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Abstract
Long-Context Transformer Models (LCTMs) are
vital for real-world applications but suffer high
computational costs due to attention’s quadratic
complexity. Block-sparse attention mitigates this
by focusing computation on critical regions, yet
existing methods struggle with balancing accu-
racy and efficiency due to costly block impor-
tance measurements. In this paper, we intro-
duce XAttention, a plug-and-play framework that
dramatically accelerates long-context inference
in Transformers models using sparse attention.
XAttention’s key innovation is the insight that
the sum of antidiagonal values (i.e., from the
lower-left to upper-right) in the attention ma-
trix provides a powerful proxy for block impor-
tance. This allows for precise identification and
pruning of non-essential blocks, resulting in high
sparsity and dramatically accelerated inference.
Across comprehensive evaluations on demand-
ing long-context benchmarks—including RULER
and LongBench for language, VideoMME for
video understanding, and VBench for video gener-
ation—XAttention achieves accuracy compara-
ble to full attention while delivering substantial
computational gains. We demonstrate up to 13.5×
acceleration in attention computation. These re-
sults underscore XAttention’s ability to unlock
the practical potential of block sparse attention,
paving the way for scalable and efficient deploy-
ment of LCTMs in real-world applications.

1. Introduction
The transformative impact of Large Language Models
(LLMs) (Dubey et al., 2024; OpenAI, 2023) is expanding
beyond natural language processing, steering in a new era of
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multimodal capabilities. Long-Context Transformer Models
(LCTMs) are emerging as essential tools in this evolution,
particularly for tasks like video understanding (Lin et al.,
2023; Wang et al., 2024) and video generation (Kong et al.,
2025) that demand processing and generating exceptionally
long sequences of information. These models hold the key
to unlocking brilliant systems capable of interacting with
the world in a human-like way, understanding and generat-
ing not just text, but also visual information over extended
periods. Imagine AI agents engaging in seamless, multi-
modal, day-long interactions, or powerful world simulators
generating hours of coherent video—tasks that hinge on
processing a tremendous number of tokens.

However, realizing this vision requires overcoming a signif-
icant challenge: the computational burden of the attention
mechanism (Vaswani et al., 2017). While crucial for captur-
ing relationships within sequences, attention’s cost scales
quadratically with sequence length. This quadratic scaling
creates a substantial bottleneck during the pre-filling stage,
hindering the practical deployment of LCTMs for complex,
real-world applications.

In the pursuit of more efficient Transformers, block-sparse
attention (Zaheer et al., 2020; Guo et al., 2024) has emerged
as a promising avenue. The core idea is appealing: instead of
computing attention between all token pairs, focus resources
on the most crucial regions of the attention map, creating
”blocks” of relevant information. This selective computation
promises to drastically reduce computational burden while
preserving the model’s ability to capture essential long-
range dependencies.

Yet, existing block-sparse methods have struggled to deliver
on their full potential, often grappling with a trade-off be-
tween accuracy and efficiency. This stems from the lack of
lightweight yet effective mechanisms for identifying and
prioritizing truly important attention blocks. The overhead
involved in determining block importance can negate the
gains achieved through sparsity, rendering these methods
impractical for real-world deployment.

This leads us to a question: Can we design a block-sparse
attention mechanism that dramatically accelerates long-
context Transformers without compromising accuracy, truly
unlocking their potential for real-world applications?
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Antidiagonal Scoring Block Sparse Attention

Block 
Selection

Figure 1. Illustration of XAttention: XAttention optimizes at-
tention through a three-step process: (Left) Strided Antidiagonal
Scoring: Each block (8×8 in this example) is scored by summing
values along its strided antidiagonals (stride = 4), with red lines
generally indicating higher summed values and blue lines lower
values. (Middle) Block Selection: High-scoring blocks are se-
lected based on these evaluations. (Right) Block Sparse Attention:
Attention is computed only on the selected blocks (red blocks
on the right), achieving substantial computational savings. This
example uses a sequence length of 24.

We answer this question by introducing XAttention, a novel
plug-and-play framework designed to significantly improve
the efficiency of block-sparse attention in long-context
Transformers. XAttention is based on the key insight that the
sum of antidiagonal values within the attention matrix can
serve as a powerful, yet computationally efficient, indicator
of block importance. Unlike existing methods that primar-
ily rely on computationally intensive and lossy solutions
like token pooling to identify important blocks, XAtten-
tion leverages this simple score to offer a potentially more
streamlined and direct approach for rapidly and accurately
identifying critical attention blocks.

This antidiagonal scoring algorithm allows XAttention to
aggressively find and prune non-essential computations,
achieving substantial sparsity without sacrificing accuracy.
We extensively evaluate XAttention on challenging long-
context benchmarks, including RULER and LongBench for
natural language processing, VideoMME for video under-
standing, and VBench for video generation. Across these
benchmarks, XAttention achieves accuracy comparable to
full attention while delivering substantial computational
gains, demonstrating up to 13.5× acceleration in atten-
tion computation during pre-filling. These results under-
score XAttention’s ability to unlock the practical potential
of block-sparse attention, paving the way for scalable and
efficient deployment of long-context Transformers in de-
manding applications, especially in the expanding field of
multimodal AI.

2. Method
In this section, we introduce our method, XAttention. The
XAttention algorithm comprises three primary components:
(1) importance prediction of attention map blocks, (2) selec-
tion of important attention blocks, and (3) prediction of the
minimum threshold for attention heads.

Zoom-in (a) Zoom-in (b)Vertical-Slash Pattern

(a)

(b)

Figure 2. XAttention’s antidiagonal pattern intersects both vertical
and slash patterns within a block, enabling efficient detection of
these patterns and guiding effective sparse attention computation.

2.1. Importance Prediction

The inherent sparsity of attention maps necessitates a robust
strategy for predicting the importance of attention blocks.
While methods like MInference (Jiang et al., 2024) and
FlexPrefill (Lai et al., 2025) utilize a combination of pooling
and ”vertical slash detection,” our ablation study reveals that
relying solely on average or sum pooling yields inaccurate
predictions. Pooling methods are particularly ineffective
when only a few significant vertical or slash patterns exist
within a block, failing to capture these crucial indicators of
importance.

MInference and FlexPrefill attempt to overcome this limi-
tation by analyzing the last segment of the input query to
identify important ”vertical and slash indices.” However,
this approach faces two key challenges: firstly, important
attention patterns may not persist in the final query segment;
secondly, the search algorithm itself introduces substantial
computational overhead (demonstrated in Figure 6).

Fundamentally, an effective block importance prediction
method should automatically and robustly identify signifi-
cant patterns, including crucial vertical and slash patterns.
To achieve this, we propose the antidiagonal selection
method. Within each block of size B, we select elements
along the antidiagonal using a stride S (visualized in Fig-
ure 1). The sum of these selected elements serves as a proxy
for the overall importance of the corresponding attention
block.

The effectiveness of this method can be understood from
two perspectives: (1) Information Preservation: This se-
lection strategy ensures that information from all tokens is
considered, as each token contributes to at least one antidiag-
onal sum. (2) Pattern Detection: As illustrated in Figure 2,
the antidiagonal intersects every possible vertical and slash
pattern within a block. XAttention’s antidiagonal pattern
intersects both vertical and slash patterns within a block,
enabling efficient detection of these patterns and guiding
effective sparse attention computation. This ensures that no
crucial patterns are missed during the importance estimation
process.
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2.2. Threshold Block selection

Based on the antidiagonal scoring pattern, we propose the
following sparse attention block selection algorithm. Let
S denote the stride, and let B be the size of the sparse
attention blocks. The process begins with antidiagonal sum-
mation, where we select elements along the antidiagonal
within each S × S block of the attention map and compute
the sum of these elements for each antidiagonal. Subse-
quently, we perform softmax normalization by applying
the softmax function to these antidiagonal sums, yielding a
probability distribution over the antidiagonals. Finally, for
block selection, the find blocks function is employed
to identify the minimal set of blocks whose cumulative sum
of antidiagonal probabilities exceeds a predefined threshold
τ . Formally, this can be expressed as:

find blocks(A, τ) = argmin
B

|B| ∣∣∣ ∑
b∈B

∑
(i,j)∈b

Ai,j ≥ τ


where A is the attention map, B is a set of blocks, and |B|
represents the number of blocks in the set. This process
effectively determines the most important blocks in the at-
tention map based on the antidiagonal scoring pattern and
the specified threshold.

Algorithm 1 Block Selection
Require: Query matrix Q ∈ RL×d, Key matrix K ∈

RL×d, block size B, stride S, head dimension dh,
threshold τ

Ensure: Sparse mask M
1: NB ← ⌊L/B⌋ {Number of blocks}
2: for b = 0 to NB − 1 do
3: Qslice ← Q[bB : (b+ 1)B, :] {Extract Q block}
4: Qreshaped ← []
5: for i = S − 1 down to 0 do
6: Qreshaped.append(Qslice[i :: S, :]) {Reshape along

antidiagonals with stride S}
7: end for
8: Kreshaped ← []
9: for i = 0 to S − 1 do

10: Kreshaped.append(K[i :: S, :]) {Reshape along an-
tidiagonals with stride S}

11: end for
12: Aapprox ← Softmax

(
QreshapedK

T
reshaped√

dh·S

)
{Approximate

attention scores}
13: Mb ← find blocks(Aapprox, τ) {Find blocks based

on threshold}
14: end for
15: M ← concatenate(M0,M1, . . . ,MNB−1)
{Concatenate block masks}

2.3. Minimum Threshold Prediction

We propose a dynamic programming approach to determine
the optimal threshold for each attention head. Previous
research indicates that different attention heads exhibit vary-
ing sparsity levels and importance. Thus, it is beneficial
to dynamically adjust thresholds for individual heads to
optimize the balance between accuracy and computational
efficiency.

Problem Formulation: Consider a model with H attention
heads. We define a dynamic programming table D[h][m],
where h ∈ {1, 2, . . . ,H} represents the h-th head, and
m ∈ {1, 2, . . . ,M} denotes the number of threshold adjust-
ments made. D[h][m] stores the best performance achiev-
able when exactly m threshold adjustments have been made
across the first h heads.

Dynamic Programming: Our objective is to find the opti-
mal threshold for each head such that their joint contribution
maximizes accuracy while minimizing computation. The
recurrence relation for the DP table is:

D[h][m] = max(D[h− 1][m], P (h,m))

where P (h,m) represents the performance of the model
when the h-th head’s threshold is adjusted for the m-th time.
This corresponds to the model’s performance after reducing
the threshold of the h-th head by one step relative to the
state D[h− 1][m− 1] in the optimization process.

We adjust the threshold for each head by reducing it by 10%
at each step:

th(m) = th(m− 1)× 0.9

This ensures a gradual reduction in computation while pre-
serving each head’s contribution to accuracy.

Note that this dynamic threshold prediction method can
further optimize XAttention’s sparsity but is not a mandatory
component. We present detailed results in the ablation study.

3. Experiments
This section presents our empirical investigation into the
effectiveness of XAttention. We first detail the implemen-
tation specifics, followed by evaluation results on text and
video understanding, as well as video generation bench-
marks, against strong baselines. We then test the accelera-
tion performance of XAttention. Finally, we provide analyt-
ical ablation studies to further understand the behavior of
XAttention.

3.1. Experimental Setup

Models We evaluate XAttention across three distinct do-
mains. For natural language tasks, we employ Llama-3.1-
8B-Instruct (Dubey et al., 2024). In the video understanding
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Table 1. Accuracy comparison of different methods and sequence
lengths on RULER with Llama-3.1-8B-Instruct . XAttention is
configured with Stride S = 8 and S = 16 with Precisely Predicted
Minimum Threshold.

Input Len 4k 8k 16k 32k 64k 128k Avg.

Full 96.74 94.03 92.02 84.17 81.32 76.89 87.52

FlexPrefill 95.99 93.67 92.73 88.14 81.14 74.67 87.72
MInference 96.54 94.06 91.37 85.79 83.03 54.12 84.15
SeerAttn 95.32 92.14 92.20 88.05 83.30 72.37 87.23
Xattn S=8 96.83 94.07 93.17 90.75 84.08 72.31 88.47
Xattn S=16 96.11 93.95 93.56 90.64 83.12 71.11 88.08

domain, we utilize Qwen2-VL-7B-Instruct (Wang et al.,
2024). Finally, for video generation, we use the Hunyuan-
Video model (Kong et al., 2025). To optimize the trade-off
between computational efficiency and accuracy on natural
language tasks, we apply our precise threshold prediction
method to the Llama-3.1-8B-Instruct model.

Baselines We compare XAttention against several strong
baselines. Our primary baseline for dense attention is
FlashAttention (Dao, 2023), implemented within the Flash-
Infer (Ye et al., 2024) framework. We also compare against
MInference (Jiang et al., 2024), FlexPrefill (Lai et al., 2025),
and SeerAttention (Gao et al., 2024), strictly adhering to
their public implementations. For SeerAttention, we incor-
porate pretraining on the Gare weights. For MInference, we
utilize their official configuration, where all attention heads
adopt the ”Vertical-Slash” sparsity pattern. For FlexPrefill,
we set the hyperparameters to γ = 0.95 and τ = 0.1, which,
according to the original paper, resulted in the highest accu-
racy among the provided parameter sets.

Datasets We evaluate our model on a diverse set of tasks
spanning natural language understanding, video understand-
ing, and video generation. For natural language tasks, we
employ the RULER (Hsieh et al., 2024) dataset, a synthetic
benchmark specifically designed to assess long-context abil-
ities in LLMs. RULER allows for customizable sequence
lengths and task complexities, extending the traditional
needle-in-a-haystack test while introducing novel task cat-
egories like multi-hop tracing and aggregation. We also
evaluate on real-world long-context tasks from LongBench
(Bai et al., 2023) to test performance in practical scenarios.

For video understanding, we utilize the Video-MME (Fu
et al., 2024) dataset, the first comprehensive benchmark for
evaluating multimodal large language models (MLLMs) on
video analysis. Video-MME comprises 900 videos totaling
254 hours, with durations ranging from 11 seconds to 1
hour, providing a robust testbed for assessing long video
comprehension.

In the video generation domain, we leverage 946 GPT-

augmented text prompts from VBench (Huang et al., 2024)
to generate videos. We then compare the videos gener-
ated by our proposed method, XAttention, against those
produced by a full attention baseline, evaluating the effec-
tiveness of our approach in generating high-quality video
content.

3.2. Accuracy Results

RULER On the RULER benchmark (Hsieh et al., 2024),
we apply the dynamic programming method described in
Section 3.3 for Minimum Threshold Prediction, utilizing
strides of S = 8 and S = 16 with a maximum adjustment
number of M = 1000. This yielded a set of minimum
thresholds with an average of 0.8, further enhancing the
computational efficiency of our sparse attention mechanism.

Table 1 compares the accuracy of XAttention against strong
baselines on the Llama-3.1-8B-Instruct model across vari-
ous sequence lengths on RULER. Notably, both MInference
and SeerAttention experience significant performance degra-
dation as context length increases. In contrast, XAttention,
configured with S = 8 and S = 16 and employing our
precisely predicted minimum thresholds, not only surpasses
the optimal sparse attention baseline, FlexPrefill, but also
outperforms full attention at several sequence lengths. Ad-
ditionally, we evaluate the same tasks on the above three
models. The results shown in appendix are consistent across
models.This demonstrates the robustness of XAttention in
handling very long contexts.

LongBench Table 2 presents the performance of XAtten-
tion compared to strong baselines on the real-world tasks
within the LongBench benchmark, using the Llama-3.1-8B-
Instruct model. Maintaining the same configuration used
for the RULER evaluation, we evaluate XAttention along-
side MInference and FlexPrefill. XAttention achieves the
highest average score across all tasks, demonstrating its ef-
fectiveness in practical scenarios. Notably, the performance
of XAttention on individual tasks remains close to that of
full attention, indicating that our method preserves accuracy
while improving efficiency.

Video Understanding We apply Stride S = 16 and
threshold τ = 0.9 parameters on the QwenVL-2-7B model.
As shown in Table 3, among the three sparse attention meth-
ods, MInference and FlexPrefill fail to achieve optimal per-
formance on Long video tasks. XAttention achieves the best
average score among all sparse attention methods and even
outperforms FlashAttention on long videos, with a frame
rate of 1 frame per second for up to 1 hour.

Video Generation We evaluate XAttention’s performance
in the video generation domain using the HunyuanVideo
model on prompts from VBench (Huang et al., 2024). The
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Table 2. Comparison of different attention methods on real-world LongBench tasks using the Llama-3.1-8B-Instruct model. XAttention,
configured with stride 8 and Precisely Predicted Minimum Threshold, achieves the best average scores against all baselines.
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Full 31.44 25.07 29.40 16.89 17.00 11.79 34.22 23.25 15.91 26.69 72.50 91.65 43.74 46.00 52.19 49.14 40.34

MInference 31.59 24.82 29.53 17.03 16.46 11.58 34.19 23.06 16.08 26.71 72.50 91.18 43.55 46.00 52.33 49.93 40.30
FlexPrefill 27.30 28.56 27.66 17.20 15.14 9.46 32.76 23.66 16.05 27.25 64.00 88.18 41.28 31.00 45.69 47.54 36.83
XAttention 28.99 26.14 29.92 17.40 16.70 11.80 34.41 23.26 16.00 27.04 72.00 91.65 43.86 47.00 52.67 50.84 40.60

Prompt: “A joyful, fuzzy panda sits cross-legged by a crackling campfire, strumming a small acoustic guitar with enthusiasm. The panda's black and white 
fur contrasts beautifully with the warm glow of the fire, casting flickering shadows on the surrounding snow-covered ground. Behind the panda, majestic 

snow-capped mountains rise against a twilight sky, their peaks tinged with the last light of the setting sun. The panda's eyes sparkle with delight as it plays a 
cheerful tune, the serene mountain landscape and the cozy campfire creating a magical, heartwarming scene.”

XAttention ( )#warmup steps = 5, τ = 0 . 95

XAttention ( )#warmup steps = 5, τ = 0 . 9

XAttention ( )#warmup steps = 0, τ = 0 . 95

Full Attention (baseline)

Figure 3. Qualitative comparison of video generation results on the VBench benchmark using the first prompt in the VBench dataset.
Rows show frames from videos generated using: (1) Full Attention (baseline), (2) XAttention with no warmup and (τ = 0.95), (3)
XAttention with 5 warmup steps and (τ = 0.9), and (4) XAttention with 5 warmup steps and (τ = 0.95). XAttention with warmup achieves
high visual fidelity to the full attention baseline.

HunyuanVideo model utilizes the Diffusion Transformer
(DiT) architecture (Peebles & Xie, 2023), which employs
non-causal attention. As existing baselines are not imple-
mented for non-causal attention, we compare XAttention
solely against the full attention baseline. Our evaluation
considers both quantitative metrics (PSNR, SSIM, LPIPS)
and qualitative visual comparisons. We replace all attention
computations in the DiT backbone with XAttention, and
measure performance against the full attention output using
the same random seed and prompt, averaging the results
across all 946 VBench prompts. The generated videos have
a resolution of 720×1280 pixels and 129 frames, with 50
denoising steps. We configure XAttention with a stride of
S = 8 and thresholds of τ = 0.9 and τ = 0.95.

Initially, applying XAttention from the very beginning of
the denoising process in the HunyuanVideo model led to

slight layout shifts in the output video compared to the full
attention baseline, resulting in lower quantitative scores. In-
spired by research on diffusion models (Xiao et al., 2023c;
Li et al., 2024) demonstrating that early denoising steps
are critical for determining content layout, we introduce
a ”warmup” phase. During this phase, we utilize full at-
tention for the first 5 denoising steps, before switching to
XAttention. Figure 3 illustrates the qualitative impact of
this warmup strategy.

Table 4 presents the quantitative results of applying XAtten-
tion to the HunyuanVideo model. Both configurations, with
thresholds of τ = 0.90 and τ = 0.95, achieve high fidelity
compared to videos generated with full attention. Specif-
ically, we observe a PSNR up to 23.5, SSIM up to 0.822,
and LPIPS down to 0.155, indicating a level of similarity
that is difficult for the human eye to discern. As expected, a
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Table 3. Comparison of different methods on QwenVL-2-7B in the
Video-MME video understanding task. XAttention is configured
with Stride S = 16 and Threshold τ = 0.9. XAttention outper-
forms Full Attention on long video tasks and achieves the best
average performance among all sparse attention methods.

Short (%) Medium (%) Long (%) Overall (%)

subs w/o w/ w/o w/ w/o w/ w/o w/

Full 72.1 78.1 63.9 69.4 55.1 60.2 63.7 69.2

MInference 71.7 77.6 62.3 67.9 55.2 59.8 63.1 68.4
FlexPrefill 71.4 77.4 62.6 68.3 53.8 57.3 62.6 67.7

XAttention 71.9 78.8 62.6 68.5 55.7 60.3 63.3 69.1

Table 4. Quantitative results of applying XAttention to the Hun-
yuanVideo model on the VBench benchmark, using a 5-step full-
attention warmup. Higher (τ ) yields better fidelity (higher PSNR,
higher SSIM, lower LPIPS) at the cost of slightly reduced sparsity
(higher density). Both (τ ) settings demonstrate high similarity to
the full attention baseline.

XAttn τ PSNR (↑) SSIM (↑) LPIPS (↓) Density (%, ↓)

0.90 21.5 0.767 0.215 34.4
0.95 23.5 0.822 0.155 45.5

trade-off exists: a higher threshold τ yields better results but
slightly lower sparsity. Nevertheless, both configurations
achieve over 50% sparsity.

Figure 3 provides a qualitative comparison of videos gen-
erated by the baseline (full attention) and XAttention with
different configurations using the first prompt in the VBench
set. Without the full attention warmup, the generated video,
while still high quality, exhibits minor layout differences
compared to the baseline. However, with the 5-step full
attention warmup, the video generated by XAttention be-
comes remarkably similar to the one generated by full at-
tention, preserving both high quality and intricate details.
These results demonstrate XAttention’s effectiveness in
video generation models, a promising and increasingly im-
portant application area for LCTMs.

3.3. Efficiency Results

We further analyze the efficiency of XAttention on tasks
with varying context lengths, comparing it against FlashAt-
tention, MInference, and FlexPrefill. We focus on the prefill
stage and measure the attention speedup achieved by XAt-
tention. We also break down the computation time into
pattern selection and sparse attention components, contrast-
ing it with other trainingless pattern selection methods.

Attention Acceleration Figure 4 illustrates the prefill
speedup of XAttention across token sequence lengths rang-

Table 5. Density on Different Context Lengths. Stride S = 8
achieves lower sparsity, and as context length increases, sparsity
generally increases (lower density).

SeqLen Stride 4 Stride 8 Stride 16

4k 51.73% 52.16% 55.38%
8k 40.96% 43.77% 43.55%

16k 27.43% 27.49% 28.91%
32k 21.09% 20.97% 27.93%
64k 9.43% 10.98% 11.32%
128k 6.20% 6.89% 7.32%

ing from 8k to 256k. We conduct these experiments with
strides of S = 16 and S = 8, and a threshold of τ = 0.9. On
shorter contexts, where attention density tends to be higher,
both MInference and FlexPrefill experience increased over-
head due to more extensive pattern selection. In contrast,
XAttention maintains its speedup advantage. Notably, for a
context length of 256k, XAttention achieves a maximum pre-
fill attention speedup of 13.5x and 9.8x with corresponding
densities of 7.32% and 6.89%, respectively (see Table 5).

End to End Speed Up We further evaluate the end-to-end
prefill acceleration of XAttention on the RULER benchmark
using Llama-3.1-8B-Instruct. Figure 5 illustrates the trade-
off results: The left plot shows how varying sparsity levels
affect the proportion of accuracy retained, while the right
plot visualizes the relationship between end-to-end speedup
and model accuracy. XAttention consistently surpasses
baseline methods across both stride = 8 and stride = 16
settings, demonstrating superior efficiency–accuracy trade-
offs.

Table 6. XAttention End-to-End Speedup on Llama-3.1-8B-
Instruct on RULER.

RULER 8k 16k 32k 64k 128k 256k

XAttn S=8 2.59 3.04 3.96 4.38 4.67 4.93
XAttn S=16 2.89 3.60 4.40 4.82 4.94 5.12

Attention Time Breakdown Figure 6 demonstrates that
XAttention’s antidiagonal pattern, coupled with its effi-
cient block selection algorithm, results in significantly faster
pattern selection compared to MInference and FlexPrefill,
which rely on vertical slash index search. Specifically, XAt-
tention’s pattern selection time is up to 24.9x and 5.9x faster,
respectively. Furthermore, the accuracy of the antidiagonal
pattern allows XAttention to achieve a lower attention den-
sity, leading to substantial speedups in the sparse attention
computation itself.
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XAttention consistently outperforms other sparse attention methods, achieving up to 13.5x speedup at 256K tokens.
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Figure 6. Breakdown of prefill attention time. Xattention signif-
icantly reduces pattern selection time while maintaining density,
achieving substantial acceleration compared to existing methods.

3.4. Ablation Study

To further analyze the components of XAttention, we con-
duct an ablation study, evaluating the effectiveness of the
Antidiagonal Pattern, Threshold Block Selection, and Mini-
mum Threshold Prediction.

Antidiagonal Pattern We investigate the importance of
the antidiagonal pattern by comparing it with random and
diagonal patterns as guidance for predicting attention block
sums. For the random pattern, we ensure that S elements
are selected within each S × S block, maintaining at least

Table 7. Comparison of different patterns. For the same computa-
tion, the antidiagonal achieves the lowest density and the highest
score.

Stride S = 8 Stride S = 16

Metric 32k Avg. Density 32k Avg. Density

Random 82.53 82.48 27.57% 82.35 80.94 31.36%
Diagonal 76.47 81.06 24.47% 58.26 79.63 25.31%
Antidiagonal 90.75 88.47 20.97% 90.64 88.08 27.93%

one token selection per row and column. Table 7 shows that
the antidiagonal pattern achieves the highest accuracy while
maintaining the lowest density across tasks, confirming its
superiority.

Stride Sizes We explore the impact of different stride
sizes, S. Larger strides lead to sparser sampled attention
maps and thus lower computational overhead. However,
excessively large strides can compromise the accuracy of
block selection. We compare strides of 4, 16, and 64 in
Table 8. Our results indicate that when the stride is too
long, it fails to accurately detect the previously identified
slash attention pattern. An overly sparse antidiagonal cannot
effectively distinguish slash patterns entering blocks from
different positions, leading to performance degradation.

Table 8. Comparison of different Strides. Excessively long strides
fail to distinguish slash patterns with different lengths, leading to
decreased accuracy.

Stride S = 4 S = 8 S = 16 S = 64

Avg 88.89 88.47 88.08 81.21
Density 21.09% 20.97% 27.93% 39.88%

Top-K vs. Top-Ratio vs. Dynamic Sparsity We evaluate
different block selection strategies: Top-K, Top-Ratio, and
our Threshold Block Selection (Dynamic Sparsity). For
a fair comparison, we set K = 8192 and Ratio = 27%
for S = 8, and K = 16384 and Ratio = 31% for S =
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16, targeting computational costs similar to our Threshold
Block Selection. Table 9 demonstrates that both Top-K
and Top-Ratio struggle to handle diverse and dynamic input
sequence lengths with comparable computation. In contrast,
our threshold-based approach, which retains blocks with
at least the threshold-level attention, achieves the optimal
balance between computation and accuracy.

Table 9. Comparison of different selection algorithms.
Stride S = 4 S = 8 S = 16

Metric Avg Density Avg Density Avg Density

Top K 84.96 17.40% 84.13 19.92% 83.11 30.15%
Ratio 85.96 21.00% 85.42 21.00% 84.24 27.00%
Threshold 88.89 21.09% 88.47 20.97% 88.08 27.93%

Minimum Threshold Prediction Finally, we compare
the performance of our Minimum Threshold Prediction
method against a fixed threshold of τ = 0.9 on the RULER
benchmark (Hsieh et al., 2024). Using Minimum Thresh-
old Prediction, we start with τ = 0.9 and set M = 1000,
allowing the dynamic programming (DP) algorithm to ex-
plore 1,000 optimal threshold combinations. This results in
a set of more refined thresholds, with an average value of
0.8. Table 10 demonstrates that the dynamically predicted
threshold achieves lower density and improved accuracy,
showcasing the effectiveness of this method.

Table 10. Minimum Threshold Prediction yields improvements in
both accuracy and sparsity, translating to faster inference.

Stride S = 4 S = 8 S = 16

Metric Avg Density Avg Density Avg Density

τ = 0.9 87.51 23.06% 84.96 26.13% 85.83 28.36%
Minimum τ 88.89 21.09% 88.47 20.97% 88.08 27.93%

4. Related Work
4.1. Long-Context Large Language Models

Progress in engineering and algorithms has extended the
context length capabilities of Large Language Models
(LLMs). Two primary approaches are: (1) compiling large
datasets of long texts for continuous pretraining or fine-
tuning (Peng et al., 2023; Chen et al., 2023), and (2) lever-
aging external memory or retrieval-augmented techniques
to enhance long-range context processing (Burtsev et al.,
2021; Xiao et al., 2024a; Wu et al., 2024). These advance-
ments enable LLMs to handle increasingly complex tasks
requiring reasoning over extended sequences.

4.2. Sparse Attention

The attention mechanism at the heart of LLMs exhibits
inherent sparsity, meaning many attention weights are neg-
ligible and can be pruned without significant performance
degradation (Child et al., 2019a). This sparsity becomes
more pronounced as context length increases, presenting
opportunities for optimizing inference speed. However, the
dynamic and input-dependent nature of this sparsity, which
varies across different inputs, attention heads, and even lay-
ers, poses a significant challenge for effective exploitation.

Methods like Sparse Transformer (Child et al., 2019b),
LongFormer (Beltagy et al., 2020), BigBird (Zaheer et al.,
2020) and Selective Attention (Leviathan et al., 2024) re-
duce complexity through local or block-based attention, but
often require retraining, limiting practicality. H2O (Zhang
et al., 2023) and TOVA (Oren et al., 2024) discard tokens
based on query patterns. StreamingLLM (Xiao et al., 2023b)
retains initial and recent tokens for consistent latency and
memory usage, enabling processing of sequences longer
than the pretraining length. Quest (Tang et al., 2024) uses
query-aware token criticality estimation to load only im-
portant KV cache pages, accelerating long-context LLM
decoding. Retrieval head-based methods (Wu et al., 2024;
Xiao et al., 2024b) accelerate model decoding by focusing
compute on crucial retrieval heads.

To accelerate the prefill stage, recent methods have em-
ployed sparse attention patterns. MInference (Jiang et al.,
2024) and FlexPrefill (Lai et al., 2025) both utilize pat-
tern selection algorithms to achieve significant speedups
during prefill. However, the overhead of these selection
algorithms remains a bottleneck. SeerAttention (Gao et al.,
2024) achieves high sparsity through pretraining and fine-
tuning of gate parameters, improving efficiency while main-
taining low perplexity. Yet, it requires a costly training pro-
cess and exhibits limited performance on downstream tasks.
Therefore, a training-free approach with a minimal-overhead
selection algorithm is needed to address the increasingly
long prefill times associated with growing context lengths.

4.3. LLM Inference Acceleration

Numerous techniques have been developed to accelerate
LLM inference. System-level solutions focus on optimiz-
ing the original attention computation to better leverage
hardware features. Notable examples include FlashAtten-
tion (Dao et al., 2022; Dao, 2023), which optimizes memory
access patterns for faster attention computation, and RingAt-
tention (Liu et al., 2023), which distributes the attention
computation across multiple devices. Other system-level
approaches include FlashDecoding (Hong et al., 2024) and
PagedAttention (Kwon et al., 2023), which focus on op-
timizing the computation process and KV cache manage-
ment, respectively. APE (Yang et al., 2025) aligns parallel
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and sequential attention for faster context-augmented gen-
eration. Model compression techniques, such as quantiza-
tion, are also widely employed to reduce model size and
memory footprint, leading to faster inference. Examples
include SmoothQuant (Xiao et al., 2023a), AWQ (Lin et al.,
2024), and QServe (Lin* et al., 2024), which quantize model
weights and/or activations to lower bit-widths, thereby re-
ducing memory bandwidth requirements and accelerating
computation.

4.4. Recent Works

Recently, several outstanding works have focused on ad-
vancing sparse attention. Sparse Video Gen (Xi et al., 2025)
accelerates video generation models by leveraging spatial
and temporal heads while preserving generation quality.
NSA (Yuan et al., 2025) introduces a natively trainable
sparse attention mechanism for efficient long-context mod-
eling. MoBA (Lu et al., 2025) addresses the quadratic com-
plexity of traditional attention mechanisms without relying
on strongly biased structures such as sink or window at-
tention by adopting a Mixture of Experts approach. Fast
Video Generation (Zhang et al., 2025) reduces computation
demands through Sliding Tile Attention, which employs
localized spatial-temporal windows instead of full attention
computation. Our work aligns with these efforts to democ-
ratize AI by reducing computational costs and enabling
efficient deployment.

5. Conclusion
We present XAttention, a novel plug-and-play framework
for accelerating long-context inference in Transformer mod-
els. By leveraging the insight that antidiagonal sums in
the attention matrix serve as a robust proxy for block im-
portance, XAttention efficiently identifies and prunes non-
essential blocks, achieving substantial computational sav-
ings without sacrificing accuracy. Our evaluations on chal-
lenging long-context benchmarks in natural language un-
derstanding (RULER, LongBench), video understanding
(VideoMME), and video generation (VBench) demonstrate
that XAttention achieves up to 13.5x speedup in attention
computation while maintaining performance comparable to
full attention. These results highlight XAttention’s ability
to unlock the practical potential of block sparse attention,
paving the way for efficient and scalable deployment of
Long-Context Transformer Models in real-world applica-
tions.

Impact Statement
This paper introduces XAttention, a novel approach for ac-
celerating inference in Long-Context Transformer Models
(LCTMs). While the primary goal of this work is to advance

the efficiency of machine learning, particularly in the do-
main of natural language and video processing, potential
societal consequences warrant consideration.

The increased efficiency afforded by XAttention could en-
able the deployment of LCTMs in resource-constrained
environments, broadening access to advanced AI technolo-
gies. This could have positive implications for fields like
education, healthcare, and accessibility, where LCTMs can
be used for tasks such as personalized tutoring, medical
diagnosis support, and real-time language translation.

However, the increased accessibility and efficiency of
LCTMs also raise potential concerns. These include the
potential for misuse in generating misleading or harmful
content, exacerbating existing biases in training data, and the
potential impact on employment in certain sectors. Further-
more, the ability to process and understand longer contexts
could raise privacy concerns if not handled responsibly.

We believe that the benefits of more efficient LCTMs out-
weigh the potential risks, particularly when developed and
deployed responsibly. We encourage researchers and practi-
tioners to consider these ethical implications and to develop
safeguards against potential misuse. Further research into
the societal impact of efficient LCTMs is crucial for ensur-
ing their beneficial deployment. We hope that XAttention
contributes to a future where powerful AI technologies are
both accessible and used responsibly for the betterment of
society.
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Table 11. Quantitative results of applying XAttention to the Wan2.1 model on the VBench benchmark, using a 5-step full-attention
warmup. Higher (τ ) yields better fidelity (higher PSNR, higher SSIM, lower LPIPS) at the cost of slightly reduced sparsity (higher
density). Both (τ ) settings demonstrate high similarity to the full attention baseline.

XAttn τ PSNR (↑) SSIM (↑) LPIPS (↓) Density (%, ↓)

0.90 21.2 0.745 0.231 39.2
0.95 22.7 0.819 0.129 33.6

A. Video Generation Results on Wan 2.1
We also evaluated XAttention on the Wan2.1 model. The resulting accuracy and sparsity metrics are as shown in Table 11.

B. Various Language Model results on Ruler

Table 12. Generalization of XAttention across various model architectures, including Mistral Nemo 12B, Phi-3.5 Mini 3.8B, and Qwen2.5
7B. The results confirm XAttention’s sustained effectiveness.

Model Method Average (4k–128k) / Delta

Mistral Nemo 12B

Full 67.97 / –
MInference 64.49 / -3.48
FlexPrefill 64.61 / -3.36
XAttn S=4 67.92 / -0.05
XAttn S=16 67.47 / -0.50

Phi 3.5 Mini 3.8B

Full 84.68 / –
MInference 81.89 / -2.79
FlexPrefill 82.83 / -1.85
XAttn S=4 84.86 / +0.18
XAttn S=16 83.82 / -0.86

Qwen2.5 7B

Full 77.84 / –
MInference 74.02 / -3.82
FlexPrefill 75.10 / -2.74
XAttn S=4 77.75 / -0.09
XAttn S=16 77.21 / -0.63
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