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Abstract
Physics-informed neural network models of indus-
trial systems often fail to provide accurate predic-
tions consistently over time because of temporal
variations in raw material characteristics, plant
operating and environmental conditions, and as-
set health. This necessitates updating of model
parameters, which, in turn, requires exploration
of the parameter space and identification of ac-
curate values of model parameters regularly to
enhance the reliability of models. To address this
need, we present a sequential training and tuning
methodology consisting of solving both forward
and inverse problems of PINNs and parameter
discovery via optimization. This methodology
is tested for modeling of heat transfer in a ro-
tary kiln, a common equipment in many process
industries such as chemicals, steel, cement and
materials. The proposed approach not only un-
covers accurate model parameters but also helps
in building a robust PINN model. Model predic-
tions using parameters obtained through the pro-
posed approach are in fairly good agreement with
data from an industrial rotary kiln. This method
can update model parameters as needed, offering
more reliable and accurate predictions compared
to traditional approaches.

1. Introduction
Rotary kiln, a cylindrical vessel rotating along its axis, is
a common equipment in several process industries such as
chemicals, pulp and paper, cement, minerals and metals,
and food processing. It is essentially a multi-phase reactor
in which reactions between gases and solids occur at high
temperatures and result in the generation of products. One
of the main challenges faced in the operation of these kilns
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is the formation of rings inside the kiln due to deposition
of materials at certain locations. It happens due to various
physico-chemical phenomena that take place inside the kiln.
Due to this, the kiln production rate decreases and the qual-
ity of product deteriorates because the effectiveness of heat
transfer between the materials diminishes(Runkana et al.,
2010). In industrial systems like a rotary kiln, obtaining
measurements is a complex task, and when available, they
often tend to be sparse(Cai et al., 2021). However, health
of the equipment changes with time due to material degra-
dation and maintenance activities. Moreover, raw mate-
rial characteristics, environmental conditions, and operating
conditions of industrial processes also change significantly
over time(Zagorowska et al., 2020). Because of these rea-
sons, accuracy of physics-based models of rotary kilns that
are commonly used for process simulation, analysis and
optimization deteriorates and necessitates updating of ap-
propriate model parameters such as heat transfer coefficients
and reaction rate constants.

Physics-Informed Neural Networks (PINNs) have emerged
as a promising alternative for solving physics-based models
represented by nonlinear partial differential equations(Raissi
et al., 2019). Recent developments emphasize the util-
ity of PINNs for industrial systems for e.g. monitoring
the health of diesel engines(Nath et al., 2023) and air pre-
heaters(Jadhav et al., 2022). As mentioned above, param-
eters in model for industrial processes change with time.
Since PINNs are incorporate physics-based models, such
parameter changes can lead to deterioration of prediction
accuracy of PINNs. Therefore, there is a need for a frame-
work that can identify the parameters to be modified and
update the parameters during training of the PINNs. Accord-
ingly, the objective of this work is to develop a sequential
training and tuning framework to tackle the aforementioned
challenge for updating of models of industrial systems. We
propose a sequential training and tuning methodology in
which forward and inverse problems of the PINN are solved
simultaneously, backed by parameter discovery through op-
timization. It was applied for modeling of heat transfer in
a rotary kiln with an inert bed of particles, represented by
a set of differential algebraic equations (DAEs). Addition-
ally, the PINN was trained using conventional methods to
demonstrate the efficacy of the proposed framework.
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2. Methodology
2.1. Governing Differential and Algebraic Equations

A Pilot Rotary Kiln is being considered for this research
work (Barr, 1986). Heat transfer between gases and solids is
the main driving force for the reactions to occur in the kiln
and it happens through multiple modes, namely, convection,
conduction and radiation as shown in Figure 1. For simplifi-
cation, the process is assumed to be at a steady-state. The
energy balance equations for the gas and the solid phases are
represented by set of ordinary differential equations (ODEs).
Under steady-state conditions, the internal kiln wall tem-
perature (Tw) and the external shell temperature (Tsh) are
implicitly estimated through an energy balance around the
kiln wall and the shell, represented by a set of algebraic
equations (AEs). This leads to the formulation of a set of
algebraic equations. Combining these two sets of equations
results in a set of DAEs for modeling heat transfer in a rotary
kiln, given by Equations (1)-(4) below.

Figure 1. Schematic of a rotary kiln with various heat fluxes
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Here, Ts and Tg are temperatures of solid and gas(K), ṁs

and ṁg are the mass flow rates of solid and gas (kg/s),
and Cp,s and Cp,g are specific heats capacities of the solid
and gas phase(J/kg.K),respectively. Q represents the heat
flux per unit length of the kiln, with superscripts indicating
the mode of heat transfer (convective(cv), radiative(rd), or
conductive(cd)) and subscripts denoting the phases involved
in the heat exchange. Here, Qcv

g→s is rate of heat transfer
by convection between gas and solid, Qcd

w→s is rate of heat
transfer by conduction between wall and solid, Qrd

g→s is rate
of heat transfer by radiation between gas and solid, Qrd

w→s

is rate of heat transfer by radiation between wall and solid,
Qcv

g→w is rate of heat transfer by convection between the
gas and the wall, Qw→ext is net heat transfer between wall
and external environment, and Qw→sh is net heat transfer
between the wall and the shell. Additional information on
calculating heat fluxes can be found in the appendix.

2.2. Physics-Informed Neural Network

2.2.1. ARCHITECTURE OF PHYSICS-INFORMED NEURAL
NETWORK

The PINN framework for the rotary kiln is a fully connected
deep neural network as illustrated in the Figure 2, where
the input coordinate x yields the output T (x), consisting of
solid, gas, wall, and shell temperatures ([Ts, Tg, Tw, Tsh]).
The neural network comprises of multiple hidden layers, and
propagation through each layer is governed by the following
equation:

Y = σ(WX + b) (5)

Here, X and Y are input and output of the neural network,
respectively. W and b are trainable weights and bias, re-
spectively. σ(·) is the activation function. Optimization
is carried out to minimize both the losses associated with
both the DAEs and the data. In this context, the data loss is
computed using the dataset compiled by(Barr et al., 1989),
available in the supplementary material by (Hanein et al.,
2017) which includes sparse measurements of gas, solid,
and wall temperatures for 9 experiments. The loss functions
are expressed as

LTotal = wDAELDAE + wdataLdata (6)

Here, LDAE represents residual of the governing DAEs
system, and Ldata signifies the data loss calculated for
sparse measurements. wDAE denotes weight attributed to
the DAEs loss, while wdata denotes weight assigned to data
loss. The loss associated with boundary conditions is also
incorporated into the data loss term.

Furthermore, we introduce two additional losses due to
energy constraints , denoted as F 5

f and F 6
f , by leverag-

ing ODEs and AEs. This is accomplished by subtracting
Equation (1) from Equation (2) and, likewise, subtracting
Equation (4) from Equation (3).The primary objective of
incorporating these two energy constraints is to enhance
convergence of the PINN. The expressions below are used
to calculate the data and the DAEs losses:

Ldata =
1

Ns

Ns∑
i=1

(
Tsi − T̂si

)2

+
1

Ng

Ng∑
i=1

(
Tgi − T̂gi

)2

+
1

Nw

Nw∑
i=1

(
Twi
− T̂wi

)2

(7)
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Figure 2. PINN Architecture
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The terms Nd, Ns, Ng, and Nw correspond to number of
collocation points, count of locations for solid temperature,
gas temperature, and wall temperature, respectively. Details
of the neural network and related terms are provided in Ta-
ble 1. Automatic differentiation is employed for evaluating
the gradients of ODEs(Baydin et al., 2018).

2.2.2. CONVENTIONAL TRAINING

In the conventional training approach, PINN is trained by
simultaneously minimizing all loss functions. This involves
optimizing the network using both the data loss and the
physics-based loss derived from the governing differential

Table 1. Neural Network Configuration
Number of layers 4

Layer wise
Neuron configuration [64,64,32,32]

Activation Function tanh
Optimizer Adam

Collocation Points 1000
Loss Metric Mean Sum Squared

System Discription ubuntu:20.04, 20 GB RAM

equations. The PINN for rotary kiln is trained using the con-
ventional training approach for the purpose of comparison
with the approach proposed in this work. Initially, the PINN
is trained using the available sparse measurements. This
preliminary training helps in initialization of the network
weights. Following this, the PINN is further trained using
both the data loss and physics (DAEs) loss, with untuned
parameters of the DAEs system.

2.2.3. SEQUENTIAL TRAINING AND TUNING STRATEGY

Addressing the challenge of solving industrial systems
requires exploring and discovering adjusted parameters
to enhance model reliability. If sparse measurements of
at least one temperature are available, we propose the
following systematic step-by-step training and tuning
strategy to tackle this challenge (Algorithm1):
Step 1 - Exclusive Training on Data Loss : In the first step,
we utilize the available sparse measurements for at least one
temperature. The PINN is exclusively trained using these
sparse measurements, focusing solely on minimizing data
loss with the DAEs loss weight set to zero. The primary
objective of this step is to use the weights obtained from
this model to initialize the next step, thereby accelerating
the convergence process.

Step 2 - Training with Energy Constraints and Data

3



Accepted at the ICML 2024 Workshop on AI for Science

Loss : It is assumed that sparse measurements for at least
one temperature are available. Solving all four energy con-
straints simultaneously using these measurements provides
rough estimates for the remaining temperatures. Hence, in
this step, the PINN is trained by minimizing both data loss
and DAEs loss. However, Only the loss components of all
four energy constraints (F3

f , F4
f , F5

f , F6
f ) are activated as

only energy constraints need to be solved. This training step
generates rough predictions for all four temperatures. The
accuracy of these predictions improves as sparse measure-
ments for more temperatures become available.

Step 3 - Parameter Discovery via Optimization : In
this step, the trained PINN model from step 2 predicts
all four temperatures, and based on these predictions,
we compute the DAEs loss for each equation. If the
data loss is significantly lower than the DAEs loss, it
indicates a close match between our predictions and the
actual data, despite a high value of physics loss. In such
cases, any remaining discrepancies in the DAEs system
can likely be traced back to parameters that need tuning.
Hence, we employ Particle Swarm Optimization (PSO) to
fine-tune the DAE system parameters through an inverse
problem approach, aiming to minimize the overall DAE
loss. The optimization process considers a range of ±5%
around the available parameter values as bounds. This
step discovers the modified parameters of the physics model.

Step 4 - Comprehensive Training : In this final step, we
utilize the modified parameters obtained from the previous
optimization step. We train the model by simultaneously
minimizing both data loss and DAE loss, activating all com-
ponents of the DAE loss in this training phase.

Algorithm 1 Sequential Training and Tuning Strategy
Given: Measurements of one or more temperatures

P ← DAE Model Parameter
Initialize: W0, b0 ← Parameter of the neural network
Step 1: Assign wDAE = 0, wdata = 1

Train the neural network
Update W1, b1 ←W0, b0

Step 2: Assign wDAE = 1, wdata = 1,
Activated DAE loss Component: F 3

f to F 6
f

Train the neural network
Update W2, b2 ←W1, b1

Step 3: Predict T ← feedforward(W2, b2)
Calculate LDAE

If LDAE >> Ldata then
Fine Tune P such that LDAE is minimum

Step 4: Assign wDAE = 1, wdata = 1,
Activated DAE loss Component : All
Train the neural network
Update W3, b3 ←W2, b2

3. Result and Discussion
To demonstrate the effectiveness of the sequential training
and tuning strategy, PINN was trained using both the con-
ventional simultaneous training method and the sequential
training and tuning approach.

• Conventional Training: Sparse measurements of gas,
solid, and wall temperatures for nine different experi-
ments are available for this pilot rotary kiln, which is
well-documented in (Hanein et al., 2017). Additional
details of the experiment are presented in Table 5 in the
Appendix. For Experiment 3, the PINN was trained
using the conventional simultaneous training method,
in which both data loss and DAE loss are minimized
simultaneously. The parameters of the physics model
were taken from the literature (Hanein et al., 2017) and
are listed in Table 2 under the untuned parameter col-
umn. To train the PINN for the rotary kiln, the model
was initially trained for 30,000 epochs using only the
sparse measurements available for gas, solid, and wall
temperatures. Following this, the PINN undergoes fur-
ther training for 150,000 epochs, utilizing all data and
all components of DAEs loss. The training history
of the PINN model using this conventional training
method is shown in Figure 3. The model’s predictions
are compared with actual measurements in Figure 4.

The loss value for each loss function is documented in
Table 3. While the loss value for DAEs seems accept-
able, the data loss is notably high, suggesting that the
PINN may not have converged properly. The model
provides moderate prediction results, as seen Figure
4. Since shell temperature measurements are not avail-
able, we can only validate them qualitatively. The shell
temperatures should be the lower than all other tem-
peratures and should increase from the feed end (0 m)
to the burner end (5.5 m) as the kiln temperature in-
creases in that direction. This trend is also visible in the
plot, indicating that the shell temperature prediction is
physically consistent.

• Sequential Training and Tuning: PINN for the ro-
tary kiln was trained for experiment 3 using sequential
training and tuning strategy. The outcomes of each step
in the sequential training and tuning strategy are pre-
sented here. It’s important to note that all plots shown
here correspond specifically to experiment number 3.
In the first step, the model undergoes exclusive training
using data loss for 30,000 epochs, as detailed in Sec-
tion 2. The predictions from this model are depicted
in Figure 5. The model accurately predicts solid and
gas temperatures. However, due to the lack of avail-
able data for shell temperature, its predictions exhibit
random behavior in this regard, lacking theoretical
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Figure 3. Conventional Training : Loss values w.r.t Epochs

coherence. Furthermore, the prediction of wall temper-
ature at the feedend is inaccurate due to the absence of
measurements.

In the second step, the model undergoes 30,000 epochs
of training, incorporating both energy constraints and
data loss. The resulting predictions are shown in Figure
6. The model predicts all four temperatures accurately.
Shell temperature increases towards the burner end, as
expected due to the higher temperature at that end com-
pared to the feed end. Given its continuous contact with
ambient conditions, shell temperature is anticipated to
be the lowest. This trend aligns with expectations and
provides qualitative validation since measurements of
shell temperature are unavailable. The individual loss
values for each component are detailed in Table 3. It’s
evident that the reported DAEs loss is significantly
higher than the data loss, yet it matches well with ex-
perimental data. This clearly indicates the necessity
for parameter tuning. We identified the parameters
that needed fine-tuning and discovered the modified
parameters, which are detailed in Table 2.

Next, the PINN was trained for 150,000 epochs using
both losses. The training history for step 4 is depicted
in Figure 7. Comparisons between gas, solid, and wall
temperature predictions from the PINN model and the
experimental data are shown in Figure 8, indicating rea-
sonably accurate predictions. Additionally, the trend in
shell temperature prediction aligns with expectations.
Therefore, the PINN model provides reasonably ac-
curate predictions for all four temperatures. Detailed
breakdown of the loss of each component of the DAE
system and data at each step is shown in Table 3. The
loss values for both DAEs and data are notably low
after step 4, indicating that the PINN has converged
effectively.

The comparison of loss values after conventional training
and sequential training and tuning is presented in Table 2.
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Figure 4. Conventional Training: Comparison of Measured and
Predicted Temperatures
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Figure 5. Sequential Training - Step 1 Exclusive Trained on Data
Loss Model: Comparison of Measured and Predicted Temperatures
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Figure 6. Sequential Training - Step 2 Trained with Energy Con-
straint and Data Loss Model: Comparison of Measured and Pre-
dicted Temperatures
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Table 2. Untuned and Fine-tuned value of Parameters (in bold faced)

Parameter Name Untuned Value Fine Tuned Value

Thermal Conductivity
of Air 0.0002 ∗ T 0.8218 0.000138 ∗ T 0.8218

Emissivity of Air 101.9/Tg 101.97/Tg

Emissivity of Solid 0.9 0.81

Emissivity of Wall 0.85 0.935

Emissivity of Shell 0.8 0.95

Air volumetric
expansion coefficient 987.24 ∗ T−0.996 978.16 ∗ T−0.995

Density of Air 352.94 ∗ T−0.1 359.16 ∗ T−0.94

Dynamic Viscosity
of Air

(−10 ∗ 10−12)T 2 + (5 ∗ 10−8)T
+(4 ∗ 10−6)

(−8.6 ∗ 10−12)T 2 + (5.99 ∗ 10−8)T
+(3.488 ∗ 10−6)

Quartz Heat Capacity
Different set of coefficients for

different temperature ranges(Haas Jr et al., 1981)
(−7.77338 ∗ 102/Ts) + 83.2101

+(1.09962 ∗ 10−2T 2
s /2)
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Figure 7. Sequential Training - Step 4 Comprehensive Training :
Loss values w.r.t Epochs
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Figure 8. Sequential Training - Step 4 Comprehensive Trained
Model : Comparison of Measured and Predicted Temperatures

Table 3. MSE loss values of the each component after training
Loss

component
Conventional

Training
Sequential Training and Tuning

Step 1 Step 2 Step 4

D
A

E
lo

ss

F1
f 98.33 2.31×106 7.85× 105 1.24

F2
f 15.08 6.24×106 7.85× 105 0.47

F3
f 13.32 8.63× 106 10.68 2.67

F4
f 13.49 1.09× 107 10.46 1.25

F5
f 7.01 1.44× 107 2.71 0.78

F6
f 47.89 1.54× 107 9.29 5.21

Total 195.12 5.80× 107 1.57× 106 11.63

Data loss 1709.76 0.8262 351.53 503.57

Table 4. Comparison of Sequential PINN model with Conventional
PINN model and Numerical Simulation across all nine experiments

Maximum
error (K)

Mean
error (K)

Ts Tg Tw Ts Tg Tw

Sequential
PINN 44.16 47.84 39.38 17.79 18.59 13.74

Conventional
PINN 279.79 213.09 249.86 172.15 132.09 155.44

Numerical
Simulation

(Hanein et al., 2017)
37.8 54.1 39.6 13.9 15.5 13.5
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The DAE loss from conventional training is almost ten times
higher than that from sequential training and tuning. Addi-
tionally, the data loss is significantly higher for conventional
training compared to sequential training and tuning. This
observation distinctly reveals that the sequential training and
tuning strategy provides enhanced convergence compared
to the conventional training method. Our method fine-tunes
the parameters and effectively enhances the convergence of
the PINN for the rotary kiln.

In a similar vein, dedicated PINN models for the remain-
ing eight experiments are developed using both training
approaches. A summary of these PINN models is presented
in Table 4, which includes statistics on the deviation of the
PINN’s temperature predictions from the experimental re-
sults across all nine experiments, while comparison of the
Sequential PINN model and the Conventional PINN model
for individual experiments is presented in Table 6 in the
Appendix. Additionally, these results are compared with
numerical simulations documented in the literature(Hanein
et al., 2017). The maximum error denotes the largest differ-
ence between model predictions and experimental measure-
ments, while the mean error represents the average differ-
ence between predictions and experimental measurements
across all nine experiments. Upon comparison, it becomes
evident that PINN trained with conventional training exhibit
approximately 10 times higher mean error than the PINN
trained with the sequential training and tuning method. Ad-
ditionally, the maximum error is 5 times greater in conven-
tional training than in sequential training. This clearly indi-
cates that our method outperforms the conventional training
method. Therefore, our proposed sequential training and
tuning method results in more accurate and reliable PINN
models than conventional training. Furthermore, the ac-
curacy of these PINN models is closely aligned with the
simulation results from the rigorous physics-based model.
It is well-known that the inference time of PINN is signifi-
cantly shorter than that of numerical solutions; hence, PINN
developed using our proposed method can be employed for
real-time predictions.

4. Conclusions
Models for industrial processes have to be updated regu-
larly to account for the time varying behavior of quality
of raw materials, health of equipment, environment and
plant operating conditions. A sequential training and tuning
methodology was proposed to address the need for discov-
ering and fine tuning of model parameters in a PINN. This
methodology was applied for modeling of heat transfer in a
rotary kiln, commonly employed in diverse process manu-
facturing industrie. This methodology identifies modified
parameters of the system and develops a PINN with finely
tuned parameters. The comparative analysis strongly em-

phasizes that our proposed method offers more reliable,
accurate predictions, and improves convergence compared
to the conventional training method. Moreover, predictions
of PINN obtained through the proposed methodology are
in reasonable agreement with data from a pilot scale rotary
kiln. Since the inference time for a PINN model is quite
low compared to simulation using a rigorous physics-based
model, the proposed approach is expected to be suitable for
real-time applications in industrial environments.
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A. Description of Rotary Kiln
The rotary kiln is a cylindrical vessel that rotates around its axial position. Solid material is introduced at the upper end,
while hot gas is fed from the lower end. The solid material undergoes heating as the gas moves from the lower to the upper
end. In this pilot rotary kiln, granular material is introduced from one end, while natural gas firing is executed from the
opposite end through burner arrangements as shown in Figure 1. The rotary kiln has a length of 5.5 meters and an internal
diameter of 401 mm. The refractory lining, with a thickness of 93 mm, has a thermal conductivity of 0.4 W/m.K. The kiln
shell was constructed using steel with a thickness of 6 mm, and its thermal conductivity is taken to be 45.2 W/m.K. The
following assumptions are mode for developing the model(Hanein et al., 2017):

1. The bed of particles within the kiln is assumed to be unreactive and consists of silica

2. Chemical compositions of solids and gas phases are considered to remain constant along the length of the kiln, as there
is no mass change between phases

3. Pressure drop is neglected along the length of the kiln, resulting in a constant gas velocity

4. A relatively constant bed height is assumed along the length of the kiln

5. The effect of axial temperature gradient driving axial conduction is ignored in the analysis

A.1. Heat Flux Computation: Analytical Evaluation

The simplified calculation for heat fluxes, crucial for evaluating ordinary differential and algebraic equations, is presented
here. This particular computation is explained in more detail in the work by (Hanein et al., 2017).
Conduction (Qcd

w→s)
Heat transfer through conduction mode occurs only between the solid and the wall. This heat flux between the solid bed and
the wall can be calculated using the following expression.

Qcd
w→s = hcd

cw−sPcw−s(Tw − Ts)

where hcd
cw−s is heat transfer coefficient and Pcw−s is perimeter of wall in contact with solid. The detailed explanation of

calculating the heat transfer coefficient can be found((Lehmberg et al., 1977; Barr et al., 1989)).

Convection (Qcv
g→s,Q

cv
g→w)

In a rotary kiln, convective heat transfer takes place between the gas and the solid material, as well as between the gas
and the kiln wall. The corresponding heat fluxes for these convection phenomena can be computed using the following
expressions

Qcv
g→s = hg−sPg−s(Tg − Ts)

Qcv
g→w = hg−wPg−w(Tg − Tw)

Here, hg−s represents convective heat transfer coefficient between gas and solid, and hg−w represents the convective heat
transfer coefficient between gas and wall (Tscheng, 1978).Pg−s and Pg−w denote perimeters of the exposed bed and exposed
wall, respectively.

Radiation (Qrd
g→s,Q

rd
g→w,Qrd

w→s)
Radiative heat transfer takes place among gas to solid, gas to wall, and wall to solid within the rotary kiln. The corresponding
expressions are as follows(Hottel & Sarofim, 1967):

Qrd
g→s = σ(εs + 1)Pg−s

εgT
4
g − αsT

4
s

2

Qrd
g→w = σ(εw + 1)Pg−w

εgT
4
g − αwT

4
w

2

Qrd
w→s =

σ(T 4
w − T 4

s )

(1− εw)/εwPs−w + 1/Fs−wPw−s + (1− εs)/εsPs−w
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Table 5. Operating conditions of the Barr pilot kiln experiments(Barr et al., 1989)

Experiment number Fuel flow rate (l/s) Air flow rate(kg/s) Solid mass flow rate(kg/s) Particle diameter (m)

1 0.83 0.03454 0.01722 0.0025

2 1.02 0.06995 0.01722 0.0025

3 1.42 0.07105 0.01722 0.0025

4 1.97 0.07399 0.01722 0.0025

5 0.68 0.03577 0.01611 0.00058

6 0.9 0.0532875 0.01722 0.00058

7 1.04 0.075215 0.0175 0.00058

8 2 0.07215 0.01778 0.00058

9 2.53 0.075705 0.01805 0.00058

Here, σ is the Stefan-Boltzmann constant, whereas εs and εw stand for the emissivities of the solid and the wall, respectively.
Similarly, αs and αw represent the absorptivities of the solid and the wall, respectively. Fs− w represents the bed to wall
form factor, and Pw − s is perimeter of the exposed wall.

Heat loss from the kiln(Qw→ext,Qw→sh)
The heat loss from the kiln can be computed using the following equations(Hanein et al., 2017):

Qw→ext =
Tw − Text

RTotal

Qw→sh =
Tw − Tsh∑

j R
cd
wall,j

where, RTotal represents the cumulative resistance resulting from conduction across the kiln layers (Rcdwall, j), external
convective resistance from the outer shell to the surroundings (Rcvsh→ ext), and external radiative resistance from the
outer shell to the surroundings (Rrd

sh→ext), as follows:

RTotal =
∑
j

Rcd
wall,j +Rcv

sh→ext +Rrd
sh→ext

More details for calculating individual resistances can be found in (Hanein et al., 2017).
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Table 6. Experiments wise comparison of Sequential PINN model with Conventional PINN model

Maximum error(K) Mean error(K)
Experiment Number

Ts Tg Tw Ts Tg Tw

Sequential PINN 20.04 37.13 24.47 12.02 19.11 10.14
1 Conventional PINN 158.02 201.11 145.01 142.68 110.04 129.29

Sequential PINN 22.29 19.57 34.09 14.07 9.61 13.36
2 Conventional PINN 145.02 130.18 137.66 141.87 110.25 126.46

Sequential PINN 12.43 22.15 39.38 5.72 7.27 15.93
3 Conventional PINN 168.27 189.33 166.79 164.80 147.76 153.98

Sequential PINN 22.84 31.64 24.64 14.78 15.80 15.74
4 Conventional PINN 213.21 211.28 212.11 201.93 168.08 201.58

Sequential PINN 44.16 36.42 22.55 25.66 27.33 7.53
5 Conventional PINN 163.86 182.64 126.14 150.39 100.25 117.19

Sequential PINN 41.90 47.84 18.27 22.38 27.15 9.09
6 Conventional PINN 162.43 198.89 135.51 152.15 115.55 125.63

Sequential PINN 40.61 37.34 26.19 22.22 17.72 11.92
7 Conventional PINN 159.84 125.23 140.47 143.39 98.31 123.14

Sequential PINN 80.84 46.25 41.72 30.95 28.49 26.04
8 Conventional PINN 221.00 178.18 214.59 210.68 150.63 201.65

Sequential PINN 69.21 36.54 46.96 25.70 26.26 22.49
9 Conventional PINN 279.78 213.01 249.86 241.38 187.94 220.06
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