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Abstract

Until now, k-means is still one of the most popular clustering algorithms because of1

its simplicity and efficiency, although it has been proposed for a long time. In this2

paper, we considered a variant of k-means that takes the k-nearest neighbor (k-NN)3

graph as input and proposed a novel clustering algorithm called Local K-Means4

(LKM). We also developed a general model that unified LKM, KSUMS, and SC,5

and discussed the connection among them. In addition, we proposed an efficient6

optimization algorithm for the unified model. Thus, not only LKM but also SC can7

be optimized with a linear time complexity with respect to the number of samples.8

Specifically, the computational overhead is O(nk), where n and k are denote the9

number of samples and nearest neighbors, respectively. Extensive experiments10

have been conducted on 11 synthetic and 16 benchmark datasets from the literature.11

The effectiveness, efficiency, and robustness to outliers of the proposed method12

have been verified by the experimental results.13

1 Introduction14

Clustering is one of the fundamental tasks of machine learning [10]. It plays a very important role in15

many applications such as document analysis [6], image processing [14], and recommender system16

[12]. Given a dataset with n samples and the number of clusters c, its purpose is to split these samples17

into c disjoint groups, so that the samples within the same group are similar to each other, and the18

samples between different groups are not. Although there are lots of clustering algorithms have been19

proposed, k-means is still getting a lot of attention. In this paper, we proposed an efficient clustering20

method called local k-means where a k-NN graph is taken as input. It can be seen as a variant of21

traditional k-means. In the following, the two basic materials of our model are firstly described, and22

the main contributions of this article will be mentioned at the end of this section.23

Notations: Bold capital letters and bold lowercase letters denote matrices and vectors, respectively.24

The symbols n, d, and c are respectively used to represent the number of samples of the dataset, the25

number of features, and the number of clusters to construct. For matrix A, we call it indicator matrix,26

if each row of it has only one element equal to 1. Φn×c is the set of all indicator matrices.27

1.1 k-means28

As one of the most popular clustering algorithms, k-means aims to group n samples into c clusters29

where each sample belongs to the cluster with the nearest cluster centers. Let X = [x1, · · · ,xn]T ∈30

Rn×d be a collection of samples to cluster, where xi ∈ Rd denotes the i-th sample. Then the objective31

function of k-means can be formulated as32

min
A1,··· ,Ac

c∑
k=1

∑
xi∈Ak

‖xi −mk‖22, (1)
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Figure 1: Community in the social network. There is a connection between two users if they know
each other, in other words, the two people are friends with each other. The thicker the line, the
more familiar the two users. According to the connections between users, the clustering algorithm
divides them into disjoint sets. For example, a partition composed of A, B, C, and D is a satisfactory
clustering result.

where Ak denotes the set of samples in the i-th cluster, A1

⋃
· · ·
⋃
Ac = {xi | i = 1, · · · , n}, and33

mk denotes the mean of samples in Ak.34

Although the problem in Eq. (1) is computationally difficult, 1 many efficient optimization algorithms35

where a local optimum will be found quickly have been proposed. Among them, Lloyd’s algorithm is36

the most widely used. Let Y = [y1, · · · ,yn]T = [ȳ1, · · · , ȳc] ∈ Rn×c be an indicator matrix, i.e.,37

yij =

{
1 xi ∈ Aj
0 otherwise , i = 1, · · · , n, j = 1, · · · , c, (2)

the problem in Eq. (1) can be then rewritten as38

min
Y
‖X−YM‖22, (3)

where M = (YTY)−1YTX. In Lloyd’s algorithm, Y and M are regarded as two independent39

variables and be optimized alternately.40

1.2 Data in the form of graph41

In fields such as social networks and recommendation systems, the data being studied is often42

presented in the form of graphs. In other words, for a single sample, we have no features to describe43

it, what we have is only the relationship between it and others, as shown in Figure 1.44

In generally, a sparse similarity matrix W ∈ Rn×n can be used to describe this kind of data, i.e.,45

wij =

{
f(xi,xj) If xi and xj are directly connected

0 Otherwise , i, j = 1, · · · , n, (4)

where f(xi,xj) represents the similarity between xi and xj , and its value can be usually obtained46

directly.47

Based on the above discussion, a k-means-like algorithm is proposed, which takes the k-NN graph48

as input and can be quickly optimized. In addition, we also discussed its connection with other49

algorithms, such as KSUMS and spectral clustering. Here, we summarize the main contributions of50

the article as follows51

• A novel clustering algorithm called Local K-Means (LKM) is proposed. Because only the52

distances between the sample and its neighbors are considered, LKM is robust to outliers.53

• The relationship between LKM and other algorithms (KSUMS and SC) is discussed, and a54

unified model is established.55

• An efficient optimization algorithm for the unified model is developed, from which we find56

that the spectral clustering model can be optimized in the same way as LKM, which means57

both of them can also be optimized in O(nk) time.58

1Specifically, it is an np-hard problem.
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2 Related work59

A disadvantage of k-means is that its performance will be affected largely by the initialization of60

the cluster center. To this end, a lot of efforts have been made, such as [2, 4, 3]. In these methods,61

the cluster center is carefully initialized through a special process. In addition to the more robust62

clustering result, an improvement of performance can also be achieved. More related work can be63

found here [15, 22].64

Since the computational complexity of k-means involves the product of the number of samples65

and clusters, it will be very time-consuming if the two numbers are very large. With the help of66

techniques that used to accelerate the nearest neighbor search, the nearest center for each sample67

can be quickly found without computing distances to all centers [25, 11]. [7] developed a fast68

implementation of k-means using coreset. A partition on a small coreset is computed firstly and is69

used as an initialization on a larger coreset. In [32], Xia et al. described each cluster by a ball and70

proposed Ball k-means which accelerated k-means by reducing the computation of distances between71

samples and centers. [13] proposed compressive k-means (CKM) where the centers are estimated72

from a sketch (a compressed representation of the original data). Once the sketch is obtained, the73

computational overhead is then independent of the size of the original data. Moreover, it’s also a hot74

spot to use the advantages of GPU to shorten the time consumed by k-means, such as [17] and [5].75

Clustering on graph data is also a hot topic. Some well-known algorithms include [19, 29, 21].76

However, these algorithms often have a time complexity that increases quadratically with respect to77

the number of samples. To this end, many fast versions of them are proposed [33, 20, 9].78

3 The proposed model79

In our article, how to solve the problem in Eq. (1) has not been paid attention to, but some simple80

derivations are firstly made on it. Therefore we can analyze the meaning of the problem from the81

perspective of a distance graph. For convenience, we define Nk(xi) = {xj | xj is among the82

k-nearest neighbors of xi or xi is among the k-nearest neighbors of xj}, and start from the following83

equivalent form of k-means84

min
A1,··· ,Ac

c∑
k=1

1

|Ak|
∑

xi,xj∈Ak

‖xi − xj‖22, (5)

With the help of the definition of Y in Eq. (2), problem (5) can be equivalently expressed as follows85

min
Y∈Φn×c

diag
(
(YTY)−1

)T
diag

(
YTDY

)
, (6)

⇔ min
Y∈Φn×c

Tr
(
(YTY)−1YTDY

)
, (7)

where diag(A) = [a11, · · · , ann]T . Obviously, if we only consider the distances between the sample86

and its neighbors, then the problem in Eq. (7) can be expressed as87

min
Y∈Φn×c

Tr
(

(YTY)−1YTD(k)Y
)
, (8)

with88

d
(k)
ij =

{
‖xi − xj‖22 if xi ∈ Nk(xj)

γ Otherwise , (9)

where γ is the maximum value of set {‖xi − xj‖22 | xi ∈ Nk(xj), i = 1, · · · , n}. The Equation (8)89

is the final objective function of LKM.90

From the discussion in Section 1.2, we know that only the similarity instead of the distance between91

samples can be obtained directly in graph data. Fortunately, in practical applications, we can convert92

the similarity to dissimilarity by93

rij =

{
−log(sij) 0 < sij

β sij = 0
, (10)

where sij is the normalized2 similarity between xi and xj , β is the maximum value of set {−log(sij) |94

i, j = 1, · · · , n}. Then the dissimilarity can be used to replace the distance in the model.95

2sij ∈ [0, 1]
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3.1 Generalization96

It is not difficult to find that LKM, KSUMS [23], and Ratio-cut [29] can all be represented uniformly97

by the following model98

min
Y∈Φn×c

Tr
(

(YTY)−pYTG(k)Y
)
, (11)

where g(k)
ij denotes the dissimilarity or distance between xi and xj , and p >= 0 is a parameter. The99

meaning of p will be explored in future work.100

Instances of KSUMS and LKM: The objective function of KSUMS is101

min
Y∈Φn×c

Tr
(
YTD(k)Y

)
, (12)

where D(k) takes the same expression as that in LKM. Let g(k)
ij be setted by Eq. (9), the problem (11)102

is identical with KSUMS (12) if p = 0, and is identical with LKM if p = 1.103

Instance of Ratio-cut: Benefiting from the introduction of Y, the problem of ratio-cut (an algorithm104

that belongs to the spectral clustering (SC) family) can be expressed as105

min
Y∈Φn×c

Tr
(
(YTY)−1YT (∆−W)Y

)
, (13)

where ∆ is a diagonal matrix, ∆ii =
∑n
j=1 wij . In generally, the similarity matrix W can be106

determined by heat kernel, i.e., wij = e−
‖xi−xj‖

2
2

t if xi ∈ Nk(xj), wij = 0 otherwise. Therefore the107

problem (11) is equivalent with ratio-cut, if p = 1 and g(k)
ij is setted by108

g
(k)
ij =


∑n
j=1 wij i = j
−wij i 6= j, and xi ∈ Nk(xj)

0 Otherwise
. (14)

3.2 Optimization109

From the discussion above, we know that the problem of LKM can be expressed by Eq. (11) with110

p = 1. Therefore, an optimization algorithm for problem (11) instead of problem (8) is developed.111

To begin with, some notations are presented as follows112

si , ȳTi G(k)ȳi, i = 1, · · · , c, (15)

ni , ȳTi ȳi, i = 1, · · · , c, (16)

the problem (11) then becomes113

min
Y∈Φn×c

Obj(Y), with Obj(Y) =

c∑
i=1

si
npi
. (17)

In the following derivation, the i-th row of Y (i.e., yi) is regarded as the variable to be optimized114

while others are fixed, and yi = eα before updated. Thus yi can be updated by115

yi = eβ , β = arg min
j

Obj(yi = ej)−Obj(yi = 0), (18)

where ei = [0, · · · , 1, · · · , 0] be a vector with all elements equal to 0, except the i-th, which is 1, and116

0 is the column vector of all zeros,117

Because Obj(yi = 0) is constant, the above formula holds. According to Eq. (17), we have118

Obj(yi = ej)−Obj(yi = 0) =


sj+bj

(nj+1)p −
sj
np
j

j 6= α
sj
np
j
− sj−bj

(nj−1)p j = α
, j = 1, · · · , c, (19)

with119

bj =

{
2
∑

xl∈Aj
g

(k)
il + g

(k)
ii j 6= α

2
∑

xl∈Aj
g

(k)
il − g

(k)
ii j = α

, (20)
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Algorithm 1: An efficient program for solving problem (11).
Note: The vector y ∈ Rn denotes the clustering result, i.e., yi is the cluster that xi belongs to.
The Eq. (15), (16), and (20) involved in the algorithm have high computational complexity, but
these can be computed more efficiently if the sparsity of G(k) is considered. See the
supplementary material for a more detailed algorithm;

Data: Sparse matrix 3G(k) ∈ Rn×n, the number of cluster c
Result: The clustering result y
Initialize y randomly;
Compute vector s and n by Eq. (15) and (16), respectively;
while not converge do

for i = 1, · · · , n do
Compute bj by Eq. (20) for j ∈ Bi;
Compute Obj(yi = j)−Obj(yi = 0) by Eq. (19) for j ∈ Bi;
Update yi by Eq. (18);
Update s and n by Eq. (21) and Eq. (22), respectively;

Benefiting from the sparsity of G(k), it takes O(nk), O(k + c), and O(k) time to compute s, b, and120

n, respectively. Therefore, the proposed optimization algorithm has a computational complexity of121

O(n2k + nc), which is unbearable, for large-scale datasets. However, if the variables s and n are122

computed in advance and updated following the update of yi, then the computational complexity of123

the algorithm can greatly be reduced. The update rules for s and n are as follows124

sα ⇐ sα − bα, sβ ⇐ sβ + bβ , (21)
nα ⇐ nα − 1, nβ ⇐ nβ + 1, (22)

Thus, the computational complexity of the optimization algorithm is O(n(k + c)).125

On more step From Eq. (11), we know that only the information of pair (xi,xj) is considered in126

the model, and there are at most 2nk such pairs. For convenience, we assume that there are exactly127

2k such pairs for each sample xi, i.e., 2k = |{(xi,xj) | xj ∈ Nk(xi) or xi ∈ Nk(xj)}|. For cluster128

j, we call it an element of Bi (j ∈ Bi), if there is at least one sample in cluster j belongs to Nk(xi)129

or xi belongs to the set of neighbors of these samples. Based on the assumption and notations above,130

we know that when updating yi by Eq. (18), the size of Bi is at most 2k. However, it does not make131

sense to group the sample xi into cluster j 6∈ Bi, from the perspective of the performance. Therefore,132

we only need to pay attention to the cases where j ∈ Bi. Thus, the computational complexity of the133

optimization algorithm can be reduced to O(nk).134

Time and space complexity From Algorithm 1, we can see that the memory is mainly occupied135

by the matrix G(k) ∈ Rn×n, which is equivalent to a sparse matrix, and contains at most 2nk136

non-constants. The memory overhead caused by other variables is O(n) at most. For example, y,137

Bi, and s require O(n), O(k), and O(c) memory, respectively. Thus the memory overhead of LKM138

is O(nk). Benefiting from the sparsity of G(k), Eq. (15), (16), and (20) can all be calculated more139

efficiently. Specifically, only O(nk), O(n), and O(k) time are needed respectively, please refer to the140

supplementary materials for details. After yi is updated, only O(1) time is needed to update variables141

s and n. Thus, the computational complexity of LKM is O(nk).142

4 Experiments143

In this section, the performance of the proposed algorithm, LKM, is verified on eleven synthetic144

datasets and sixteen benchmark datasets. The rest of this section is organized as follows: First,145

experiments on synthetic datasets are shown. In short, Mickey, Outlier, and family of Grid datasets146

are used to verify the effectiveness, robustness, and efficiency of LKM, respectively. Then, we147

compare 7 popular clustering algorithms with LKM on 16 benchmark datasets, to evaluate the148

performance of the proposed algorithm.149

3Strictly speaking, G(k) is not a sparse matrix. However, at most 2nk values in G(k) are not equal to λ, so it
can be regarded as a sparse matrix.
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4.1 Experiments conducted on synthetic datasets150

Experiment on “Mickey” To verify the effectiveness of LKM, a synthetic dataset called “Mickey”151

is constructed. The distribution of points is shown in Figure 2(a). The triangles representing the152

means of the clusters are not points of the datasets.153

From Figure 2(b) and 2(c), we found that The proposed method LKM successfully found the154

cluster structure, but k-means did not. k-means still cannot find the correct structure, even with the155

initialization of the ground truth label. Because the distance between point 1 and the blue triangle156

(mean of all blue points), d1 is greater than the distance between point 1 and the orange triangle (mean157

of all orange points), d2, k-means will group it into the blue cluster instead of orange. Therefore,158

k-means cannot handle datasets like this.159

(a) Original (b) k-means (c) LKM

Figure 2: The performance of k-means and LKM on “Mickey”.

Experiment on “Outlier” In order to verify the robustness of our method, we construct a dataset160

called “Outlier”. It consists of four clusters with centers (0, 0), (0, 5), (5, 0), and (5, 5), and an outlier161

with the coordinate of (100, 100). The distance between outlier A and other points is not as close as162

shown in Figure 3. From Figure 3(b) and 3(c), we can see that the performance of k-means is severely163

affected by the outlier A, while the performance of LKM is not. In k-means, the center of the cluster164

containing abnormal points will largely shift towards the direction of the abnormal points, resulting165

in poor performance. In LKM, the distance between xi and xj is not calculated if xj 6∈ Nk(xi), but166

a parameter λ is used instead, so ideally, the distance between any two points belonging to different167

clusters is λ. In other words, for the sample point xi, there is no difference between the outlier and168

the samples that do not belong to Nk(xi).169

(a) Original (b) k-means (c) LKM

Figure 3: The performance of k-means and LKM on “Outlier”.

Experiments on the family of “Grid” In order to verify the efficiency of LKM, in this paragraph,170

9 synthetic datasets called Toy-1, Toy-2, · · · , Toy-9 are constructed. These datasets share the same171

structure, and their distributions are similar to that shown in Figure 4. In these datasets, each cluster172

is always composed of 10 points generated by Gaussian distribution. Since the time complexity of173

LKM and k-means is closely related to the number of points, we set different sizes for these data174

sets, ranging from 1960 to 125440. The number of clusters and the standard deviation involved in the175

Gaussian distribution for each dataset is shown in Table 1.176
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(a) k-means (b) LKM

Figure 4: The performance of k-means and LKM on Toy-1.

Table 1: Performance of k-means and LKM
Precision Recall F1 score

Datasets # Clusters 3σ k-means LKM k-means LKM k-means LKM

Toy-1 196 0.5 0.854 0.975 0.915 0.983 0.883 0.979
Toy-2 196 0.6 0.834 0.948 0.885 0.957 0.859 0.953
Toy-3 196 0.7 0.785 0.874 0.828 0.889 0.806 0.881
Toy-4 3136 0.5 0.856 0.981 0.918 0.988 0.886 0.984
Toy-5 3136 0.6 0.832 0.947 0.881 0.957 0.856 0.952
Toy-6 3136 0.7 0.783 0.883 0.825 0.893 0.803 0.888
Toy-7 12544 0.5 0.855 0.982 0.917 0.988 0.885 0.985
Toy-8 12544 0.6 0.833 0.948 0.882 0.957 0.857 0.952
Toy-9 12544 0.7 0.785 0.884 0.826 0.896 0.805 0.890

Table 2: Time (s) consumed by k-means and LKM
FLK k-means

Datasets Ball-Tree Algo. 1 # Iter. Total # Iter. Total Speed-up

Toy-1 6.26E-03 1.30E-03 3.96 7.56E-03 13.12 5.97E-03 1.39E+00
Toy-2 6.54E-03 1.66E-03 5.66 8.20E-03 14.32 5.57E-03 1.33E+00
Toy-3 6.27E-03 1.73E-03 5.96 8.00E-03 15.32 6.00E-03 1.35E+00
Toy-4 1.34E-01 2.64E-02 5.80 1.60E-01 14.68 2.00E+00 3.00E+01
Toy-5 1.37E-01 3.32E-02 7.64 1.70E-01 16.62 2.27E+00 3.15E+01
Toy-6 1.39E-01 3.98E-02 9.40 1.79E-01 18.50 2.55E+00 3.25E+01
Toy-7 6.50E-01 1.35E-01 7.20 7.85E-01 16.22 3.89E+01 1.28E+02
Toy-8 6.04E-01 1.64E-01 9.08 7.68E-01 17.58 4.21E+01 1.33E+02
Toy-9 6.18E-01 1.95E-01 10.96 8.13E-01 18.88 4.50E+01 1.34E+02

In Table 2, the column named “Ball-Tree” represents the time it takes to construct the graph required177

by LKM through Ball-tree with k = 20. The column named “# Iter” denotes the number of iterations178

required for the algorithm to converge. The total time of LKM refers to the sum of the time consumed179

by Ball-Tree and Algorithm 1. The speed-up is the ratio of the time consumed by each iteration of180

k-means to the time consumed by each iteration of Algorithm 1. Both k-means and LKM were run181

50 times, and the average results were reported.182

As shown in Table 2, Algorithm 1 consumes a significantly shorter time than k-means, which is more183

obvious on datasets with more clusters. The main reason is that when yi is going to update, only the184

case where j ∈ Bi is considered. In addition, LKM has a significant improvement in terms of the185

quality of the clustering result, compared to k-means, as shown in Table 1 and Figure 4.186
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4.2 Experiments conducted on benchmark datasets187

4.2.1 Datasets188

Sixteen benchmark datasets are used including LFW [8], CPLFW [34], CALFW [35], FERET [24],189

Colon [1], MUCT [18], CMUPIE [30], CFPW [27], Dexter, Madelon, GTDB, FaceV5, Mpeg7,190

Olivetti, Yale, and Umist. All facial datasets are processed by the way [23]. For those non-facial191

datasets, PCA [31] is adopted and some components are selected such that the amount of variance is192

greater than 95% if the dimensionality of the datasets is larger than 1024. The names of datasets are193

all linked to where the dataset can be download. The introduction to these datasets can be found in194

the supplemental material.195

4.2.2 Baselines and experimental settings196

We compare LKM with several clustering algorithms, including AGCI [33], FINCH [26], k-means197

[16], KSUMS [23], RCC [28], SC [29], and FCDMF [20]. For graph-based methods, i.e., KSUMS,198

RCC, and SC, the number of nearest neighbors, k, is fixed at 20. For anchor-based methods, AGCI199

and FCDMF, the number of anchors is always set by m = min(n/2, 1024). Whether k-NN graph200

or anchor graph, heat-kernel is always adopted to construct the graph. In FINCH, we take the201

clustering result with the number of clusters closest to the number of ground truth clusters as the202

final clustering result. In RCC, the threshold to assign points together in a cluster is tuned from203

{0.1, 0.3, 0.5, 0.7, 0.9}. K-means is initialized in a random way and the step of k-means involved in204

AGCI and SC share the same configuration with k-means itself. If the performance of the algorithm205

is related to the initialization, we run it repeatedly 50 times and report the average performance.206

We run all methods on an Arch machine with i7-8700 CPU (3.20 GHz), 32 GB main memory.207

4.2.3 Experimental results208

Clustering ACCuracy (ACC), Normalized Mutual Information (NMI), and Adjusted Rand index209

(ARI) are used to evaluate the performance of these algorithms. From Table 3, we can clearly see that:210

(1) In most cases LKM has achieved the highest performance comparing to several state-of-the-art211

algorithms, which verified the effectiveness of the proposed algorithm. Specifically, LKM exceeds212

the second-best results 24.4%, 4.6%, 4.8%, 1.5% and 1.3% on CALFW, LFW, Umist, Olivetti, and213

CMU respectively, in terms of ACC. Under the metrics of NMI and ARI, we can come to similar214

results. (2) Although only slight improvements LKM has achieved over many datasets compared215

to the second-best results, the computational complexity of LKM is much lower than that of most216

algorithms, which is an important property of LKM. (3) RCC has poor performance on FaceV5,217

CMU, GTdb, Umist, and Yale, which may be caused largely by an inappropriate threshold, while218

only one parameter (the number of neighbors) is needed in LKM, is an integer and easy to tune. In219

addition, the influence of parameter k (the number of neighbors) on clustering performance has been220

studied, and the results are shown in the supplemental material.221

5 Conclusions222

In this paper, we devote ourselves to an unsupervised learning problem, clustering. An efficient223

clustering algorithm called Local K-Means (LKM) was proposed. It can be seen as a variant of224

k-means that takes the k-NN graph as input. We also discussed a general model that unified LKM,225

KSUMS, and SC. Thus the connection among them can be easily established. In addition, we226

developed an efficient optimization algorithm for the unified model, so that not only LKM but also227

SC can be optimized in O(nk) time, which is very important for large-scale datasets, especially for228

these datasets with a large number of clusters. In order to verify the advantages of LKM, extensive229

experiments on eleven synthetic and sixteen benchmark datasets are conducted, and the results have230

shown the effectiveness, efficiency, and robustness of our model.231

Limitations In some cases where k-NN graphs are not available, our algorithm cannot work,232

in other words, a graph construction algorithm is necessary. Although many methods have been233

proposed, it is still very difficult to effectively construct an approximate k-NN graph if the number of234

features is large. Thus, in these situations, the graph construction algorithm will produce a k-NN235

graph of poor quality that would lead to poor performance of clustering results.236
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Table 3: Performance on benchmark datasets
Datasets Met. AGCI FCDMF FIN k-means KSUMS RCC SC LKM

LFW
ACC 0.460 0.450 0.373 0.460 0.454 0.551 0.424 0.597
NMI 0.866 0.860 0.711 0.866 0.850 0.805 0.703 0.893
ARI 0.063 0.078 0.008 0.063 0.037 0.592 0.010 0.100

CALFW
ACC 0.599 0.399 0.504 0.599 0.419 0.573 0.560 0.843
NMI 0.887 0.859 0.696 0.888 0.878 0.886 0.754 0.971
ARI 0.187 0.084 0.007 0.190 0.098 0.373 0.005 0.729

CPLFW
ACC 0.537 0.355 0.584 0.546 0.738 0.745 0.527 0.742
NMI 0.770 0.689 0.613 0.772 0.889 0.857 0.733 0.865
ARI 0.209 0.167 0.012 0.208 0.627 0.201 0.089 0.333

FaceV5
ACC 0.730 0.517 0.535 0.731 0.934 0.069 0.621 0.938
NMI 0.930 0.829 0.829 0.931 0.979 0.105 0.812 0.983
ARI 0.605 0.280 0.290 0.621 0.899 0.001 0.070 0.910

CFPW
ACC 0.537 0.355 0.584 0.546 0.738 0.745 0.527 0.742
NMI 0.770 0.689 0.613 0.772 0.889 0.858 0.733 0.865
ARI 0.209 0.167 0.012 0.208 0.627 0.202 0.089 0.333

CMU
ACC 0.185 0.154 0.165 0.182 0.286 0.015 0.285 0.299
NMI 0.409 0.372 0.306 0.407 0.571 0.000 0.552 0.582
ARI 0.079 0.063 0.018 0.077 0.192 0.000 0.173 0.201

Colon
ACC 0.690 0.581 0.629 0.608 0.635 0.581 0.737 0.748
NMI 0.178 0.010 0.129 0.094 0.108 0.045 0.143 0.259
ARI 0.208 0.011 0.249 0.078 0.110 -0.05 0.210 0.317

Dexter
ACC 0.579 0.627 0.153 0.596 0.584 0.490 0.567 0.612
NMI 0.077 0.124 0.080 0.091 0.024 0.051 0.015 0.123
ARI 0.035 0.063 0.011 0.042 0.031 0.002 0.017 0.050

FERET
ACC 0.522 0.378 0.495 0.521 0.546 0.661 0.463 0.621
NMI 0.822 0.734 0.686 0.822 0.839 0.714 0.735 0.863
ARI 0.354 0.211 0.039 0.353 0.439 0.022 0.036 0.520

GTdb
ACC 0.454 0.419 0.391 0.459 0.533 0.047 0.491 0.541
NMI 0.658 0.634 0.579 0.661 0.690 0.032 0.666 0.697
ARI 0.313 0.282 0.211 0.319 0.382 0.002 0.314 0.387

Madelon
ACC 0.517 0.513 0.456 0.521 0.529 0.500 0.507 0.534
NMI 0.003 0.001 0.001 0.005 0.005 0.000 0.000 0.005
ARI 0.004 0.000 0.000 0.006 0.006 0.000 0.000 0.006

Mpeg7
ACC 0.463 0.445 0.442 0.462 0.539 0.429 0.462 0.552
NMI 0.660 0.650 0.617 0.666 0.720 0.701 0.657 0.721
ARI 0.278 0.295 0.153 0.291 0.414 0.452 0.220 0.346

MUCT
ACC 0.732 0.741 0.972 0.722 0.982 0.754 0.627 0.979
NMI 0.928 0.922 0.991 0.923 0.992 0.922 0.791 0.995
ARI 0.612 0.698 0.971 0.586 0.976 0.700 0.093 0.980

Olivetti
ACC 0.509 0.407 0.480 0.510 0.569 0.550 0.527 0.584
NMI 0.722 0.643 0.674 0.718 0.758 0.780 0.723 0.768
ARI 0.366 0.263 0.323 0.366 0.443 0.387 0.364 0.456

Umist
ACC 0.413 0.412 0.468 0.416 0.450 0.083 0.431 0.516
NMI 0.626 0.589 0.673 0.628 0.641 0.000 0.634 0.690
ARI 0.320 0.300 0.375 0.317 0.355 0.000 0.323 0.428

Yale
ACC 0.395 0.344 0.339 0.397 0.443 0.067 0.405 0.452
NMI 0.448 0.398 0.358 0.455 0.495 0.000 0.456 0.498
ARI 0.187 0.139 0.119 0.196 0.234 0.000 0.194 0.239
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