

000 001 MULTIPLE IMAGES DISTRACT LARGE MULTIMODAL 002 MODELS VIA ATTENTION FRAGMENTATION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 Many everyday tasks involve integrating information across multiple images, such
012 as comparing photos and reading social media posts. Recent Large Multimodal
013 Models (LMMs) therefore accept multiple images, yet open-source models re-
014 main far from reliable in multi-image understanding, with accuracies often falling
015 below 50% on recent evaluations. We analyze how these models allocate atten-
016 tion across images when visual tokens are processed in a single autoregressive,
017 causally masked sequence. Our study uncovers a joint failure mode: the same
018 background positions in each image repeatedly attract high attention while con-
019 tributing little to prediction, and this effect is stronger for earlier images due to
020 one-way attention under causal masking. We term this phenomenon attention
021 fragmentation, as attention is split across non-informative tokens instead of bind-
022 ing evidence between images. These high-attention, low-utility tokens correspond
023 to attention sinks previously observed in LLMs. To address attention fragmenta-
024 tion, we introduce Attention Remasking (AR), a post-training edit that operates
025 on attention scores where the causal mask is enforced. AR masks sink tokens
026 column-wise to prevent any query from attending to them, and selectively un-
027 masks cross-image visual tokens deemed relevant by a grounded patch relevance
028 score. The attention freed from the masked sinks is reassigned to these unmasked
029 links, creating forward connections from earlier to later images while preserving
030 text autoregression. AR reduces attention fragmentation and improves accuracy
031 over post-training baselines on recent multi-image benchmarks, delivering more
032 effective cross-image integration without additional training.

033 1 INTRODUCTION

035 Humans easily draw insight from multiple images, whether comparing photos of similar items,
036 browsing social media posts, or following visual instructions. Motivated by these natural use cases,
037 recent Large Multimodal Models (LMMs) have begun to accept multiple images via visual tokens,
038 enabling reasoning across images rather than treating each in isolation (Jiang et al., 2024; Li et al.,
039 2025). To probe these emerging capabilities, researchers have introduced multi-image evaluation
040 benchmarks that test skills such as comparison, retrieval, scene and temporal understanding, and
041 description writing (Zhao et al., 2024; Liu et al., 2024a). Despite progress in modeling multiple
042 images, the results from benchmarks show underperformance of models, with leading proprietary
043 models reaching only about 55–68% accuracy overall. Open-source models have lagged behind, for
044 example, achieving below 50% in MMIU (Meng et al., 2025) and below 35% accuracy in MuirBench
045 (Wang et al., 2025), indicating that integrating information across images remains a key challenge.

046 Current LMMs often handle multi-image inputs by incorporating them as visual tokens within the
047 same autoregressive sequence used for text, so each query token attends over a long mixture of image
048 and text keys (Jiang et al., 2024; Li et al., 2025). As shown in Fig. 1, our empirical analysis of this
049 setting reveals a recurring attention pattern: within each image, a subset of visual tokens consistently
050 absorbs a disproportionate amount of attention despite contributing little to the model’s predictions.
051 These tokens recur at similar background locations across images and are more pronounced in ear-
052 lier images. These tokens are attention sinks, a structural adaptation to softmax normalization that
053 stores excess attention scores without contributing to value computation (Gu et al., 2025). Attention
sink has been found in the first tokens in text and the background tokens in images (Kang et al.,
2025). The stronger sinks in earlier images are correlated with the causal masking on the attention

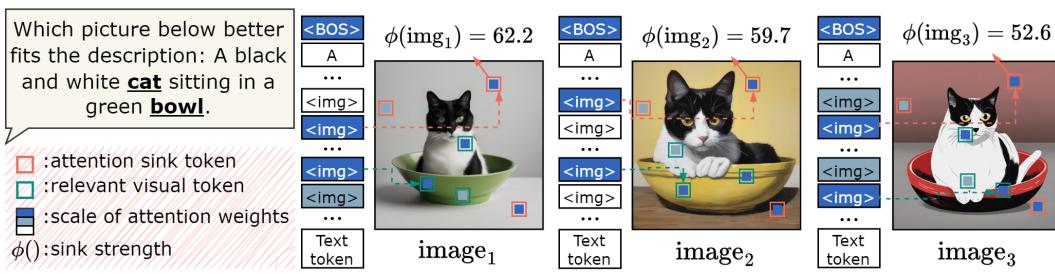


Figure 1: **Attention Fragmentation.** In multi-image LMMs, attention concentrates on attention sink tokens recurring in similar background positions in each image, with stronger sinks in earlier images. This diverts attention from task-relevant cues and fragments cross-image focus.

scores, where tokens are only allowed to attend to previous tokens and not future ones, so earlier images are exposed to more queries and accumulate more sink mass, resulting in a biased distribution of attention weights. We found that when multiple images are present, this combination of repeated sinks and uneven attention allocation fragments the model’s focus; instead of focusing on task-relevant cross-image cues, the model spreads its attention thinly across these repetitive, non-informative anchors. We refer to this compound issue as attention fragmentation, a phenomenon that limits multi-image understanding in current LMMs. We observed that attention fragmentation is associated with subpar performance and the recency bias, in which later images disproportionately influence predictions and answers change with image order (Tian et al., 2025).

To address this phenomenon, we propose Attention Remasking (AR), a post-training edit that operates directly on the attention scores, where the causal masks are applied in the LLM decoder. AR improves multi-image understanding by masking sink keys and unmasking task-relevant cross-image keys, so that attention can flow across relevant visual tokens rather than being absorbed by repeated sinks. To prevent the effect from repeated sinks across images, AR masks the identified sink keys column-wise across all queries, which prevents sink tokens from being attended by other tokens. To enable cross-image relationships that are otherwise blocked by causal masking, AR modifies only the visual part of the mask to unmask attention from earlier queries to later image tokens, while preserving text autoregression. Because masked attention scores were never trained and are unreliable, AR assigns freed attention scores from masked sink keys to the newly unmasked keys proportional to grounded patch-level CLIP score (Radford et al., 2021; Hessel et al., 2021). We use Grounding DINO (Liu et al., 2024b) to propose regions related to the task instruction in each image and map those regions to the model’s visual tokens. For tokens inside these regions, we compute the cosine similarity between each token’s CLIP patch embedding and the instruction embedding, then normalize the results into a token-wise relevance distribution. By masking sinks and unmasking task-relevant visual attention, AR addresses attention fragmentation as one coherent problem, reducing distractions and restoring cross-image focus without retraining or hyperparameter tuning.

Our contributions are as follows: (1) We identify attention fragmentation in multi-image LMMs: repeated background sinks attract high attention across images, with stronger sinks on earlier images, which suppresses cross-image integration and induces order sensitivity, supported by analyses such as the symmetric Chamfer distance and image-level entropy. (2) We propose Attention Remasking (AR), a post-training edit at the pre-softmax stage that masks sink tokens and unmasks a sparse set of cross-image visual tokens deemed relevant by grounded patch-level CLIP score from the CLIP’s visual encoder, while preserving text autoregression. (3) We demonstrate improved multi-image understanding on multi-image benchmarks. AR increases accuracy and reduces sensitivity to image order, outperforming post-training baselines without retraining or hyperparameter tuning.

2 PRELIMINARIES

Attention mechanism. We consider a decoder-based Large Multimodal Model (LMM) with L layers and hidden width D . An input consists of text and M images, tokenized into a single sequence of length N . For each image $m \in \{1, \dots, M\}$, let $\mathcal{V}_m \subset \{1, \dots, N\}$ be the indices of its visual tokens, and let $\mathcal{V} = \bigcup_{m=1}^M \mathcal{V}_m$ be the set of all visual-token indices. Let $\mathcal{T} \subset \{1, \dots, N\}$ denote

108 the text-token indices. The j -th input token to the layer ℓ is $x_j^{\ell-1} \in \mathbb{R}^D$, and the stacked states
 109 form $X^{\ell-1} \in \mathbb{R}^{N \times D}$. Queries and keys are computed in the standard way, $Q^\ell = X^{\ell-1}W_Q^\ell$ and
 110 $K^\ell = X^{\ell-1}W_K^\ell$, with $W_Q^\ell, W_K^\ell \in \mathbb{R}^{D \times d_k}$ and key dimension d_k . The attention score matrix is
 111

$$112 \quad Z^\ell = \frac{Q^\ell K^{\ell\top}}{\sqrt{d_k}} + \mathcal{M}_{\text{causal}}, \quad (1)$$

115 where $\mathcal{M}_{\text{causal}} \in \mathbb{R}^{N \times N}$ is the causal mask with $\mathcal{M}_{\text{causal}, i,j} = -\infty$ for $i < j$ and 0 otherwise.
 116 Row-wise softmax yields attention weights

$$117 \quad \alpha_{i,j}^\ell = \text{softmax}(Z_{i,:}^\ell)_j, \quad \sum_{j \leq i} \alpha_{i,j}^\ell = 1. \quad (2)$$

120 **Attention sinks.** Prior work reports that Transformer models can allocate large attention to tokens
 121 with little semantic value, a behavior termed attention sink, and attributes it to unusually large ac-
 122 tivations in a small set of hidden dimensions together with the softmax normalization (Gu et al.,
 123 2025). In LLMs, sinks often occur at fixed positions such as the first token; in LMMs, they ap-
 124 pear on visual background tokens (Kang et al., 2025). To identify visual sink tokens, we follow
 125 the dimension-based criterion used in previous literature (Gu et al., 2025; Kang et al., 2025). Let
 126 $\mathcal{D}_{\text{sink}} \subset \{1, \dots, D\}$ be the indices of potential sink dimensions. We estimate per-dimension statis-
 127 tics by passing the calibration corpus to the LLM, for each $d \in \mathcal{D}_{\text{sink}}$; let μ_d and σ_d denote the mean
 128 and standard deviation of the d -th hidden coordinate measured on the calibration corpus (Sun et al.,
 129 2024a). For any hidden state $x \in \mathbb{R}^D$, define the sink score

$$130 \quad \phi(x) = \max_{d \in \mathcal{D}_{\text{sink}}} \frac{x[d] - \mu_d}{\sigma_d}. \quad (3)$$

133 A token is flagged as a sink at layer ℓ if its previous-layer state satisfies $\phi(x_j^{\ell-1}) \geq \tau$, where τ is the
 134 threshold used in sink-identification work. For image m , the set of visual sink tokens at layer ℓ is
 135

$$136 \quad \mathcal{S}_m^\ell = \left\{ j \in \mathcal{V}_m : \phi(x_j^{\ell-1}) \geq \tau \right\}, \quad \mathcal{S}^\ell = \bigcup_{m=1}^M \mathcal{S}_m^\ell. \quad (4)$$

138 This procedure isolates tokens that attract high attention due to massive activation in sink dimensions
 139 while contributing little to value computation, as documented for both text and visual sinks.
 140

141 3 ATTENTION FRAGMENTATION

144 In Large Multimodal Models (LMMs), multi-image inputs are processed in a single, causally masked
 145 sequence, and attention weights are computed via a row-wise softmax over keys (Li et al., 2025;
 146 Jiang et al., 2024). Prior work shows that softmax normalization and optimization dynamics can
 147 induce attention sinks, tokens that absorb excess attention while contributing little to value compu-
 148 tation (Gu et al., 2025). Building on this, we empirically examine how attention is allocated across
 149 images within the same autoregressive context in LMMs.

150 3.1 EMPIRICAL OBSERVATION OF ATTENTION FRAGMENTATION

152 **Repeated visual sinks at matched background positions.** In multi-image inputs, we observe that
 153 per-image sink tokens \mathcal{S}_m^ℓ recur in similar spatial regions across images within the same example,
 154 drawing substantial attention despite low semantic utility. To quantify the effect, we represent each
 155 visual token on the 2-D ViT patch grid of size $R \times C$: token j at row–column (r, c) is mapped to
 156 normalized image coordinates $\mathbf{u}_j = (r/R, c/C) \in [0, 1]^2$; distances are therefore purely spatial in
 157 image coordinates. For any unordered image pair (m, m') in the same multi-image example with
 158 sink sets $\mathcal{S}_m^\ell = \{\mathbf{u}\}$ and $\mathcal{S}_{m'}^\ell = \{\mathbf{u}'\}$, we measure region-level repetition using the *symmetric*
 159 *Chamfer distance* on the 2-D token locations,

$$160 \quad d_{\text{Chamfer}}(\mathcal{S}_m^\ell, \mathcal{S}_{m'}^\ell) = \frac{1}{|\mathcal{S}_m^\ell|} \sum_{\mathbf{u} \in \mathcal{S}_m^\ell} \min_{\mathbf{u}' \in \mathcal{S}_{m'}^\ell} \|\mathbf{u} - \mathbf{u}'\|_2 + \frac{1}{|\mathcal{S}_{m'}^\ell|} \sum_{\mathbf{u}' \in \mathcal{S}_{m'}^\ell} \min_{\mathbf{u} \in \mathcal{S}_m^\ell} \|\mathbf{u}' - \mathbf{u}\|_2, \quad (5)$$

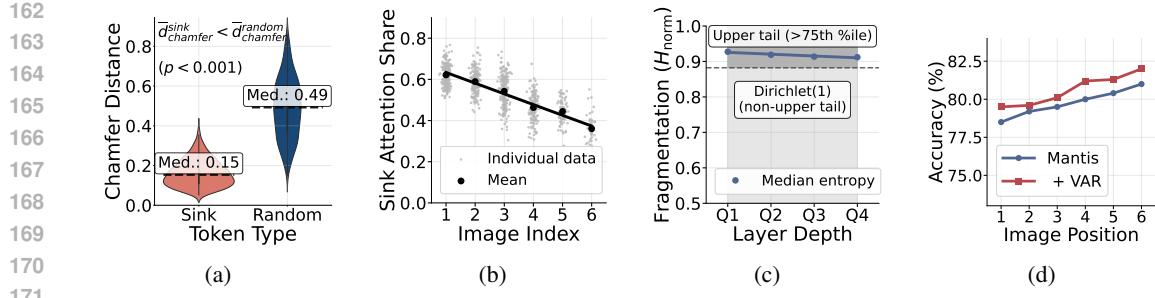


Figure 2: **Empirical analysis of attention fragmentation.** (a) *Repeated sinks across images*: symmetric Chamfer distance (Eqs. (5) and (6)) between per-image sink sets vs. random baseline. (b) *Positional skew*: sink attention share s_m by image index m (Eq. (7)); earlier images absorb more sink mass. (c) *Level of fragmentation*: normalized entropy H_{norm} across depth (Eq. (8)); values remain high relative to a Dirichlet(1) null, indicating persistent fragmentation. (d) *Positional bias*: position-wise accuracy under shows recency bias and persists after visual attention distribution (VAR).

where lower values indicate stronger spatial recurrence. For an example with M images, we summarize recurrence by the *per-example average* over all unordered pairs

$$\bar{d}_{\text{Chamfer}}^{\ell} = \frac{2}{M(M-1)} \sum_{1 \leq m < m' \leq M} d_{\text{Chamfer}}(\mathcal{S}_m^{\ell}, \mathcal{S}_{m'}^{\ell}). \quad (6)$$

As shown in Fig. 2a, the per-example average $\bar{d}_{\text{Chamfer}}^{\ell}$ across images in the same example is significantly smaller than a random sampled baseline, as confirmed by a *paired Wilcoxon signed-rank test*. For the baseline, on each image, we uniformly sample the same number $|\mathcal{S}_m^{\ell}|$ patch tokens at random locations, recompute the distances, and average over repeated draws. This confirms that sink tokens recur in corresponding background regions rather than appearing at arbitrary locations.

Masking sinks leaves predictions unchanged. We remove all incoming attention to identified visual sinks by editing the attention mask at inference: for each layer ℓ and for every query token i , we set $Z_{i,j}^{\ell} = -\infty$ for each key $j \in \mathcal{S}^{\ell}$, which forces $\alpha_{i,j}^{\ell} = 0$ for all queries and all layers. We then compare the model’s original outputs with the masked run on the same inputs using the *answer-flip rate*, defined as the fraction of examples whose predicted answer string changes after masking. We report this rate with a *Wilson 95% confidence interval* for binomial proportions; when no flips are observed, we state a conservative 95% upper bound on the true flip probability using the *rule of three*, i.e., $3/n$ for n evaluated items, which closely matches the one-sided Clopper-Pearson bound in this case. Across models, flip rates remain within tight Wilson intervals near zero, indicating that eliminating attention to sink keys does not materially alter predictions. This outcome is consistent with prior reports that attention sinks behave as surplus-attention anchors whose removal has minimal effect on observable outputs (Gu et al., 2025; Kang et al., 2025).

Positional skew toward earlier images. Within the same multi-image example, sink strength is not uniform across images. We quantify per-image sink strength at layer ℓ by the *Sink Attention Share*

$$\zeta_m^{\ell} = \frac{\sum_{i \in \mathcal{V}_m} \sum_{j \in \mathcal{S}_m^{\ell}} \alpha_{i,j}^{\ell}}{\sum_{i \in \mathcal{V}_m} \sum_{j \in \mathcal{V}_m} \alpha_{i,j}^{\ell}}, \quad (7)$$

where $\alpha_{i,j}^{\ell}$ are attention weights averaged over heads. Intuitively, ζ_m^{ℓ} measures what fraction of the attention budget directed to image m is absorbed by its sink tokens rather than informative visual tokens, so larger values indicate more attention trapped in sinks. As shown in Fig. 2b, earlier images exhibit consistently larger ζ_m than later ones; a paired Wilcoxon signed-rank test comparing the first and last image within each example rejects the null of equal medians, and a within-example regression of ζ_m on the image index m yields a negative, statistically significant slope. This pattern aligns with the one-way access imposed by causal masking (Wu et al., 2025): an image that appears earlier is exposed to more downstream queries, and we observe that ζ_m increases with this exposure; moreover, permuting image order within the same example shifts ζ_m toward the images moved earlier, reinforcing the link between positional access and sink accumulation.

216
217

3.2 MEASURING ATTENTION FRAGMENTATION

218

Entropy-based measurement of image-level fragmentation. Prior analyses of Transformer attention report layer-dependent patterns suggesting that attention can become more task-specific deeper in the stack (Voita et al., 2019; Abnar & Zuidema, 2020). In multi-image examples, attention allocation may evolve with depth: early layers can distribute mass more broadly, whereas later layers are expected to place relatively more weight on whichever image carries decisive evidence rather than maintain an even spread. For example, a matching-style query such as “Which image shows the red umbrella?”, would expect more attention to be allocated to the image with a red umbrella in the late layers rather than spreading evenly across the images. Following previous work that uses entropy to characterize dispersion of attention (Hyeon-Woo et al., 2023; Araabi et al., 2024), we measure fragmentation at the image level using entropy to test whether attention becomes concentrated or remains dispersed in late layers. For decoder layer ℓ and query token i , aggregate attention to image m by defining $p_m(i, \ell) = \sum_{j \in \mathcal{V}_m} \alpha_{ij}^\ell$ and the total visual mass $w(i, \ell) = \sum_{j \in \mathcal{V}} \alpha_{ij}^\ell$. We then normalize over visual mass to obtain a distribution across images $\tilde{p}_m(i, \ell) = p_m(i, \ell) / w(i, \ell)$ (defined when $w(i, \ell) > 0$), so that $\sum_{m=1}^M \tilde{p}_m(i, \ell) = 1$. The normalized Shannon entropy is

232
233

$$H_{\text{norm}}(i, \ell) = \frac{-\sum_{m=1}^M \tilde{p}_m(i, \ell) \log \tilde{p}_m(i, \ell)}{\log M}, \quad (8)$$

234

which lies in $[0, 1]$: values near 0 indicate concentrated focus on one image; values near 1 indicate a uniform spread across images. In our analysis, higher normalized entropy demonstrates attention fragmentation at the image level, whereas lower values indicate concentration of attention. Mechanistically, if each image contains background sink tokens that attract a comparable share of attention, the per-image attention masses $p_m(i, \ell)$ tend toward equality (i.e., $\approx 1/M$), which raises H_{norm} .

239

Fragmentation persists throughout layers. Following prior work that examines attention patterns across all layers (Abnar & Zuidema, 2020; Zhai et al., 2023), we summarize normalized entropy by depth using quartile bins. We use a Dirichlet(1) compositional reference because it is uniform over the M -simplex and encodes no preference among images. As shown in Fig. 2c, relative to this reference, early-layer entropy already lies in the upper tail of its Monte Carlo distribution, indicating high dispersion compared to an uninformed spread. Entropy shows no meaningful reduction as depth increases: paired Wilcoxon signed-rank tests between adjacent quartiles are not significant after Holm correction, and per-example Spearman correlations between layer index and entropy center near zero. By the final quartile, the median entropy remains in the upper tail of the Dirichlet(1) reference, underscoring persistent fragmentation rather than concentrating on more relevant images.

249

Link between high entropy, skewed sinks, and recency bias. We found that fragmentation persists under permutation of image order, and answers flip with a recency bias; images placed later in the sequence disproportionately influence predictions, consistent with one-way access under causal masking and mirroring behavior reported in recent position-bias studies (Tian et al., 2025; Wu et al., 2025). Let $p_m(i, \ell) = \sum_{j \in \mathcal{V}_m} \alpha_{ij}^\ell$ denote the per-image attention mass and let ζ_m^ℓ be the sink share on image m (Eq. (7)), where α_{ij}^ℓ are attention weights averaged over heads. Let $w(i, \ell) = \sum_{m=1}^M p_m(i, \ell) = \sum_{j \in \mathcal{V}} \alpha_{ij}^\ell$ be the total visual attention mass. Define the non-sink attention mass $r_m(i, \ell) = p_m(i, \ell)(1 - \zeta_m^\ell)$. If visual attention is evenly distributed across images (high entropy conditional on visual mass), so that $p_m(i, \ell) = w(i, \ell)/M$ for all m , then for any images a, b , $r_a(i, \ell) - r_b(i, \ell) = \frac{w(i, \ell)}{M} (\zeta_b^\ell - \zeta_a^\ell)$, hence $\zeta_a^\ell > \zeta_b^\ell$ implies $r_a(i, \ell) < r_b(i, \ell)$. More generally, if the masses are near-uniform with $\max_m |p_m(i, \ell) - w(i, \ell)/M| \leq \varepsilon$ for all m , then for any a, b , $r_a(i, \ell) - r_b(i, \ell) \geq \frac{w(i, \ell)}{M} (\zeta_b^\ell - \zeta_a^\ell) - 2\varepsilon$. Here ε quantifies deviation from uniformity across images; when the normalized entropy $H_{\text{norm}}(i, \ell)$ of the conditional distribution $\tilde{p}_m(i, \ell) = p_m(i, \ell)/w(i, \ell)$ is high, ε can be bounded via Pinsker’s inequality as $\varepsilon \leq w(i, \ell) \sqrt{2 \log M (1 - H_{\text{norm}}(i, \ell))}$ (natural logs). Because causal masking increases sink share for earlier images, these relations reduce their non-sink mass and bias decisions toward later images, manifesting as recency bias.

266

267

3.3 LIMITATIONS OF POST-SOFTMAX REDISTRIBUTION

268

269

Post-softmax redistribution from prior work. Prior research on attention sinks in single-image LMMs proposes reallocating the attention mass removed from identified sink tokens to visual non-

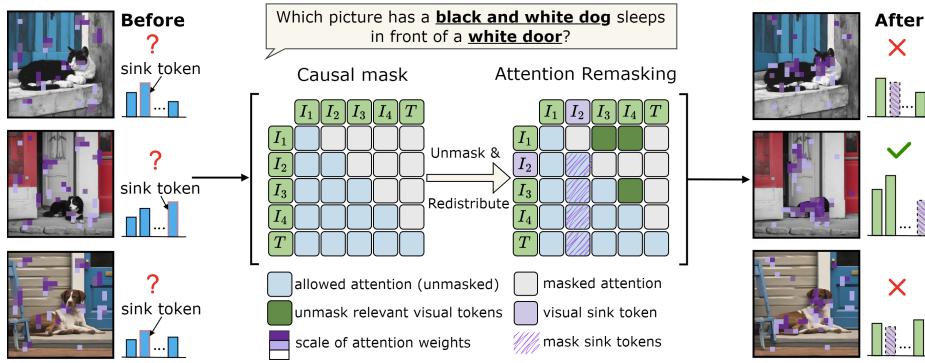


Figure 3: **Attention Remasking.** A post-training edit to pre-softmax attention that masks visual sink tokens and selectively unmasks links between visual tokens guided by task relevance. AR reduces attention fragmentation and mitigates order sensitivity in multi-image LMMs.

sink tokens by directly editing the weights $\alpha_{i,j}^\ell$ in equation 2 computed after the causal mask $\mathcal{M}_{\text{causal}}$ in equation 1 (Kang et al., 2025). The reallocation is proportional to existing non-sink token attention weights, so the image-level distribution $p_m(i, \ell) = \sum_{j \in \mathcal{V}_m} \alpha_{i,j}^\ell$ inherits the baseline pattern; when non-sink token attention is already fragmented across images and skewed toward earlier ones, the same dispersion and skew are preserved, sometimes reinforced by larger sink budgets on earlier images. Because the mask is not altered, forward links from earlier queries to later images cannot be created, so order sensitivity induced by one-way access remains.

Fragmentation is unchanged after proportional redistribution. We measure image-level dispersion with the normalized entropy $H_{\text{norm}}(i, \ell)$ in equation 8. Let $H_{\text{norm}}^{\text{base}}$ and $H_{\text{norm}}^{\text{post}}$ denote the scores before and after redistribution. Paired Wilcoxon signed-rank tests find no meaningful difference between $H_{\text{norm}}^{\text{post}}$ and $H_{\text{norm}}^{\text{base}}$, and Hodges–Lehmann estimates of the median change are near zero. Quartile summaries by depth show that the final-quartile median entropy remains in the upper tail of the Dirichlet(1) compositional null both before and after redistribution, indicating that high dispersion persists and late-layer concentration does not emerge.

Order sensitivity and recency bias persist. Using the same answer-flip rate and permutation protocol introduced earlier, we observe similar flip frequencies before and after redistribution, indicating that post-softmax reweighting does not stabilize predictions under image reordering. As shown in Fig. 2d, position-wise accuracy continues to increase with later positions, consistent with a recency bias arising from one-way access under causal masking.

4 ATTENTION REMASKING

We introduce Attention Remasking (AR) (Fig. 3), a post-training edit to the attention score matrix that targets the multi-image failure induced by attention fragmentation. The objective is twofold: (i) reclaim attention currently assigned to visual sink tokens and (ii) counteract the biased attention distribution left by attention fragmentation, so that attention can flow along task-relevant cross-image links. Let Z^ℓ and α^ℓ be the pre-softmax scores and row-normalized attention weights defined in equation 1 and equation 2, respectively. Sink tokens are identified as in equation 3 and equation 4, yielding the per-layer set $\mathcal{S}^\ell \subset \{1, \dots, N\}$. AR edits only the visual-visual submatrix of Z^ℓ , preserving text autoregression enforced by the causal mask $\mathcal{M}_{\text{causal}}$ in equation 1. AR masks sink tokens by setting $\tilde{Z}_{i,j}^\ell = -\infty$ for all i and all $j \in \mathcal{S}^\ell$, which implements a column-wise block on sinks and removes their incoming attention everywhere. Under causal masking, later images are not accessible as keys to earlier queries, which limits cross-image integration even when the task requires linking evidence across images. AR therefore relaxes the visual parts of $\mathcal{M}_{\text{causal}}$ to allow forward attention from earlier queries to later-image visual tokens when there is semantic evidence that such links are relevant to the task instruction. Building on evidence that patch-level CLIP–text alignment is informative for grounding text queries to image regions (Zhou et al., 2023), we construct a grounded, patch-level relevance distribution over newly unmasked visual keys using CLIP’s encoders. First, we locate task-relevant regions with a phrase-grounding detector (e.g., Grounding

324 Table 1: Average accuracy (%) on five multi-image benchmarks. Full per-task tables and additional
 325 models are in the appendix.

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377				
Benchmark (Acc %)					
Method	MMIU	MuirBench	MIRB	LIBench	MIBench
LLaVA-Interleave-7B	32.9	30.3	33.9	52.5	51.8
+ VAR	34.2	32.1	34.3	53.5	52.3
+ SoFA	34.7	33.0	35.0	53.6	52.8
+ Ours	37.3	35.2	36.4	56.3	55.5
Qwen2-VL-7B	27.3	39.3	31.1	31.2	38.5
+ VAR	28.1	40.9	32.2	32.1	39.6
+ SoFA	28.8	41.7	32.8	33.0	40.1
+ Ours	31.9	44.2	34.7	35.5	42.5
Idefics2-8B	30.4	26.8	33.0	37.0	45.5
+ VAR	30.3	27.3	33.7	37.1	45.5
+ SoFA	31.0	27.8	33.9	37.7	46.5
+ Ours	34.1	30.2	35.8	41.3	50.2
Mantis-SigCLIP-8B	44.3	33.3	36.1	38.3	43.7
+ VAR	45.4	33.6	37.2	39.2	44.0
+ SoFA	46.0	34.2	37.4	39.6	44.4
+ Ours	47.1	36.3	38.9	42.4	47.1

DINO), mapping detected boxes to visual-token indices by including all tokens overlapping with the box; denote this grounded candidate set for query i at layer ℓ by \mathcal{U}_i^ℓ . These keys lie in grounded regions and are newly unmasked within the visual–visual block. Let $t \in \mathbb{R}^d$ be the instruction embedding from the CLIP text encoder and $v_j \in \mathbb{R}^d$ the patch/visual-token embedding from the CLIP visual encoder. We compute cosine similarities and normalize to obtain a distribution over \mathcal{U}_i^ℓ :

$$s_{i,j} = \frac{\langle t, v_j \rangle}{\|t\| \|v_j\|}, \quad \pi_{i,j} = \frac{\exp(s_{i,j})}{\sum_{k \in \mathcal{U}_i^\ell} \exp(s_{i,k})} \quad (j \in \mathcal{U}_i^\ell), \quad (9)$$

with $\pi_{i,j} = 0$ for $j \notin \mathcal{U}_i^\ell$. This yields a sparse, instruction-conditioned prior that concentrates on grounded, high-similarity patches. We reassigned attention released from sinks, guided by π . For query i , let the sink attention at layer ℓ be $\eta_i^\ell = \sum_{j \in \mathcal{S}^\ell} \alpha_{i,j}^\ell$. After masking sinks, a plain softmax would redistribute this budget implicitly among remaining keys. Instead, AR explicitly routes the same share to the newly opened, relevant links using π . Define the target row distribution $\hat{\alpha}_{i,\cdot}^\ell$ by

$$\hat{\alpha}_{i,j}^\ell = (1 - \eta_i^\ell) \frac{\alpha_{i,j}^\ell}{\sum_{k \notin \mathcal{S}^\ell \cup \mathcal{U}_i^\ell} \alpha_{i,k}^\ell} \mathbf{1}[j \notin \mathcal{S}^\ell \cup \mathcal{U}_i^\ell] + \eta_i^\ell \pi_{i,j} \mathbf{1}[j \in \mathcal{U}_i^\ell]. \quad (10)$$

We realize $\hat{\alpha}_{i,\cdot}^\ell$ by writing scores $\tilde{Z}_{i,j}^\ell = \log \hat{\alpha}_{i,j}^\ell + c_i^\ell$, for all non-- ∞ entries, where c_i^ℓ is any row-constant canceled by the softmax, while enforcing $-\infty$ on sink columns and on visual links that remain masked. If $\mathcal{S}^\ell = \emptyset$ or $\mathcal{U}_i^\ell = \emptyset$, AR reduces to the identity on row i .

5 EXPERIMENTS

We evaluate Attention Remasking (AR) on interleaved-token LMMs to test whether it improves multi-image accuracy, reduces attention fragmentation, including lower late-layer entropy and reduced sensitivity to image order, and remains robust under ablations and controls.

5.1 EXPERIMENTAL SETTINGS

Models. We evaluate a diverse range of open-source multi-image LMMs, including *LLaVA-Interleave-7B* (Li et al., 2025), *Qwen2-VL-7B* (Team, 2025), *Idefics2-8B* (Laurençon et al., 2024), and *Mantis-SigCLIP-8B* (Jiang et al., 2024). For completeness, Appendix C expands to the full set of multi-image LMMs covered by recent benchmarks.

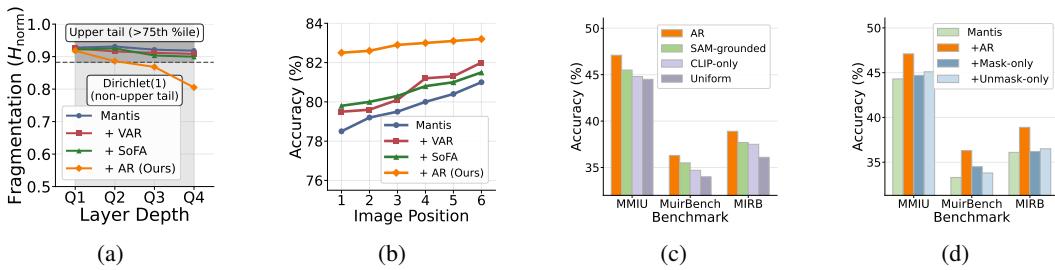


Figure 4: **Attention Remasking (AR): results and ablations.** (a) *Fragmentation vs. depth*: AR lowers normalized entropy compared with post-training baselines, indicating reduced attention fragmentation. (b) *Order sensitivity*: AR reduces position-wise accuracy skew relative to baselines. (c) *Ablation on relevance scores*: accuracy when unmasking uses different patch-level scores. (d) *Ablation on masking strategy*: mask-only and unmask-only variants underperform full AR.

Baselines. We compare against two training-free post-hoc methods related to attention fragmentation. SoFt Attention (*SoFA*) linearly interpolates the attention between the standard causal attention and the bidirectional attention without masking, opening links from earlier queries to later images (Tian et al., 2025). Visual Attention Redistribution (*VAR*) moves post-softmax attention mass from identified sink tokens to visual non-sink tokens (Kang et al., 2025).

Tasks and benchmarks. We adopt a comprehensive multi-image evaluation covering a wide range of complementary tasks. *MMIU* (Meng et al., 2025) covers seven relationship types with tasks that test comparison, retrieval, and spatial/temporal integration; *MuirBench* (Wang et al., 2025) spans twelve tasks built around relation categories such as multiview, ordering, and temporal reasoning; *MIRB* (Zhao et al., 2024) groups tasks into perception, visual world knowledge, reasoning, and multi-hop reasoning; we also use the multi-image subset of *MIBench* (Liu et al., 2024a), which focuses on five tasks of reasoning and comparison, and subset of LLaVA-Interleave Bench (Li et al., 2025), spanning nine tasks on multi-image reasoning, which we refer to as *LIBench*.

Implementation details. We use each model’s official checkpoints and default prompting templates, and we run evaluation with greedy decoding ($temperature = 0$) to remove sampling variance. For multiple-choice question items, we adopt the benchmark-provided answer extraction and normalization scripts for scoring. We locate instruction-relevant regions with GroundingDINO-SwinT-OGC with default settings. All experiments are conducted on eight A100 GPUs.

5.2 MAIN RESULTS

Overall accuracy. Across all five multi-image benchmarks and every evaluated open-source LMMs, AR improves average accuracy over the base model. Table 1 reports benchmark-level means; full per-task, per-model results appear in the Appendix C.

Level of fragmentation. Fig. 4a plots the normalized entropy H_{norm} by layer-depth quartiles. Baselines lie in the upper tail of a Dirichlet(1) compositional null across depth, indicating dispersed allocation over images. AR shifts the curve downward at all depths, with a statistically significant reduction in the final quartile as confirmed by paired Wilcoxon signed-rank tests with Holm correction. Fig. 4b shows accuracy as a function of image position under controlled permutations. Baselines display a clear positive slope, evidencing recency bias. AR both raises the curve and flattens the slope; permutation flip rates drop, with Wilson intervals remaining strictly below the baseline. For comparison baselines, SoFA reduces the position–accuracy slope while late-layer entropy remains high, and VAR leaves entropy unchanged and the position–accuracy slope largely intact, reflecting that proportional post-softmax reweighting preserves the pre-existing fragmented pattern.

Discussion. SoFA interpolates toward unmasked attention using logits that were never trained under the causal mask, opening all links without preference for task-relevant ones; this weakly counters positional bias effects but does not consolidate attention, as fragmentation remains high. VAR moves probability mass only within the already-masked distribution and in proportion to current non-sink weights; it cannot create forward links and therefore inherits both dispersion and positional skew. AR differs by masking sink keys, explicitly unmasking a sparse set of instruction-relevant cross-

432 image links, and reallocating the freed attention to those links, which jointly reduces fragmentation
 433 and order sensitivity while improving task accuracy.
 434

435 **5.3 ABLATION STUDY**
 436

437 **Relevance score.** We compare the *DINO-grounded CLIP* score used in AR with three alternatives.
 438 *SAM-grounded CLIP* replaces the detector with SAM (Kirillov et al., 2023): images are segmented,
 439 segments are ranked by the average CLIP text-patch similarity, the top segments are retained, and
 440 the resulting token-wise scores are normalized over the newly unmasked keys. *CLIP-only patches*
 441 remove gating and use raw CLIP text-patch cosine similarities for all visual tokens. *Uniform*
 442 distributes the freed attention mass evenly across all newly unmasked tokens. Fig. 4c shows that both
 443 grounded CLIP scores attain the largest accuracy. Uniform reallocation provides the weakest im-
 444 provement and often leaves fragmentation and order sensitivity largely unchanged.
 445

446 **Masking and unmasking.** We compare two ablations against the full AR edit. *Mask-only* removes
 447 all incoming attention to identified sinks by setting their columns to $-\infty$ and then renormalizing
 448 each row over the remaining keys. This diffuses the budget that was trapped in sinks across the pre-
 449 existing non-sink pattern, so image-level dispersion and order sensitivity largely persist; accordingly.
 450 *Unmask-only* relaxes the visual mask to open cross-image links and assigns scores equivalent to
 451 scores in sinks to those links in proportion to the grounded, patch-level CLIP relevance, but leaves
 452 the rest of each row unchanged. Fig. 4d shows that for both variants, accuracy remains close to
 453 the baseline. The full AR masks sink and reallocates the freed budget to the newly unmasked,
 454 instruction-relevant links, and achieves the largest accuracy improvements among the variants.
 455

456 **6 RELATED WORK**
 457

458 **Multi-image understanding.** Recent large multimodal models accept multiple images by incorpo-
 459 rating visual tokens with texts into a single causal sequence so that all tokens share one attention
 460 space (Li et al., 2025; Team, 2025; Jiang et al., 2024; Cai et al., 2024; Lu et al., 2024). To eval-
 461 uate performance on multi-image tasks, recently proposed benchmarks provide broad coverage with
 462 differing taxonomies. For example, MMIU (Meng et al., 2025) spans relation types such as compar-
 463 ison, retrieval, and spatial or temporal integration, while MuirBench (Wang et al., 2025) aggregates
 464 diverse relation-centric tasks, and MIRB (Zhao et al., 2024) targets perception, world knowledge,
 465 and multi-hop reasoning. Beyond evaluation, SoFA (Tian et al., 2025) mitigates positional bias by
 466 interpolating causal with bidirectional attention via a weighting hyperparameter, and Multi-image
 467 Augmented Direct Preference Optimization (Liu et al., 2025) augments preference data with multi-
 468 image examples by extending single-image data with unrelated images to improve task alignment.
 469

470 **Attention sinks.** Attention sinks refer to tokens that attract disproportionately high attention despite
 471 offering little semantic utility. Recent work shows they emerge during LLM pretraining, concentrate
 472 at fixed positions such as the first token or special tokens, and correlate with massive activation in a
 473 few hidden dimensions; masking or removing them has minimal effect, suggesting they store surplus
 474 attention rather than useful signals (Gu et al., 2025). Attention sinks have also been exploited for
 475 efficiency: StreamingLLM (Xiao et al., 2024) retains sink keys to stabilize sliding-window attention
 476 and reduce KV cache, while OrthoRank (Shin et al., 2025) uses sink orthogonality to prune tokens.
 477 In multimodal settings, sinks cluster on background patches, motivating redistribution of attention to
 478 non-sink tokens (Kang et al., 2025). Our work builds on these observations but targets multi-image
 479 trained models, where repeated, position-skewed sinks fragment cross-image attention.
 480

481 **7 CONCLUSION**
 482

483 We introduced Attention Remasking (AR), a post-training edit to the attention scores that removes
 484 visual sink tokens and reinstates task-relevant cross-image links under causal masking. Our anal-
 485 yses revealed repeated, position-skewed sinks across images, which fragment attention patterns;
 486 AR reduces fragmentation and improves accuracy on multi-image benchmarks without retraining
 487 or hyperparameter tuning. AR provides a simple, general tool for multi-image understanding in
 488 large multimodal models and moves toward stronger cross-image integration. Future work includes
 489 analyzing attention dynamics and extending AR to video modeling if similar issues arise.
 490

486 REFERENCES
487

488 Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In Dan Ju-
489 rafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th An-
490 nual Meeting of the Association for Computational Linguistics*, pp. 4190–4197, Online, July
491 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.385. URL
492 <https://aclanthology.org/2020.acl-main.385/>.

493 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
494 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
495 report. *arXiv preprint arXiv:2303.08774*, 2023.

496 Anthropic. Claude. <https://www.anthropic.com>, 2023.

497 Ali Araabi, Vlad Niculae, and Christof Monz. Entropy-and distance-regularized attention improves
498 low-resource neural machine translation. In *Proceedings of the 16th Conference of the Association
499 for Machine Translation in the Americas (Volume 1: Research Track)*, pp. 140–153, 2024.

500 Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani
501 Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-
502 source framework for training large autoregressive vision-language models. *arXiv preprint
503 arXiv:2308.01390*, 2023.

504 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
505 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
506 *arXiv preprint arXiv:2308.12966*, 1(2):3, 2023.

507 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
508 Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. *arXiv preprint arXiv:2403.17297*,
509 2024.

510 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
511 Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to
512 commercial multimodal models with open-source suites. *Science China Information Sciences*, 67
513 (12):220101, 2024.

514 Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Xilin Wei,
515 Songyang Zhang, Haodong Duan, Maosong Cao, et al. Internlm-xcomposer2: Mastering free-
516 form text-image composition and comprehension in vision-language large model. *arXiv preprint
517 arXiv:2401.16420*, 2024.

518 Zhangwei Gao, Zhe Chen, Erfei Cui, Yiming Ren, Weiyun Wang, Jinguo Zhu, Hao Tian, Shenglong
519 Ye, Junjun He, Xizhou Zhu, et al. Mini-internvl: a flexible-transfer pocket multi-modal model
520 with 5% parameters and 90% performance. *Visual Intelligence*, 2(1):32, 2024.

521 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
522 matter: Elevating the role of image understanding in visual question answering. In *Proceedings
523 of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 6904–6913, 2017.

524 Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and
525 Min Lin. When attention sink emerges in language models: An empirical view. In *The Thirteenth
526 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=78Nn4QJTE>.

527 Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
528 Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
529 *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 3608–
530 3617, 2018.

531 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore:
532 A reference-free evaluation metric for image captioning. In Marie-Francine Moens, Xuan-
533 jing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Confer-
534 ence on Empirical Methods in Natural Language Processing*, pp. 7514–7528, Online and
535 2021.

536

540 Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.595. URL <https://aclanthology.org/2021.emnlp-main.595/>.

541

542

543

544 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6700–6709, 2019.

545

546

547 Nam Hyeon-Woo, Kim Yu-Ji, Byeongho Heo, Dongyoon Han, Seong Joon Oh, and Tae-Hyun Oh. Scratching visual transformer’s back with uniform attention. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5807–5818, 2023.

548

549

550

551 Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max W.F. Ku, Qian Liu, and Wenhui Chen. Mantis: Interleaved multi-image instruction tuning. *Transactions on Machine Learning Research*, 2024, 2024. URL <https://openreview.net/forum?id=skLtdUVaJa>.

552

553

554 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual attention sink in large multimodal models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=7uDI7w5RQA>.

555

556

557 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

558

559

560

561 Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamchetti, Alexander Rush, Douwe Kiela, et al. Obelics: An open web-scale filtered dataset of interleaved image-text documents. *Advances in Neural Information Processing Systems*, 36:71683–71702, 2023.

562

563

564

565

566 Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building vision-language models? *Advances in Neural Information Processing Systems*, 37:87874–87907, 2024.

567

568

569

570 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Benchmarking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*, 2023.

571

572

573 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun MA, and Chunyuan Li. LLaVA-neXT-interleave: Tackling multi-image, video, and 3d in large multimodal models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=oSQiao9GqB>.

574

575

576

577 Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On pre-training for visual language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26689–26699, 2024.

578

579

580

581 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning, 2023a.

582

583

584

585

586 Huawei Liu, Xi Zhang, Haiyang Xu, Yaya Shi, Chaoya Jiang, Ming Yan, Ji Zhang, Fei Huang, Chunfeng Yuan, Bing Li, et al. Mibench: Evaluating multimodal large language models over multiple images. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 22417–22428, 2024a.

587

588

589 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer, 2024b.

590

591

592

593 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? *arXiv preprint arXiv:2307.06281*, 2023b.

594 Ziyu Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Haodong Duan, Conghui He,
 595 Yuanjun Xiong, Dahua Lin, and Jiaqi Wang. MIA-DPO: Multi-image augmented direct pre-
 596 ference optimization for large vision-language models. In *The Thirteenth International Confer-
 597 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=f7WBRSuf91>.

599 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
 600 Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
 601 *arXiv preprint arXiv:2403.05525*, 2024.

602

603 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 604 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 605 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 606 2022.

607 Fanqing Meng, Jin Wang, Chuanhao Li, Quanfeng Lu, Hao Tian, Tianshuo Yang, Jiaqi Liao, Xizhou
 608 Zhu, Jifeng Dai, Yu Qiao, Ping Luo, Kaipeng Zhang, and Wenqi Shao. MMIU: Multimodal multi-
 609 image understanding for evaluating large vision-language models. In *The Thirteenth International
 610 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=WsgEWL8iOK>.

611

612 OpenAI. Gpt-4 technical report, 2023.

613

614 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 615 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 616 models from natural language supervision. In *International conference on machine learning*, pp.
 617 8748–8763. PMLR, 2021.

618

619 Seungjun Shin, Jaehoon Oh, and Dokwan Oh. Orthorank: Token selection via sink token orthogonality
 620 for efficient LLM inference. In *Forty-second International Conference on Machine Learning*,
 621 2025. URL <https://openreview.net/forum?id=5CnnxNPtuE>.

622

623 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 624 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF
 625 Conference on Computer Vision and Pattern Recognition*, pp. 8317–8326, 2019.

626

627 Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
 628 models. In *First Conference on Language Modeling*, 2024a. URL <https://openreview.net/forum?id=F7aAhfitX6>.

629

630 Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao,
 631 Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context
 632 learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
 633 tion*, pp. 14398–14409, 2024b.

634

635 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
 636 Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
 637 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

638

639 Qwen Team. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>.

640

641 Xinyu Tian, Shu Zou, Zhaoyuan Yang, and Jing Zhang. Identifying and mitigating position bias
 642 of multi-image vision-language models. In *Proceedings of the Computer Vision and Pattern
 643 Recognition Conference*, pp. 10599–10609, 2025.

644

645 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
 646 self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen,
 647 David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Associa-
 648 tion for Computational Linguistics*, pp. 5797–5808, Florence, Italy, July 2019. Association for
 649 Computational Linguistics. doi: 10.18653/v1/P19-1580. URL <https://aclanthology.org/P19-1580/>.

648 Fei Wang, Xingyu Fu, James Y. Huang, Zekun Li, Qin Liu, Xiaogeng Liu, Mingyu Derek Ma,
 649 Nan Xu, Wenxuan Zhou, Kai Zhang, Tianyi Lorena Yan, Wenjie Jacky Mo, Hsiang-Hui Liu, Pan
 650 Lu, Chunyuan Li, Chaowei Xiao, Kai-Wei Chang, Dan Roth, Sheng Zhang, Hoifung Poon, and
 651 Muhaao Chen. Muirbench: A comprehensive benchmark for robust multi-image understanding.
 652 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=TrVYEZtSQH>.

653

654 Xinyi Wu, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the emergence of position bias
 655 in transformers. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=YufVk7I6Ii>.

656

657

658 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 659 language models with attention sinks. In *The Twelfth International Conference on Learning Rep-
 660 resentations*, 2024. URL <https://openreview.net/forum?id=NG7ss51zVF>.

661

662 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 663 multimodal large language models. *arXiv preprint arXiv:2306.13549*, 2023.

664

665 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 666 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv
 667 preprint arXiv:2308.02490*, 2023.

668

669 Shuangfei Zhai, Tatiana Likhomanenko, Eta Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
 670 Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention
 671 entropy collapse. In *International Conference on Machine Learning*, pp. 40770–40803. PMLR,
 2023.

672

673 Bingchen Zhao, Yongshuo Zong, Letian Zhang, and Timothy Hospedales. Benchmarking multi-
 674 image understanding in vision and language models: Perception, knowledge, reasoning, and
 675 multi-hop reasoning. *arXiv preprint arXiv:2406.12742*, 2024.

676

677 Ziqin Zhou, Yinjie Lei, Bowen Zhang, Lingqiao Liu, and Yifan Liu. Zegclip: Towards adapting clip
 678 for zero-shot semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer
 679 Vision and Pattern Recognition*, pp. 11175–11185, 2023.

680

A ETHICS STATEMENT

681

682 This work does not involve human subjects, personally identifiable information, or sensitive user
 683 data, and therefore does not require IRB approval. All experiments are conducted on publicly avail-
 684 able multimodal datasets and established evaluation benchmarks. We strictly follow dataset licenses
 685 and usage policies, and we do not release or create new data containing private or restricted content.
 686 Our proposed method, Attention Remasking (AR), is a post-training intervention aimed at improving
 687 the reasoning ability of large multimodal models on multi-image tasks. It does not introduce addi-
 688 tional risks beyond those already associated with LMMs. Nevertheless, we acknowledge broader
 689 ethical considerations: improved multimodal reasoning may have dual-use implications, such as be-
 690 ing applied in surveillance or manipulative content generation. We stress that our contributions are
 691 intended for advancing safe and transparent research in multi-image understanding and should be
 692 deployed responsibly, with attention to fairness, accountability, and potential downstream misuse.
 693 We have no conflicts of interest or external sponsorship that could influence this work.

694

B ADDITIONAL ANALYSIS

695

696

697 **Qualitative Analysis.** We qualitatively analyse the visual attention maps of the base model and
 698 AR in Fig. 5. Without AR, the base model distributes attention across sink tokens and irrelevant
 699 regions, leading to fragmented focus and an incorrect answer. With AR, attention is redirected to
 700 task-relevant regions, restoring cross-image reasoning and yielding the correct answer.

701

Head Selection. VAR applies redistribution only to image-centric heads, in which attention con-
 702 centrates on visual non-sink tokens (Kang et al., 2025). In multi-image, interleaved LMMs such

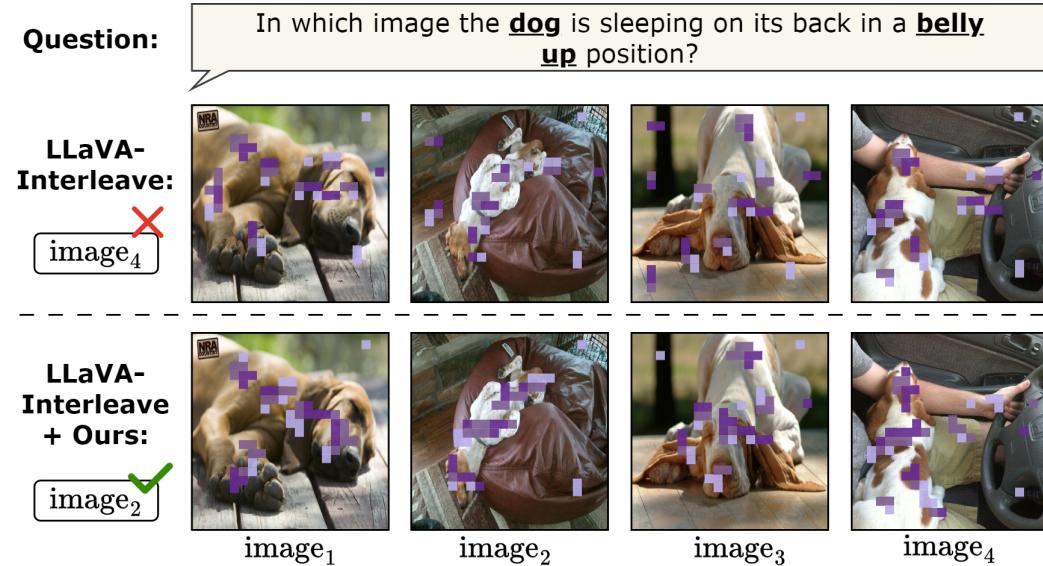


Figure 5: **Qualitative analysis of AR.** Visual attention maps before and after applying AR indicate that, by masking sink tokens and unmasking task-relevant visual attention, AR (bottom) reduces distractions and restores cross-image focus, leading to more accurate responses by seeing the image more effectively.

as LLaVA-Interleave Li et al. (2025); Jiang et al. (2024), the decoder attends over a key set dominated by visual tokens because each image contributes hundreds of ViT/CLIP patch tokens, whereas the prompt contributes only tens of text tokens. Consequently, a large fraction of heads satisfy the image-centric criterion even without explicit selection. Empirically, restricting redistribution to VAR-selected heads yields accuracy that is nearly identical to applying redistribution across all heads, as shown in Fig. 6a.

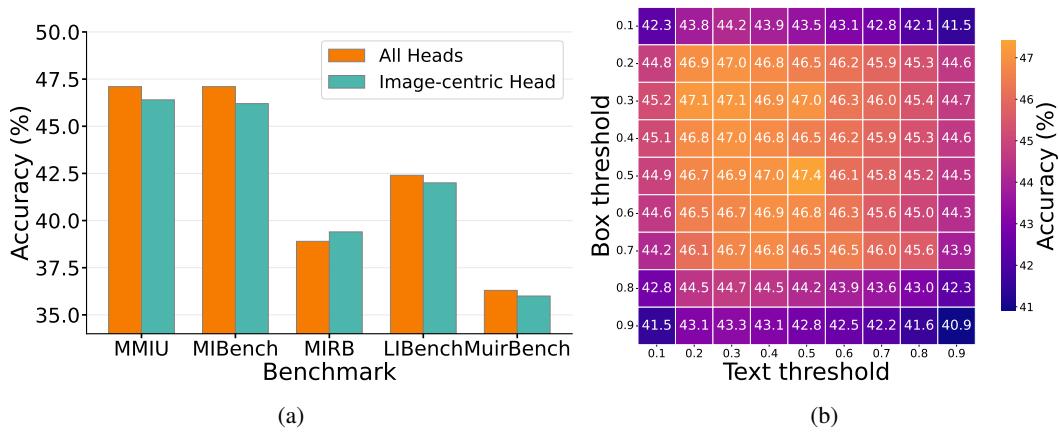


Figure 6: **Additional analysis of AR.** (a) *Effect of head selection:* Applying redistribution to all heads or only image-centric heads yields nearly identical accuracy across benchmarks. (b) *Sensitivity analysis of Grounding DINO hyperparameters on MMIU benchmark:* Performance remains stable across reasonable threshold ranges, with degradation only at extreme values.

Grounding DINO. Our method relies on Grounding DINO to identify task-relevant regions in images, which are then used to guide attention remasking. Grounding DINO has two hyperparameters: *box_threshold* (minimum confidence for box detection) and *text_threshold* (minimum text-image similarity for grounding). Since we had no validation set available for hyperparameter tuning, we

756 Table 2: Experimental results on general single-image vision-language task.
757

Model	VQA ^{v2}	GQA	VizWiz	SQA ^I	VQA ^T	MME	MMB ^{en}	SEED ^I	LLaVA ^W	MM-Vet
LLaVA-1.5-7B	78.5	62.0	50.0	66.8	58.2	1495.5	64.3	58.6	65.4	31.1
+ VAR	78.6	63.5	53.7	67.3	58.6	1513.8	65.1	60.7	68.1	33.7
+ Ours	78.6	63.0	54.0	68.1	58.0	1510.4	64.7	59.9	67.1	34.4
VILA-13B	80.8	63.3	60.6	73.7	66.6	1507.1	70.3	62.8	73.0	38.8
+ VAR	81.2	63.6	64.2	74.7	67.3	1512.7	71.7	63.0	75.7	39.7
+ Ours	81.6	62.4	63.4	75.1	66.9	1510.7	72.3	62.4	74.7	40.1
Qwen2-VL-7B	82.5	64.5	65.4	74.1	84.3	1672.3	83.0	77.9	75.6	63.2
+ VAR	82.8	64.7	67.7	74.2	84.9	1688.5	83.3	78.1	77.3	63.5
+ Ours	82.6	65.3	66.9	73.8	85.3	1690.0	84.0	78.0	76.7	64.0
InternVL2-8B	82.0	63.2	63.0	74.2	77.3	1648.1	81.7	76.2	73.2	60.0
+ VAR	82.5	63.5	65.1	74.7	78.0	1655.4	82.3	77.1	75.1	61.2
+ Ours	82.0	64.0	64.1	75.9	78.9	1650.9	83.6	77.5	74.6	61.8

769 used the default values of `box_threshold=0.35` and `text_threshold=0.25` throughout all
770 our experiments.

772 To verify that our results are not dependent on these specific hyperparameter choices, we conduct a
773 sensitivity analysis by evaluating all combinations of threshold values from 0.1 to 0.9. Fig. 6b shows
774 the accuracy heatmap across different threshold combinations. The results show that our method is
775 robust across a wide range of reasonable threshold values, performance largely degrades only when
776 either threshold reaches extreme values, confirming that AR is insensitive to the precise choice of
777 these parameters.

778 **Single Image Performance.** A natural concern is whether our AR method might undermine single-
779 image performance. To verify this, we evaluate AR on single-image vision-language benchmarks,
780 with results reported in Table 2. We find that AR does not harm performance on single-image
781 tasks; it yields consistent improvements across most benchmarks. This effect shows that by masking
782 attention sinks and mitigating the positional bias, AR reallocates attention away from background
783 patches that contribute little to prediction, thereby allowing the model to attend more effectively to
784 task-relevant regions. While the gains are modest, as attention fragmentation is more pronounced in
785 multi-image settings, the improvements show that AR provides a robust enhancement rather than a
786 trade-off.

787 C EXPERIMENTAL DETAILS

789 C.1 MODEL DETAILS

792 For completeness, we expand beyond the representative models highlighted in the main text in
793 this section. In addition to LLaVA-Interleave-7B (Li et al., 2025), Qwen2-VL-7B (Team, 2025),
794 Idefics2-8B (Laurençon et al., 2024), and Mantis-SigCLIP-8B (Jiang et al., 2024), we select a diverse
795 set of open-source models, including Mantis-idefics2-8B (Jiang et al., 2024), VILA-2.7B/7B (Lin
796 et al., 2024), Emu2-Chat-37B (Sun et al., 2024b), InternVL2-8B (Chen et al., 2024), InternVL2-
797 Pro (Chen et al., 2024), InternVL1.5-chat (Chen et al., 2024), Mini-InternVL-1.5-2B/4B (Gao et al.,
798 2024), Idefics-9B-Instruct (Bai et al., 2023), DeepSeek-VL-1.3B/7B (Lu et al., 2024), XComposer2-
799 1.8B/7B (Dong et al., 2024), OpenFlamingo-v2 (Awadalla et al., 2023), Qwen-chat (Bai et al., 2023),
800 and Qwen-Base (Bai et al., 2023).

801 C.2 REPRODUCIBILITY STATEMENT

803 **Experimental Settings.** All experiments and evaluations are conducted on eight NVIDIA A100
804 GPUs. Only the inference step of LMMs is used, without any training.

805 **Multi-image benchmarks.** We evaluate AR on five recently proposed benchmarks designed to
806 probe multi-image reasoning:

- 808 • **MMIU** (Multimodal Multi-Image Understanding) (Meng et al., 2025), is a comprehensive
809 benchmark designed to evaluate multi-image reasoning across seven relationship types:
discrete, continuous, low-level, high-level subject, high-level object, 2D, and 3D under-

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 standing. The benchmark contains over 7,000 carefully curated examples spanning comparison tasks, retrieval scenarios, and spatial-temporal reasoning. Questions are formatted as multiple-choice with 4 options, testing the model’s ability to integrate information across multiple images for complex reasoning tasks.

- **MuirBench** (Wang et al., 2025), focuses on robust multi-image understanding across twelve diverse task categories, including counting, action recognition, grounding, matching, ordering, scene understanding, difference detection, cartoon analysis, diagram interpretation, geographic reasoning, attribute recognition, and retrieval. The benchmark contains approximately 2,600 examples designed to test models’ resilience to various visual and semantic challenges.
- **MIRB** (Multi-Image Reasoning Benchmark) (Zhao et al., 2024), organizes evaluation around four core competency areas: perception (basic visual recognition across images), visual world knowledge (applying real-world knowledge to visual scenes), reasoning (logical inference and deduction), and multi-hop reasoning (complex reasoning chains spanning multiple images).
- **LIBench** (Li et al., 2025), containing nine task categories: Spot the Difference (SD), Image Edit Instruction (IE), Visual Story Telling (VST), Text-rich VQA (TRVQA), Multi-image VQA (MIVQA), Puzzle solving, Q-Bench quality assessment (QB), ScanQA document understanding (SQ), MathVerse mathematical reasoning (Math), SciVerse scientific reasoning (Sci), Mantis instruction following, BLINK perception tasks, and MMMU multi-discipline understanding, includes approximately 1,500 multi-image examples.
- **MIBench** (Liu et al., 2024a), provides evaluation across two main categories: Multi-Image Instruction following and Multimodal Knowledge-Seeking. The instruction following category includes tasks such as difference comparison (GC), spot the difference (SD), visual reasoning (VR), text-rich understanding (TR), and logical reasoning (LR). The knowledge-seeking category encompasses fine-grained visual recognition (FVR), text-rich image understanding (TRI), visual text knowledge (VTK), and text-visual knowledge (TVK). MIBench contains approximately 2,000 examples.

838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
Single-image benchmarks. To verify that AR does not harm performance on standard vision–language tasks, we also report results on ten single-image datasets:

- VQA^{v2} (Goyal et al., 2017): Visual question answering v2.0. A large-scale dataset for visual question answering on natural images, containing open-ended questions about objects, attributes, and relationships.
- GQA (Hudson & Manning, 2019): Question answering on image scene graphs.
- VizWiz (Gurari et al., 2018): We used val set splits for the evaluation. A dataset collected from blind users who photographed their environment and asked related questions.
- SQA¹ (Lu et al., 2022): ScienceQA is a dataset collected from elementary and high school science curricula, consisting of 21,208 multimodal multiple-choice science questions. Out of these, 10,332 questions include image context, 10,220 include text context, and 6,532 include both. Most questions are annotated with lectures (17,795) and detailed explanations (19,184) to provide general knowledge and specific reasoning for the correct answers. The dataset spans three subjects: natural science, language science, and social science, and is organized into 26 topics, 127 categories, and 379 skills.
- VQA^T (Singh et al., 2019): TextVQA focuses on visual question answering, where reading embedded text in images (OCR) is essential.
- MME (Yin et al., 2023): A comprehensive evaluation benchmark for multimodal models, covering 14 tasks including object existence, counting, spatial reasoning, OCR, common-sense reasoning, translation, and numerical problem solving. It measures both perception and reasoning abilities.
- MMB^{en} (Liu et al., 2023b): The English subset of MMBench, consisting of ~3k multiple-choice questions that assess 20 ability dimensions (e.g., perception, reasoning, common-sense). Evaluation adopts the official GPT-4-based scoring pipeline to ensure consistency.
- SEED^I (Li et al., 2023): The image subset of SEED-Bench, targeting visual reasoning with a focus on spatial relationships between objects, a known challenge for current LMMs.

864

- 865 LLaVA^W (Liu et al., 2023a): LLaVA-Bench (In-the-Wild) contains 24 real-world images
 866 with 60 diverse questions spanning domains such as indoor scenes, outdoor environments,
 867 memes, paintings, and sketches, testing generalization to complex, unfamiliar visual contexts.
 868
- 869 MM-Vet (Yu et al., 2023): A benchmark designed to assess multimodal models in open-
 870 ended visual conversations, including 200 images and 218 questions. Responses are scored
 871 by GPT-4 for both accuracy and helpfulness, providing a holistic evaluation of model utility.
 872

873

C.3 DETAILED RESULTS

874 In this section, we report the full per-task and per-model results across all benchmarks.

875 Table 3: Experiment results on MMIU (Overall (test) to Low-Level).

878 Model	879 Overall (test)	880 Overall	881 Discrete	882 Continuous	883 Low-level
884 Frequency	885 30.9	886 31.5	887 29.5	888 29.5	889 38.1
890 Random	891 27.1	892 27.4	893 22.1	894 25.4	895 33.7
Closed-source LMMs					
897 GPT-4o (OpenAI, 2023)	898 55.6	900 55.5	902 58.2	904 53.7	906 84.0
908 Claude3.5 (Anthropic, 2023)	910 54.3	912 53.4	914 55.3	916 47.9	918 77.2
922 Gemini1.5 (Team et al., 2023)	924 54.5	926 53.4	928 54.2	930 50.1	932 76.1
936 Gemini1.0 (Team et al., 2023)	938 41.2	940 40.2	942 45.8	944 49.8	946 48.7
Multi-Image input LMMs					
950 Mantis-idefics2-8B (Jiang et al., 2024)	952 45.3	954 45.6	956 37.3	958 43.4	960 58.4
964 + VAR	966 46.1	968 46.0	970 38.4	972 44.5	974 59.6
980 + SoFA	982 46.7	984 47.1	986 38.9	988 45.7	990 59.8
996 + Ours	1000 48.9	1004 49.6	1008 41.0	1012 47.0	1016 61.9
1020 Mantis-SigCLIP-8B (Jiang et al., 2024)	1022 41.8	1024 42.6	1026 37.2	1028 39.3	1030 69.5
1036 + VAR	1038 42.7	1040 43.6	1042 38.0	1044 40.3	1046 71.0
1052 + SoFA	1054 43.2	1056 44.0	1058 38.6	1060 40.8	1062 71.1
1070 + Ours	1072 45.7	1074 46.3	1076 40.5	1078 43.2	1080 73.2
1088 LLaVA-Interleave-7B (Li et al., 2025)	1090 33.5	1092 32.4	1094 35.3	1096 30.7	1098 33.7
1104 + VAR	1106 34.0	1108 33.9	1110 35.4	1112 31.0	1114 34.5
1120 + SoFA	1122 34.9	1124 34.4	1126 36.7	1128 32.6	1130 34.9
1136 + Ours	1138 37.2	1140 36.1	1142 39.1	1144 34.8	1146 38.4
1150 InternVL2-Pro (Chen et al., 2024)	1152 49.8	1154 50.3	1156 53.8	1158 46.3	1160 72.7
1164 + VAR	1166 51.0	1168 50.7	1170 54.7	1172 47.9	1174 71.6
1180 + SoFA	1182 51.5	1184 52.1	1186 55.0	1188 48.1	1190 73.1
1196 + Ours	1200 53.6	1204 54.3	1208 57.4	1212 50.6	1216 76.2
1220 InternVL1.5-chat (Chen et al., 2024)	1222 38.7	1224 37.4	1226 43.6	1228 46.4	1230 42.9
1236 + VAR	1238 38.8	1240 38.7	1242 44.7	1244 47.8	1246 44.1
1252 + SoFA	1254 38.4	1256 39.2	1258 45.1	1260 48.0	1262 44.6
1270 + Ours	1272 42.7	1274 41.3	1276 47.0	1278 49.9	1280 46.8
1288 InternVL2-8B (Chen et al., 2024)	1290 34.0	1292 34.8	1294 34.2	1296 43.4	1298 36.7
1304 + VAR	1306 35.0	1308 35.9	1310 35.2	1312 44.7	1314 37.6
1320 + SoFA	1322 35.0	1324 36.2	1326 35.6	1328 44.9	1330 37.9
1336 + Ours	1338 38.8	1340 38.3	1342 37.9	1344 46.8	1346 40.5
1350 Mini-InternVL-1.5-4B (Gao et al., 2024)	1352 32.5	1354 32.1	1356 30.6	1358 42.2	1360 35.4
1364 + VAR	1366 33.5	1368 33.0	1370 31.7	1372 43.3	1374 36.5
1380 + SoFA	1382 33.2	1384 33.6	1386 32.1	1388 43.6	1390 36.8
1396 + Ours	1400 36.1	1404 36.5	1408 34.4	1412 45.8	1416 39.6
1420 Mini-InternVL-1.5-2B (Gao et al., 2024)	1422 31.8	1424 30.5	1426 33.1	1428 38.6	1430 30.9
1436 + VAR	1438 32.0	1440 31.5	1442 34.0	1444 39.7	1446 31.9
1452 + SoFA	1454 33.0	1456 31.9	1458 34.8	1460 41.1	1462 32.3

918
919 Table 3 – continued from previous page
920
921

Model	Overall (test)	Overall	Discrete	Continuous	Low-level
+ Ours	35.6	33.8	36.7	43.9	34.8
idefics2-8B (Laurençon et al., 2024)	27.2	27.8	22.9	19.3	42.4
+ VAR	27.6	29.1	24.0	19.7	43.5
+ SoFA	28.9	29.5	24.0	21.1	43.9
+ Ours	32.5	32.4	27.1	24.5	46.8
Idefics-9B-Instruct (Bai et al., 2023)	13.2	12.8	23.6	7.2	11.6
+ VAR	14.3	12.7	24.7	8.1	12.1
+ SoFA	14.0	14.2	25.1	8.9	12.9
+ Ours	17.6	17.2	28.0	11.7	16.8
DeepSeek-VL-7B (Lu et al., 2024)	24.6	24.6	16.4	10.3	39.1
+ VAR	25.9	23.4	17.1	10.8	40.0
+ SoFA	27.1	25.8	18.2	12.1	40.8
+ Ours	28.8	28.0	20.6	14.4	43.9
DeepSeek-VL-1.3B (Lu et al., 2024)	23.8	23.2	14.6	9.2	33.3
+ VAR	24.9	24.4	15.0	10.4	34.0
+ SoFA	24.2	24.8	16.2	10.1	33.6
+ Ours	27.6	26.5	18.3	13.1	36.5
XComposer2-7B (Dong et al., 2024)	23.4	23.5	31.9	31.6	23.4
+ VAR	24.0	23.4	32.1	32.9	24.8
+ SoFA	25.1	24.9	33.5	33.0	25.2
+ Ours	27.2	27.0	35.8	35.2	27.7
XComposer2-1.8B (Dong et al., 2024)	22.0	21.9	29.4	32.9	22.5
+ VAR	23.3	22.0	30.6	34.2	23.0
+ SoFA	23.6	23.4	30.1	35.5	23.9
+ Ours	26.1	25.6	33.2	38.7	26.0
OpenFlamingo-v2 (Awadalla et al., 2023)	22.7	22.3	20.8	19.5	29.6
+ VAR	24.8	23.4	22.1	20.7	30.7
+ SoFA	24.2	23.8	23.6	22.2	31.2
+ Ours	26.6	25.9	24.9	24.6	33.8
Qwen2-VL (Team, 2025)	33.0	27.8	25.7	27.3	28.0
+ VAR	35.0	28.7	27.8	28.1	28.5
+ SoFA	32.7	28.6	27.1	28.8	30.8
+ Ours	39.9	29.9	30.2	31.9	34.1
Qwen-chat (Bai et al., 2023)	18.0	15.9	14.7	19.5	22.3
+ VAR	19.1	16.0	15.9	20.7	23.0
+ SoFA	19.6	17.5	16.0	21.8	23.1
+ Ours	22.4	21.2	18.9	23.0	26.7
Qwen-Base (Bai et al., 2023)	4.8	5.2	13.2	2.6	5.3
+ VAR	6.1	6.5	14.7	3.7	6.6
+ SoFA	6.9	7.8	15.0	3.5	6.9
+ Ours	10.1	10.8	18.0	8.4	11.6

963
964 Table 3 - Experiment results on MMU (High-level-sub to Three-D)
965

Model	High-level-sub	High-level-obj	Two-D	Three-D
Frequency	29.6	36.7	27.8	30.2
Random	20.7	32.8	24.3	28.4
Closed-source LMMs				
GPT-4o (OpenAI, 2023)	69.2	57.5	41.7	55.4
Claude3.5 (Anthropic, 2023)	64.8	64.5	41.9	45.1

Table 3 – continued from previous page

Model	High-level-sub	High-level-obj	Two-D	Three-D
Gemini1.5 (Team et al., 2023)	63.9	64.9	43.3	43.0
Gemini1.0 (Team et al., 2023)	57.9	36.7	29.7	36.7
<i>Multi-Image input LMMs</i>				
Mantis-idefics2-8B (Jiang et al., 2024)	54.8	56.4	37.8	40.4
+ VAR	56.1	57.6	38.1	41.2
+ SoFA	57.0	57.0	39.4	42.0
+ Ours	59.0	60.3	41.8	44.7
Mantis-SigCLIP-8B (Jiang et al., 2024)	46.2	52.9	30.2	40.2
+ VAR	47.6	54.3	31.2	41.7
+ SoFA	47.8	54.4	32.6	42.8
+ Ours	50.1	56.9	34.8	44.2
LLaVA-Interleave-7B (Li et al., 2025)	35.7	33.3	34.7	27.4
+ VAR	34.9	34.5	35.6	28.7
+ SoFA	37.1	35.9	36.0	29.8
+ Ours	40.6	39.2	38.4	33.1
InternVL2-Pro (Chen et al., 2024)	70.6	58.5	38.1	42.1
+ VAR	71.8	59.9	38.2	42.5
+ SoFA	72.0	60.9	39.5	43.8
+ Ours	74.1	62.3	42.0	45.9
InternVL1.5-chat (Chen et al., 2024)	59.1	26.0	33.6	37.0
+ VAR	60.1	27.9	32.5	38.0
+ SoFA	60.4	27.4	34.9	38.0
+ Ours	62.1	30.8	36.9	40.3
InternVL2-8B (Chen et al., 2024)	47.3	32.1	30.0	32.2
+ VAR	48.0	33.5	29.1	30.3
+ SoFA	49.1	33.5	31.5	33.7
+ Ours	51.1	35.8	34.0	36.4
Mini-InternVL-1.5-4B (Gao et al., 2024)	47.2	29.2	27.2	30.5
+ VAR	48.0	30.6	27.6	30.8
+ SoFA	48.6	31.7	28.9	32.1
+ Ours	50.5	33.2	30.9	34.2
Mini-InternVL-1.5-2B (Gao et al., 2024)	37.6	28.7	27.4	25.7
+ VAR	38.0	29.8	28.6	25.9
+ SoFA	39.2	30.3	29.7	27.3
+ Ours	41.7	32.4	32.3	29.8
idefics2-8B (Laurençon et al., 2024)	45.2	26.8	33.4	25.7
+ VAR	46.0	28.1	32.5	26.9
+ SoFA	46.8	28.0	34.9	27.2
+ Ours	49.2	30.9	38.3	29.5
Idefics-9B-Instruct (Bai et al., 2023)	27.0	12.3	12.2	8.7
+ VAR	27.2	11.2	13.1	9.6
+ SoFA	28.2	13.6	13.7	10.0
+ Ours	31.0	15.9	15.7	13.3
DeepSeek-VL-7B (Lu et al., 2024)	32.3	34.2	32.9	16.7
+ VAR	33.5	34.6	33.9	16.9
+ SoFA	33.7	36.0	34.2	18.1
+ Ours	36.4	38.4	37.6	22.3
DeepSeek-VL-1.3B (Lu et al., 2024)	24.9	30.8	32.7	19.0
+ VAR	25.1	32.2	33.8	20.3
+ SoFA	26.4	32.3	34.7	20.9

Table 3 – continued from previous page

Model	High-level-sub	High-level-obj	Two-D	Three-D
+ Ours	28.7	34.9	36.6	23.9
XComposer2-7B (Dong et al., 2024)	34.3	20.0	18.7	18.0
+ VAR	34.7	21.1	19.2	19.3
+ SoFA	36.0	21.2	20.1	19.9
+ Ours	38.3	23.8	22.6	22.0
XComposer2-1.8B (Dong et al., 2024)	36.2	15.3	20.9	14.6
+ VAR	37.0	16.0	22.0	15.0
+ SoFA	38.1	17.0	22.8	16.3
+ Ours	40.3	20.2	24.7	18.6
OpenFlamingo-v2 (Awadalla et al., 2023)	24.6	26.9	17.2	21.7
+ VAR	25.7	26.1	18.5	22.9
+ SoFA	25.1	28.6	19.9	22.4
+ Ours	28.6	31.0	21.3	25.7
Qwen2-VL (Team, 2025)	31.0	24.8	20.7	27.0
+ VAR	31.0	25.1	22.8	28.5
+ SoFA	32.1	26.6	23.1	28.8
+ Ours	35.9	29.9	24.2	31.1
Qwen-chat (Bai et al., 2023)	21.3	14.8	10.5	17.1
+ VAR	22.6	16.1	10.8	18.0
+ SoFA	22.9	16.9	12.1	18.7
+ Ours	25.6	18.9	13.4	20.8
Qwen-Base (Bai et al., 2023)	10.1	4.6	2.8	3.8
+ VAR	11.5	5.7	3.1	5.1
+ SoFA	11.5	6.1	4.2	5.3
+ Ours	14.6	8.4	6.7	7.9

Table 4: Experiment results on MuirBench (Overall to Scene).

Model	Overall	Count	Action	Ground	Match	Order	Scene
Random Choice	24.0	21.0	23.4	25.0	24.1	22.8	25.0
Human	93.2	94.9	97.6	85.7	94.8	87.5	94.6
<i>Closed-source LMMs</i>							
GPT-4o (OpenAI, 2023)	68.0	49.2	44.5	36.9	86.9	23.4	71.5
GPT-4-Turbo (OpenAI, 2023)	62.3	42.3	39.6	53.6	80.4	35.9	59.1
Gemini Pro (Team et al., 2023)	49.4	28.6	36.0	28.6	66.6	12.5	59.1
<i>Multi-Image input LMMs</i>							
Mantis-8B-Idefics2 (Jiang et al., 2024)	44.5	38.5	33.5	26.2	53.9	18.8	57.0
+ VAR	45.0	39.0	33.9	27.0	54.5	18.3	57.4
+ SoFA	45.8	39.6	34.7	27.2	55.0	20.1	58.2
+ Ours	48.5	42.4	36.9	30.3	57.6	24.5	60.5
Mantis-8B-clip-llama3 (Jiang et al., 2024)	37.4	29.1	36.6	21.4	43.3	18.8	57.0
+ VAR	38.1	30.0	37.3	20.6	43.8	19.9	58.0
+ SoFA	39.0	30.2	38.1	22.8	45.0	20.1	58.5
+ Ours	41.2	32.4	39.9	24.7	47.9	22.0	60.2
Mantis-8B-siglip-llama3 (Jiang et al., 2024)	36.1	27.4	37.2	22.6	43.8	7.8	54.3
+ VAR	37.0	28.4	37.4	23.9	44.0	8.9	55.0
+ SoFA	37.2	28.5	38.1	23.0	44.7	9.6	55.3
+ Ours	39.6	30.5	40.2	25.8	46.6	11.7	57.5
LLaVA-Interleave-7B (Li et al., 2025)	41.0	33.0	40.0	26.5	49.5	22.0	60.0
+ VAR	42.3	34.5	41.5	28.1	51.2	23.8	61.6

Table 4 – continued from previous page

Model	Overall	Count	Action	Ground	Match	Order	Scene
+ SoFA	43.0	35.2	42.3	29.0	52.0	24.5	62.4
+ Ours	45.6	37.9	44.8	31.7	54.9	27.4	64.7
Idefics-9B-Instruct (Laurençon et al., 2023)	35.4	29.9	28.1	13.1	36.0	12.5	27.4
+ VAR	36.0	30.0	29.0	14.7	35.4	13.0	28.2
+ SoFA	36.9	31.2	29.5	14.3	37.7	13.8	28.6
+ Ours	39.0	33.3	31.4	16.2	39.7	15.5	30.6
Idefics2-8B (Laurençon et al., 2024)	26.1	21.8	26.2	26.2	24.8	15.6	56.5
+ VAR	27.0	23.0	27.0	26.6	26.0	16.8	57.7
+ SoFA	27.7	23.3	27.9	27.9	26.0	17.1	58.2
+ Ours	30.0	26.4	29.8	31.9	28.5	18.0	60.8
Emu2-Chat-37B (Sun et al., 2024b)	33.6	31.2	27.4	26.2	37.3	15.6	48.4
+ VAR	34.8	32.5	28.6	27.0	38.1	16.8	49.9
+ SoFA	35.6	32.5	28.2	27.9	38.8	17.1	50.7
+ Ours	36.3	35.9	30.8	29.6	41.9	19.0	52.9
VILA-13B (Lin et al., 2024)	33.1	19.7	28.7	25.0	41.0	10.9	56.5
+ VAR	34.0	21.6	29.0	25.2	42.0	12.9	57.5
+ SoFA	34.7	21.4	30.0	26.5	42.5	12.2	58.1
+ Ours	36.7	23.4	32.0	28.2	44.2	14.5	60.6
OpenFlamingo-v2-9B (Awadalla et al., 2023)	23.7	21.8	26.8	31.0	24.1	21.9	22.6
+ VAR	24.4	23.0	27.1	32.7	25.0	23.0	22.8
+ SoFA	25.0	23.2	28.0	32.6	25.6	23.5	24.0
+ Ours	27.1	25.1	29.9	34.3	27.7	25.1	25.9
Qwen2-VL (Team, 2025)	34.0	28.6	29.5	21.0	34.5	15.0	37.0
+ VAR	35.6	30.2	31.3	22.7	36.2	16.6	38.9
+ SoFA	36.4	31.0	32.1	23.6	37.0	17.3	39.6
+ Ours	38.8	33.4	34.5	25.9	39.1	19.1	41.8
Qwen-VL (Bai et al., 2023)	30.2	25.4	27.0	17.6	31.1	12.9	34.0
+ VAR	31.3	26.5	28.1	18.7	32.0	13.7	35.2
+ SoFA	32.1	26.2	28.9	20.4	32.9	13.8	36.0
+ Ours	35.6	28.7	30.4	21.3	34.1	15.4	38.1
Qwen-Base (Bai et al., 2023)	21.5	18.0	19.3	10.2	22.1	9.0	24.2
+ VAR	22.6	19.1	19.2	10.1	23.0	9.0	24.1
+ SoFA	23.4	18.8	20.1	10.9	23.1	9.5	24.9
+ Ours	25.0	21.3	22.4	12.8	25.5	11.5	27.3

Table 4 – Experiment results on MuirBench (Difference to Retrieval)

Model	Diff	Cartoon	Diagram	Geogra	Attribute	Retrieval
Random Choice	23.2	25.0	29.6	25.0	20.0	21.3
Human	92.9	82.1	99.0	98.0	87.8	86.3
Closed-source LMMs						
GPT-4o (OpenAI, 2023)	60.3	51.3	88.7	56.0	56.1	80.1
GPT-4-Turbo (OpenAI, 2023)	60.6	52.6	79.2	57.0	50.5	64.0
Gemini Pro (Team et al., 2023)	45.3	47.4	64.8	48.0	41.3	43.8
Multi-Image input LMMs						
Mantis-8B-Idefics2 (Jiang et al., 2024)	28.8	38.5	67.6	26.0	48.5	35.6
+ VAR	29.9	39.0	68.5	26.0	49.7	35.8
+ SoFA	30.1	39.9	69.2	27.2	50.1	37.0
+ Ours	32.4	41.9	71.5	29.3	52.3	39.5
Mantis-8B-clip-llama3 (Jiang et al., 2024)	24.1	43.6	54.3	16.0	33.7	31.9

Table 4 – continued from previous page

Model	Diff	Cartoon	Diagram	Geogra	Attribute	Retrieval
+ VAR	25.3	44.8	54.8	17.0	35.0	33.0
+ SoFA	25.6	45.1	55.1	17.1	35.3	33.5
+ Ours	27.4	47.1	58.0	18.9	37.2	35.6
Mantis-8B-siglip-llama3 (Jiang et al., 2024)	27.4	46.2	48.0	22.0	31.6	28.1
+ VAR	28.0	46.2	49.0	23.0	32.2	28.2
+ SoFA	28.7	47.6	49.4	23.1	32.8	29.4
+ Ours	30.5	49.6	51.3	25.2	34.7	31.5
LLaVA-Interleave-7B (Li et al., 2025)	33.0	48.0	60.0	27.5	37.0	34.0
+ VAR	34.4	49.5	61.6	28.9	38.6	35.5
+ SoFA	35.2	50.4	62.4	29.8	39.5	36.4
+ Ours	37.5	52.8	64.9	32.0	41.7	38.7
Idefics-9B-Instruct (Laurençon et al., 2023)	34.4	48.7	47.0	35.0	32.7	43.5
+ VAR	35.0	49.2	48.0	35.4	34.0	44.7
+ SoFA	35.9	50.0	48.4	36.1	34.3	45.1
+ Ours	37.8	52.1	50.9	39.2	36.2	46.9
Idefics2-8B (Laurençon et al., 2024)	27.7	39.7	25.4	21.0	17.9	17.1
+ VAR	28.7	39.8	25.4	21.1	18.5	18.0
+ SoFA	29.0	41.1	26.8	22.4	19.0	18.5
+ Ours	33.2	43.3	28.7	26.3	20.7	20.5
Emu2-Chat-37B (Sun et al., 2024b)	32.6	43.6	37.7	34.0	31.6	24.0
+ VAR	33.7	44.3	38.0	35.0	32.9	24.1
+ SoFA	34.1	45.1	39.2	36.1	33.3	25.5
+ Ours	36.0	47.0	41.1	37.8	35.3	27.5
VILA-13B (Lin et al., 2024)	24.7	30.8	42.7	31.0	24.5	30.1
+ VAR	25.5	30.9	42.8	32.0	25.8	30.6
+ SoFA	26.1	32.3	44.2	32.7	26.2	32.0
+ Ours	28.0	34.3	47.3	34.7	28.3	34.9
OpenFlamingo-v2-9B (Awadalla et al., 2023)	21.8	25.6	31.9	25.0	18.9	15.4
+ VAR	22.7	26.1	32.5	25.1	19.3	16.7
+ SoFA	23.0	27.0	33.1	26.5	20.2	17.0
+ Ours	25.1	29.3	36.2	27.6	22.4	19.1
Qwen2-VL (Team, 2025)	31.0	38.4	42.1	25.1	28.6	29.3
+ VAR	32.8	40.5	44.3	26.9	30.2	31.5
+ SoFA	33.6	41.6	45.5	27.8	31.1	32.4
+ Ours	35.9	44.0	47.9	29.9	33.0	34.6
Qwen-VL (Bai et al., 2023)	29.1	36.7	40.2	23.5	26.8	27.4
+ VAR	30.1	36.8	40.0	23.4	27.0	28.0
+ SoFA	29.8	37.4	40.7	24.9	27.4	28.0
+ Ours	32.2	39.6	43.0	26.3	29.4	30.0
Qwen-Base (Bai et al., 2023)	22.0	30.2	31.5	18.0	20.1	20.9
+ VAR	23.0	31.2	32.0	18.0	21.0	21.3
+ SoFA	23.4	31.5	32.7	19.1	21.3	22.0
+ Ours	25.5	33.6	34.9	21.0	23.2	24.8

Table 5: Experiment results on MIRB.

Model	Reasoning	Knowledge	Perception	Multi-Hop	Average
Random	20.8	37.6	21.4	0.0	23.0
<i>Closed-source LMMs</i>					

Table 5 – continued from previous page

Model	Reasoning	Knowledge	Perception	Multi-Hop	Average
GPT-4o (OpenAI, 2023)	81.0	55.0	53.2	40.0	57.3
GPT-4V (Achiam et al., 2023)	75.7	50.6	49.7	36.3	53.1
Claude3.5 (Anthropic, 2023)	70.5	47.2	45.0	33.5	49.0
Gemini1.5 (Team et al., 2023)	66.8	44.7	43.1	31.0	46.4
Gemini1.0 (Team et al., 2023)	55.5	35.1	34.0	24.5	37.3
<i>Multi-Image input LMMs</i>					
Mantis-idefics2-8B (Jiang et al., 2024)	44.0	30.8	36.0	0.0	27.7
+ VAR	45.4	31.2	37.2	0.0	28.5
+ SoFA	45.7	31.9	37.0	0.0	28.7
+ Ours	47.8	34.0	39.1	0.0	30.2
Mantis-SigCLIP-8B (Jiang et al., 2024)	60.7	38.9	44.8	0.0	36.1
+ VAR	61.1	40.7	46.9	0.0	37.2
+ SoFA	62.0	40.3	47.2	0.0	37.4
+ Ours	64.2	42.0	49.3	0.0	38.9
LLaVA-Interleave-7B (Li et al., 2025)	56.0	36.5	43.0	0.0	33.9
+ VAR	57.1	37.0	43.0	0.0	34.3
+ SoFA	58.0	37.8	44.3	0.0	35.0
+ Ours	59.2	40.4	46.0	0.0	36.4
VILA-2.7B (Lin et al., 2024)	53.3	0.0	48.3	0.0	25.4
+ VAR	54.0	31.5	49.9	0.0	33.9
+ SoFA	54.2	32.2	49.3	0.0	34.0
+ Ours	56.8	34.6	53.7	0.0	36.3
VILA-7B (Lin et al., 2024)	63.7	35.3	47.1	0.0	36.5
+ VAR	64.0	34.7	47.2	0.0	36.5
+ SoFA	64.8	36.5	48.0	0.0	37.3
+ Ours	67.1	38.9	50.2	0.0	39.1
Emu2-Chat-37B (Sun et al., 2024b)	40.4	24.5	44.0	0.0	27.2
+ VAR	40.6	25.8	44.1	0.0	27.6
+ SoFA	41.9	26.0	45.4	0.0	28.3
+ Ours	44.1	28.2	47.4	0.0	29.9
InternVL2-Pro (Chen et al., 2024)	66.0	42.0	49.0	0.0	39.3
+ VAR	67.1	42.3	50.0	0.0	39.9
+ SoFA	67.8	43.6	50.7	0.0	40.5
+ Ours	70.0	45.5	52.6	0.0	42.0
InternVL1.5-chat (Chen et al., 2024)	52.0	30.0	42.1	0.0	31.0
+ VAR	53.0	31.4	42.3	0.0	31.7
+ SoFA	53.6	31.8	43.6	0.0	32.3
+ Ours	55.8	33.7	45.5	0.0	33.8
InternVL2-8B (Chen et al., 2024)	58.0	33.5	44.0	0.0	33.9
+ VAR	57.2	34.7	44.3	0.0	34.1
+ SoFA	59.5	35.0	45.6	0.0	35.0
+ Ours	61.6	37.1	47.7	0.0	36.6
Mini-InternVL-1.5-4B (Gao et al., 2024)	35.0	24.0	30.2	0.0	22.3
+ VAR	36.0	24.1	30.3	0.0	22.6
+ SoFA	36.3	25.4	31.6	0.0	23.3
+ Ours	38.5	27.3	33.5	0.0	24.8
Mini-InternVL-1.5-2B (Gao et al., 2024)	33.1	22.5	29.0	0.0	21.2
+ VAR	34.1	22.5	30.0	0.0	21.7
+ SoFA	34.0	23.8	30.3	0.0	22.0
+ Ours	36.5	25.8	32.2	0.0	23.6
idefics2-8B (Laurençon et al., 2024)	61.3	31.8	39.0	0.0	33.0

Table 5 – continued from previous page

Model	Reasoning	Knowledge	Perception	Multi-Hop	Average
+ VAR	61.7	33.0	40.0	0.0	33.7
+ SoFA	61.9	33.3	40.6	0.0	33.9
+ Ours	65.4	35.2	42.7	0.0	35.8
Idefics-9B-Instruct (Bai et al., 2023)	45.9	23.5	36.9	0.0	26.6
+ VAR	47.0	24.2	37.2	0.0	27.1
+ SoFA	47.4	25.1	38.3	0.0	27.7
+ Ours	49.5	27.0	40.1	0.0	29.2
DeepSeek-VL-7B (Lu et al., 2024)	42.0	26.0	33.0	0.0	25.3
+ VAR	43.2	27.0	33.0	0.0	25.8
+ SoFA	43.3	27.6	34.3	0.0	26.3
+ Ours	45.8	29.7	36.4	0.0	28.0
DeepSeek-VL-1.3B (Lu et al., 2024)	30.5	20.0	27.0	0.0	19.4
+ VAR	31.4	20.1	27.8	0.0	19.8
+ SoFA	31.9	21.3	28.3	0.0	20.4
+ Ours	33.8	23.1	30.1	0.0	21.8
XComposer2-7B (Dong et al., 2024)	54.7	37.2	37.2	0.8	32.5
+ VAR	55.0	37.5	38.6	1.6	33.2
+ SoFA	56.2	38.7	38.8	1.5	33.8
+ Ours	58.6	41.0	41.0	3.5	36.0
XComposer2-1.8B (Dong et al., 2024)	46.0	29.0	34.5	0.0	27.4
+ VAR	47.1	30.0	35.7	0.0	28.2
+ SoFA	47.5	30.6	36.5	0.0	28.6
+ Ours	49.7	32.7	38.1	0.0	30.1
OpenFlamingo-v2 (Awadalla et al., 2023)	24.0	18.0	22.5	0.0	16.1
+ VAR	25.0	19.2	23.6	0.0	16.9
+ SoFA	25.3	19.9	23.7	0.0	17.2
+ Ours	27.4	21.4	25.8	0.0	18.7
Qwen2-VL (Team, 2025)	50.2	32.6	41.5	0.0	31.1
+ VAR	51.8	33.9	43.0	0.0	32.2
+ SoFA	52.7	34.5	43.8	0.0	32.8
+ Ours	55.5	36.8	46.6	0.0	34.7
Qwen-VL (Bai et al., 2023)	19.2	13.9	24.4	0.0	14.4
+ VAR	19.0	14.5	25.1	0.0	14.7
+ SoFA	20.5	15.0	25.6	0.0	15.3
+ Ours	22.4	17.0	27.5	0.0	16.7
Qwen-Base (Bai et al., 2023)	10.0	8.0	15.0	0.0	8.3
+ VAR	11.0	9.2	15.0	0.0	8.8
+ SoFA	11.1	9.8	16.5	0.0	9.4
+ Ours	13.6	11.4	19.7	0.0	11.2

Table 6: Experiment results on LLaVA-Interleave Bench (LIBench). SD: Spot the Difference, IE: Image Edit Instruction, VST: Visual Story Telling, TRVQA: Text-rich VQA, MIVQA: Multi-image VQA, QB: Q-Bench, SQ: ScanQA, Math: MathVerse-mv, Sci: SciVerse-mv.

Model	SD	IE	VST	TRVQA	MIVQA	Puzzle
<i>Closed-source LMMs</i>						
GPT-4o (OpenAI, 2023)	14.2	12.3	12.0	58.7	55.6	18.9
GPT-4V (Achiam et al., 2023)	12.5	11.0	10.9	54.5	52.0	17.1
Claude3.5 (Anthropic, 2023)	13.1	11.4	11.5	56.1	53.3	17.9
Gemini1.5 (Team et al., 2023)	12.0	10.7	10.5	55.0	52.5	17.0

Table 6 – continued from previous page

Model	SD	IE	VST	TRVQA	MIVQA	Puzzle
Gemini1.0 (Team et al., 2023)	9.6	9.1	8.8	49.2	47.0	14.8
<i>Multi-Image input LMMs</i>						
Mantis-SigCLIP-8B (Jiang et al., 2024)	17.6	11.2	12.5	45.2	52.5	25.7
+ VAR	17.4	10.9	12.1	44.5	53.3	24.9
+ SoFA	17.9	12.0	12.6	45.0	52.1	24.4
+ Ours	21.1	14.4	15.2	49.7	57.3	28.1
LLaVA-Interleave-7B (Li et al., 2025)	37.1	24.3	33.1	76.1	87.5	48.7
+ VAR	38.7	24.6	33.5	76.6	88.2	50.5
+ SoFA	38.9	25.1	34.0	77.1	89.1	50.0
+ Ours	40.9	27.8	36.4	79.5	90.7	52.8
InternVL2-Pro (Chen et al., 2024)	30.4	20.3	28.2	70.6	82.1	43.0
+ VAR	30.8	20.5	28.3	70.0	81.4	44.1
+ SoFA	31.4	21.0	28.9	71.6	83.0	44.5
+ Ours	33.8	23.6	31.1	73.9	84.9	46.3
InternVL1.5-chat (Chen et al., 2024)	26.2	18.1	26.5	62.7	75.2	38.2
+ VAR	27.0	17.8	27.0	63.1	75.5	38.3
+ SoFA	27.8	18.2	27.2	63.8	76.0	39.7
+ Ours	29.9	21.1	29.5	66.2	78.1	41.5
InternVL2-8B (Chen et al., 2024)	28.6	19.6	27.1	65.1	78.0	40.6
+ VAR	28.8	20.0	29.2	64.6	75.1	40.8
+ SoFA	29.6	20.3	28.0	66.2	79.4	42.0
+ Ours	31.9	22.3	30.0	68.4	81.0	44.1
Mini-InternVL-1.5-4B (Gao et al., 2024)	22.4	14.8	22.7	56.2	69.3	33.6
+ VAR	23.0	14.9	23.7	57.0	70.6	34.0
+ SoFA	23.9	16.1	24.0	57.7	71.0	34.9
+ Ours	25.8	17.9	25.8	59.7	72.8	36.9
Mini-InternVL-1.5-2B (Gao et al., 2024)	20.1	13.2	20.5	52.4	66.7	31.2
+ VAR	20.8	13.1	19.6	53.7	66.9	32.1
+ SoFA	21.5	14.3	21.9	54.0	68.1	32.4
+ Ours	21.3	16.1	23.7	55.9	69.8	34.3
Idefics-9B-Instruct (Bai et al., 2023)	12.1	9.4	12.5	31.4	45.1	19.4
+ VAR	11.0	9.5	13.5	32.7	45.2	18.6
+ SoFA	13.3	10.2	16.9	32.3	46.6	20.9
+ Ours	15.1	12.1	15.8	34.6	48.3	22.8
Idefics2-8B (Laurençon et al., 2024)	20.0	13.5	20.6	40.2	58.1	28.1
+ VAR	20.2	14.0	20.7	40.6	57.2	28.2
+ SoFA	21.5	14.3	21.9	41.1	59.6	29.5
+ Ours	22.6	17.3	23.9	45.5	62.5	33.4
DeepSeek-VL-7B (Lu et al., 2024)	24.3	16.0	23.9	58.0	71.1	35.1
+ VAR	25.5	12.0	22.2	57.3	70.4	30.4
+ SoFA	21.2	17.4	24.7	59.0	72.7	36.7
+ Ours	27.7	19.2	27.9	62.2	74.6	39.8
XComposer2-7B (Dong et al., 2024)	24.1	16.7	24.3	55.5	70.1	34.2
+ VAR	25.0	16.9	24.4	53.9	70.6	32.5
+ SoFA	25.0	17.4	25.8	56.6	71.1	35.9
+ Ours	27.3	19.8	29.6	57.8	73.2	39.0
DeepSeek-VL-1.3B (Lu et al., 2024)	16.7	11.5	17.6	46.2	58.7	25.4
+ VAR	17.0	11.5	16.7	45.6	57.8	25.6
+ SoFA	17.9	12.2	19.1	47.2	60.1	26.9
+ Ours	19.8	17.0	22.9	49.4	62.9	28.8

1350
1351 Table 6 – continued from previous page
1352
1353

Model	SD	IE	VST	TRVQA	MIVQA	Puzzle
OpenFlamingo-v2 (Awadalla et al., 2023)	15.0	10.4	15.6	42.7	56.3	23.8
+ VAR	14.0	12.5	14.7	42.0	57.4	25.0
+ SoFA	16.3	11.8	16.1	43.6	57.8	25.3
+ Ours	19.1	16.4	18.2	47.8	59.6	28.1
XComposer2-1.8B (Dong et al., 2024)	21.0	14.4	21.6	52.2	67.5	31.0
+ VAR	22.1	10.6	22.8	52.7	64.6	31.4
+ SoFA	24.4	15.2	23.1	53.3	68.9	32.7
+ Ours	24.3	19.1	24.9	55.6	70.4	35.6
Qwen2-VL (Team, 2025)	18.9	13.7	17.8	38.9	51.5	23.1
+ VAR	21.0	13.5	18.9	39.0	52.3	24.5
+ SoFA	20.8	15.0	19.5	40.2	52.7	25.1
+ Ours	23.5	17.3	21.7	42.4	55.0	27.3
Qwen-VL (Bai et al., 2023)	13.0	10.0	13.7	35.0	49.4	21.0
+ VAR	16.0	10.1	11.7	32.3	18.6	21.0
+ SoFA	14.3	10.8	15.0	36.0	50.9	22.3
+ Ours	18.2	16.7	18.9	38.2	52.6	24.2
Qwen-Base (Bai et al., 2023)	8.6	7.5	9.0	24.8	38.6	15.2
+ VAR	7.6	9.6	11.0	24.1	36.8	17.3
+ SoFA	9.3	8.3	10.4	25.8	40.2	16.6
+ Ours	11.4	10.2	13.1	27.9	42.9	18.4

1373

1374

1375 Table 6 - Experiment results on LLaVA-Interleave (QB to MMMU).

Model	QB	NLVR	Math	Sci	Mantis	BLINK	MMMU
<i>Closed-source LMMs</i>							
GPT-4o (OpenAI, 2023)	79.4	90.3	61.5	68.2	64.1	52.7	49.3
GPT-4V (Achiam et al., 2023)	76.5	88.8	60.3	66.9	62.7	51.1	47.9
Claude3.5 (Anthropic, 2023)	74.1	88.0	58.9	65.4	61.0	50.0	46.8
Gemini1.5 (Team et al., 2023)	72.0	87.5	57.6	64.0	59.5	48.8	45.5
Gemini1.0 (Team et al., 2023)	65.4	83.2	49.8	57.3	54.1	44.0	40.3
<i>Multi-Image input LMMs</i>							
Mantis-idefics2-8B (Jiang et al., 2024)	69.9	87.4	27.2	29.3	59.5	46.4	34.1
+ VAR	70.1	86.6	27.6	27.7	60.8	45.7	35.2
+ SoFA	70.8	88.1	28.1	30.2	61.2	48.0	35.5
+ Ours	73.4	90.3	33.7	34.4	63.0	49.9	37.3
Mantis-SigCLIP-8B (Jiang et al., 2024)	67.5	86.0	26.0	28.0	57.8	45.0	32.8
+ VAR	66.6	88.0	26.3	28.4	57.1	46.2	33.9
+ SoFA	69.0	86.6	27.0	29.0	58.4	46.6	34.2
+ Ours	71.2	88.5	29.1	31.1	61.1	48.4	36.0
LLaVA-Interleave-7B (Li et al., 2025)	74.2	88.8	32.8	31.6	62.7	52.6	34.5
+ VAR	76.5	89.0	33.1	32.9	62.8	53.8	35.5
+ SoFA	76.0	89.4	33.6	32.5	64.2	54.1	36.0
+ Ours	78.2	90.2	37.9	34.4	66.0	57.0	38.9
InternVL2-Pro (Chen et al., 2024)	71.0	88.2	31.1	33.4	61.5	50.9	36.5
+ VAR	70.1	86.5	30.2	34.6	62.5	52.1	37.7
+ SoFA	72.4	89.0	31.9	34.2	63.0	52.5	37.9
+ Ours	74.3	89.8	34.0	36.0	66.8	55.3	39.7
InternVL1.5-chat (Chen et al., 2024)	68.1	86.9	29.5	31.2	59.6	48.7	33.7
+ VAR	69.0	88.1	28.8	32.0	60.8	49.9	34.8
+ SoFA	69.7	87.7	30.3	32.1	61.1	50.3	35.1

1400

1401

1402

1403

Table 6 – continued from previous page

Model	QB	NLVR2	Math	Sci	Mantis	BLINK	MMU
+ Ours	71.6	89.6	32.6	34.0	62.8	52.1	36.9
InternVL2-8B (Chen et al., 2024)	69.2	87.6	30.1	32.2	60.7	49.5	35.3
+ VAR	70.0	86.8	30.3	31.4	60.9	50.7	34.4
+ SoFA	70.7	88.4	31.0	33.0	62.2	51.1	36.7
+ Ours	72.6	90.2	33.1	34.8	63.9	52.9	38.4
Mini-InternVL-chat-1.5-4B (Gao et al., 2024)	63.0	84.2	24.7	27.0	55.9	44.2	31.0
+ VAR	64.0	84.5	24.9	27.3	56.1	45.0	32.7
+ SoFA	64.5	85.1	25.6	27.9	57.4	45.7	32.4
+ Ours	66.6	86.9	28.7	27.9	59.2	47.4	34.1
Mini-InternVL-chat-1.5-2B (Gao et al., 2024)	60.5	82.7	23.1	25.8	53.8	42.6	29.6
+ VAR	61.0	83.0	24.3	27.0	55.0	43.7	30.7
+ SoFA	62.0	83.5	23.9	26.7	55.3	44.1	31.0
+ Ours	64.1	85.2	26.0	28.6	57.0	45.9	32.7
idefics2-8B (Laurençon et al., 2024)	58.7	80.9	22.0	24.2	51.6	41.0	28.2
+ VAR	59.8	81.0	21.2	24.4	52.8	42.7	29.3
+ SoFA	60.8	81.6	22.8	25.0	53.7	42.9	29.6
+ Ours	62.2	83.4	24.9	26.8	54.9	45.2	33.2
Idefics-9B-Instruct (Bai et al., 2023)	49.4	73.6	18.3	19.6	44.0	36.1	24.1
+ VAR	50.6	74.9	19.4	20.8	45.1	37.4	25.1
+ SoFA	50.9	74.5	19.0	20.5	45.4	37.8	25.4
+ Ours	53.1	76.6	21.2	22.4	47.2	39.6	27.0
DeepSeek-VL-7B (Lu et al., 2024)	66.1	85.1	27.3	29.6	58.3	46.8	33.2
+ VAR	66.3	85.3	27.6	27.9	59.0	47.0	34.3
+ SoFA	67.7	85.9	28.2	30.5	60.0	48.4	34.6
+ Ours	69.8	87.7	30.4	32.4	61.7	50.2	36.3
XComposer2-7B (Dong et al., 2024)	68.7	86.7	28.4	30.6	59.0	47.5	33.8
+ VAR	69.9	88.0	29.6	31.8	60.2	48.8	35.0
+ SoFA	70.3	87.5	29.2	31.4	60.6	49.2	35.3
+ Ours	72.4	89.4	31.3	33.3	62.3	51.0	37.0
DeepSeek-VL-1.3B (Lu et al., 2024)	53.6	77.4	19.8	21.5	47.6	38.0	25.7
+ VAR	54.0	76.7	21.0	22.7	48.8	39.2	26.8
+ SoFA	55.1	78.3	20.6	22.3	49.1	39.6	27.1
+ Ours	57.3	80.1	22.8	24.2	50.9	41.4	28.8
OpenFlamingo-v2 (Awadalla et al., 2023)	50.4	75.0	18.0	20.1	45.7	36.6	24.2
+ VAR	50.6	76.1	19.2	21.4	46.9	37.7	25.3
+ SoFA	51.9	75.7	18.9	21.0	47.3	38.1	25.6
+ Ours	54.0	77.6	21.0	22.9	49.0	39.9	27.3
XComposer2-1.8B (Dong et al., 2024)	62.8	83.6	22.6	24.7	52.9	43.5	29.2
+ VAR	63.0	84.1	23.1	24.0	54.1	44.8	30.3
+ SoFA	64.3	84.5	23.4	25.6	54.5	45.2	30.7
+ Ours	66.4	86.3	25.6	27.6	56.2	47.0	32.4
Qwen2-VL (Team, 2025)	49.2	73.4	18.9	20.5	44.7	35.5	24.8
+ VAR	51.6	73.0	19.5	21.0	45.5	36.6	24.5
+ SoFA	51.2	74.7	20.2	22.0	46.0	37.0	26.2
+ Ours	53.5	76.8	22.5	24.1	48.3	39.2	28.4
Qwen-VL (Bai et al., 2023)	47.2	70.5	16.7	18.5	42.3	34.0	22.7
+ VAR	48.0	70.9	13.9	18.8	43.6	34.2	23.0
+ SoFA	48.7	71.4	17.5	19.4	43.9	35.6	23.2
+ Ours	50.8	73.2	19.7	21.3	45.7	37.4	25.9
Qwen-Base (Bai et al., 2023)	40.2	65.0	12.6	14.0	37.1	30.5	19.1

Table 6 – continued from previous page

Model	QB	NLVR2	Math	Sci	Mantis	BLINK	MMU
+ VAR	41.4	64.3	11.8	15.3	37.4	30.7	20.2
+ SoFA	41.0	65.9	13.4	14.9	38.7	30.1	20.5
+ Ours	44.0	67.7	15.6	16.9	40.5	33.9	22.1

Table 7: Experiment results on MIBench (Multi-Image Instruction). GC: General Comparison, SD: Subtle Difference, VR: Visual Referring, TR: Temporal Reasoning, LR: Logical Reasoning, FVR: Fine-grained Visual Recognition, VTK: Vision-linked Textual Knowledge, TVK: Text-linked Visual Knowledge.

Model	GC	SD	VR	TR	LR
<i>Closed-source LMMs</i>					
GPT-4o (OpenAI, 2023)	80.7	90.5	46.8	68.0	69.8
GPT-4V (Achiam et al., 2023)	72.8	79.2	45.8	61.8	66.3
Claude3.5 (Anthropic, 2023)	77.2	86.4	46.2	66.1	68.0
Gemini1.5 (Team et al., 2023)	74.0	82.0	44.1	63.0	66.8
Gemini1.0 (Team et al., 2023)	65.2	73.5	40.0	56.2	60.1
<i>Multi-Image input LMMs</i>					
Mantis (Jiang et al., 2024)	83.0	54.1	37.6	45.5	63.4
+ VAR	83.5	55.0	36.9	46.0	63.9
+ SoFA	84.0	55.3	36.6	46.6	64.6
+ Ours	86.6	58.1	40.8	49.4	66.9
LLaVA-Interleave-7B (Li et al., 2025)	68.4	50.3	35.1	42.6	60.2
+ VAR	68.8	50.6	36.4	43.0	60.5
+ SoFA	69.4	51.1	36.9	43.6	61.2
+ Ours	71.7	53.7	39.1	46.8	64.3
InternVL2-Pro (Chen et al., 2024)	79.5	88.0	44.5	66.0	69.0
+ VAR	79.9	88.3	43.9	67.4	69.3
+ SoFA	80.5	88.4	45.4	66.9	69.9
+ Ours	82.6	90.9	48.7	69.2	72.0
InternVL1.5-chat (Chen et al., 2024)	60.8	70.5	33.0	52.0	58.2
+ VAR	62.0	71.7	33.2	51.2	58.5
+ SoFA	61.7	71.9	33.8	52.9	59.1
+ Ours	64.1	73.8	35.9	55.0	61.3
InternVL2-8B (Chen et al., 2024)	74.2	82.6	41.2	60.3	65.5
+ VAR	74.6	82.8	40.4	60.6	63.7
+ SoFA	75.2	83.4	41.9	61.1	66.3
+ Ours	77.2	85.6	43.9	63.2	68.4
Mini-InternVL-1.5-4B (Gao et al., 2024)	52.0	58.0	28.0	40.5	50.0
+ VAR	52.2	58.2	27.1	39.8	51.2
+ SoFA	53.5	59.5	29.4	42.0	51.0
+ Ours	55.7	61.7	31.3	43.9	53.4
Mini-InternVL-1.5-2B (Gao et al., 2024)	49.2	55.1	26.2	38.0	47.5
+ VAR	50.4	56.0	25.3	38.2	47.9
+ SoFA	50.1	56.0	26.0	38.8	48.3
+ Ours	52.4	58.3	29.0	41.0	50.4
Idefics2-8B (Laurençon et al., 2024)	83.1	49.7	32.6	44.8	56.4
+ VAR	83.2	50.0	31.8	45.2	56.6
+ SoFA	83.8	50.6	33.2	45.8	57.2
+ Ours	84.0	53.3	36.6	47.9	59.3
Idefics-9B-Instruct (Bai et al., 2023)	40.3	28.4	18.7	26.1	35.0

Table 7 – continued from previous page

Model	GC	SD	VR	TR	LR
+ VAR	41.0	27.8	18.0	26.5	32.2
+ SoFA	41.2	29.3	19.0	27.1	35.9
+ Ours	44.6	32.0	24.3	29.8	38.4
DeepSeek-VL-7B (Lu et al., 2024)	58.7	64.0	31.5	48.5	55.1
+ VAR	57.9	65.3	32.7	49.0	54.3
+ SoFA	60.2	65.9	33.0	49.5	56.0
+ Ours	62.4	67.2	35.1	51.7	58.5
DeepSeek-VL-1.3B (Lu et al., 2024)	45.0	50.2	22.0	36.2	46.0
+ VAR	46.0	50.6	22.3	34.4	45.2
+ SoFA	46.0	51.2	22.8	37.0	46.0
+ Ours	48.6	53.8	25.0	39.3	49.0
XComposer2-7B (Dong et al., 2024)	62.5	67.8	34.0	50.0	57.2
+ VAR	63.0	69.1	33.2	51.4	58.4
+ SoFA	63.4	68.7	34.0	51.0	58.0
+ Ours	65.6	71.3	36.9	54.2	60.1
XComposer2-1.8B (Dong et al., 2024)	50.4	56.0	23.8	38.7	48.3
+ VAR	50.5	56.2	20.0	38.9	48.7
+ SoFA	51.8	57.5	24.6	39.1	49.2
+ Ours	53.9	59.6	26.7	41.6	51.1
OpenFlamingo-v2 (Awadalla et al., 2023)	38.1	30.5	17.0	25.2	34.0
+ VAR	39.4	31.7	18.4	25.6	34.3
+ SoFA	39.9	31.2	18.9	26.1	34.0
+ Ours	41.6	33.6	22.1	28.3	37.0
Qwen2-VL (Team, 2025)	55.6	31.2	21.0	29.5	43.8
+ VAR	56.9	32.5	22.3	30.6	44.9
+ SoFA	57.3	33.0	22.9	31.2	45.4
+ Ours	59.8	35.4	25.1	33.7	47.7
Qwen-VL (Bai et al., 2023)	45.9	22.5	16.3	27.5	36.8
+ VAR	45.2	22.8	16.6	24.8	35.1
+ SoFA	46.8	23.4	17.1	28.4	37.7
+ Ours	49.1	25.9	19.5	30.9	40.0
Qwen-Base (Bai et al., 2023)	20.0	15.0	8.0	12.0	18.0
+ VAR	21.0	14.2	8.3	10.2	16.2
+ SoFA	21.1	15.0	8.9	12.9	18.9
+ Ours	24.0	18.3	11.5	15.4	26.3

Table 7 - Experiment results on MIBench (Multimodal Knowledge-Seeking)

Model	FVR	TRI	VTK	TVK
<i>Closed-source LMMs</i>				
GPT-4o (OpenAI, 2023)	98.3	74.8	54.7	63.3
GPT-4V (Achiam et al., 2023)	90.2	71.0	52.0	56.0
Claude3.5 (Anthropic, 2023)	94.0	72.8	53.3	58.8
Gemini1.5 (Team et al., 2023)	92.1	70.1	51.0	57.2
Gemini1.0 (Team et al., 2023)	88.0	66.5	48.0	54.0
<i>Multi-Image input LMMs</i>				
Mantis (Jiang et al., 2024)	16.4	37.7	26.4	41.7
+ VAR	17.0	37.0	27.0	42.1
+ SoFA	17.1	38.5	27.1	42.7
+ Ours	19.4	41.1	29.3	45.2

Table 7 – continued from previous page

Model	FVR	TRI	VTK	TVK
LLaVA-Interleave-7B (Li et al., 2025)	70.2	55.6	37.5	45.8
+ VAR	70.9	55.9	37.7	46.2
+ SoFA	71.0	56.4	38.2	46.8
+ Ours	73.2	58.9	42.5	48.9
InternVL2-Pro (Chen et al., 2024)	85.6	63.5	47.0	52.8
+ VAR	86.7	62.7	44.2	52.1
+ SoFA	86.0	64.3	47.7	53.7
+ Ours	88.1	66.6	49.9	55.9
InternVL1.5-chat (Chen et al., 2024)	78.0	59.2	42.1	49.0
+ VAR	79.0	60.5	41.2	47.3
+ SoFA	78.8	60.0	42.8	49.9
+ Ours	81.0	62.4	44.9	52.1
InternVL2-8B (Chen et al., 2024)	82.4	61.0	45.3	51.0
+ VAR	83.0	62.3	45.5	52.3
+ SoFA	83.1	60.8	46.0	51.9
+ Ours	85.0	64.0	48.1	53.9
Mini-InternVL-1.5-4B (Gao et al., 2024)	60.3	48.0	30.5	40.2
+ VAR	61.0	49.3	31.7	41.5
+ SoFA	61.1	48.8	31.2	41.1
+ Ours	63.4	51.2	33.3	43.1
Mini-InternVL-1.5-2B (Gao et al., 2024)	57.8	45.6	28.4	37.9
+ VAR	59.0	45.8	27.6	38.1
+ SoFA	58.0	46.4	29.1	38.0
+ Ours	60.8	48.8	33.2	40.8
Idefics-9B-Instruct (Bai et al., 2023)	48.6	40.1	23.6	32.0
+ VAR	49.0	40.3	23.8	31.4
+ SoFA	49.5	40.9	24.3	33.0
+ Ours	52.2	43.5	26.6	35.4
Idefics2-8B (Laurençon et al., 2024)	42.4	43.9	25.6	39.0
+ VAR	43.7	44.2	23.8	40.2
+ SoFA	44.3	44.8	26.3	39.8
+ Ours	48.8	47.1	28.5	41.9
DeepSeek-VL-1.3B (Lu et al., 2024)	55.2	42.0	26.0	35.1
+ VAR	56.4	43.3	27.1	36.4
+ SoFA	56.0	42.8	26.7	36.0
+ Ours	58.1	45.0	28.8	38.0
DeepSeek-VL-7B (Lu et al., 2024)	62.0	50.1	31.9	41.6
+ VAR	61.2	51.4	32.1	40.9
+ SoFA	62.8	51.0	32.6	42.5
+ Ours	65.0	53.4	34.7	44.7
XComposer2-7B (Dong et al., 2024)	64.6	52.3	33.7	43.0
+ VAR	65.0	51.6	33.8	44.3
+ SoFA	65.4	53.1	34.4	43.9
+ Ours	67.6	55.4	36.5	45.9
OpenFlamingo-v2 (Awadalla et al., 2023)	46.0	34.8	19.8	28.7
+ VAR	47.2	34.0	20.0	27.9
+ SoFA	46.0	35.6	20.6	29.5
+ Ours	49.1	37.9	22.9	31.6
XComposer2-1.8B (Dong et al., 2024)	58.7	46.1	29.6	39.8
+ VAR	58.8	44.4	30.0	40.1

Table 7 – continued from previous page

Model	FVR	TRI	VTK	TVK
+ SoFA	59.5	47.0	30.3	40.7
+ Ours	61.6	49.3	32.4	42.6
Qwen2-VL (Team, 2025)	63.2	41.0	27.6	33.5
+ VAR	64.5	42.2	28.7	34.1
+ SoFA	65.0	42.7	29.1	34.6
+ Ours	67.2	45.0	31.5	36.9
Qwen-VL (Bai et al., 2023)	58.8	35.9	22.9	18.1
+ VAR	60.0	35.1	26.1	18.3
+ SoFA	59.7	36.7	23.7	18.9
+ Ours	62.0	39.2	25.9	21.1
Qwen-Base (Bai et al., 2023)	40.0	28.0	15.0	20.0
+ VAR	40.6	28.3	16.0	19.3
+ SoFA	41.1	28.9	15.9	20.9
+ Ours	44.2	31.6	18.1	23.2

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673