Under review as a conference paper at ICLR 2026

AMORTISING INFERENCE AND META-LEARNING
PRIORS IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the core facets of Bayesianism is in the updating of prior beliefs in light
of new evidence—so how can we maintain a Bayesian approach if we have no
prior beliefs in the first place? This is one of the central challenges in the field of
Bayesian deep learning, where there is no clear way to translate beliefs about a
prediction task into prior distributions over model parameters. Bridging the fields
of Bayesian deep learning and neural processes, we propose to meta-learn our
parametric prior from data by introducing a way to perform per-dataset amortised
variational inference. The model we develop can be viewed as a neural process
whose latent variable is the set of weights of a BNN and whose decoder is the
neural network parameterised by a sample of the latent variable itself. This unique
model allows us to study the behaviour of Bayesian neural networks under well-
specified priors, use Bayesian neural networks as flexible generative models, and
perform desirable but previously elusive feats in neural processes such as within-
task minibatching or meta-learning under extreme data-starvation.

1 INTRODUCTION

While the ability to learn hierarchical representations of data has allowed neural networks to boast
phenomenal predictive performance across many domains, enabling them to accurately estimate
their predictive uncertainty remains generally unsolved. Bayesian deep learning (MacKay, 1992)
promises a theoretically sound approach for endowing representation learners with uncertainty
quantification, but there are many difficulties with the approach in practice. Of all of them, one of the
most sleep-depriving is the question of how to choose appropriate priors. Neural network weights
lack interpretability, meaning it is fiendishly difficult to elicit priors over them that are sensible
in prediction space (Fortuin, 2022). The convenience priors that we generally use are known to
reduce large! Bayesian neural networks (BNNs) to the “simple smoothing devices” (MacKay, 1998)
that are Gaussian processes (GPs; Neal, 1995; Matthews et al., 2018; Yang, 2019), meaning that in
trying to achieve uncertainty quantification we inadvertently destroy the ability to learn hierarchical
representations (Aitchison, 2020). An increasingly popular approach to specifying priors in BNNs
is to use function-space priors (Flam-Shepherd et al., 2017; Sun et al., 2019; Cinquin et al., 2024).
However, these priors are most often chosen to be Gaussian process priors which, yet again, reduce
Bayesian deep learning to approximate GP inference. Even when priors and architectures are chosen
specifically to avoid GP behaviour, the resulting stochastic process prior is not just poorly understood,
but generally a bad model of the real-world data-generating process.

On the other hand, neural processes (NPs; Garnelo et al., 2018a;b) use the shared structure between
related tasks to meta-learn a free-form stochastic process prior. Unlike GPs and BNNss, they do not
learn an explicit parametric prior that can be evaluated or sampled from, but, given some context
observations, they learn to map directly to the stochastic process posterior corresponding to the
learned implicit prior process. For a sufficiently flexible NP architecture and with enough data, they
can model the ground-truth data-generating process (Foong et al., 2020). Given this remarkable
ability, neural processes have enabled practitioners to endow representation learners with uncertainty
quantification to great success across a range of domains including weather and climate applications
(Allen et al., 2025; Ashman et al., 2024b; Andersson et al., 2023), causal machine learning (Dhir

'In the limit of infinite architecture width, depth, or size in some other sense.
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et al., 2025), Bayesian optimisation (Maraval et al., 2023; Volpp et al., 2023), and cosmological
applications (Park and Choi, 2021; Pondaven et al., 2022).

Drawing inspiration from neural processes, we are interested in meta-learning BNN priors that encode
the shared structure across a related set of tasks. In other words, can we use meta-learning to design
well-specified priors in Bayesian deep learning? To that end, we devise a scheme for performing
per-dataset amortised inference in BNNs. This results in a neural process whose latent variable is
the set of weights of a BNN, and whose decoder is the neural network parameterised by a particular
latent variable posterior sample. We refer to our model as the Bayesian deep neural process (BDNP).
The unique ability of the BDNP to amortise BNN inference and meta-learn BNN priors enables
us to investigate such previously unanswerable questions as: “under a well-specified prior, how
important is the approximate inference method in Bayesian deep learning really?”. Furthermore,
as a new member of the neural process family (Dubois et al., 2020), the BDNP introduces some
completely novel capabilities. These include the ability to perform within-task minibatching for
scalability to massive context sets, and the ability to adjust the flexibility of the learned prior so
that overfitting can be avoided in settings for which only a few tasks have been observed.

2 THE BAYESIAN DEEP NEURAL PROCESS

2.1 LAYERWISE INFERENCE

We start by considering the conditional posterior over the last-layer weights W% € R%:-1Xdz in an
L-layered multilayer perceptron (MLP), where d; denotes the number of units in the /-th layer of
the network. In this exposition we do not consider biases but they are straightforward to include in
practice. Given some data D = {X, Y} where X € R"*% and Y € R"*9~ as well as the weights
of the previous layers W1L—1 = {Wl}lL: _11, and assuming a Gaussian likelihood, the conditional
posterior over the last-layer’s weights is of the form
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where y,, 4 is the d-th dimension of the n-th target, ¢(-) is the MLP’s elementwise nonlinearity, x2 1
denotes the activations of the penultimate layer for the n-th datapoint, w7 is the d-th column of
W representing all input weights to unit d in the output layer, and o4 is the observation noise level
for the d-th dimension of the targets. Assuming that the prior p(W?) is conjugate, this posterior is
available in closed-form via Bayesian linear regression (BLR; Bishop, 2007). Inspired by this result,
Ober and Aitchison (2021) propose a variational posterior for BNNs and deep GPs that decomposes
into a product of layerwise conditionals
L
¢(W) = [Ja(W'wH=1) 0
=1
where the layerwise factors are computed via exact inference between the layerwise prior and a set of
variationally-parameterised pseudo-likelihood terms. We will adopt a similar approach.

2.2 AMORTISING LAYERWISE INFERENCE

We generalise the likelihood of the last-layer weights seen in Eq. (1) to the weights of the [-th layer
as follows

d N
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where yﬁl 4 18 a pseudo-observation corresponding to the d-th activation of the [-th layer for the
n-th datapoint, and oﬁh 4 18 the noise level for the corresponding pseudo-likelihood term. Note that
X" = X. These two parameters are obtained by passing the n-th input-output pair’ through an

2 Another option is to pass the concatenation of an input-output pair as well as the previous layer’s activation
X!~1 into each inference network. This would simplify the inference networks’ prediction task, meaning they
can be smaller.
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Figure 1: Computational diagrams of the amortised linear layer (a) and a two-layer BDNP (b). We use
the context -. and target -; notation to distinguish between inputs with labels, on which we condition,
and inputs without labels, at which we predict.

inference network gy, :
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where 0; denotes the parameters of the [-th layer’s inference network, which will be optimised
during training. In the case of the final layer we can use the actual observations, that is, Y* =
Y. With the pseudo-likelihood parameters, and assuming unitwise factorised Gaussian priors
Py (WH =T[4, N (wh; ph, B4) where ¢ = {ply, =39, the approximate layerwise posteriors
are computed in closed form:

dy
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where AL, € RV*N is a diagonal precision matrix with the n-th diagonal element given by (0172)2’
and the posterior mean vectors mld and covariance matrices Sld are given by
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We consider inference under Gaussian priors with different factorisation structures in Appendix B.

This machinery, which we call the amortised linear layer, enables inference over the weights of a
linear layer that is situated arbitrarily within a neural network architecture, conditional on the weights
of the previous layers. By stacking these layers and sampling from each layer’s conditional posterior
before computing the next layer’s posterior, we can perform amortised inference in a BNN via the
variational posterior

-
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Since such a model may be interpreted as a latent-variable neural process (Garnelo et al., 2018b) in
which the latent variable is the set of BNN weights and the decoder is the BNN itself, we refer to this
model as the Bayesian deep neural process (BDNP). See Fig. 1 for computational diagrams of the
amortised linear layer and a BDNP.

2.3 TRAINING

We adopt a variational approach to training, where the parameters to be optimised are the inference
network parameters © = {6}/ | and the prior parameters ¥ = {¢;}£_,. The former take the role of
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variational parameters while the latter are model parameters. As is customary in the NP literature, we
split datasets into disjoint context -. and target -, sets. While there are various training objectives that
would be sensible, we motivate our choice by considering what behaviour we would like our training
objective to encourage. We summarise these considerations into the following three desiderata:

(D) accurate approximate posteriors,
(II) a prior that faithfully encodes the data-generating process,
(IIT) and high quality predictions.

Assuming access to a meta-dataset = = {DU) }El of tasks that are related to each other in that they

share a data-generating process D) ~ p(D), we propose a novel objective function to train the
BDNP with. We call it the posterior-predictive amortised variational inference (PP-AVI) loss:

1=
_ 1 , _ , _
Lo an(E) = 1 > toga (Y [P9, X)) + Luso (DY) (10)
S et
where the first term is the log posterior-predictive density of the target set, and Lg1po(D) de-
notes the usual evidence lower bound (ELBO) used for VI in BNNs; E,w p) [p(Y|W,X)] —
KL [g(W[D) || p(W)].

Proposition 1. For |Z| — oo, maximisation of Lpp.ayi(Z) directly targets the three desiderata.

A proof of Proposition 1, a practical guide to implementing the PP-AVI loss function, as well as a
detailed discussion of alternative objective functions are all provided in Appendix A. We emphasise
here, though, that Lpp_ayi(Z) can be unbiasedly estimated from a minibatch of tasks £ C Z via

%' Z‘f:‘l Lpp_avi(€), enabling training on huge meta-datasets via stochastic optimisation.

2.4  WITHIN-TASK MINIBATCHING VIA SEQUENTIAL BAYESIAN INFERENCE

When making predictions on a particular task, the full set of real and pseudo observations must be
stored in memory in order to compute the posterior. So, while stochastic optimisation of the objective
function allows us to scale to large meta-datasets, scalability to large context sets remains elusive.
Fortunately however, we provide a solution to this problem too. The high memory requirements can
be avoided by iteratively updating each layer’s posterior with a minibatch of datapoints via sequential
Bayesian inference (Bishop, 2007), temporarily discarding each minibatch after applying its update
to a particular layer’s conditional posterior.

We partition a task D into B minibatches {D;,}2_,. We use qub to denote a sample from the [-th
layer’s posterior given only minibatch b, that is, W! ~ q(W![W*!~1 D). Since computation of
each layer’s posterior requires samples from the full-batch previous layer posteriors (i.e., Wéll ;1),
the minibatching procedure must be performed in full for each layer before sampling and proceeding
to the next layer. Our minibatched approach to obtaining a BDNP posterior sample is detailed in
Algorithm 1. The ability to minibatch a forward pass over a given context set is rare in the context
of neural processes, and it is a valuable property as it allows us to scale to tasks with large and
high-dimensional datasets without running into memory limitations. Crucially, we note that our
minibatching procedure introduces no further approximation error—it results in the exact same
approximate posterior as the full-batch procedure.

In addition to complexity analysis and further details regarding our minibatched forward pass
algorithm found in Appendix C, in Appendix D we use a similar sequential Bayesian inference trick
to devise an online-learning scheme for the BDNP through which predictions for a given task are
updated in light of new data.

2.5 ADJUSTING THE FLEXIBILITY OF THE PRIOR

One limitation shared amongst neural processes is their tendency to overfit when the number of
observed tasks is limited (Rochussen and Fortuin, 2025). This happens because the model parameters
are responsible for both amortising (predictive) inference and encoding a prior, such that there is no
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way to regularise the learned prior without also affecting the model’s ability to amortise prediction.
In the BDNP however, these roles are disentangled into two distinct parameter groups; those of the
weights prior, and those of the inference networks. This separation allows us to limit the flexibility of
the learned prior without affecting the model’s ability to perform inference. We do this by fixing the
prior over a subset of the weights while optimising the remaining prior parameters. For example, we
can fix the prior over the last layer’s weights to a zero-centered and unit-variance diagonal Gaussian
while optimising the prior parameters for the earlier-layer weights. By varying the number of weights
whose prior is fixed, we introduce a new knob with which to tune the flexibility of the learnable
prior. Such a scheme enables practitioners to balance between forcing a broad/misspecified prior and
learning an overfit prior, leading to better generalisation in the small meta-dataset regime.

2.6 ATTENTION

One way to extend the BDNP would be to go beyond MLPs and incorporate more sophisticated neural
architectures, such as the attention mechanism (Vaswani et al., 2017). We outline two ways to do this.
As is common in the NP literature, the encoder can be augmented with attention blocks (Kim et al.,
2019; Nguyen and Grover, 2022). In the BDNP this means parameterising the inference networks
{90, }{‘:1 as transformers rather than MLPs, and processing the full context set together at each layer.
This could improve performance since modelling interactions between context points could lead
to better pseudo-likelihood parameter estimates than when we process each point independently.
However, an attentive encoder incurs an extra computational cost of O(n?). Furthermore, application
of our within-task minibatching scheme under an attentive encoder would lead to different posteriors
to the full-batch forward pass due to the new dependencies between context points. Nonetheless, we
refer to this variant of the model as the attentive BDNP (AttBDNP).

Alternatively, we can focus on the decoder. The core technology that we introduce is a way to
amortise inference over the weights of a linear layer situated arbitrarily within a neural network.
Since an attention block is just a composition of linear layers and various nonparametric operations?,
it is possible to amortise inference in an attention block by amortising the inference in each linear
layer therein. If such amortised attention blocks are stacked, we end up with a transformer whose
weights posterior is obtained in-context. A more sophisticated decoder could enable us to model
more complex tasks. However, such a decoder processes the target locations together such that the
prediction for a particular target depends on the other target locations. This property destroys the
consistency of the model and therefore no longer results in a valid stochastic process. We therefore
refer to this version of the model as the Bayesian deep attentive machine (BDAM), omitting any
reference to stochastic processes from its name. Note that the BDAM also incurs an extra O(n?)
computational cost. For computational diagrams as well as further details on the lack of consistency
of the BDAM, including a simple demo, see Appendix E.

3 RELATED WORK

Neural Processes. The BDNP is a new member of the NP family (Garnelo et al., 2018a; Dubois
et al., 2020), and in particular the latent-variable NP family (Garnelo et al., 2018b; Singh et al.,
2019; Lee et al., 2020; Foong et al., 2020). The AttBDNP is also a member of the transformer NP
family (Kim et al., 2019; Nguyen and Grover, 2022; Feng et al., 2023; Ashman et al., 2024a;c). Our
model is different to existing latent-variable NPs in that our latent variable is the parameterisation of
the decoder itself, and not an abstract representation of the context set that is passed to a globally
parameterised decoder. While Rochussen and Fortuin (2025) adopt a similar approach, in our work the
decoder is a BNN rather than a sparse GP. Inference in the BDNP can be viewed as an instantiation of
Volpp et al. (2021)’s Bayesian context aggregation mechanism—in both settings we have an encoder
that maps from individual context points to pseudo-likelihood terms with which the latent variable’s
posterior is obtained through exact inference. While we choose to exclude the BDAM from the NP
family due to its lack of consistency, some existing NP variants also lack consistency; Bruinsma
et al. (2023)’s NP variants and Nguyen and Grover (2022)’s TNP-A both fail to produce consistent
predictive distributions due to autoregression amongst targets, while Nguyen and Grover (2022)’s

3Such as residual connections. We do not consider inference over the 1ayer-norm parameters, justifying a
deterministic treatment of them through their comparative inability to overfit.
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TNP-ND is more similar to the BDAM, with attention performed between targets*. Our training
and modelling setup is also closely related to that of Gordon et al. (2019), with the first term of our
proposed training objective being exactly equivalent to theirs (see Appendix A).

Approximate Inference in BNNs. There have been considerable efforts to develop more accurate
and scalable approximate inference methods for BNNs in recent decades. There are Markov-chain
Monte-Carlo algorithms (Neal, 1992; Welling and Teh, 2011; Sommer et al., 2024), ensemble and
particle approaches (Lakshminarayanan et al., 2017; D' Angelo and Fortuin, 2021; Liu and Wang,
2016), Laplace approximations (MacKay, 1992; Ritter et al., 2018; Immer et al., 2021), variational
strategies (Hinton and van Camp, 1993; Graves, 2011; Louizos and Welling, 2017), as well as more
bespoke solutions (Maddox et al., 2019; Gal and Ghahramani, 2016; Hernandez-Lobato and Adams,
2015). Our approach is most similar to Ober and Aitchison (2021)’s global inducing point variational
posterior since we factorise the variational posterior into layerwise conditionals and compute each
one through exact inference under pseudo-observations. Unlike their approach, in each layer we
have a pseudo-likelihood corresponding to every datapoint rather than for a limited set of inducing
locations; we parameterise the pseudo-likelihood terms via inference networks rather than directly;
and we use a broader class of Gaussian priors. Another related method is Kurle et al. (2024)’s BALI,
which adopts a non-variational approach to parameterising the pseudo-likelihood terms in each layer.
Separately, our work shares the use of secondary (inference/“hyper”’) networks with normalising
flow-based approaches (Louizos and Welling, 2017) and Bayesian hypernetworks (Krueger et al.,
2018), but the difference is in what the secondary networks map from and to—for us it is from
observations to pseudo-likelihood terms and for them it is from base distribution samples to posterior
samples. Finally, our approximate inference scheme is an instance of structured variational inference
(Hoffman and Blei, 2015).

Priors in BNNs. In general, there is no widely accepted way to select well-specified priors in BNNs
(see Fortuin, 2022). While (meta-)learning priors is not a new concept (Rasmussen and Williams,
2006; Patacchiola et al., 2020; Fortuin et al., 2020; Rothfuss et al., 2021), it is a relatively under-
explored approach in the context of Bayesian deep learning. To this end, Fortuin et al. (2022) analyse
the empirical distributions of trained neural network weights to construct new priors, Shwartz-Ziv
et al. (2022) use the approximate posterior from a large pre-training task as a learned prior for
downstream fine-tuning tasks, and Villecroze et al. (2025) adopt an empirical Bayesian approach to
learning a flexible prior over the last-layer weights of a BNN. We also adopt a variational approach,
but we train across multiple tasks. Most similar to our approach is that of Rothfuss et al. (2021),
who also meta-learn a BNN prior across related tasks. However, they adopt a PAC-Bayes framework
(McAllester, 1998) involving naively chosen hyper-priors, and they restrict their priors to fully-
factorised Gaussians. Furthermore, their posteriors are particle based, so it is costly to meta-train
across arbitrarily many tasks (as we can) in order to learn a truly well-specified prior.

4 EMPIRICAL INVESTIGATION

4.1 How GooD IS THE BDNP’S APPROXIMATE POSTERIOR?

We begin by evaluating the quality of approximate inference in the BDNP. We adopt a similar
setup to Bui (2021) and, under a common BNN architecture with fixed hyperparameters (including
U), we measure the gap between the log marginal likelihood (LML) and the ELBOs achieved by
various VI techniques. The difference between these two quantities represents the KL divergence
KL[¢(W|D) || py(W|D)], giving us a a clear metric of approximation quality in each case.
To eliminate any bias in inference quality due to misspecified priors, we generate a dataset by
1.) sampling a function from the BNN’s prior, 2.) uniformly sampling a set of inputs, and 3.)
adding Gaussian noise with standard deviation 0.1 to the outputs. Since the data therefore has
a high probability of being generated under the prior (because it was), we can estimate the log
marginal likelihood via Monte Carlo integration. We compare a BDNP meta-trained across similarly
generated datasets under Lpp_ay1, a BDNP trained on just the evaluation task via the standard ELBO
objective function, mean-field VI (MFVI; Blundell et al., 2015), Ober and Aitchison (2021)’s global
inducing-point VI (GIVI), as well as a number of VI algorithms with increasingly high-rank Gaussian
variational posteriors: unitwise correlated (UCVI), layerwise-correlated (LCVI), and fully-correlated

“In their case, attention is performed between the target tokens only for the predictive covariance module.
The predictive means for each target location remain conditionally independent given the context set.
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(FCVI). The results, which are collected across a range of likelihood noise settings and averaged over
four repeat runs, are shown in Fig. 2. They demonstrate that the BDNP is capable of very high quality
approximate inference. For all methods we see that approximate inference quality decreases with
smaller likelihood noises, and since this effect is more pronounced for the unstructured variational
approximations (MFVI, *CVI), with those methods we observe the same bias in model selection via
the ELBO as in Bui (2021).

0 0 \\Qﬁ ® BDNP @ LML
:;:Ix!xm,, » FCVI » BD‘NP(mela)
=f A By, oo
-50 1 V2.
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Figure 2: ELBO and KL divergence between approximate and true posteriors for different VI methods. The
BDNPs’ approximate posteriors are of very high quality.

4.2 CAN WE LEARN MEANINGFUL PRIORS WITH THE BDNP?

Here we train BDNPs (including ¥) on meta-datasets with different data-generating processes. We
then qualitatively compare functions sampled from the BDNP’s learned prior with those from the
true data-generating process. We consider synthetic meta-regression datasets generated from random
sawtooth functions, Heaviside (/step-)functions, functions from a standard BNN pri0r5, as well as the
MNIST dataset (LeCun et al., 1989) with random pixel masking cast as a pixelwise meta-regression
dataset (Garnelo et al., 2018a), in which case we use the AttnBDNP. The results are visualised in
Fig. 3 and Fig. 4.

Figure 3: Function samples from the true data-generating process (first column), learned BDNP prior predictive
samples (second column), BDNP posterior predictive function samples (last three columns, observations as
orange dots). The learned prior predictives are very similar to the true generative processes.

We observe that the BDNP learns functional priors that are almost indistinguishable from the
synthetic data-generating processes. The corresponding posterior predictive samples appear to be
sensible as well, with increased uncertainty away from observations while maintaining the underlying
functional structure in each case. While the AttnBDNP’s ability to generate MNIST images might
not represent the state-of-the-art, the fact that many of the samples are clearly recognisable digits
further demonstrates this section’s conclusion, which is that the (Attn)BDNP can model arbitrary
stochastic processes by learning well-specified priors.

4.3 DOES APPROXIMATE INFERENCE QUALITY MATTER UNDER A GOOD PRIOR?

To answer this question, we consider three synthetic and one real-world data-generating processes. In
each case, we meta-train a BDNP such that it learns a well-specified prior for the problem. For each
of the approximate inference methods that we consider, we then compare predictive performance

SThroughout our empirical investigation, we use standard BNN prior to refer to zero-centered fully-factorised
Gaussian priors with variance scaled inversely proportional to layer width.
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Figure 4: Generative modelling of MNIST digits with the AttnBDNP. Smaller images depict sampled prior
functions evaluated at the same 28 x 28 grid of inputs that the training data lay on. Larger ones depict sampled
functions queried at a 100x 100 gid of inputs. The AttnBDNP’s prior has encoded the functional behaviour of
handwritten digits, so super-resolution is natively supported without needing further training.

when using a standard BNN prior versus the well-specified prior. This is repeated over 16 test datasets
and we use per-datapoint log posterior predictive density (LPPD) and mean absolute error (MAE) as
metrics. We consider SWAG (Maddox et al., 2019), MFVI, Langevin Monte Carlo (LMC; Rossky
et al., 1978), GIVI, the BDNP, and Hamiltonian Monte Carlo (HMC; Neal, 1992). For our real-world
setting, we substitute LMC and HMC for their stochastic-gradient counterparts (SGLD; Welling and
Teh, 2011, SGHMC; Chen et al., 2014) due to larger context sets and architectures.

on (mm)

(a) Context set (b) Predictive mean (c) Predictive uncertainty

Figure 5: Demonstration of an ERAS5 precipitation prediction test task with the BDNP. With no context points
over Switzerland, the BDNP’s predictive uncertainty is increased in that region.

For our synthetic data-generating processes, we consider squared-exponential GP, Heaviside, and
sawtooth functions. In all three cases the inputs are sampled uniformly and the outputs are lightly
corrupted with Gaussian noise. The real-world setting we consider is precipitation prediction over an
area of Europe centered on Switzerland. We use the ERAS Land dataset (Mufioz Sabater et al., 2021)
and use longitude, latitude, and temperature as input variables. To make the prediction task even
more challenging, we omit any context points from Switzerland in the test tasks, meaning predictions
in this region are heavily influenced by the choice of prior. Fig. 5 demonstrates the ERAS test task
setup and Fig. 6 displays the results across the four settings. While it is clear that better priors boost
predictive performance, we also see that there remains some considerable variation in performance
amongst the methods when using a learned prior. In other words, a good prior is not all you need
when working with BNNs; high quality approximate inference is still necessary.
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Figure 6: Target-set performance of approximate inference algorithms under a well-specified prior (blue) and a
standard BNN prior (brown). The learned prior almost always leads to improved performance.

4.4 CAN RESTRICTING THE LEARNED PRIOR IMPROVE META-LEVEL DATA EFFICIENCY?
We consider two problem settings for which the number of available datasets would traditionally be

seen as too few for NPs to be applied. The first setting is a recasting of the Abalone age prediction
task (Nash and Ford, 1994) as meta-regression. The three classes corresponding to a specimen’s sex
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(male/female/infant) are used to separate the data into three distinct datasets. The male and female
datasets are used for meta-training and the infant dataset is reserved for testing. There are seven
input features including various specimen size and weight measurements. The second setting is
based on the Paull5 single-cell RNA sequencing dataset (Paul et al., 2015), and the task is to predict
how specialised a cell is from 3451 gene expressions. We perform PCA on the data to obtain 100
information-rich abstract features, and split the dataset into 19 subsets according to cell clusterings
that Paul et al. (2015) provide. We randomly select ten for meta-training and one for testing.
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Figure 7: Test-task target-set performance for two meta-learning problems with limited data. Decimals indicate
the proportion of the BDNP’s prior that is trained. BDNPs with partially trainable priors perform the best.

At the bottom end of the “prior-learnability” spectrum, we consider MFVI and GIVI baselines with
standard priors (trained on test-task context set), while at the other, as comparable NPs which produce
coherent function samples, we consider the original (latent-variable) NP (Garnelo et al., 2018b), the
Bayesian NP (BNP; Volpp et al., 2021), and a transformer NP (Nguyen and Grover, 2022) under
Bruinsma et al. (2023)’s state-of-the-art autoregressive sampling scheme (AR-TNP). We compare
the baselines to the BDNP across its full range of prior-learnability where all non-learnable prior
parameters are fixed to standard BNN prior settings, and prior parameters corresponding to earlier
layer weights are made trainable first. The results are averaged over four trials. In Fig. 7 we see
that in both problem settings, the best-performing model is a BDNP with a partially learnable prior
(0.8 and 0.4 respectively). In the particularly data-scarce Abalone problem, we see clear evidence of
overfitting in the fully-flexible NPs (including BDNP-1.0).

5 DISCUSSION, LIMITATIONS, AND THE BIGGER PICTURE

The BDNP’s approximate posterior is a very good one. Each layer’s approximate posterior is explicitly
conditioned on the weights of the previous layers, enabling us to model weight correlations between
layers. Since what matters in deep learning is the overall input-output transformation rather than
individual layer transformations (Ober and Aitchison, 2021), the inter-layer correlations are likely
to be somewhat responsible. Relatedly, our method effectively removes the redundant modes in the
overall posterior caused by weight-space symmetries. This is because each layer is given access to
the outputs of the previous layer as well as its own pseudo-outputs, meaning each layer is myopic in
the sense that it only “sees” one mode of the posterior.

While it may be surprising that simple Gaussian priors can yield highly complex, even multimodal
(Heaviside in Fig. 3, MNIST digits in Fig. 4) stochastic process priors, we note that the universal
posterior predictive approximation result for mean-field Gaussian posteriors of Farquhar et al. (2020)
likely also applies to Gaussian priors. We are encouraged by the demonstrated flexibility of Gaussian
priors as it means finding good BNN priors is not as insurmountable a task as it might have been.
The BDNP provides a solution to this problem for the case when multiple datasets are available, but
the problem remains unsolved for the single-dataset case.

We highlight that our message is not that the BDNP is the one model to rule them all. When there
are limited datasets, it is a very useful NP for practitioners to have in their inventory. Otherwise, our
main focus in this work was in using it as a scientific tool with which to study BNNs. Inference in the
BDNP scales unfavourably with architecture width (Appendix C), so we leave investigation of the
BDNP’s performance as a general-purpose NP to future work. Similarly, we introduce the BDAM for
scientific interest but we do not include it in our experiments since it is of no use in answering our
particular research questions.

Finally, we note that the impressive performance of our explicitly Bayesian meta-learning setup
hints at an underlying lesson; that Bayesians should be using the abundant data of today’s world to
learn powerful priors, not to be forcing posteriors out of dubious priors. This message seems to be
coming from an ever-growing chorus, with the posing of Bayesian inference as an in-context learning
problem becoming increasingly popular (Dubois et al., 2020; Reuter et al., 2025; Chang et al., 2025).
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A OBIJECTIVE FUNCTIONS

In this section we justify our choice of objective function, we discuss practical implementation of
it, and we discuss alternatives. Throughout, we use ¢ to denote distributions that depend on the
approximate posterior ¢(W|-) and py to denote distributions that depend on the parameters of the
prior without depending on ¢(W|-).

A.1 PP-AVI

We begin by repeating Proposition 1 for the reader’s benefit.

Proposition 1. For |Z| — oo, maximisation of Lpp.ayi(Z) directly targets the three desiderata.

In order to prove Proposition 1, we first provide formal definitions of the three desiderata. Throughout,
we assume a true underlying data-generating process D ~ p(D).

Definition 1 (accurate approximate posteriors). A probabilistic meta-learner produces accurate
approximate posteriors if the task-averaged KL divergence between approximate and true posteriors

Ey(p,) [KLIa(WID.) || pu(WID.)]| an

is small.
Definition 2 (faithful prior). A probabilistic meta-learner has a prior that faithfully encodes the

data-generating process if the task-averaged KL divergence between the true generative process
p(Y¢|X.) and the model’s marginal likelihood py (Y .| X.),

Epx) [KL[p(YeIXe) [ o (YelXo)] | (12)

is small.

Definition 3 (high quality predictions.). A probabilistic meta-learner produces high quality pre-
dictions if the task-averaged KL divergence between the true conditional generative process
p(Y|D., X;) and the model’s posterior predictive q(Y¢| D¢, X4),

Epp. x) [KL[P(Y:DeXo) || (Y1, X (13)

is small.

Proof. Recall the definition of Lpp ay1(Z):

=]
Lov () 1= 7 D losa (YD, X) + Lergo (D). (14)
=2
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Taking the limit of infinite datasets, we proceed as follows
15)

hm [,pp AVI(E) =E (D) [IOg q (Yt|Dc, Xt) + EELBO (Dc)]

=~
=E,(p) [logq (Y¢|De, Xy) +log pu (Y| Xe)
~ KL[g(W|D.) || pu(WD.)]| 16)
=E (De,Xt) |:EIJ(Y1\"DC,X»:> UOg (J(YT‘D<X1E)]:|

+E1)(Xp) [E[)(YF\XC) U()g Pw (YC|XC)H
~ Epp) [KL (WD) || po(WD,)]] (17)
a(Y4|De, Xo)p(Ye|De, Xo)

=F E, log

@ (B { X

p\l/(Y(:‘X(t)I)Y(',lX(:)
TEp(Xe) | Bp(velXe) {% (Y. [X.)
(18)

~ By, [KLIa(WID.) || po (WD)
(Yi[De, X) ~Epp, x,) [KL[p(YolDe, X0) [ a(YoIDe, X0)] |

const.
H(Y [ Xe) ~Epix,) [KL[p(YelXo) || po(YelX.)]]
const.
~Eyo,) [KL d(W[D.) || pu(WID,)]| (19)
where H(:|-) denotes the Shannon conditional entropy. Since the entropy terms are constant with

respect to the variational and model parameters {©, U}, we reach
Ey(. x,) [KL[P(YiDe, X0) || (Y|P, X0)] |

argmax lim Lppavi(Z) = arg min
{6,v} [E[=o {©,v}
+ By [KL[p(YolXo) || po(YolX,)] |
+ By, [KLI(WID,) | m(WDc)ﬂ . o)
O]

Unfortunately, both terms in Lpp_ay are analytically intractable. As a first step,

Practical Details.
we decompose the ELBO into the usual reconstruction error / complexity penalisation form

r—«
—

»CPP—AVI \—*

1 Sl ) ) .
? Z 0g q <Y§J)|Dl(:])7xg7)) + ]Eq(wmé”) [logp (Y(])|W X(]))}
—KL[q (WIPD) Il o (W)]. @D
We deal with these three terms in order of increasing difficulty. The final term becomes tractable by

decomposing it into the sum of layerwise KL divergences
(22)

KL[g (WIDY) || po(W)] = ZKL[ (WIWH=LDD) |y, (W)

where each term in the sum is available in closed form as the KL divergence between two multivariate

Gaussians.
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The middle term, the (context set) expected log-likelihood, is unbiasedly estimable via Monte Carlo
integration with a finite number of samples K

K
. . 1 . .
E, (wip) 1087 (YW, X0 )| = 2 3 T logp (YOW®, X)) @3

where W) ~ ¢ <W|D£j )) and low-variance gradient estimates are available via application of the
reparameterisation trick (Kingma and Welling, 2014).

The posterior predictive term, which can equivalently be referred to as the (target set) log expected
likelihood, is defined as

log q (Yt(”\pgﬁ,xgj)) - log/p (Yt(j)\W7X§j)) q (W\Dgﬂ) dW. (24)

Again turning to Monte Carlo integration with K samples, we estimate this term via

K
) ) ) 1 ) )
log q <Y£J)|’D£7),X§J)) ~ log T Zp (YEJ)\W(k),X§J)> (25)
k=1

. . K
— LogSumExp ({log P (Yt(” W, Xﬁ”) }H) —logK (26

where W) ~ ¢ (W\ng )) and we use the log-sum-exp trick to maintain stable computations

in log-space. Unfortunately, this Monte Carlo estimate is biased and so we cannot get away with
single-sample estimates as we might with standard variational inference. In our experiments we used
8 or 16 samples.

A.2 STANDARD AVI/ META EMPIRICAL BAYES

Perhaps the most obvious alternative objective function to consider would be the standard AVI loss
given by the task-averaged ELBO:

[1]

In the infinite-dataset limit, this objective function corresponds to minimising two of
the three desired expected KL divergences; EP(XC)[KL[p(YC|XC) I p\p(YC\XC)”, and

g
Lavi (2) = 1| S Lewo (DY) @7
j=1

Epp.) [KL [a(W|D,) || pw (W\DC)]] . Supposing we have globally optimised this objective function

for an infinitely flexible model (e.g. not necessarily a BDNP) under infinite datasets, the trained model
would have perfect approximate posteriors and a prior that models the true (context) data-generating
process exactly. Perhaps the missing term would then be minimised for free—maybe we should
expect extremely high quality posterior predictives from this resulting model. While this may be true
(proper analysis left to future work), in practice we found Lay; to be significantly harder to globally
optimise than Lpp_ay;. When training our BDNPs, we initialised the parameters of the prior to those
of the standard isotropic Gaussian prior. For some tasks (particularly the heaviside and sawtooth
function regression problems) it seems that this was a particularly adversarial initialisation in that
maximisation of £ay; seemed not to be able to “break free” of the predictive behaviour induced by
the standard BNN prior. So, even if the extra expected KL term from the PP-AVI loss is not strictly
necessary, it seems to simplify the loss-landscape by suppressing the non-globally optimal modes via
penalising miscalibrated posterior predictives.

Since the ELBO is a lower-bound to the log marginal likelihood Lgpo (D.) < logp(Y.|X.), under
infinite datasets we have that the AVI loss is a lower bound to the expected log marginal likelihood

across tasks:

2] =00
This then corresponds to a meta-level type-II marginal likelihood scheme, or, meta-level empirical
Bayes. Note that this is the objective function used in Rochussen and Fortuin (2025) and Ashman
et al. (2023).

18



Under review as a conference paper at ICLR 2026

A.3 NP MAXIMUM LIKELIHOOD / POSTERIOR PREDICTIVE MAXIMISATION / ML-PIP

Neural processes tend to be used as probabilistic predictors more than anything else (such as generative
models), so the only distribution users really care about is the posterior predictive ¢(Y¢|D,, X;). Note
that while this distribution is referred to as the posterior predictive in the context of latent-variable
NPs, for the conditional family of NPs it is referred to as the predictive likelihood. The obvious
training scheme would then be to maximise the (log) posterior predictive likelihood of the target set
over many tasks. While this is the de-facto approach in conditional family NPs, Gordon et al. (2019)
demonstrated that it is sufficient if we wish to perform amortised variational inference in latent-
variable meta-learners too. Gordon et al. refer to this scheme as meta-learning probabilistic inference
for prediction (ML-PIP). We refer to this objective as the neural process maximum likelihood (NPML)
objective, and it takes the form

Lyew (B) = ?Z ogq(Y|DY), X)), (29)

In the infinite-dataset limit, maximising Lnpmr, corresponds to minimising the expected KL term that
is missing from Lay;. In other words, we have that

Lppavi(Z) = LnpmL(E) + Lavi(E). (30)

While NPML has been demonstrated to work well in NPs®, with the BDNP we found it would
lead either to solutions that modelled the data-generating process very badly, or to high numerical
instability causing training runs to fail. As with £ayj, we suspect this is because of loss-landscape
multimodality and difficulty ensuring global optimisation. In particular, we suspect that the globally
optimal modes in Lay; and Lypymp correspond to each other but that the secondary modes in each
loss-landscape do not, meaning global numerical optimisation of their sum is more straightforward.

A.4 NEURAL PROCESS VARIATIONAL INFERENCE

Another way to train latent-variable NPs is through a more conventional variational approach, where
the objective function is given by a lower bound to the conditional marginal likelihood py (Y¢| D, X¢)
averaged over tasks. We refer to this as the neural process variational inference (NPVI) objective,
and it is defined as

Lnew(2) = é ZEq(W\DU)) [logp (ng)|W, ng))}
j=1

~KL|qg (WD) || py (WIDD)]. 3D
While NPV is sensible in the infinite-dataset limit, being equivalent to minimising

Ep(p, x) [KL[P(YelDe:Xo) || pu(YelDe, X0)] | +Epio) [KL[(WID) || po(WID)]|. 32)

it is intractable due to the presence of the true posterior py (W|D,). While this is typically circum-
vented by approximating the true posterior with the approximate posterior ¢(W|D,), NPVI only
targets Eq. (32) if the approximate posterior is exact. Under a poor approximate posterior, such
as at the beginning of training, the loss landscape is then quite different to what it should be and
it is unclear how close the practical version of Lypy; ever becomes to the ideal one. Indeed, the
NPVI approach is known to yield suboptimal predictive performance (Le et al., 2018). Furthermore,
the KL term involves computing the two approximate posteriors ¢(W|D) and ¢(W|D,). Since the
computational bottleneck associated with the BDNP is in computing the approximate posterior, the
double approximate posterior computation renders Lxpyi even more inappropriate for the BDNP, and
so we did not attempt to use it at all. Note that Lypy; was the objective function used in the original
(latent-variable) neural process paper (Garnelo et al., 2018b).

8in which case the latent variable is denoted by z rather than W,
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A.5 TELL-AVI

Motivated to find an objective function that can be ubiasedly estimated and which has similar infinite-
dataset behaviour to Lpp_avi, we introduce the target-expected-log-likelihood (TELL) AVI loss. We
define it as

1=l _ _ '
Lrei-avi(E) = L ZEq(W\Dﬁﬂ) [logp (th\W>X,(:j))} + Lo (ng)) (33)
j=1

—
—| 7

where we note the only difference between Lpp_av; and Ltgry-avi is in the ordering of the log and
expectation £ in the left-hand term’. The right-hand term is estimated exactly as in

a(wD
Lpp_avi, but the left-hand can be unbiasedly estimated by its Monte Carlo estimate from K samples,
LS logp (Yt(]) W k) XEJ)) for W) ~ ¢ (W\ng)), enabling the use of very few samples
for decreased computational cost.

Seeking to rewrite the expected log-likelihood term in terms of the log posterior predictive (log
expected likelihood), we have

p (Yt| W, Xt) Q( vV |Dc)q (Yt‘Dm Xt)
E 1 YW, X)) =E 1 34
awp,) [logp (YW, X;)] «(W|D.) {og J(WD.)q (Y, |De, Xy) (34
q (Ym W |D67Xt)
=E 1 Y:|D., X E 1 35
q(WlDC) [ qu( t| t)] + q(Wch) |: Og q(‘NT‘DC)q (Yt|Dc’ X_t) ( )
qg(W|X;, Y, D,.)
=1 Y.|D., X E I 36
0g q (Y¢|De, Xy) + Eqewip,) [ og J(WD,) (36)
=1logq (Y¢|D¢, X:) — KL [g(W|D,) || ¢(W[D)], (37)
which gives us the following relationship between L1gp 1 avi and Lpp_ayr:
\=1|i£>n LTELL-AVI = ‘:l‘iin Lpp.avi — Ep(p) [KL [¢(W|D.) || ¢(W |D)]] (38)

Though this expected KL term is somewhat sensible when interpreted as encouraging approximate
posteriors from partial datasets to be similar to their full-data counterparts, the reverse interpretation
(that it encourages full-data approximate posteriors to be only as good as their partial-data counter-
parts) highlights its dubiousness. Furthermore, the extra term would serve as a distractor from the

more important KL term that Lpp_avy already includes; E,w|p,) [KL [¢(W|D.) || pw (W|DC)H ,

and it is unclear what behaviour the sum of the two KL terms involving ¢(W|D,) leads to. In prelim-
inary experiments we found that Ltgp; avy led to reasonable performance in terms of predictions and
the resulting learned prior, but it was never quite as good as Lpp_ay1.

"i.e., Lpp.avi might have equivalently been called the target-log-expected-likelihood (TLEL) AVI loss.
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B INFERENCE WITH ALTERNATIVE PRIORS

Fully factorised. The simplest form of prior is a fully factorised one py, (W!) =

L pdie 2 e - :
o, e N (wﬁl & My Ol ) Inference with this prior is performed similarly to the unit-

wise factorised prior, except that the unitwise covariance matrix is given by Efi = diag (Uél > and

can therefore be inverted by taking the reciprocal of the diagonal elements, taking O(d;_1) time
rather than O(d;_®) time.

Layerwise matrix-Gaussian. While a seemingly obvious prior to consider is the matrix-Gaussian
over layerwise weight matrices (Kurle et al., 2024; Louizos and Welling, 2016; Ritter et al., 2018),
this prior turns out not to fit nicely into our amortisation framework. The pseudo-observation noise
variances in each layer would have to become part of the prior rather than the pseudo likelihoods,
meaning our inference networks would lose their ability to up- or down-weight pseudo-observations
by predicting their corresponding noise level. In other words, using matrix-Gaussian priors would
force us to destroy the Bayesian context aggregation behaviour of our method.

Layerwise full-rank Gaussian. A richer prior than the unitwise factorised one is a layerwise full-
rank Gaussian defined over vec(W?!). To lighten the notation, we define w' := vec(W'). The prior
is then py, (W') = p(w') = N (w'; p!, =) In order to apply the standard (single-output) Bayesian
linear regression results, we need to augment the data matrices X'~!, Y' to some matrix-vector pair
xf{l, y', where y' := vec(Y!), so that the likelihood model can be written as y' = Xé;lwl. It turns
out that the “vec trick” (Petersen and Pedersen, 2008) of the Kronecker product ® gives us what we
need:

Y! = p(XHW (39)
(40)
y' = vec (¢(X'"HW?) (41)
= vec (¢(X'"HW'IT) (42)
= (I ¢eX'h) ! (43)

giving us that Xf;s_l :=I® ¢(X!~1). Note that be—l € R4Nxdidi—1 The posterior is therefore

p (WXL YY) =N (whm!, S) (44)
with mean vector and covariance matrix given by
- -1 4T _
S . 7 (45)
-1 T
m! — S! (El i ngl Alyl) (46)

where Al € RN4*Ndi jg 3 diagonal precision matrix formed by stacking the A%, matrices along the
leading diagonal of an N'd; x Nd; zeroes matrix. More specifically, A! := diag (concat ( {)\fi le":l))

where the n-th element of )\fi € RY is given by ﬁ To avoid direct matrix multiplications with
n,d

the d;N x d;d;_, matrix dejl, Eq. (45) and Eq. (46) can be re-written as
CLN SUREY L (47)
m' =8 (5 + ') (48)

where ®! is constructed by stacking the d;_; x d;_; matrices {qS(Xl_l)TAﬁl(b(Xl_l)}?:l along the

leading diagonal of a d;d;_1 x d;d;_1 zeroes matrix, and ¢' is given by vec (d)(X)l*lTYl) where
i 1
the elements of Y are given by g} , := 2,
’ On,d
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Note that inference with this type of prior is significantly more expensive than with the unitwise
or weightwise factorised priors. This is because the computation is dominated by the inversion of
did;—1 X d;d;—1 covariance matrices, requiring O (d‘l3 d?q) operations. For a network with uniform

hidden layer width, the cost of inference therefore scales sextically (dﬁ) with network width.

Full-rank Gaussian. The richest prior we consider is a full-rank Gaussian defined over all network
weights w := concat ({vec(W')}[~ ), i.e, p(WL) = p(w) = N (w; p, X). Inference is then
performed in the same way as with the layerwise full-rank Gaussian prior, save that the layerwise
factors {py, (W!)}L_, are replaced with the layerwise conditionals {p(W![Wi=1)}L = Each
layerwise conditional takes the form

p(Wl|W1:1—1> — /p(wl:L‘le_l)dwl-'_l:L =N (wl;udp7 zc|p) (49)

where ¢ and p denote the indices of the current and previous layer weights respectively, and the
conditional mean and covariance are given by

“c|p = .+ EcpE;pl (wl:l—l o p’p) (50)
TP =S - 2,2 8 (51)

where w® denotes the (vectorised) weights of layer a, p, denotes the subvector of p indexed by a,
and similarly 3,; denotes the submatrix of 3 indexed by a and b.
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C MINIBATCHING

Our minibatched posterior sampling algorithm for scalable inference in the BDNP is detailed in
Algorithm 1. The algorithm describes the usual full-batch posterior sampling procedure if the
number of minibatches is set to B = 1. We use partial_forward pass(X, W) to refer
to the propagation of inputs X forward to the [-th layer of the network using weights W1, and
compute_posterior to refer to computation of Eq. (5).

Algorithm 1 A minibatched BDNP posterior sampling algorithm.

Require: inference networks {ge, }1—; and priors {py, (W")}/=1,
forl=1,...,Ldo
forb=1,...,Bdo
Obtain Dy,
if = 1 then
X9 — X,
else
Xfl — partial,forward,pass(xb,Wi;gl)
end if
if b = 1 then
q(W Wit D) « compute_posterior (X, D1, go,, py, (W)
else
q(Wl\Wiigl,Dljb) — compute,posterior(Xé_l,Db,gg“q(Wl|Wij§3_17D1:b,1))
end if
Discard Dy
end for
Sample Wi.p ~ q(W'|Wi'5 ", Dip)
end for
return {WllB}ILZI

The time complexity associated with a forward pass through the [-th layer is (’)(ncdl,13dl), and the
corresponding space complexity is (’)(ncdl,12dl). The superlinear scaling with the number of input
neurons d;_1 arises from inverting d;_1 X d;_1 matrices. The purpose of our minibatching algorithm
is to reduce the linear scaling of the space complexity with context size to constant, i.e. to convert the
space complexity to O(|b|d;_12d;), where |b] is the batch size.

While this is greatly beneficial at prediction time, during training it is necessary to store in memory
the gradient information corresponding to all batches. This reverts the memory complexity to
O(ncdl,fdl) in spite of the minibatching procedure. To remedy this, we propose to randomly
select just one of the minibatches to compute gradients with respect to at every layer (i.e. the same
minibatch for all layers), discarding gradient information for the other minibatches. While this leads
to noisier gradient update steps, it reduces the memory complexity back down to (’)(\b|dl,12dl) as
desired. Although we leave a detailed analysis of any biases that this might introduce to future work,
we emphasise here that this scheme maintains a distinct advantage over naive minibatching by simply
restricting the context set size—our scheme maintains the ability for the BDNP to learn to generalise
predictive inference across various context set sizes during training.
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D ONLINE LEARNING VIA LAST-LAYER SEQUENTIAL BAYESIAN INFERENCE

As mentioned in Section 2.4, any form of posterior update due to new data must be applied in full
to each layer’s posterior before computing the next layer’s conditional posterior. Unfortunately,
this means that sequential Bayesian inference cannot be used naively for online learning in the
BDNP. To see why, consider a partioning of a task’s dataset into “original” and “update” subsets
D = D, UD,. Assume we have already computed the layerwise posteriors for the original data
{gq(W WLI=1 D )}L |, and have since discarded the original data. Without access to the orig-
inal data we can only obtain the conditional posteriors {g(W!|[W!!=1 D)}L and not what we
need, which is {¢(W'WxL=! D)} [ . This is because conditioning on samples W}'~! requires

propagating the full collection of data.

However, we can approximate what we need by updating just the last layer’s posterior while preserving
the existing previous layer posterior samples, giving us

L—1
¢(W[D) = ¢(WH W1 D) [T a(W! W', D,) (52)
=1
L-1
o p (YL WXL qWHWIE D) [ o(WHWE, D,) (53)
=1

We can interpret this as the first L — 1 layers being a feature selector whose weights have been
inferred from just the original data, while the weights of the prediction head (last layer) are updated
in light of the new data by sequential Bayesian inference. Although this might seem like a tenuous
approximation, we find it works well in practice. We found that the approximation deteriorates for
increasingly deep architectures—this is unsurprising given that an increasingly small proportion of
weights’ posteriors get updated.

Figure 8: A demo of our online learning algorithm for the BDNP. Orange dots are context points,
blue lines are posterior predictive samples, black dots are context points that we have lost access
to. Each row incorporates more context data. The left-hand column corresponds to a BDNP given
access to the full context set at each increment, the central column corresponds to our online learning
algorithm, and the right-hand column corresponds to the BDNP given only the new context data.

24



Under review as a conference paper at ICLR 2026

E THE BAYESIAN DEEP ATTENTIVE MACHINE

E.1 ARCHITECTURE
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Figure 9: Computational diagrams of the amortised attention layer (a), amortised attention block (b),
and BDAM (c). Due to the numerous crossing lines in (a), we colour code the context and target input
data paths as orange and light blue respectively. Arbitrarily many amortised attention blocks can be
stacked sequentially in the BDAM; our diagram shows the simplest possible BDAM architecture.

We see in Fig. 9(a) that amortised inference can be performed in an attention layer by using amortised
linear layers in place of standard linear layers, where MHA is the usual multi-head dot-product
attention mechanism acting on keys K, queries Q, and values V. Similarly, in Fig. 9(b) we follow the
standard approach (Vaswani et al., 2017) for constructing stackable attention blocks from attention
layers, residual connections, layer norms, and 2-layer MLPs, but replacing each of the attention layer
and MLP with their amortised counterparts. In Fig. 9(c) we show how amortised inference can be
performed in a transformer by composing amortised linear layers and amortised attention blocks. We
note that the resulting model can only be used in a somewhat unusual way for transformers; to map
from test inputs X, to predicted test outputs Y; where attention is performed between the fest inputs,
and where the posterior over the transformer’s weights is estimated from a context set.

E.2 LACK OF CONSISTENCY
As mentioned in the main text, the BDAM does not produce consistent predictive distributions over
target outputs. As we shall see, it is the attention between test inputs that causes this. For any finite

set of target locations Xy, , the joint distributions px, (Yy,,,) and px, (Y, ) form < nare
consistent if

P (Yo) = [ px, (Y0, )00 (54)

In the case of the BDAM, we are interested in joint distributions of the form
P (Y1, [PeXe,) = [ 0¥ [W.X0,, ) o (WD) W 55)
where the weights posterior py(W|D,) is approximated by the variational posterior

q(WID,) = [I, ¢(W!W'=1 D,) that we developed in the paper and where the likelihood
P (Y, |W, Xy, ) is parameterised by a transformer Ty with weights W. Plugging these terms in,
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we verify that the BDAM does not produce consistent joint predictive distributions

/p(Ytl;n DC’thm)dthJrlm = //p(Yth

Tw(X4,.,)) ¢ (W|D.)dWdY,, ., (56)

- / (Yo, [Tw(Xs,.,)) ¢ (W|D,) AW 57)
= p(Ytl:m‘DC7Xt1:n) (58)
7é p(Ytl:m‘DC7thzm) (59)

and visualise the consequences of this in Fig. 10. By contrast, the BDNP models target outputs
as conditionally independent given a weights sample for the MLP fyy. This means the BDNP’s
likelihood decomposes as p (Yy,., |fw(X¢.,)) = [1;—, p (ye|fw(x¢,)) which in turn ensures
consistency of the model through the fact that p (Y, |Dc, X4¢,...) = p (Ye,.,,. |De; X4y, )- By the
Kolmogorov extension theorem (Tao, 2011), consistency of a collection of joint distributions is
needed for them to define a valid stochastic process, and it is for this reason that the BDAM does not
define a stochastic process. Note that the other condition required is exchangeability; both the BDNP
and BDAM exhibit this through permutation invariance with respect to the context observations and
permutation equivariance with respect to the target inputs. While the lack of consistency is generally
a disadvantage, in settings for which the target inputs are always the same, this behaviour of the
BDAM would not matter. An example of such a scenario is the common NP task of image completion
via pixelwise meta-regression—in this case the target inputs are always the complete set of pixel
coordinates.

(a) p (Ytliﬂl |DC7 th:rn) (b) p (Ytlwn |DC7 th:n)

Figure 10: Inconsistent predictive distributions of a BDAM trained on GP-prior generated data. The
orange dots are context observations and the wiggly blue lines are predictive samples. X;,,  is
generated as a uniform grid of 100 locations between —5 and 5 via torch.linspace (-5.0,
5.0, 100), while Xy,  is generated by appending a value of 100.0 to X4, (.e., m = 100 and
n = 101). Observe that the joint distributions over Y,,, = are clearly very different. In other words,
querying just a single extra target location can drastically change the BDAM’s predictions, especially
if the additional target location is OOD.
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