnitude less time to generate viable inflatable
designs than using finite element analysis alone.

Future directions: To achieve end-to-end robot design
pipelines, there first need to be accurate and computationally
efficient simulators for adaptive systems composed of soft
stimulus-responsive materials that can screen thousands of
prospective designs faster than real time. Modeling the dynam-
ics of such robots—as well as changing temperatures, chemical
gradients, and other physical properties of environments—
is an open challenge [9, 6, 16]. Near-term, I will combine
experimental data, first-principles approaches, and physics-
informed machine learning to create compact models for
rapid inverse design. Data for these models will be collected
via bespoke mechanical characterization setups and motion
capture of robot movements. Long-term, I will devise a sim-
ulated lifecycle design pipeline that finds a robot architecture,
the materials that compose it, and the fabrication process
required, given inputs of the multiple functionalities desired,
carbon budgets, and constraints on re-usability of materials.
Key questions include: How does a model decide where it
is favorable to merge robotic functionality (i.e. sensor and
actuator merged as a single material)? How can models map
target functionality to a set of realizable movement primitives?

IV. ADAPTIVE ROBOT STRUCTURES AND CONTROLS FOR
LOCO-MANIPULATION

Next-generation robots for unstructured environments re-
quire both locomotion and interactive manipulation capabili-
ties. Adaptable, shape-shifting structures with complementary

control strategies will enhance robot performance across di-
verse loco-manipulation tasks.

Prior work - Shape-adaptive legged robots: Most robots have
fixed structures and behaviors, specializing in a narrow range
of tasks. To create multifunctional robots, researchers often
superimpose separate components for each specific function,
but this may lead to excess hardware and reduced effi-
ciency [23, 17, 15]. My approach has been to engineer robots
with on-demand shape changes for efficient transitions across
diverse environments and tasks. For example, I developed an
Amphibious Robotic Turtle (ART) that modulates between
aquatic and terrestrial locomotion using limbs that adapt in
shape to match the propulsion physics of the environment [1]
(Fig. 2C). More efficient than many single-environment robots,
ART attests that mutable morphology, in tandem with thought-
ful gait selection, enhances the performance of mobile robots
encountering multiple environments. In ongoing work, I am
building shape-changing robots for loco-manipulation. Explor-
ing new quadruped leg designs and employing a reinforcement
learning simulation to find control policies unlocks previously
inaccessible tasks, such as robust ladder climbing 200× faster
than the state-of-the-art and even in the presence of perturba-
tions (Fig. 2D). Ultimately, by equipping shape-changing legs
(Fig. 2E), I hope to have a single robot autonomously adapt
shape and movement pattern to not only climb ladders, but
open doors, grasp objects, and use tools.

Future directions: Realizing multi-purpose adaptive systems
requires understanding the synergies between a robot’s physi-
cal structure and control algorithms. Near term, I will employ
robotic materials to create hybrid soft-rigid robots inspired by
the musculoskeletal architecture of natural organisms. These
systems will support a sustainable and productive future in in-
dustrial, environmental, and space sectors via re-purposeable,
energy-efficient hardware, and also provide platforms to ex-
plore questions about robots’ body-brain interfaces: Do pas-
sive mechanisms mitigate overfitting of learned controllers to
specific tasks, enhancing generality? Can a robot determine
and then morph to optimal body parameters (shape, stiffness,
damping) for a given task based on sensory feedback?
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