Under review as a conference paper at ICLR 2026

MULTIPLE IMAGES DISTRACT LARGE MULTIMODAL
MODELS VIA ATTENTION FRAGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Many everyday tasks involve integrating information across multiple images, such
as comparing photos and reading social media posts. Recent Large Multimodal
Models (LMMs) therefore accept multiple images, yet open-source models re-
main far from reliable in multi-image understanding, with accuracies often falling
below 50% on recent evaluations. We analyze how these models allocate atten-
tion across images when visual tokens are processed in a single autoregressive,
causally masked sequence. Our study uncovers a joint failure mode: the same
background positions in each image repeatedly attract high attention while con-
tributing little to prediction, and this effect is stronger for earlier images due to
one-way attention under causal masking. We term this phenomenon attention
fragmentation, as attention is split across non-informative tokens instead of bind-
ing evidence between images. These high-attention, low-utility tokens correspond
to attention sinks previously observed in LLMs. To address attention fragmenta-
tion, we introduce Attention Remasking (AR), a post-training edit that operates
on attention scores where the causal mask is enforced. AR masks sink tokens
column-wise to prevent any query from attending to them, and selectively un-
masks cross-image visual tokens deemed relevant by a grounded patch relevance
score. The attention freed from the masked sinks is reassigned to these unmasked
links, creating forward connections from earlier to later images while preserving
text autoregression. AR reduces attention fragmentation and improves accuracy
over post-training baselines on recent multi-image benchmarks, delivering more
effective cross-image integration without additional training.

1 INTRODUCTION

Humans easily draw insight from multiple images, whether comparing photos of similar items,
browsing social media posts, or following visual instructions. Motivated by these natural use cases,
recent Large Multimodal Models (LMMs) have begun to accept multiple images via visual tokens,
enabling reasoning across images rather than treating each in isolation (Jiang et al., [2024; [Li et al.,
2025)). To probe these emerging capabilities, researchers have introduced multi-image evaluation
benchmarks that test skills such as comparison, retrieval, scene and temporal understanding, and
description writing (Zhao et al., [2024; [Liu et al., 2024a). Despite progress in modeling multiple
images, the results from benchmarks show underperformance of models, with leading proprietary
models reaching only about 55-68% accuracy overall. Open-source models have lagged behind, for
example, achieving below 50% in MMIU (Meng et al., 2025)) and below 35% accuracy in MuirBench
(Wang et al.| 2025)), indicating that integrating information across images remains a key challenge.

Current LMMs often handle multi-image inputs by incorporating them as visual tokens within the
same autoregressive sequence used for text, so each query token attends over a long mixture of image
and text keys (Jiang et al., [2024; [Li et al., [2025). As shown in Fig. E], our empirical analysis of this
setting reveals a recurring attention pattern: within each image, a subset of visual tokens consistently
absorbs a disproportionate amount of attention despite contributing little to the model’s predictions.
These tokens recur at similar background locations across images and are more pronounced in ear-
lier images. These tokens are attention sinks, a structural adaptation to softmax normalization that
stores excess attention scores without contributing to value computation (Gu et al., [2025)). Attention
sink has been found in the first tokens in text and the background tokens in images (Kang et al.,
2025). The stronger sinks in earlier images are correlated with the causal masking on the attention
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Figure 1: Attention Fragmentation. In multi-image LMMs, attention concentrates on attention
sink tokens recurring in similar background positions in each image, with stronger sinks in earlier
images. This diverts attention from task-relevant cues and fragments cross-image focus.

scores, where tokens are only allowed to attend to previous tokens and not future ones, so earlier
images are exposed to more queries and accumulate more sink mass, resulting in a biased distri-
bution of attention weights. We found that when multiple images are present, this combination of
repeated sinks and uneven attention allocation fragments the model’s focus; instead of focusing on
task-relevant cross-image cues, the model spreads its attention thinly across these repetitive, non-
informative anchors. We refer to this compound issue as attention fragmentation, a phenomenon
that limits multi-image understanding in current LMMs. We observed that attention fragmentation
is associated with subpar performance and the recency bias, in which later images disproportionately
influence predictions and answers change with image order (Tian et al.||[2025).

To address this phenomenon, we propose Attention Remasking (AR), a post-training edit that op-
erates directly on the attention scores, where the causal masks are applied in the LLM decoder.
AR improves multi-image understanding by masking sink keys and unmasking task-relevant cross-
image keys, so that attention can flow across relevant visual tokens rather than being absorbed by
repeated sinks. To prevent the effect from repeated sinks across images, AR masks the identified
sink keys column-wise across all queries, which prevents sink tokens from being attended by other
tokens. To enable cross-image relationships that are otherwise blocked by causal masking, AR mod-
ifies only the visual part of the mask to unmask attention from earlier queries to later image tokens,
while preserving text autoregression. Because masked attention scores were never trained and are
unreliable, AR assigns freed attention scores from masked sink keys to the newly unmasked keys
proportional to grounded patch-level CLIP score (Radford et al.,[2021; [Hessel et al.;2021). We use
Grounding DINO (Liu et al., 2024b)) to propose regions related to the task instruction in each image
and map those regions to the model’s visual tokens. For tokens inside these regions, we compute
the cosine similarity between each token’s CLIP patch embedding and the instruction embedding,
then normalize the results into a token-wise relevance distribution. By masking sinks and unmask-
ing task-relevant visual attention, AR addresses attention fragmentation as one coherent problem,
reducing distractions and restoring cross-image focus without retraining or hyperparameter tuning.

Our contributions are as follows: (1) We identify attention fragmentation in multi-image LMMs: re-
peated background sinks attract high attention across images, with stronger sinks on earlier images,
which suppresses cross-image integration and induces order sensitivity, supported by analyses such
as the symmetric Chamfer distance and image-level entropy. (2) We propose Attention Remasking
(AR), a post-training edit at the pre-softmax stage that masks sink tokens and unmasks a sparse set
of cross-image visual tokens deemed relevant by grounded patch-level CLIP score from the CLIP’s
visual encoder, while preserving text autoregression. (3) We demonstrate improved multi-image
understanding on multi-image benchmarks. AR increases accuracy and reduces sensitivity to image
order, outperforming post-training baselines without retraining or hyperparameter tuning.

2 PRELIMINARIES

Attention mechanism. We consider a decoder-based Large Multmodal Model (LMM) with L layers
and hidden width D. An input consists of text and M images, tokenized into a single sequence of
length N. For each image m € {1,...,M}, let V,,, C {1,..., N} be the indices of its visual

tokens, and let V = Uf‘f:l Vi be the set of all visual-token indices. Let 7 C {1,..., N} denote
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the text-token indices. The j-th input token to the layer ¢ is x?il € RP, and the stacked states

form X1 € RV*P. Queries and keys are computed in the standard way, Q@ = X‘~'W§ and
K' = X 'WE, with Wé Wf € RP*dr and key dimension dj. The attention score matrix is

-
QZKE
ZZ = \/@ + Mcausal; (1)
where Meausal € RV*Y is the causal mask with Mausal, i,; = —00 for i < j and O otherwise.
Row-wise softmax yields attention weights
afﬂ. = softmax(Zﬁ:)j, Zaf,j =1 )
Jj<i

Attention sinks. Prior work reports that Transformer models can allocate large attention to tokens
with little semantic value, a behavior termed attention sink, and attributes it to unusually large ac-
tivations in a small set of hidden dimensions together with the softmax normalization (Gu et al.,
2025). In LLMs, sinks often occur at fixed positions such as the first token; in LMMs, they ap-
pear on visual background tokens (Kang et al., 2025)). To identify visual sink tokens, we follow
the dimension-based criterion used in previous literature (Gu et al.l 2025} [Kang et al., [2025)). Let
Dsink C {1, ..., D} be the indices of potential sink dimensions. We estimate per-dimension statis-
tics by passing the calibration corpus to the LLM, for each d € Dyg;,k; let g and o4 denote the mean
and standard deviation of the d-th hidden coordinate measured on the calibration corpus (Sun et al.,
2024a). For any hidden state x € RP, define the sink score

_ z[d] — pa
d)(l.) a dénDEgik gd '

3)

A token is flagged as a sink at layer £ if its previous-layer state satisfies gb(xé_l) > 71, where T is the
threshold used in sink-identification work. For image m, the set of visual sink tokens at layer £ is

M
s vz} s - Ust
m=1

This procedure isolates tokens that attract high attention due to massive activation in sink dimensions
while contributing little to value computation, as documented for both text and visual sinks.

3 ATTENTION FRAGMENTATION

In Large Multimodal Models (LMMs), multi-image inputs are processed in a single, causally masked
sequence, and attention weights are computed via a row-wise softmax over keys (Li et al.l 2025}
Jiang et al., [2024). Prior work shows that softmax normalization and optimization dynamics can
induce attention sinks, tokens that absorb excess attention while contributing little to value compu-
tation (Gu et al.} [2025). Building on this, we empirically examine how attention is allocated across
images within the same autoregressive context in LMMs.

3.1 EMPIRICAL OBSERVATION OF ATTENTION FRAGMENTATION

Repeated visual sinks at matched background positions. In multi-image inputs, we observe that
per-image sink tokens S, recur in similar spatial regions across images within the same example,
drawing substantial attention despite low semantic utility. To quantify the effect, we represent each
visual token on the 2-D ViT patch grid of size R x C" token j at row—column (r,c) is mapped to
normalized image coordinates u; = (r/R, ¢/C) € [0, 1]?; distances are therefore purely spatial in
image coordinates. For any unordered image pair (m,m’) in the same multi-image example with
sink sets SY, = {u} and 8/, = {u’}, we measure region-level repetition using the symmetric
Chamfer distance on the 2-D token locations,

1 . 1 .
dchamter (S5, S5 = 7|Sf ‘ E min lu—u'l]2 + 7|S£ | g min |[u’ —ullz, (3)
muest, weS,, ml oy h
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Figure 2: Empirical analysis of attention fragmentation. (a) Repeated sinks across images: sym-
metric Chamfer distance (Egs. @ and @) between per-image sink sets vs. random baseline. (b) Po-
sitional skew: sink attention share s,, by image index m (Eq. (7)); earlier images absorb more sink
mass. (c) Level of fragmentation: normalized entropy H,o,m across depth (Eq. ); values remain
high relative to a Dirichlet(1) null, indicating persistent fragmentation. (d) Positional bias: position-
wise accuracy under shows recency bias and persists after visual attention distribution (VAR).

where lower values indicate stronger spatial recurrence. For an example with M images, we sum-
marize recurrence by the per-example average over all unordered pairs

-0 2
dens = — dchamter (S5, S50 6
Chamfer M(M— 1) 1<m<2n;<M Chamfe ( m> m) ( )

As shown in Fig. , the per-example average Eéhamfer across images in the same example is sig-
nificantly smaller than a random sampled baseline, as confirmed by a paired Wilcoxon signed-rank
test. For the baseline, on each image, we uniformly sample the same number |S,| patch tokens
at random locations, recompute the distances, and average over repeated draws. This confirms that
sink tokens recur in corresponding background regions rather than appearing at arbitrary locations.

Masking sinks leaves predictions unchanged. We remove all incoming attention to identified
visual sinks by editing the attention mask at inference: for each layer ¢ and for every query token
i, we set Z{; = —oo for each key j € S*, which forces of ; = 0 for all queries and all layers.
We then compare the model’s original outputs with the masked run on the same inputs using the
answer-flip rate, defined as the fraction of examples whose predicted answer string changes after
masking. We report this rate with a Wilson 95% confidence interval for binomial proportions; when
no flips are observed, we state a conservative 95% upper bound on the true flip probability using
the rule of three, i.e., 3/n for n evaluated items, which closely matches the one-sided Clopper—
Pearson bound in this case. Across models, flip rates remain within tight Wilson intervals near
zero, indicating that eliminating attention to sink keys does not materially alter predictions. This
outcome is consistent with prior reports that attention sinks behave as surplus-attention anchors
whose removal has minimal effect on observable outputs (Gu et al., [2025} [Kang et al., 2025).

Positional skew toward earlier images. Within the same multi-image example, sink strength is not
uniform across images. We quantify per-image sink strength at layer ¢ by the Sink Attention Share

Eievm Zjesfn af;
7
D i€V 2j €V a;;’

where «; ; are attention Welghts averaged over heads. Intuitively, ¢/, measures what fraction of the
attentlon budget directed to image m is absorbed by its sink tokens rather than informative visual
tokens, so larger values indicate more attention trapped in sinks. As shown in Fig.[2b] earlier images
exhibit consistently larger (,,, than later ones; a paired Wilcoxon signed-rank test comparing the
first and last image within each example rejects the null of equal medians, and a within-example
regression of (,,, on the image index m yields a negative, statistically significant slope. This pattern
aligns with the one-way access imposed by causal masking (Wu et al., 2025): an image that appears
earlier is exposed to more downstream queries, and we observe that (,,, increases with this exposure;
moreover, permuting image order within the same example shifts ¢, toward the images moved
earlier, reinforcing the link between positional access and sink accumulation.

(7

£
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3.2 MEASURING ATTENTION FRAGMENTATION

Entropy-based measurement of image-level fragmentation. Prior analyses of Transformer atten-
tion report layer-dependent patterns suggesting that attention can become more task-specific deeper
in the stack (Voita et al.,2019;|Abnar & Zuidema, 2020). In multi-image examples, attention alloca-
tion may evolve with depth: early layers can distribute mass more broadly, whereas later layers are
expected to place relatively more weight on whichever image carries decisive evidence rather than
maintain an even spread. For example, a matching-style query such as “Which image shows the red
umbrella?”’, would expect more attention to be allocated to the image with a red umbrella in the late
layers rather than spreading evenly across the images. Following previous work that uses entropy
to characterize dispersion of attention (Hyeon-Woo et al.| [2023} |Araabi et al.| [2024), we measure
fragmentation at the image level using entropy to test whether attention becomes concentrated or
remains dispersed in late layers. For decoder layer ¢ and query token i, aggregate attention to image
m by defining pp, (i, £) = >y, a; and the total visual mass w(i, £) = Y_ ., af;. We then nor-
malize over visual mass to obtain a distribution across images P, (¢,£) = p., (i, £) /w(i, £) (defined
when w(%, £) > 0), so that Zn]\le Dm (i, ¢) = 1. The normalized Shannon entropy is

_ Zle D (2, £) log P (3, £)
log M ’

which lies in [0, 1]: values near 0 indicate concentrated focus on one image; values near 1 indicate
a uniform spread across images. In our analysis, higher normalized entropy demonstrates attention
fragmentation at the image level, whereas lower values indicate concentration of attention. Mecha-
nistically, if each image contains background sink tokens that attract a comparable share of attention,
the per-image attention masses p,, (¢, £) tend toward equality (i.e., &~ 1/M), which raises Hyorm-

Hnorm(iaé) = (8)

Fragmentation persists throughout layers. Following prior work that examines attention patterns
across all layers (Abnar & Zuidema, [2020; [Zhai et al., |2023)), we summarize normalized entropy
by depth using quartile bins. We use a Dirichlet(1) compositional reference because it is uniform
over the M -simplex and encodes no preference among images. As shown in Fig. [2c| relative to this
reference, early-layer entropy already lies in the upper tail of its Monte Carlo distribution, indicating
high dispersion compared to an uninformed spread. Entropy shows no meaningful reduction as depth
increases: paired Wilcoxon signed-rank tests between adjacent quartiles are not significant after
Holm correction, and per-example Spearman correlations between layer index and entropy center
near zero. By the final quartile, the median entropy remains in the upper tail of the Dirichlet(1)
reference, underscoring persistent fragmentation rather than concentrating on more relevant images.

Link between high entropy, skewed sinks, and recency bias. We found that fragmentation persists
under permutation of image order, and answers flip with a recency bias; images placed later in
the sequence disproportionately influence predictions, consistent with one-way access under causal
masking and mirroring behavior reported in recent position-bias studies (Tian et al.|[2025;|Wu et al.,

2025). Let p,,(i,0) = > jevi, af, ; denote the per-image attention mass and let ¢’, be the sink

share on image m (Eq. ), where ozf’ ; are attention weights averaged over heads. Let w(i, l) =

Z%zl pm (i 0) = 3 ey af ; be the total visual attention mass. Define the non-sink attention mass
P (5, €) = (i, £) (1 — ¢%,). If visual attention is evenly distributed across images (high entropy

conditional on visual mass), so that p,,(i,¢) = w(i,£)/M for all m, then for any images a, b,
ra(i,0)—1p(i, ) = wgff) (¢t —¢%), hence ¢¢ > ¢f implies r, (i, £) < r4(i, £). More generally, if the
masses are near-uniform with max, |py (i, £) —w (i, Z)/M’ < ¢ for all m, then for any a, b, 74,(4, £)—

ry(i, ) > # (¢t — ¢%) — 2¢. Here ¢ quantifies deviation from uniformity across images; when
the normalized entropy Hyorm (i, £) of the conditional distribution p,, (i, £) = p,,(i,£)/w(i, ) is
high, € can be bounded via Pinsker’s inequality as ¢ < w(i, ) \/2 log M (1 — Hyorm (i, ¢)) (natural

logs). Because causal masking increases sink share for earlier images, these relations reduce their
non-sink mass and bias decisions toward later images, manifesting as recency bias.

3.3 LIMITATIONS OF POST-SOFTMAX REDISTRIBUTION

Post-softmax redistribution from prior work. Prior research on attention sinks in single-image
LMMs proposes reallocating the attention mass removed from identified sink tokens to visual non-
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Figure 3: Attention Remasking. A post-training edit to pre-softmax attention that masks visual sink
tokens and selectively unmasks links between visual tokens guided by task relevance. AR reduces
attention fragmentation and mitigates order sensitivity in multi-image LMMs.

sink tokens by directly editing the weights af ;j in equation I computed after the causal mask
Mausal in equation |I| (Kang et al.l 2025). The reallocation 1s proportlonal to existing non-sink
token attention weights, so the image-level distribution p,, (i,¢) = > €V af ; inherits the baseline
pattern; when non-sink token attention is already fragmented across images and skewed toward ear-
lier ones, the same dispersion and skew are preserved, sometimes reinforced by larger sink budgets
on earlier images. Because the mask is not altered, forward links from earlier queries to later images
cannot be created, so order sensitivity induced by one-way access remains.

Fragmentation is unchanged after proportional redistribution. We measure image-level dis-
persion with the normalized entropy Hyomm (7, £) in equation |8 Let HP®¢ and Hhow, denote the
scores before and after redistribution. Paired Wilcoxon signed-rank tests find no meaningful differ-
ence between Hgoim and H};g;em, and Hodges-Lehmann estimates of the median change are near
zero. Quartile summaries by depth show that the final-quartile median entropy remains in the upper
tail of the Dirichlet(1) compositional null both before and after redistribution, indicating that high

dispersion persists and late-layer concentration does not emerge.

Order sensitivity and recency bias persist. Using the same answer-flip rate and permutation proto-
col introduced earlier, we observe similar flip frequencies before and after redistribution, indicating
that post-softmax reweighting does not stabilize predictions under image reordering. As shown in
Fig.[2d] position-wise accuracy continues to increase with later positions, consistent with a recency
bias arising from one-way access under causal masking.

4  ATTENTION REMASKING

We introduce Attention Remasking (AR) (Fig. 3, a post-training edit to the attention score matrix
that targets the multi-image failure induced by attention fragmentation. The objective is twofold: (i)
reclaim attention currently assigned to visual sink tokens and (ii) counteract the biased attention dis-
tribution left by attention fragmentation, so that attention can flow along task-relevant cross-image
links. Let Z’ and of be the pre-softmax scores and row-normalized attention weights defined in
equation [I] and equation 2] respectlvely Sink tokens are identified as in equation [3 and equatlon A
y1e1d1ng the per-layer set S C {1,..., N}. AR edits only the visual-visual submatrix of Z, pre-
serving text autoregression enforced by the causal mask Mcausal in equation [ AR masks sink
tokens by setting Zf’ ; = —oo forallzandallj € S*, which implements a column-wise block
on sinks and removes their incoming attention everywhere. Under causal masking, later images are
not accessible as keys to earlier queries, which limits cross-image integration even when the task
requires linking evidence across images. AR therefore relaxes the visual parts of M ,ysa1 to allow
forward attention from earlier queries to later-image visual tokens when there is semantic evidence
that such links are relevant to the task instruction. Building on evidence that patch-level CLIP—text
alignment is informative for grounding text queries to image regions(Zhou et al., |2023)), we con-
struct a grounded, patch-level relevance distribution over newly unmasked visual keys using CLIP’s
encoders. First, we locate task-relevant regions with a phrase-grounding detector (e.g., Grounding
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Table 1: Average accuracy (%) on five multi-image benchmarks. Full per-task tables and additional
models are in the appendix.

Benchmark (Acc %)

Method
MMIU MuirBench MIRB LIBench MIBench
LLaVA-Interleave-7B 329 30.3 33.9 52.5 51.8
+ VAR 342 32.1 34.3 53.5 52.3
+ SoFA 34.7 33.0 35.0 53.6 52.8
+ Ours 37.3 35.2 36.4 56.3 55.5
Qwen2-VL-7B 27.3 39.3 31.1 31.2 38.5
+ VAR 28.1 40.9 322 32.1 39.6
+ SoFA 28.8 41.7 32.8 33.0 40.1
+ Ours 31.9 44.2 34.7 35.5 42.5
Idefics2-8B 30.4 26.8 33.0 37.0 45.5
+ VAR 30.3 27.3 33.7 37.1 45.5
+ SoFA 31.0 27.8 33.9 37.7 46.5
+ Ours 34.1 30.2 35.8 41.3 50.2
Mantis-SigCLIP-8B 443 33.3 36.1 38.3 43.7
+ VAR 45.4 33.6 37.2 39.2 44.0
+ SoFA 46.0 342 374 39.6 44 .4
+ Ours 47.1 36.3 38.9 424 47.1

DINO), mapping detected boxes to visual-token indices by including all tokens overlapping with
the box; denote this grounded candidate set for query i at layer £ by U!. These keys lie in grounded
regions and are newly unmasked within the visual-visual block. Let ¢t € R? be the instruction em-
bedding from the CLIP text encoder and v; € R the patch/visual-token embedding from the CLIP
visual encoder. We compute cosine similarities and normalize to obtain a distribution over U}:
_ () __ exp(siyg) N
S el ™ T S el O W) ©

keu?

with m; j = 0 for j ¢ U!. This yields a sparse, instruction-conditioned prior that concentrates on
grounded, high-similarity patches. We reassign attention released from sinks, guided by w. For
query 14, let the sink attention at layer £ be f = > jest af’ ;- After masking sinks, a plain softmax
would redistribute this budget implicitly among remaining keys. Instead, AR explicitly routes the
same share to the newly opened, relevant links using 7. Define the target row distribution df’. by

L

af . , _
&= =) —=— 1 ¢ ST VU] + nimi;1[j eU]. (10)
> Qi
k¢Stuuf
We realize &f . by writing scores Z/; = logaf; + cf, for all non-—cc entries, where cf is any

row-constant canceled by the softmax, while enforcmg —oo on sink columns and on Vlsual links
that remain masked. If S* = @ or U = @, AR reduces to the identity on row i.

5 EXPERIMENTS

We evaluate Attention Remasking (AR) on interleaved-token LMMs to test whether it improves
multi-image accuracy, reduces attention fragmentation, including lower late-layer entropy and re-
duced sensitivity to image order, and remains robust under ablations and controls.

5.1 EXPERIMENTAL SETTINGS

Models. We evaluate a diverse range of open-source multi-image LMMs, including LLaVA-
Interleave-7B (Li et al.l [2025), Qwen2-VL-7B (Team, 2025)), Idefics2-8B (Laurencon et al., 2024)),
and Mantis-SigCLIP-8B (Jiang et al.| [2024). For completeness, Appendix [C|expands to the full set
of multi-image LMMs covered by recent benchmarks.
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Figure 4: Attention Remasking (AR): results and ablations. (a) Fragmentation vs. depth: AR
lowers normalized entropy compared with post-training baselines, indicating reduced attention frag-
mentation. (b) Order sensitivity: AR reduces position-wise accuracy skew relative to baselines. (c)
Ablation on relevance scores: accuracy when unmasking uses different patch-level scores. (d) Ab-
lation on masking strategy: mask-only and unmask-only variants underperform full AR.

Baselines. We compare against two training-free post-hoc methods related to attention fragmenta-
tion. SoFt Attention (SoFA) linearly interpolates the attention between the standard causal attention
and the bidirectional attention without masking, opening links from earlier queries to later images
(Tian et al.l 2025). Visual Attention Redistribution (VAR) moves post-softmax attention mass from
identified sink tokens to visual non-sink tokens (Kang et al.,[2025).

Tasks and benchmarks. We adopt a comprehensive multi-image evaluation covering a wide range
of complementary tasks. MMIU (Meng et al.l 2025) covers seven relationship types with tasks that
test comparison, retrieval, and spatial/temporal integration; MuirBench (Wang et al.| [2025) spans
twelve tasks built around relation categories such as multiview, ordering, and temporal reasoning;
MIRB (Zhao et al., 2024) groups tasks into perception, visual world knowledge, reasoning, and
multi-hop reasoning; we also use the multi-image subset of MIBench (Liu et al.l [2024a)), which
focuses on five tasks of reasoning and comparison, and subset of LLaVA-Interleave Bench (Li et al.}
2025)), spanning nine tasks on multi-image reasoning, which we refer to as LIBench.

Implementation details. We use each model’s official checkpoints and default prompting templates,
and we run evaluation with greedy decoding (temperature = 0) to remove sampling variance. For
multiple-choice question items, we adopt the benchmark-provided answer extraction and normaliza-
tion scripts for scoring. We locate instruction-relevant regions with GroundingDINO-SwinT-OGC
with default settings. All experiments are conducted on eight A100 GPUs.

5.2 MAIN RESULTS

Overall accuracy. Across all five multi-image benchmarks and every evaluated open-source LMMs,
AR improves average accuracy over the base model. Table [I| reports benchmark-level means; full
per-task, per-model results appear in the Appendix [C|

Level of fragmentation. Fig. fa plots the normalized entropy Hyorm by layer-depth quartiles.
Baselines lie in the upper tail of a Dirichlet(1) compositional null across depth, indicating dispersed
allocation over images. AR shifts the curve downward at all depths, with a statistically significant re-
duction in the final quartile as confirmed by paired Wilcoxon signed-rank tests with Holm correction.
Fig. b shows accuracy as a function of image position under controlled permutations. Baselines
display a clear positive slope, evidencing recency bias. AR both raises the curve and flattens the
slope; permutation flip rates drop, with Wilson intervals remaining strictly below the baseline. For
comparison baselines, SOFA reduces the position—accuracy slope while late-layer entropy remains
high, and VAR leaves entropy unchanged and the position—accuracy slope largely intact, reflecting
that proportional post-softmax reweighting preserves the pre-existing fragmented pattern.

Discussion. SoFA interpolates toward unmasked attention using logits that were never trained under
the causal mask, opening all links without preference for task-relevant ones; this weakly counters
positional bias effects but does not consolidate attention, as fragmentation remains high. VAR moves
probability mass only within the already-masked distribution and in proportion to current non-sink
weights; it cannot create forward links and therefore inherits both dispersion and positional skew.
AR differs by masking sink keys, explicitly unmasking a sparse set of instruction-relevant cross-
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image links, and reallocating the freed attention to those links, which jointly reduces fragmentation
and order sensitivity while improving task accuracy.

5.3 ABLATION STUDY

Relevance score. We compare the DINO-grounded CLIP score used in AR with three alternatives.
SAM-grounded CLIP replaces the detector with SAM (Kirillov et al., 2023): images are segmented,
segments are ranked by the average CLIP text—patch similarity, the top segments are retained, and
the resulting token-wise scores are normalized over the newly unmasked keys. CLIP-only patches
remove gating and use raw CLIP text—patch cosine similarities for all visual tokens. Uniform dis-
tributes the freed attention mass evenly across all newly unmasked tokens. Fig. [4c|shows that both
grounded CLIP scores attain the largest accuracy. Uniform reallocation provides the weakest im-
provement and often leaves fragmentation and order sensitivity largely unchanged.

Masking and unmasking. We compare two ablations against the full AR edit. Mask-only removes
all incoming attention to identified sinks by setting their columns to —oco and then renormalizing
each row over the remaining keys. This diffuses the budget that was trapped in sinks across the pre-
existing non-sink pattern, so image-level dispersion and order sensitivity largely persist; accordingly.
Unmask-only relaxes the visual mask to open cross-image links and assigns scores equivalent to
scores in sinks to those links in proportion to the grounded, patch-level CLIP relevance, but leaves
the rest of each row unchanged. Fig. dd| shows that for both variants, accuracy remains close to
the baseline. The full AR masks sink and reallocates the freed budget to the newly unmasked,
instruction-relevant links, and achieves the largest accuracy improvements among the variants.

6 RELATED WORK

Multi-image understanding. Recent large multimodal models accept multiple images by incorpo-
rating visual tokens with texts into a single causal sequence so that all tokens share one attention
space (Li et al., 2025; [Team, [2025} Jiang et al., 2024; |Cai et al.l [2024; Lu et al., [2024). To evalu-
ate performance on multi-image tasks, recently proposed benchmarks provide broad coverage with
differing taxonomies. For example, MMIU (Meng et al., 2025)) spans relation types such as compar-
ison, retrieval, and spatial or temporal integration, while MuirBench (Wang et al., [2025]) aggregates
diverse relation-centric tasks, and MIRB (Zhao et al., [2024) targets perception, world knowledge,
and multi-hop reasoning. Beyond evaluation, SoFA (Tian et al.| 2025)) mitigates positional bias by
interpolating causal with bidirectional attention via a weighting hyperparameter, and Multi-image
Augmented Direct Preference Optimization (Liu et al.,[2025) augments preference data with multi-
image examples by extending single-image data with unrelated images to improve task alignment.

Attention sinks. Attention sinks refer to tokens that attract disproportionately high attention despite
offering little semantic utility. Recent work shows they emerge during LLM pretraining, concentrate
at fixed positions such as the first token or special tokens, and correlate with massive activation in a
few hidden dimensions; masking or removing them has minimal effect, suggesting they store surplus
attention rather than useful signals (Gu et al., [2025)). Attention sinks have also been exploited for
efficiency: StreamingLLM (Xiao et al.| [2024) retains sink keys to stabilize sliding-window attention
and reduce KV cache, while OrthoRank (Shin et al., [2025) uses sink orthogonality to prune tokens.
In multimodal settings, sinks cluster on background patches, motivating redistribution of attention to
non-sink tokens (Kang et al., [2025). Our work builds on these observations but targets multi-image
trained models, where repeated, position-skewed sinks fragment cross-image attention.

7 CONCLUSION

We introduced Attention Remasking (AR), a post-training edit to the attention scores that removes
visual sink tokens and reinstates task-relevant cross-image links under causal masking. Our anal-
yses revealed repeated, position-skewed sinks across images, which fragment attention patterns;
AR reduces fragmentation and improves accuracy on multi-image benchmarks without retraining
or hyperparameter tuning. AR provides a simple, general tool for multi-image understanding in
large multimodal models and moves toward stronger cross-image integration. Future work includes
analyzing attention dynamics and extending AR to video modeling if similar issues arise.
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B ADDITIONAL ANALYSIS

Qualitative Analysis. We qualitatively analyse the visual attention maps of the base model and
AR in Fig. E} Without AR, the base model distributes attention across sink tokens and irrelevant
regions, leading to fragmented focus and an incorrect answer. With AR, attention is redirected to
task-relevant regions, restoring cross-image reasoning and yielding the correct answer.

Head Selection. VAR applies redistribution only to image-centric heads, in which attention con-
centrates on visual non-sink tokens (Kang et al.l [2025). In multi-image, interleaved LMMs such
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— In which image the dog is sleeping on its back in a belly
Question: up position?
LLaVA-
Interleave:

(image,

LLaVA-
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+ Ours:

Figure 5: Qualitative analysis of AR. Visual attention maps before and after applying AR indicate
that, by masking sink tokens and unmasking task-relevant visual attention, AR (bottom) reduces
distractions and restores cross-image focus, leading to more accurate responses by seeing the image
more effectively.

image,

image;

image,

as LLaVA-Interleave [Li et al.| (2025); [Jiang et al.| (2024), the decoder attends over a key set domi-
nated by visual tokens because each image contributes hundreds of ViT/CLIP patch tokens, whereas
the prompt contributes only tens of text tokens. Consequently, a large fraction of heads satisfy
the image-centric criterion even without explicit selection. Empirically, restricting redistribution
to VAR-selected heads yields accuracy that is nearly identical to applying redistribution across all
heads, as shown in Fig. [6a]
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Figure 6: Additional analysis of AR. (a) Effect of head selection: Applying redistribution to all
heads or only image-centric heads yields nearly identical accuracy across benchmarks. (b) Sensi-
tivity analysis of Grounding DINO hyperparameters on MMIU benchmark: Performance remains
stable across reasonable threshold ranges, with degradation only at extreme values.

Grounding DINO. Our method relies on Grounding DINO to identify task-relevant regions in im-
ages, which are then used to guide attention remasking. Grounding DINO has two hyperparameters:
box_threshold (minimum confidence for box detection) and text_threshold (minimum text-image
similarity for grounding). Since we had no validation set available for hyperparameter tuning, we
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Table 2: Experimental results on general single-image vision-language task.

Model VQAY” GQA VizWiz SQA! VQA"T MME MMB® SEED' LLaVAY MM-Vet
LLaVA-15-7B | 785 62.0 50.0 66.8 582 14955 643 58.6 654 31.1
+ VAR 78.6 63.5 53.7 673 586 15138  65.1 60.7 68.1 33.7
+ Ours 78.6 63.0 54.0 68.1 580 15104  64.7 59.9 67.1 344
VILA-13B 80.8 63.3 60.6 737 666 1507.1 703 62.8 73.0 38.8
+ VAR 81.2 63.6 64.2 747 6713 15127 717 63.0 75.7 39.7
+ Ours 81.6 62.4 63.4 75.1 66.9 15107 723 62.4 74.7 40.1
Qwen2-VL-7B | 825 64.5 65.4 74.1 843 16723 830 77.9 75.6 63.2
+ VAR 82.8 64.7 67.7 742 849 16885 833 78.1 71.3 63.5
+ Ours 82.6 65.3 66.9 738 853  1690.0  84.0 78.0 76.7 64.0
InternVL2-8B 82.0 63.2 63.0 742 773 16481 81.7 76.2 732 60.0
+ VAR 82.5 63.5 65.1 747 780 16554 823 77.1 75.1 61.2
+ Ours 82.0 64.0 64.1 759 789 16509  83.6 71.5 74.6 61.8

used the default values of box_threshold=0.35and text_threshold=0. 25 throughout all
our experiments.

To verify that our results are not dependent on these specific hyperparameter choices, we conduct a
sensitivity analysis by evaluating all combinations of threshold values from 0.1 to 0.9. Fig.[6b|shows
the accuracy heatmap across different threshold combinations. The results show that our method is
robust across a wide range of reasonable threshold values, performance largely degrades only when
either threshold reaches extreme values, confirming that AR is insensitive to the precise choice of
these parameters.

Single Image Performance. A natural concern is whether our AR method might undermine single-
image performance. To verify this, we evaluate AR on single-image vision—language benchmarks,
with results reported in Table 2] We find that AR does not harm performance on single-image
tasks; it yields consistent improvements across most benchmarks. This effect shows that by masking
attention sinks and mitigating the positional bias, AR reallocates attention away from background
patches that contribute little to prediction, thereby allowing the model to attend more effectively to
task-relevant regions. While the gains are modest, as attention fragmentation is more pronounced in
multi-image settings, the improvements show that AR provides a robust enhancement rather than a
trade-off.

C EXPERIMENTAL DETAILS

C.1 MODEL DETAILS

For completeness, we expand beyond the representative models highlighted in the main text in
this section. In addition to LLaVA-Interleave-7B (Li et al.| [2025), Qwen2-VL-7B (Team) 2025)),
Idefics2-8B (Laurencon et al.|2024), and Mantis-SigCLIP-8B (Jiang et al.,[2024), we select a diverse
set of open-source models, including Mantis-idefics2-8B (Jiang et al., 2024)), VILA-2.7B/7B (Lin
et al., [2024), Emu2-Chat-37B (Sun et al., [2024b)), InternVL2-8B (Chen et al., [2024), InternVL2-
Pro (Chen et al.} 2024), InternVL1.5-chat (Chen et al.,|[2024), Mini-InternVL-1.5-2B/4B (Gao et al.,
2024), Idefics-9B-Instruct (Bai et al.,[2023)), DeepSeek-VL-1.3B/7B (Lu et al., 2024}, XComposer2-
1.8B/7B (Dong et al.,|2024), OpenFlamingo-v2 (Awadalla et al.,[2023)), Qwen-chat (Bai et al., | 2023)),
and Qwen-Base (Bai et al., 2023)).

C.2 REPRODUCIBILITY STATEMENT

Experimental Settings. All experiments and evaluations are conducted on eight NVIDIA A100
GPUs. Only the inference step of LMMs is used, without any training.

Multi-image benchmarks. We evaluate AR on five recently proposed benchmarks designed to
probe multi-image reasoning:

* MMIU (Multimodal Multi-Image Understanding) (Meng et al.,2025), is a comprehensive
benchmark designed to evaluate multi-image reasoning across seven relationship types:
discrete, continuous, low-level, high-level subject, high-level object, 2D, and 3D under-
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standing. The benchmark contains over 7,000 carefully curated examples spanning com-
parison tasks, retrieval scenarios, and spatial-temporal reasoning. Questions are formatted
as multiple-choice with 4 options, testing the model’s ability to integrate information across
multiple images for complex reasoning tasks.

MuirBench (Wang et all 2025), focuses on robust multi-image understanding across
twelve diverse task categories, including counting, action recognition, grounding, match-
ing, ordering, scene understanding, difference detection, cartoon analysis, diagram inter-
pretation, geographic reasoning, attribute recognition, and retrieval. The benchmark con-
tains approximately 2,600 examples designed to test models’ resilience to various visual
and semantic challenges.

MIRB (Multi-Image Reasoning Benchmark) (Zhao et al.l 2024), organizes evaluation
around four core competency areas: perception (basic visual recognition across images),
visual world knowledge (applying real-world knowledge to visual scenes), reasoning (logi-
cal inference and deduction), and multi-hop reasoning (complex reasoning chains spanning
multiple images).

LIBench (L1 et al.| 2025), containing nine task categories: Spot the Difference (SD), Image
Edit Instruction (IE), Visual Story Telling (VST), Text-rich VQA (TRVQA), Multi-image
VQA (MIVQA), Puzzle solving, Q-Bench quality assessment (QB), ScanQA document un-
derstanding (SQ), MathVerse mathematical reasoning (Math), SciVerse scientific reasoning
(Sci), Mantis instruction following, BLINK perception tasks, and MMMU multi-discipline
understanding, includes approximately 1,500 multi-image examples.

MiIBench (Liu et al., [2024a), provides evaluation across two main categories: Multi-
Image Instruction following and Multimodal Knowledge-Seeking. The instruction fol-
lowing category includes tasks such as difference comparison (GC), spot the difference
(SD), visual reasoning (VR), text-rich understanding (TR), and logical reasoning (LR).
The knowledge-seeking category encompasses fine-grained visual recognition (FVR), text-
rich image understanding (TRI), visual text knowledge (VTK), and text-visual knowledge
(TVK). MIBench contains approximately 2,000 examples.

Single-image benchmarks. To verify that AR does not harm performance on standard vi-
sion—language tasks, we also report results on ten single-image datasets:

VQAY? (Goyal et al.l[2017): Visual question answering v2.0. A large-scale dataset for vi-
sual question answering on natural images, containing open-ended questions about objects,
attributes, and relationships.

GQA (Hudson & Manning} 2019): Question answering on image scene graphs.

VizWiz (Gurari et al., [2018): We used val set splits for the evaluation. A dataset collected
from blind users who photographed their environment and asked related questions.

SQA! (Lu et al[2022)): ScienceQA is a dataset collected from elementary and high school
science curricula, consisting of 21,208 multimodal multiple-choice science questions. Out
of these, 10,332 questions include image context, 10,220 include text context, and 6,532
include both. Most questions are annotated with lectures (17,795) and detailed explanations
(19,184) to provide general knowledge and specific reasoning for the correct answers. The
dataset spans three subjects: natural science, language science, and social science, and is
organized into 26 topics, 127 categories, and 379 skills.

VQAT (Singh et al.,[2019): TextVQA focuses on visual question answering, where reading
embedded text in images (OCR) is essential.

MME (Yin et al.;, 2023): A comprehensive evaluation benchmark for multimodal models,
covering 14 tasks including object existence, counting, spatial reasoning, OCR, common-
sense reasoning, translation, and numerical problem solving. It measures both perception
and reasoning abilities.

MMB*®" (Liu et al.,2023b): The English subset of MMBench, consisting of ~3k multiple-
choice questions that assess 20 ability dimensions (e.g., perception, reasoning, common-
sense). Evaluation adopts the official GPT-4-based scoring pipeline to ensure consistency.

SEED! (Li et al., 2023): The image subset of SEED-Bench, targeting visual reasoning with
a focus on spatial relationships between objects, a known challenge for current LMMs.
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e LLaVAY (Liu et all [2023a): LLaVA-Bench (In-the-Wild) contains 24 real-world images
with 60 diverse questions spanning domains such as indoor scenes, outdoor environments,
memes, paintings, and sketches, testing generalization to complex, unfamiliar visual con-
texts.

* MM-Vet (Yu et al 2023): A benchmark designed to assess multimodal models in open-
ended visual conversations, including 200 images and 218 questions. Responses are scored
by GPT-4 for both accuracy and helpfulness, providing a holistic evaluation of model utility.

C.3 DETAILED RESULTS

In this section, we report the full per-task and per-model results across all benchmarks.

Table 3: Experiment results on MMIU (Overall (test) to Low-Level).

Model Overall (test) Overall Discrete Continuous Low-level
Frequency 30.9 315 295 29.5 38.1
Random 27.1 274 221 254 33.7
Closed-source LMMs
GPT-40 (OpenAl 2023) 55.6 555 582 53.7 84.0
Claude3.5 (Anthropic}[2023) 54.3 534 553 479 77.2
Geminil.5 (Team et al.,|2023) 54.5 534 542 50.1 76.1
Geminil.0 (Team et al., 2023) 41.2 40.2 458 49.8 48.7
Multi-Image input LMMs
Mantis-idefics2-8B (Jiang et al.,[2024) 45.3 45.6 37.3 43.4 58.4
+ VAR 46.1 46.0 384 44.5 59.6
+ SoFA 46.7 47.1 38.9 45.7 59.8
+ Ours 48.9 49.6 41.0 47.0 61.9
Mantis-SigCLIP-8B (Jiang et al., [2024) 41.8 426 372 39.3 69.5
+ VAR 42.7 43.6  38.0 40.3 71.0
+ SoFA 43.2 44.0 38.6 40.8 71.1
+ Ours 45.7 46.3 40.5 432 73.2
LLaVA-Interleave-7B (Li et al.,[2025) 33.5 324 353 30.7 33.7
+ VAR 34.0 339 354 31.0 34.5
+ SoFA 34.9 344  36.7 32.6 34.9
+ Ours 37.2 36.1 39.1 34.8 38.4
InternVL2-Pro (Chen et al., [2024) 49.8 50.3 53.8 46.3 72.7
+ VAR 51.0 50.7  54.7 479 71.6
+ SoFA 51.5 52.1 550 48.1 73.1
+ Ours 53.6 543 574 50.6 76.2
InternVL1.5-chat (Chen et al., 2024} 38.7 374  43.6 46.4 42.9
+ VAR 38.8 387 44.7 47.8 44.1
+ SoFA 38.4 39.2 451 48.0 44.6
+ Ours 42.7 41.3 47.0 49.9 46.8
InternVL2-8B (Chen et al., [2024)) 34.0 348 342 43.4 36.7
+ VAR 35.0 359 352 44.7 37.6
+ SoFA 35.0 36.2 356 449 37.9
+ Ours 38.8 383 379 46.8 40.5
Mini-InternVL-1.5-4B (Gao et al., [2024) 32.5 32.1 30.6 42.2 354
+ VAR 33.5 33.0 31.7 433 36.5
+ SoFA 33.2 33.6 321 43.6 36.8
+ Ours 36.1 36.5 344 45.8 39.6
Mini-InternVL-1.5-2B (Gao et al., [2024) 31.8 30.5  33.1 38.6 30.9
+ VAR 32.0 31.5 340 39.7 31.9
+ SoFA 33.0 319 348 41.1 32.3
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Table 3 — continued from previous page

Model Overall (test) Overall Discrete Continuous Low-level
+ Ours 35.6 33.8 36.7 43.9 34.8
idefics2-8B (Laurengon et al.,[2024) 27.2 27.8 229 19.3 42.4
+ VAR 27.6 29.1 24.0 19.7 43.5
+ SoFA 28.9 29.5 24.0 21.1 439
+ Ours 32.5 324 27.1 24.5 46.8
Idefics-9B-Instruct (Bai et al.,[2023) 13.2 12.8 23.6 7.2 11.6
+ VAR 14.3 12.7 247 8.1 12.1
+ SoFA 14.0 142  25.1 8.9 12.9
+ Ours 17.6 172 28.0 11.7 16.8
DeepSeek-VL-7B (Lu et al., [2024]) 24.6 24.6 16.4 10.3 39.1
+ VAR 25.9 234 17.1 10.8 40.0
+ SoFA 27.1 25.8 18.2 12.1 40.8
+ Ours 28.8 28.0 20.6 14.4 43.9
DeepSeek-VL-1.3B (Lu et al., 2024) 23.8 23.2 14.6 9.2 33.3
+ VAR 24.9 24.4 15.0 10.4 34.0
+ SoFA 24.2 24.8 16.2 10.1 33.6
+ Ours 27.6 26.5 18.3 13.1 36.5
XComposer2-7B (Dong et al.,[2024) 23.4 23.5 31.9 31.6 23.4
+ VAR 24.0 234 321 329 24.8
+ SoFA 25.1 249 335 33.0 25.2
+ Ours 27.2 27.0 35.8 352 27.7
XComposer2-1.8B (Dong et al., |2024)) 22.0 21.9 29.4 329 22.5
+ VAR 23.3 22.0 30.6 34.2 23.0
+ SoFA 23.6 234  30.1 35.5 23.9
+ Ours 26.1 25.6 332 38.7 26.0
OpenFlamingo-v2 (Awadalla et al., [2023) 22.7 223 208 19.5 29.6
+ VAR 24.8 234 221 20.7 30.7
+ SoFA 24.2 238 236 22.2 31.2
+ Ours 26.6 259 249 24.6 33.8
Qwen2-VL (Team, 2025]) 33.0 27.8  25.7 27.3 28.0
+ VAR 35.0 28.7 27.8 28.1 28.5
+ SoFA 32.7 28.6 27.1 28.8 30.8
+ Ours 39.9 29.9 302 31.9 34.1
Qwen-chat (Bai et al., [2023) 18.0 15.9 14.7 19.5 22.3
+ VAR 19.1 16.0 15.9 20.7 23.0
+ SoFA 19.6 17.5 16.0 21.8 23.1
+ Ours 224 21.2 18.9 23.0 26.7
Qwen-Base (Bai et al., [2023) 4.8 5.2 13.2 2.6 5.3
+ VAR 6.1 6.5 14.7 3.7 6.6
+ SoFA 6.9 7.8 15.0 3.5 6.9
+ Ours 10.1 10.8 18.0 8.4 11.6

Table 3 - Experiment results on MMIU (High-level-sub to Three-D)

Model High-level-sub High-level-obj Two-D Three-D

Frequency 29.6 36.7 27.8 302

Random 20.7 32.8 243 284
Closed-source LMMs

GPT-40 (OpenAl, [2023) 69.2 57.5 417 554

Claude3.5 (Anthropic} [2023) 64.8 64.5 419 451
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Table 3 — continued from previous page

Model High-level-sub High-level-obj Two-D Three-D
Geminil.5 (Team et al., 2023 63.9 64.9 433  43.0
Geminil.0 (Team et al., [2023 57.9 36.7 29.7  36.7
Multi-Image input LMMs
Mantis-idefics2-8B (Jiang et al.l, 2024) 54.8 56.4 37.8 404
+ VAR 56.1 57.6 38.1 412
+ SoFA 57.0 57.0 394 420
+ Ours 59.0 60.3 41.8 447
Mantis-SigCLIP-8B (Jiang et al., 2024) 46.2 529 302 402
+ VAR 47.6 54.3 312 417
+ SoFA 47.8 544 326 428
+ Ours 50.1 56.9 348 442
LLaVA-Interleave-7B l, -2025 35.7 333 347 274
+ VAR 349 34.5 356 287
+ SoFA 37.1 359 36.0 298
+ Ours 40.6 39.2 384 331
InternVL2-Pro (Chen et al., 2024) 70.6 58.5 38.1  42.1
+ VAR 71.8 59.9 382 425
+ SoFA 72.0 60.9 39.5 438
+ Ours 74.1 62.3 42.0 459
InternVL1.5-chat (Chen et al., [2024) 59.1 26.0 33.6 370
+ VAR 60.1 27.9 325 380
+ SoFA 60.4 274 349 380
+ Ours 62.1 30.8 369 403
InternVL2-8B (Chen et al.,[2024) 47.3 32.1 300 322
+ VAR 48.0 335 29.1 303
+ SoFA 49.1 335 31.5 337
+ Ours 51.1 35.8 340 364
Mini-InternVL-1.5-4B (Gao et al., [2024) 47.2 29.2 272 305
+ VAR 48.0 30.6 27.6 308
+ SoFA 48.6 31.7 289 321
+ Ours 50.5 332 309 342
Mini-InternVL-1.5-2B (Gao et al.,[2024) 37.6 28.7 274 257
+ VAR 38.0 29.8 28.6 259
+ SoFA 39.2 30.3 297 273
+ Ours 41.7 324 323 298
idefics2-8B (Laurencon et al., [2024) 45.2 26.8 334 257
+ VAR 46.0 28.1 325 269
+ SoFA 46.8 28.0 349 272
+ Ours 49.2 30.9 383 295
Idefics-9B-Instruct (Bai et al., 2023) 27.0 12.3 122 87
+ VAR 27.2 11.2 13.1 9.6
+ SoFA 28.2 13.6 13.7  10.0
+ Ours 31.0 15.9 157 133
DeepSeek-VL-7B (Lu et al., 2024) 32.3 34.2 329 167
+ VAR 33.5 34.6 339 169
+ SoFA 33.7 36.0 342  18.1
+ Ours 36.4 384 376 223
DeepSeek-VL-1.3B (Lu et al., 2024) 249 30.8 327 190
+ VAR 25.1 322 33.8 203
+ SoFA 26.4 323 347 209
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Table 3 — continued from previous page

Model High-level-sub High-level-obj Two-D Three-D
+ Ours 28.7 34.9 36.6 239
XComposer2-7B (Dong et al.| 2024) 34.3 20.0 18.7 18.0
+ VAR 34.7 21.1 19.2 193
+ SoFA 36.0 21.2 20.1 19.9
+ Ours 38.3 23.8 22.6 220
XComposer2-1.8B (Dong et al., [2024])) 36.2 15.3 20.9 14.6
+ VAR 37.0 16.0 22.0 15.0
+ SoFA 38.1 17.0 22.8 163
+ Ours 40.3 20.2 247  18.6
OpenFlamingo-v2 (Awadalla et al.,|2023) 24.6 26.9 172 21.7
+ VAR 25.7 26.1 18,5 229
+ SoFA 25.1 28.6 199 224
+ Ours 28.6 31.0 21.3 25.7
Qwen2-VL (Team, 2025]) 31.0 24.8 20.7 27.0
+ VAR 31.0 25.1 22.8 28.5
+ SoFA 32.1 26.6 23.1 288
+ Ours 35.9 29.9 242 31.1
Qwen-chat (Bai et al., [2023) 21.3 14.8 10.5  17.1
+ VAR 22.6 16.1 10.8 18.0
+ SoFA 22.9 16.9 12.1 18.7
+ Ours 25.6 18.9 134  20.8
Qwen-Base (Bai et al., [2023) 10.1 4.6 2.8 3.8
+ VAR 11.5 5.7 3.1 5.1
+ SoFA 11.5 6.1 4.2 53
+ Ours 14.6 8.4 6.7 7.9

Table 4: Experiment results on MuirBench (Overall to Scene).

Model Overall Count Action Ground Match Order Scene
Random Choice 24.0 21.0 234 250 241 228 250
Human 932 949 97.6 857 948 875 946
Closed-source LMMs
GPT-40 (OpenAlL[2023) 68.0 492 445 369 869 234 715
GPT-4-Turbo (OpenAll 2023)) 623 423 39.6 53.6 804 359 59.1
Gemini Pro (Team et al.,|[2023) 494 286 360 286 666 12.5 59.1
Multi-Image input LMMs
Mantis-8B-Idefics2 (Jiang et al.,2024) 445 385 335 262 539 188 57.0
+ VAR 450 390 339 270 545 183 574
+ SoFA 458 396 347 272 550 20.1 582
+ Ours 48.5 424 369 303 57.6 245 605
Mantis-8B-clip-llama3 (Jiang et al., 2024) 374 29.1 366 214 433 188 57.0
+ VAR 38.1 30.0 373 206 438 199 580
+ SoFA 39.0 30.2 381 228 450 20.1 585
+ Ours 412 324 399 247 479 22.0 60.2
Mantis-8B-siglip-llama3 (Jiang et al., 2024) 36.1 274 372 22,6 438 7.8 543
+ VAR 37.0 284 374 239 440 89 550
+ SoFA 372 285 38.1 23.0 447 96 553
+ Ours 396 30.5 402 258 46.6 117 575
LLaVA-Interleave-7B (Li et al., [2025)) 41.0 330 400 265 495 220 60.0
+ VAR 423 345 415 281 512 238 61.6

20



Under review as a conference paper at ICLR 2026

Table 4 — continued from previous page

Model Overall Count Action Ground Match Order Scene
+ SoFA 430 352 423 290 520 245 624
+ Ours 456 379 448 3177 549 274 647
Idefics-9B-Instruct (Laurencon et al., [2023)) 354 299 28.1 13.1 360 125 274
+ VAR 36.0 30.0 290 147 354 13.0 282
+ SoFA 369 312 295 143 377 13.8 28.6
+ Ours 390 333 314 162 397 155 306
Idefics2-8B (Laurencon et al., 2024 26.1 21.8 262 262 248 156 56.5
+ VAR 27.0 230 27.0 266 260 16.8 57.7
+ SoFA 27.7 233 279 279 260 17.1 582
+ Ours 30.0 264 298 319 285 18.0 60.8
Emu2-Chat-37B (Sun et al., 2024b) 336 312 274 262 373 156 484
+ VAR 348 325 286 27.0 38.1 168 499
+ SoFA 35,6 325 282 279 388 17.1 50.7
+ Ours 36.3 359 308 29.6 419 190 529
VILA-13B (Lin et al., 2024 33.1 19.7 287 250 41.0 10.9 56.5
+ VAR 340 21.6 290 252 420 129 575
+ SoFA 347 214 300 265 425 122 58.1
+ Ours 36.7 234 320 282 442 145 60.6
OpenFlamingo-v2-9B (Awadalla et al.,[2023) 23.7 21.8 26.8 31.0 24.1 219 226
+ VAR 244 230 27.1 327 250 23.0 228
+ SoFA 25.0 232 28.0 326 256 235 240
+ Ours 27.1 251 299 343 277 251 259
Qwen2-VL (Team, 2025)) 340 28.6 295 210 345 150 370
+ VAR 356 302 313 227 362 166 389
+ SoFA 364 31.0 321 236 370 173 396
+ Ours 38.8 334 345 259 39.1 19.1 41.8
Qwen-VL (Bai et al.,[2023) 302 254 270 17.6 31.1 129 340
+ VAR 31.3 26,5 28.1 18.7 320 13.7 352
+ SoFA 321 262 289 204 329 13.8 36.0
+ Ours 356 287 304 213 341 154 38.1
Qwen-Base (Bai et al., [2023) 21.5 180 193 102 22.1 9.0 242
+ VAR 226 19.1 192 10.1 23.0 9.0 24.1
+ SoFA 234 18.8 20.1 109 231 95 249
+ Ours 25.0 213 224 128 255 115 273

Table 4 — Experiment results on MuirBench (Difference to Retrieval)

Model Diff Cartoon Diagram Geogra Attribute Retrieval

Random Choice 232 250 29.6 25.0 20.0 21.3

Human 929 82.1 99.0 98.0 87.8 86.3

Closed-source LMMs

GPT-40 (OpenAll 2023) 60.3 51.3 88.7 56.0 56.1 80.1

GPT-4-Turbo (OpenAll[2023)) 60.6 52.6 79.2 57.0 50.5 64.0

Gemini Pro (Team et al.,[2023) 453 474 64.8 48.0 41.3 43.8

Multi-Image input LMMs

Mantis-8B-Idefics2 (Jiang et al.,[2024) 28.8 38.5 67.6 26.0 48.5 35.6
+ VAR 29.9 39.0 68.5 26.0 49.7 35.8
+ SoFA 30.1 399 69.2 27.2 50.1 37.0
+ Ours 324 419 71.5 29.3 52.3 39.5

Mantis-8B-clip-llama3 (Jiang et al.,[2024)  24.1 43.6 54.3 16.0 33.7 319
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Table 4 — continued from previous page

Model Diff Cartoon Diagram Geogra Attribute Retrieval
+ VAR 253 448 54.8 17.0 35.0 33.0
+ SoFA 25.6 45.1 55.1 17.1 353 33.5
+ Ours 274 47.1 58.0 18.9 37.2 35.6
Mantis-8B-siglip-llama3 (Jiang et al.| 2024) 274 46.2 48.0 22.0 31.6 28.1
+ VAR 28.0 46.2 49.0 23.0 322 28.2
+ SoFA 28.7 47.6 49.4 23.1 32.8 29.4
+ QOurs 30.5 49.6 51.3 25.2 34.7 31.5
LLaVA-Interleave-7B (Li et al., 2025]) 33.0 48.0 60.0 27.5 37.0 34.0
+ VAR 344 495 61.6 28.9 38.6 35.5
+ SoFA 352 504 624 29.8 39.5 36.4
+ Ours 37.5 528 64.9 32.0 41.7 38.7
Idefics-9B-Instruct (Laurencon et al.,[2023) 34.4 48.7 47.0 35.0 32.7 43.5
+ VAR 35.0 492 48.0 354 34.0 44.7
+ SoFA 359 50.0 48.4 36.1 34.3 45.1
+ Ours 37.8 52.1 50.9 39.2 36.2 46.9
Idefics2-8B (Laurencon et al.,|[2024) 277 39.7 25.4 21.0 17.9 17.1
+ VAR 28.7 39.8 254 21.1 18.5 18.0
+ SoFA 29.0 41.1 26.8 224 19.0 18.5
+ Ours 332 433 28.7 26.3 20.7 20.5
Emu2-Chat-37B (Sun et al., 2024b) 32.6 43.6 37.7 34.0 31.6 24.0
+ VAR 337 443 38.0 35.0 329 24.1
+ SoFA 34.1 45.1 39.2 36.1 33.3 25.5
+ Ours 36.0 47.0 41.1 37.8 353 27.5
VILA-13B (Lin et al., [2024]) 24.7 30.8 42.7 31.0 24.5 30.1
+ VAR 25.5 309 42.8 32.0 25.8 30.6
+ SoFA 26.1 323 44.2 32.7 26.2 32.0
+ Ours 28.0 343 47.3 34.7 28.3 34.9
OpenFlamingo-v2-9B (Awadalla et al.| [2023) 21.8 25.6 31.9 25.0 18.9 15.4
+ VAR 227 26.1 32.5 25.1 19.3 16.7
+ SoFA 23.0 27.0 33.1 26.5 20.2 17.0
+ QOurs 25.1 293 36.2 27.6 22.4 19.1
Qwen2-VL (Team, 2025)) 31.0 384 42.1 25.1 28.6 29.3
+ VAR 32.8 405 443 26.9 30.2 31.5
+ SoFA 33.6 41.6 45.5 27.8 31.1 324
+ Ours 359 440 47.9 29.9 33.0 34.6
Qwen-VL (Bai et al.| 2023 29.1 36.7 40.2 23.5 26.8 27.4
+ VAR 30.1 36.8 40.0 234 27.0 28.0
+ SoFA 298 374 40.7 24.9 27.4 28.0
+ Ours 32.2 39.6 43.0 26.3 294 30.0
Qwen-Base (Bai et al., [2023) 22.0 302 31.5 18.0 20.1 20.9
+ VAR 23.0 312 32.0 18.0 21.0 21.3
+ SoFA 234 315 32.7 19.1 21.3 22.0
+ Ours 25.5 336 34.9 21.0 23.2 24.8

Table 5: Experiment results on MIRB.

Model Reasoning Knowledge Perception Multi-Hop Average
Random 20.8 37.6 214 0.0 23.0
Closed-source LMMs
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Table 5 — continued from previous page

Model Reasoning Knowledge Perception Multi-Hop Average
GPT-40 (OpenAlIL[2023) 81.0 55.0 53.2 40.0 57.3
GPT-4V (Achiam et al., [2023) 75.7 50.6 49.7 36.3 53.1
Claude3.5 (Anthropic [2023) 70.5 472 45.0 33.5 49.0
Geminil.5 (Team et al.} [2023) 66.8 44.7 43.1 31.0 46.4
Geminil.0 (Team et al., 2023) 55.5 35.1 34.0 24.5 37.3
Multi-Image input LMMs
Mantis-idefics2-8B (Jiang et al.,[2024) 44.0 30.8 36.0 0.0 27.7
+ VAR 454 31.2 37.2 0.0 28.5
+ SoFA 45.7 31.9 37.0 0.0 28.7
+ Ours 47.8 34.0 39.1 0.0 30.2
Mantis-SigCLIP-8B (Jiang et al., [2024) 60.7 38.9 44.8 0.0 36.1
+ VAR 61.1 40.7 46.9 0.0 37.2
+ SoFA 62.0 40.3 47.2 0.0 374
+ Ours 64.2 42.0 49.3 0.0 38.9
LLaVA-Interleave-7B (Li et al., [2025)) 56.0 36.5 43.0 0.0 33.9
+ VAR 57.1 37.0 43.0 0.0 343
+ SoFA 58.0 37.8 44.3 0.0 35.0
+ Ours 59.2 40.4 46.0 0.0 36.4
VILA-2.7B (Lin et al., [2024) 53.3 0.0 48.3 0.0 25.4
+ VAR 54.0 31.5 49.9 0.0 33.9
+ SoFA 54.2 32.2 49.3 0.0 34.0
+ Ours 56.8 34.6 53.7 0.0 36.3
VILA-7B (Lin et al., 2024) 63.7 353 47.1 0.0 36.5
+ VAR 64.0 34.7 47.2 0.0 36.5
+ SoFA 64.8 36.5 48.0 0.0 37.3
+ Ours 67.1 38.9 50.2 0.0 39.1
Emu2-Chat-37B (Sun et al., 2024b) 40.4 24.5 44.0 0.0 27.2
+ VAR 40.6 25.8 44.1 0.0 27.6
+ SoFA 41.9 26.0 454 0.0 28.3
+ Ours 441 28.2 474 0.0 29.9
InternVL2-Pro (Chen et al.,[2024) 66.0 42.0 49.0 0.0 39.3
+ VAR 67.1 42.3 50.0 0.0 39.9
+ SoFA 67.8 43.6 50.7 0.0 40.5
+ Ours 70.0 45.5 52.6 0.0 42.0
InternVL1.5-chat (Chen et al., 2024) 52.0 30.0 42.1 0.0 31.0
+ VAR 53.0 314 42.3 0.0 31.7
+ SoFA 53.6 31.8 43.6 0.0 32.3
+ Ours 55.8 33.7 45.5 0.0 33.8
InternVL2-8B (Chen et al., 2024) 58.0 33.5 44.0 0.0 33.9
+ VAR 57.2 34.7 44.3 0.0 34.1
+ SoFA 59.5 35.0 45.6 0.0 35.0
+ Ours 61.6 37.1 47.7 0.0 36.6
Mini-InternVL-1.5-4B (Gao et al., [2024) 35.0 24.0 30.2 0.0 22.3
+ VAR 36.0 24.1 30.3 0.0 22.6
+ SoFA 36.3 254 31.6 0.0 23.3
+ Ours 38.5 27.3 33.5 0.0 24.8
Mini-InternVL-1.5-2B (Gao et al., 2024) 33.1 22.5 29.0 0.0 21.2
+ VAR 34.1 22.5 30.0 0.0 21.7
+ SoFA 34.0 23.8 30.3 0.0 22.0
+ Ours 36.5 25.8 32.2 0.0 23.6
idefics2-8B (Laurencon et al.,[2024) 61.3 31.8 39.0 0.0 33.0
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Model Reasoning Knowledge Perception Multi-Hop Average
+ VAR 61.7 33.0 40.0 0.0 33.7
+ SoFA 61.9 333 40.6 0.0 339
+ Ours 65.4 35.2 42.7 0.0 35.8
Idefics-9B-Instruct (Bai et al.,[2023) 45.9 23.5 36.9 0.0 26.6
+ VAR 47.0 24.2 37.2 0.0 27.1
+ SoFA 47.4 25.1 38.3 0.0 27.7
+ Ours 49.5 27.0 40.1 0.0 29.2
DeepSeek-VL-7B (Lu et al.,[2024) 42.0 26.0 33.0 0.0 25.3
+ VAR 43.2 27.0 33.0 0.0 25.8
+ SoFA 433 27.6 34.3 0.0 26.3
+ Ours 45.8 29.7 36.4 0.0 28.0
DeepSeek-VL-1.3B (Lu et al., [2024) 30.5 20.0 27.0 0.0 19.4
+ VAR 314 20.1 27.8 0.0 19.8
+ SoFA 31.9 21.3 28.3 0.0 20.4
+ Ours 33.8 23.1 30.1 0.0 21.8
XComposer2-7B (Dong et al.,[2024) 54.7 37.2 37.2 0.8 32.5
+ VAR 55.0 37.5 38.6 1.6 33.2
+ SoFA 56.2 38.7 38.8 1.5 33.8
+ Ours 58.6 41.0 41.0 3.5 36.0
XComposer2-1.8B (Dong et al., [2024) 46.0 29.0 34.5 0.0 27.4
+ VAR 47.1 30.0 35.7 0.0 28.2
+ SoFA 47.5 30.6 36.5 0.0 28.6
+ Ours 49.7 32.7 38.1 0.0 30.1
OpenFlamingo-v2 (Awadalla et al.,[2023)  24.0 18.0 22.5 0.0 16.1
+ VAR 25.0 19.2 23.6 0.0 16.9
+ SoFA 25.3 19.9 23.7 0.0 17.2
+ Ours 27.4 214 25.8 0.0 18.7
Qwen2-VL (Team, [2025]) 50.2 32.6 41.5 0.0 31.1
+ VAR 51.8 339 43.0 0.0 322
+ SoFA 52.7 34.5 43.8 0.0 32.8
+ Ours 55.5 36.8 46.6 0.0 34.7
Qwen-VL (Bai et al., [2023) 19.2 13.9 24.4 0.0 14.4
+ VAR 19.0 14.5 25.1 0.0 14.7
+ SoFA 20.5 15.0 25.6 0.0 15.3
+ Ours 224 17.0 27.5 0.0 16.7
Qwen-Base (Bai et al., [2023) 10.0 8.0 15.0 0.0 8.3
+ VAR 11.0 9.2 15.0 0.0 8.8
+ SoFA 11.1 9.8 16.5 0.0 94
+ Ours 13.6 114 19.7 0.0 11.2

Table 6: Experiment results on LLaVA-Interleave Bench (LIBench). SD: Spot the Difference, IE:
Image Edit Instruction, VST: Visual Story Telling, TRVQA: Text-rich VQA, MIVQA: Multi-image
VQA, QB: Q-Bench, SQ: ScanQA, Math: MathVerse-mv, Sci: SciVerse-mv.

Model SD IE VST TRVQA MIVQA Puzzle
Closed-source LMMs

GPT-40 (OpenAl, 2023) 142 123 12.0 58.7 55.6 18.9

GPT-4V (Achiam et al.,|2023) 125 11.0 10.9 54.5 52.0 17.1

Claude3.5 (Anthropic,|2023) 13.1 114 11.5 56.1 53.3 17.9

Geminil.5 (Team et al.| [2023)) 12.0 10.7 10.5 55.0 52.5 17.0
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Model SD IE VST TRVQA MIVQA Puzzle

Geminil.0 (Team et al., |2023) 96 9.1 88 49.2 47.0 14.8

Multi-Image input LMMs

Mantis-SigCLIP-8B (Jiang et al., [2024) 176 11.2 125 45.2 52.5 25.7

+ VAR 174 109 12.1 44.5 53.3 24.9
+ SoFA 179 12.0 12.6 45.0 52.1 24.4
+ Ours 21.1 144 152 49.7 57.3 28.1
LLaVA-Interleave-7B (Li et al., 2025) 37.1 243 33.1 76.1 87.5 48.7
+ VAR 38.7 24.6 335 76.6 88.2 50.5
+ SoFA 38.9 25.1 34.0 77.1 89.1 50.0
+ Ours 409 278 364 79.5 90.7 52.8
InternVL2-Pro (Chen et al.,|[2024) 304 203 282 70.6 82.1 43.0
+ VAR 30.8 20.5 283 70.0 81.4 44.1
+ SoFA 314 21.0 289 71.6 83.0 44.5
+ Ours 33.8 236 31.1 73.9 84.9 46.3
InternVL1.5-chat (Chen et al., [2024) 26.2 18.1 26.5 62.7 75.2 38.2
+ VAR 27.0 17.8 27.0 63.1 75.5 38.3
+ SoFA 278 182 272 63.8 76.0 39.7
+ Ours 299 21.1 295 66.2 78.1 41.5
InternVL2-8B (Chen et al., [2024) 28.6 19.6 27.1 65.1 78.0 40.6
+ VAR 28.8 20.0 29.2 64.6 75.1 40.8
+ SoFA 29.6 20.3 28.0 66.2 79.4 42.0
+ Ours 31.9 223 30.0 68.4 81.0 44.1
Mini-InternVL-1.5-4B (Gao et al., 2024) 224 148 22.7 56.2 69.3 33.6
+ VAR 23.0 149 237 57.0 70.6 34.0
+ SoFA 239 16.1 24.0 57.7 71.0 34.9
+ Ours 258 17.9 25.8 59.7 72.8 36.9
Mini-InternVL-1.5-2B (Gao et al.,2024) 20.1 132 20.5 524 66.7 31.2
+ VAR 20.8 13.1 19.6 53.7 66.9 32.1
+ SoFA 21,5 143 219 54.0 68.1 324
+ Ours 21.3 16.1 23.7 55.9 69.8 343
Idefics-9B-Instruct (Bai et al., [2023) 121 94 125 314 45.1 194
+ VAR 11.0 9.5 135 32.7 452 18.6
+ SoFA 13.3 102 16.9 32.3 46.6 20.9
+ Ours 151 121 15.8 34.6 48.3 22.8
idefics2-8B (Laurencon et al.,[2024) 20.0 135 20.6 40.2 58.1 28.1
+ VAR 20.2 14.0 20.7 40.6 57.2 28.2
+ SoFA 215 143 219 41.1 59.6 29.5
+ Ours 22,6 173 239 45.5 62.5 334
DeepSeek-VL-7B (Lu et al.,[2024) 243  16.0 239 58.0 71.1 35.1
+ VAR 255 120 222 57.3 70.4 30.4
+ SoFA 212 174 247 59.0 72.7 36.7
+ Ours 277 192 279 62.2 74.6 39.8
XComposer2-7B (Dong et al., [2024) 24.1 16.7 243 55.5 70.1 34.2
+ VAR 250 169 244 53.9 70.6 32.5
+ SoFA 250 174 258 56.6 71.1 35.9
+ Ours 273 19.8 29.6 57.8 73.2 39.0
DeepSeek-VL-1.3B (Lu et al.,[2024) 16.7 11.5 17.6 46.2 58.7 254
+ VAR 17.0 115 16.7 45.6 57.8 25.6
+ SoFA 179 122 19.1 47.2 60.1 26.9
+ Ours 19.8 17.0 229 49.4 62.9 28.8
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Model SD IE VST TRVQA MIVQA Puzzle
OpenFlamingo-v2 (Awadalla et al., 2023) 15.0 104 15.6 42.7 56.3 23.8
+ VAR 140 125 14.7 42.0 57.4 25.0
+ SoFA 16.3 11.8 16.1 43.6 57.8 25.3
+ Ours 19.1 164 182 47.8 59.6 28.1
XComposer2-1.8B (Dong et al.,[2024) 21.0 144 21.6 52.2 67.5 31.0
+ VAR 22.1 10.6 22.8 52.7 64.6 314
+ SoFA 244 152 23.1 53.3 68.9 32.7
+ Ours 243 19.1 249 55.6 70.4 35.6
Qwen2-VL (Team, [2025) 189 13.7 17.8 38.9 51.5 23.1
+ VAR 21.0 135 18.9 39.0 52.3 24.5
+ SoFA 20.8 15.0 19.5 40.2 52.7 25.1
+ Ours 235 173 21.7 42.4 55.0 27.3
Qwen-VL (Bai et al., [2023) 13.0 10.0 13.7 35.0 494 21.0
+ VAR 16.0 10.1 11.7 32.3 18.6 21.0
+ SoFA 143 10.8 15.0 36.0 50.9 22.3
+ Ours 182 16.7 189 38.2 52.6 24.2
Qwen-Base (Bai et al., |2023)) 8.6 75 9.0 24.8 38.6 15.2
+ VAR 7.6 96 11.0 24.1 36.8 17.3
+ SoFA 9.3 83 104 25.8 40.2 16.6
+ Ours 114 102 13.1 27.9 429 18.4

Table 6 - Experiment results on LLaVA-Interleave (QB to MMMU).

Model QB NLVR Math Sci Mantis BLINK MMMU
Closed-source LMMs
GPT-40 (OpenAlL[2023) 794 90.3 615 682 64.1 527 49.3
GPT-4V (Achiam et al.,[2023)) 76.5 88.8 603 669 627 51.1 479
Claude3.5 (Anthropic} [2023) 74.1 88.0 589 654 61.0 50.0 46.8
Geminil.5 (Team et al., 2023) 72.0 87.5 576 640 595 488 45.5
Geminil.0 (Team et al., 2023) 654 832 498 573 54.1 440 40.3
Multi-Image input LMMs
Mantis-idefics2-8B (Jiang et al., [2024]) 699 874 272 293 595 464 34.1
+ VAR 70.1 86.6 27.6 27.7 60.8 45.7 35.2
+ SoFA 70.8 88.1 28.1 30.2 61.2 48.0 35.5
+ Ours 734 90.3 337 344 630 499 37.3
Mantis-SigCLIP-8B (Jiang et al., [2024) 67.5 86.0 26.0 28,0 57.8 45.0 32.8
+ VAR 66.6 88.0 263 284 57.1 462 33.9
+ SoFA 69.0 86.6 27.0 29.0 584 46.6 34.2
+ Ours 71.2 88.5 29.1 31.1 61.1 484 36.0
LLaVA-Interleave-7B (Li et al., 2025)) 742 88.8 328 31.6 627 526 34.5
+ VAR 76.5 89.0 33.1 329 62.8 538 35.5
+ SoFA 76.0 894 33.6 325 642 54.1 36.0
+ Ours 782 90.2 379 344 660 57.0 38.9
InternVL2-Pro (Chen et al.,|[2024) 71.0 88.2 31.1 334 61.5 509 36.5
+ VAR 70.1 86.5 302 34.6 625 521 37.7
+ SoFA 724 89.0 319 342 630 525 37.9
+ Ours 743 89.8 34.0 36.0 66.8 553 39.7
InternVL1.5-chat (Chen et al., 2024) 68.1 86.9 295 312 596 48.7 33.7
+ VAR 69.0 88.1 28.8 32.0 60.8 499 34.8
+ SoFA 69.7 87.7 303 32.1 61.1 503 35.1
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Model QB NLVR2 Math Sci Mantis BLINK MMMU
+ Ours 71.6 89.6 32.6 340 628 52.1 36.9
InternVL2-8B (Chen et al., 2024) 69.2 87.6 30.1 32.2 60.7 49.5 35.3
+ VAR 70.0 86.8 30.3 314 609 50.7 34.4
+ SoFA 70.7 88.4 31.0 33.0 622 51.1 36.7
+ Ours 72.6 90.2 33.1 348 639 529 38.4
Mini-InternVL-chat-1.5-4B (Gao et al.,[2024) 63.0 842 247 27.0 559 442 31.0
+ VAR 64.0 84.5 249 273 56.1 450 32.7
+ SoFA 64.5 85.1 256 279 574 457 324
+ Ours 66.6 86.9 28.7 279 592 474 34.1
Mini-InternVL-chat-1.5-2B (Gao et al., 2024) 60.5 82.7 23.1 25.8 53.8 426 29.6
+ VAR 61.0 83.0 243 270 550 43.7 30.7
+ SoFA 62.0 83.5 239 26.7 553 44.1 31.0
+ Ours 64.1 852 26.0 28.6 57.0 459 32.7
idefics2-8B (Laurencon et al., 2024) 58.7 809 22.0 242 51.6 41.0 28.2
+ VAR 59.8 81.0 21.2 244 528 427 29.3
+ SoFA 60.8 81.6 228 250 537 429 29.6
+ Ours 62.2 834 249 268 549 452 33.2
Idefics-9B-Instruct (Bai et al., 2023) 494 736 183 19.6 440 36.1 24.1
+ VAR 50.6 749 19.4 20.8 45.1 37.4 25.1
+ SoFA 509 745 19.0 20.5 454 378 25.4
+ Ours 53.1 76.6 212 224 472 39.6 27.0
DeepSeek-VL-7B (Lu et al., 2024) 66.1 85.1 273 296 583 468 33.2
+ VAR 66.3 853 27.6 279 59.0 470 34.3
+ SoFA 67.7 859 282 305 60.0 484 34.6
+ Ours 69.8 87.7 304 324 617 502 36.3
XComposer2-7B (Dong et al.,[2024) 68.7 86.7 284 30.6 59.0 475 33.8
+ VAR 69.9 88.0 29.6 31.8 60.2 488 35.0
+ SoFA 70.3 87.5 29.2 314 60.6 49.2 353
+ Ours 72.4 89.4 31.3 333 623 51.0 37.0
DeepSeek-VL-1.3B (Lu et al., 2024) 53.6 774 198 215 476 38.0 25.7
+ VAR 54.0 76.7 21.0 2277 48.8 39.2 26.8
+ SoFA 55.1 783 20.6 223 49.1 39.6 27.1
+ Ours 57.3 80.1 228 242 509 414 28.8
OpenFlamingo-v2 (Awadalla et al., [2023) 504 75.0 18.0 20.1 45.7 36.6 24.2
+ VAR 50.6 76.1 19.2 214 469 37.7 25.3
+ SoFA 519 757 189 21.0 473 38.1 25.6
+ Ours 540 77.6 21.0 229 49.0 399 27.3
XComposer2-1.8B (Dong et al., 2024) 62.8 83.6 22.6 247 529 435 29.2
+ VAR 63.0 84.1 23.1 240 54.1 448 30.3
+ SoFA 643 84.5 234 256 545 452 30.7
+ Ours 66.4 863 256 276 562 470 324
Qwen2-VL (Teaml 2025) 492 734 189 20.5 447 355 24.8
+ VAR 51.6 73.0 19.5 21.0 455 36.6 24.5
+ SoFA 51.2 747 202 22.0 46.0 37.0 26.2
+ Ours 53.5 76.8 225 24.1 483 392 28.4
Qwen-VL (Bai et al., 2023 472 705 16.7 18.5 423 34.0 22.7
+ VAR 48.0 709 139 18.8 43.6 342 23.0
+ SoFA 487 714 175 194 439 356 23.2
+ Ours 50.8 732 19.7 213 457 374 25.9
Qwen-Base (Bai et al., 2023) 40.2 650 12.6 140 37.1 30.5 19.1
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Model QB NLVR2 Math Sci Mantis BLINK MMMU
+ VAR 414 643 11.8 153 374  30.7 20.2
+ SoFA 41.0 659 134 149 387 30.1 20.5
+ Ours 440 6777 15.6 169 405 339 22.1

Table 7: Experiment results on MIBench (Multi-Image Instruction). GC: General Comparison, SD:
Subtle Difference, VR: Visual Referring, TR: Temporal Reasoning, LR: Logical Reasoning, FVR:
Fine-grained Visual Recognition, VTK: Vision-linked Textual Knowledge, TVK: Text-linked Visual
Knowledge.

Model GC SD VR TR LR
Closed-source LMMs
GPT-40 (OpenAll 2023) 80.7 90.5 46.8 68.0 69.8
GPT-4V (Achiam et al., 2023) 72.8 79.2 45.8 61.8 66.3
Claude3.5 (Anthropic}, 2023)) 77.2 86.4 46.2 66.1 68.0
Geminil.5 (Team et al.,|2023) 74.0 82.0 44.1 63.0 66.8
Geminil.0 (Team et al.,[2023) 65.2 73.5 40.0 56.2 60.1
Multi-Image input LMMs
Mantis (Jiang et al., 2024) 83.0 54.1 37.6 45.5 63.4
+ VAR 83.5 55.0 36.9 46.0 63.9
+ SoFA 84.0 55.3 36.6 46.6 64.6
+ Ours 86.6 58.1 40.8 49.4 66.9
LLaVA-Interleave-7B (Li et al.| 2025) 68.4 50.3 35.1 42.6 60.2
+ VAR 68.8 50.6 36.4 43.0 60.5
+ SoFA 69.4 51.1 36.9 43.6 61.2
+ Ours 71.7 53.7 39.1 46.8 64.3
InternVL2-Pro (Chen et al., [2024) 79.5 88.0 44.5 66.0 69.0
+ VAR 79.9 88.3 43.9 67.4 69.3
+ SoFA 80.5 88.4 45.4 66.9 69.9
+ Ours 82.6 90.9 48.7 69.2 72.0
InternVL1.5-chat (Chen et al.,2024) 60.8 70.5 33.0 52.0 58.2
+ VAR 62.0 71.7 33.2 51.2 58.5
+ SoFA 61.7 71.9 33.8 52.9 59.1
+ Ours 64.1 73.8 35.9 55.0 61.3
InternVL2-8B (Chen et al.,|2024) 74.2 82.6 41.2 60.3 65.5
+ VAR 74.6 82.8 40.4 60.6 63.7
+ SoFA 75.2 83.4 41.9 61.1 66.3
+ Ours 77.2 85.6 43.9 63.2 68.4
Mini-InternVL-1.5-4B (Gao et al., [2024) 52.0 58.0 28.0 40.5 50.0
+ VAR 52.2 58.2 27.1 39.8 51.2
+ SoFA 53.5 59.5 294 42.0 51.0
+ Ours 55.7 61.7 31.3 43.9 534
Mini-InternVL-1.5-2B (Gao et al.,|2024) 49.2 55.1 26.2 38.0 47.5
+ VAR 50.4 56.0 25.3 38.2 47.9
+ SoFA 50.1 56.0 26.0 38.8 48.3
+ Ours 52.4 58.3 29.0 41.0 50.4
Idefics2-8B (Laurencgon et al., [2024) 83.1 49.7 32.6 44.8 56.4
+ VAR 83.2 50.0 31.8 45.2 56.6
+ SoFA 83.8 50.6 332 45.8 57.2
+ Ours 84.0 53.3 36.6 47.9 59.3
Idefics-9B-Instruct (Bai et al., [2023) 40.3 28.4 18.7 26.1 35.0
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+ VAR 41.0 27.8 18.0 26.5 32.2
+ SoFA 41.2 29.3 19.0 27.1 35.9
+ Ours 44.6 32.0 24.3 29.8 38.4
DeepSeek-VL-7B (Lu et al., 2024) 58.7 64.0 31.5 48.5 55.1
+ VAR 57.9 65.3 32.7 49.0 54.3
+ SoFA 60.2 65.9 33.0 49.5 56.0
+ Ours 62.4 67.2 35.1 51.7 58.5
DeepSeek-VL-1.3B (Lu et al.,[2024) 45.0 50.2 22.0 36.2 46.0
+ VAR 46.0 50.6 22.3 34.4 45.2
+ SoFA 46.0 51.2 22.8 37.0 46.0
+ Ours 48.6 53.8 25.0 39.3 49.0
XComposer2-7B (Dong et al.l2024) 62.5 67.8 34.0 50.0 57.2
+ VAR 63.0 69.1 33.2 51.4 58.4
+ SoFA 63.4 68.7 34.0 51.0 58.0
+ Ours 65.6 71.3 36.9 54.2 60.1
XComposer2-1.8B (Dong et al.,2024) 50.4 56.0 23.8 38.7 48.3
+ VAR 50.5 56.2 20.0 38.9 48.7
+ SoFA 51.8 57.5 24.6 39.1 49.2
+ Ours 53.9 59.6 26.7 41.6 51.1
OpenFlamingo-v2 (Awadalla et al.,[2023) 38.1 30.5 17.0 25.2 34.0
+ VAR 394 31.7 18.4 25.6 34.3
+ SoFA 39.9 31.2 18.9 26.1 34.0
+ Ours 41.6 33.6 22.1 28.3 37.0
Qwen2-VL (Team), 2025) 55.6 31.2 21.0 29.5 43.8
+ VAR 56.9 32.5 22.3 30.6 44.9
+ SoFA 57.3 33.0 22.9 31.2 45.4
+ Ours 59.8 35.4 25.1 33.7 47.7
Qwen-VL (Bai et al., |[2023) 45.9 22.5 16.3 27.5 36.8
+ VAR 452 22.8 16.6 24.8 35.1
+ SoFA 46.8 234 17.1 28.4 37.7
+ Ours 49.1 25.9 19.5 30.9 40.0
Qwen-Base (Bai et al.| 2023 20.0 15.0 8.0 12.0 18.0
+ VAR 21.0 14.2 8.3 10.2 16.2
+ SoFA 21.1 15.0 8.9 12.9 18.9
+ Ours 24.0 18.3 11.5 154 26.3
Table 7 - Experiment results on MIBench (Multimodal Knowledge-Seeking)
Model FVR TRI VTK TVK
Closed-source LMMs
GPT-40 (OpenAll 2023) 98.3 74.8 54.7 63.3
GPT-4V (Achiam et al., 2023) 90.2 71.0 52.0 56.0
Claude3.5 (Anthropic}[2023) 94.0 72.8 53.3 58.8
Geminil.5 (Team et al., 2023) 92.1 70.1 51.0 57.2
Geminil.0 (Team et al.,|2023) 88.0 66.5 48.0 54.0
Multi-Image input LMMs
Mantis (Jiang et al.| 2024) 16.4 37.7 26.4 41.7
+ VAR 17.0 37.0 27.0 42.1
+ SoFA 17.1 38.5 27.1 42.7
+ Ours 19.4 41.1 29.3 45.2
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Model FVR TRI VTK TVK
LLaVA-Interleave-7B l, 2025) 70.2 55.6 37.5 45.8
+ VAR 70.9 55.9 37.7 46.2
+ SoFA 71.0 56.4 38.2 46.8
+ Ours 73.2 58.9 42.5 48.9
InternVL2-Pro 1, -2024 85.6 63.5 47.0 52.8
+ VAR 86.7 62.7 44.2 52.1
+ SoFA 86.0 64.3 47.7 53.7
+ Ours 88.1 66.6 49.9 55.9
TnternVL1.5-chat (Chen et al, 2024) 780 592 421 49.0
+ VAR 79.0 60.5 41.2 47.3
+ SoFA 78.8 60.0 42.8 49.9
+ Ours 81.0 62.4 44.9 52.1
InternVL2-8B (Chen et al| 2024) 824 610 453 51.0
+ VAR 83.0 62.3 45.5 52.3
+ SoFA 83.1 60.8 46.0 51.9
+ Ours 85.0 64.0 48.1 53.9
Mini-InternVL-1.5-4B (Gao et al}, 2024) 603 480 30.5 402
+ VAR 61.0 49.3 31.7 41.5
+ SoFA 61.1 48.8 31.2 41.1
+ Ours 63.4 51.2 33.3 43.1
Mini-InternVL-1.5-2B (Gao et al, 2024) 578 456 284 379
+ VAR 59.0 45.8 27.6 38.1
+ SoFA 58.0 46.4 29.1 38.0
+ Ours 60.8 48.8 33.2 40.8
Idefics-9B-Instruct (Bai et al., 2023) 48.6 40.1 23.6 32.0
+ VAR 49.0 40.3 23.8 31.4
+ SoFA 49.5 40.9 24.3 33.0
+ Ours 52.2 43.5 26.6 35.4
Idefics2-8B (Laurencon et al., 2024) 42.4 439 25.6 39.0
+ VAR 43.7 44.2 23.8 40.2
+ SoFA 44.3 44.8 26.3 39.8
+ Ours 48.8 47.1 28.5 41.9
DeepSeek-VL-1.3B (Lu et al, 2024) 552 420 260 35.1
+ VAR 56.4 43.3 27.1 36.4
+ SoFA 56.0 42.8 26.7 36.0
+ Ours 58.1 45.0 28.8 38.0
DeepSeek-VL-7B (Lu et al}, 2024) 620  50.1 31.9 416
+ VAR 61.2 51.4 32.1 40.9
+ SoFA 62.8 51.0 32.6 42.5
+ Ours 65.0 53.4 34.7 44.7
XComposer2-7B (Dong et al., 2024) 64.6 52.3 33.7 43.0
+ VAR 65.0 51.6 33.8 44.3
+ SoFA 65.4 53.1 344 43.9
+ Ours 67.6 55.4 36.5 45.9
OpenFlamingo-v2 (Awadalla et al., [2023) 46.0 34.8 19.8 28.7
+ VAR 47.2 34.0 20.0 27.9
+ SoFA 46.0 35.6 20.6 29.5
+ Ours 49.1 37.9 22.9 31.6
XComposer2-1.8B (Dong et al., 2024) 58.7 46.1 29.6 39.8
+ VAR 58.8 44.4 30.0 40.1
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Table 7 — continued from previous page

Model FVR TRI VTK TVK
+ SoFA 59.5 47.0 30.3 40.7
+ Ours 61.6 493 32.4 42.6
Qwen2-VL (Teaml, 2025) 63.2 41.0 27.6 33.5
+ VAR 64.5 422 28.7 34.1
+ SoFA 65.0 42.7 29.1 34.6
+ Ours 67.2 45.0 31.5 36.9
Qwen-VL (Bai et al.| 2023 58.8 35.9 22.9 18.1
+ VAR 60.0 35.1 26.1 18.3
+ SoFA 59.7 36.7 23.7 18.9
+ Ours 62.0 39.2 25.9 21.1
Qwen-Base (Bai et al., [2023) 40.0 28.0 15.0 20.0
+ VAR 40.6 28.3 16.0 19.3
+ SoFA 41.1 28.9 15.9 20.9
+ Ours 442 31.6 18.1 232
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