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Abstract

Inducing-point-based sparse variational Gaussian processes have become the stan-
dard workhorse for scaling up GP models. Recent advances show that these meth-
ods can be improved by introducing a diagonal scaling matrix to the conditional
posterior density given the inducing points. This paper first considers an extension
that employs a block-diagonal structure for the scaling matrix, provably tightening
the variational lower bound. We then revisit the unifying framework of sparse
GPs based on Power Expectation Propagation (PEP) and show that it can leverage
and benefit from the new structured approximate posteriors. Through extensive
regression experiments, we show that the proposed block-diagonal approximation
consistently performs similarly to or better than existing diagonal approximations
while maintaining comparable computational costs. Furthermore, the new PEP
framework with structured posteriors provides competitive performance across
various power hyperparameter settings, offering practitioners flexible alternatives
to standard variational approaches.

1 Introduction

Gaussian processes (GPs) provide a principled framework for modelling functions that offer calibrated
uncertainty and safeguard against overfitting, among many other benefits (see e.g., Rasmussen &
Williams|, 2006). However, their computational requirement, cubic in the number of training data
N, is prohibitive for many practical applications. This bottleneck motivates the development of a
plethora of scalable approximation methods (Quifionero-Candela & Rasmussen, |2005; [Liu et al.,
2020), with sparse variational methods using inducing points arguably the most popular (Titsias|
2009; Hensman et al., [2013)).

The key idea behind sparse variational GPs (SVGPs) is to approximate the posterior process using
a small set of M < N inducing points, reducing the computational complexity to O(N M?) or
O(M?3) in the batch and stochastic settings, respectively. A key assumption in the standard SVGP
approximation is the prior distribution of the non-inducing function values conditioned on the
inducing points remains unchanged in the approximate posterior, that is, ¢( fxy|u) = p(fzu|w).
Titsias| (2025); Bui et al.| (2025)) recently showed that relaxing this assumption yields provably tighter
variational bounds. In particular, the key innovation is slightly adjusting covariance of g( fxq,|u)
by a diagonal scaling matrix M, leading to improved predictive performance while maintaining
computational tractability. This approach has the original SVGP approach as a special case when
M = I. Such improvement begs the question: can we achieve even better approximations by
considering more expressive structures for M while preserving efficient computation?

To this end, we propose using block-diagonal structures for M and show that this choice leads to
provably tighter variational bounds compared to existing diagonal approximations while maintaining
the same computational complexity and ease of implementation. We then show that these structured
approximations can also help with other inference schemes beyond variational inference. Specifically,
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certain structural choices for M lead to tractable Power Expectation Propagation (PEP) updates and
approximate log marginal likelihood. This greatly extends and improves over the unifying framework
of |Bui et al.|(2017).

The remainder of this paper is organised as follows. Section [2]reviews sparse variational GPs, recent
advances in structured approximations, and the PEP framework for sparse GPs. Section [3|presents the
proposed block-diagonal variational approximation. Section [d]extends the existing PEP framework
with various structured posteriors. Section [5]evaluates the proposed methods on a suite of tasks. We
then discuss related work in section[land conclude with a discussion of future directions in section[7]

2 Background

We first provide a summary of inducing-point sparse variational Gaussian processes (SVGP; Tit{
sias, [2009; Hensman et al., [2013} |2015; [Matthews et al.| 2016)), a recently proposed tighter bound
(Bui et al.l |2025; [Titsias|, [2025)), and a power-EP based approach (Bui et al.l 2017). Consider the
supervised learning setting with an unknown input-output mapping f, a GP prior over this function
p(flv) = GP(f;0,k,), and a pointwise likelihood p(y|f,X,w) = [], p(yn|f(x,),w), where
X € RV*P and y € RY are the training inputs and outputs, k- is the covariance function governed
by hyperparameters 7, and w is the likelihood hyperparameters. In what follows, we will use 6 to
denote these hyperparameters and, when clear, drop the dependence on 6 for brevity. Inference and
learning in this model are computationally challenging for large-scale datasets due to the O(N?)
complexity; thus, efficient approximations are required. Sparse variational methods parameterise
an approximate posterior based on M inducing points, {z € RM*P 4 € RM}, with M < N, as
follows,

a(f) = p(frr.ulf, w)a(Flu)g(w), (1)
where f = [f(x1), -, f(xn)]. Note that the factorisation here mirrors that in the prlor p(f) =
P(f2fulf,wp(flu)p(u), where p(u) = N(u;0,Ku), p(flu) = N(f;KuKiau, Da),

Dg = Kg — Qg, Qg = Kqul_ullKuﬁ Kg = k(X,X), Ks = ]{}(X Z) and Ky, = k‘(Z Z).
Note that we use f to denote the function and f to denote the function values at the training inputs.
The resulting variational lower bound to the log marginal likelihood is

Fo = ~KLlg(w)lp(w)] - [ alwKLla(flullp(flu) D3 [ atwats @)l tog p(un 7).
When ¢(f|u) = p(flu) = N(f; KeaKyatt, D), the bound above becomes,
Filatw).0) = ~KLigtw)|pw)] + 3 e logplf@)) @

commonly known as the uncollapsed SVGP bound (Hensman et al., 2015} Titsias| |2009). This bound
conveniently allows both (i) tractable computation [O(N M?) in the batch setting or O(BM? + M?3)
where B is the batch size in the mini-batch setting] and (ii) tractably handling of non-Gaussian
likelihoods using quadrature or Monte Carlo estimation for the expected log-likelihood terms. For
the Gaussian likelihood, the bound can be simplified to

dnn
Fir(q(u),0) = —KL[g(u)||p(u Z{ / )10g N (Yn; kpuKpuu, o) = 251, (3)
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where o2 is the observation noise and d,,,, = [D#t]pnyn. Furthermore, an optimal form for ¢(u) can
be found, g(u) o p(u)N (y; KeaKylu, 0%1y), yielding the following analytic collapsed bound
(Tits1as, [2009),

Fire(0) =1og N'(y; 0, Qe + 0”In) — Z .- )

The SVGP approach above has arguably been the most popular scalable GP approach in the literature.
More recently, [Bui et al.| (2025); |Titsias| (2025]) show that this approach can be improved by relaxing

the ¢(f|u) = p(f|u) assumption. Specifically, when ¢(f|u) = N (f; K¢ K, Lu, DEP/QMD;/Q),



where M = diag([my, ..., my]), the uncollapsed and collapsed bounds in the regression case are:
-1 2 1 dnn
Farlate).0) = ~Kuig(ulp] + 3 | f atw) N ik, uiin o) — 108 (1425 )|
dnn
Fore(0) =logN(y;0, Qe + O'2IN) ~-3 Zlog (1 + ?> . (6)
Note that the optimal form for m,, is m,, = 02/(c? + dp,) < 1; and egs. (5) and ([61) are tighter than

egs. (3) and (4) for fixed 6 and g(w) since log (1 + dyy/0?) < dppn /0.

The posterior approximation in eq. (I)) can also be used in other deterministic inference strategies.
For example, in the regression case, for ¢(f|u) = p(f|u), Bui et al|(2017) showed that Power-
Expectation Propagation (PEP) yields an analytic collapsed approximate marginal likelihood,

1 dnn
Fzrc(0) =1logN(y;0,Qg + aDg + o Ay) — —— Zlog (1 + ) , @)

and a closed form q(u), ¢(u) o p(u)N(y; KK iu, aDg + 0?Iy), where « is the power
hyperparameter in PEP. This framework encompasses a multitude of approximations, such as the
SVGP approximation (as o — 0) and FITC (Snelson & Ghahramanil, [2005; Qi et al.| 2010) (o = 1).

3 A block-diagonal structured variational approximation

We first consider the following posterior approximation:

qa(f) = n( u)q(flu)g(u), q(flu) = N(f; KuKoau, C),

where we have not posited a form for the covariance C. Interestingly, this leads to the familiar
optimal form for g(u), qg(u) o< p(u)N (y; K K lu, 021x). The resulting collapsed bound is,

1 1 N
F(0) =log N(y;0, Qg + 0*Iyn) — itrace[(afzIN +Dg')C] - 3 log|C™'Dg| + 5

Except for some special cases, the bound above is as expensive as the original log marginal likelihood
to compute. Specifically, as shown in the background, C = D;f/ 2MD¥ 2 with M = I (Titsias)
2009) or M = mIy (Artemev et al.l2021) or M = diag({mn}nNzl) (Titsias, 2025; Bui et al.| 2025)
admit tractability, and each move (from Iy to mIy, and from mIy to diag({my },—;)) makes the
bound tighter. It is thus natural to enquire what structure to encode in M to further improve the
bound, retain tractable computation, and potentially improve predictive performance.

We now consider one such structure, a block-diagonal M, M = blkdiag({m,}{_,), where B is the
number of blocks and m;, € RY»*Ne_ Substituting this into the bound above gives

1 1
Fa(0) =1og N'(y;0, Qe + 0’Iy) — 3 Z {ﬂtrace[mefbfb] + trace[mp] — log [my| — Ny | .
b

We can obtain the optimal m;, m;, = (I, + O'_Qbefb)_l, leading to the following collapsed bound,

1
Fire(0) =10g N'(y:0,Qa +0”Iy) — 5 3 log [Ty + 0Dy, |. @®)
b

Due to the Hadamard’s inequality, I, + 0 ?Dg,g,| < [1;(1 + 0~ 2[Dgyg,)i;), and thus log |I, +
0 ?Dy,g,| < >_;1log(1 4+ 07%[Dy,g,]ii). In other words, the bound in eq. . [M is block-diagonal]
is provably tighter than the bound in eq. (6) [M is diagonal].

Similar to the standard SVGP approach, for large datasets, it is more convenient to work with the
following uncollapsed bound that supports stochastic optimisation,

Far()=—KLig(u)|[p(u 1+Z[/ ) log (s K u Kb 0°Ty) — £ 10g [Ty + 0Dy ||

If the B blocks are of roughly equal size, computing the bound in eq. (9) using the entire training
set takes O(M? + NM? + B[N/BJ]?). However, in practice, we perform stochastic optimisation,
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Figure 1: Connections between the sparse GP regression methods from the Power-EP perspective.

means computationally tractable, red means intractable, and blue represents the new methods
presented in this paper. B < N means the training points are partitioned into B disjoint blocks.
B = N means having the same number of blocks as training points, i.e., block size equal to 1.

where we unbiasedly approximate the sum over blocks in eq. (9) using one random block to obtain
the stochastic bound

Fir() = —KLigwlptw)] + B | [ a(u) og Auns KKk oL) = L log 6 + 0 *Dig ] 10

based on which we perform stochastic gradient updates by cycling over the B blocks. If we
judiciously choose the block size % to be M (i.e., block size equals to the number of inducing
points), the computational requirement per iteration is only O(M?). Therefore, eq. has a small
implementation overhead compared to standard stochastic sparse GP objectives. The precise extra
overhead involves taking the Cholesky decomposition of I;, + o ~?Dy, s, , needed when computing
the log-determinant regularisation term.

We will next consider a special case. When we let all m; matrices to be the same, m; = m, we
arrive at the optimal m, m = (I, + B~'072 %", Dg,¢,) ', and the resulting collapsed bound,

B 1
— . 2
F5(0) =log N (y;0, Qe + 0°Ly) — 5 log [l + 5 ijbefbl- (n

Since the log-determinant is a concave function on the cone of positive definite matrices, we can
apply Jensen’s inequality to show that the bound above is less tight compared to eq. (8). As the block
size equals one, this becomes the spherical bound in|Titsias| (2025); |Artemev et al.| (2021)).

A disadvantage of diagonal and block diagonal structures in M is the expensive predictive covariance.
However, we can approximate it by reverting to using ¢(f|u) ~ p(f|u) at test time. [Bui et al.
(2025)) noted that this approximation does not degrade the performance compared to the expensive
exact predictive distribution. In other words, in practice, we only use the new structured posterior in
training, and therefore, any improvement in predictive performance at test time will come from better
¢(u) and hyperparameters.

4 A more general approximation based on Power Expectation Propagation

Although the variational sparse GP approach has captured the spotlight in the sparse GP literature,
Bui et al.|(2017) showed various variants of PEP can be as competitive or better. We will now revisit
the framework of Bui et al.| (2017) and explore how it can be improved by leveraging the recent
innovation in structured posterior approximations (Titsias| (2025)); |Bui et al.| (2025)) and section@
originally developed in the variational inference setting. We first write down the joint density of the
exact model and the approximate posterior,

p(f,y) = p(f5.ul £ w)p(flu)p prn|fn (12)

n=1

q(f) o< p(fsulf w)q(Flu)p H ty (u (13)



where the N training points are partitioned into B disjoint blocks, and the factors ¢ (w) are assumed
to be Gaussian. Instead of using ¢(f|u) = p(f|u) as inBui et al.[(2017), we consider ¢(f|u) =
N(f; KeaKglu; D;f/2MD}T/2) where M = blkdiag({m;}£_,), that is, the blocks in M match
that of the likelihood partitions.

The PEP procedure (Minkal [2004) iteratively updates ¢, (w) by (i) first remove an a-fraction of ¢, (u)
from ¢(f) to form the cavity distribution, ¢\*(f) = ¢(f)/t{(w), (i) incorporate an a-fraction of
the likelihood for the b-th block p(ys|fp) = Hgil P(Yn|fr) to form the tilted distribution, G(f) =
" (f)p*(ys|fs), (iii) find a new approximation g(f) that minimises KL[G( f )Hq( )] and (iv) adjust
ty(w) based on the new posterior using t;,(w) = [q(f)/q\*(f)]*/ or ty(u) + t;*(w)[g(f)/q"(f)].
These steps are repeated for all blocks until convergence. Readers might have noticed that step (iii) is
a daunting task as it involves moment matching for the entire Gaussian processes; however, due to
the structure of the approximate posterior ¢( f), it is sufficient to perform moment matching for the
finite function values u (Bui et al.,[2017)). In addition, this procedure returns an estimate of the log
marginal likelihood that can be used for hyperparameter optimisation.

Mirroring the derivation in Bui et al. (2017), we can show the optimal form for ¢;(w) has rank N, =
(u) = N(Kg,uKglu; gs, vp). In the regression case, g, = y, and v, = a[D;‘:f/QMD;f/Q]bb +

oI, The full derivation is rather lengthy and is included in the appendix; however, one can verify
that this is a stable fixed point of the procedure by noting that the a-fraction of ¢,(w) is identical

to the contribution of p®(ys| f5) to the posterior at w, [ dfyq(fo|u)p®(ys|fs). The optimal g(u) is

thus g(u) < p(u)N (y; Kra Ky lu ablkd1ag({[D;f/QMDifm]bb}f:l) + 0?Iy). Furthermore, for
the regression case, we can further derive the approximate marginal likelihood,

Fsre(0,M) = IOgN(y; 0, Qa + ablkdiag({[Dy/>°MD*],,} 1) + 0*In)

" Z [D;f/ZMD;r/Q]bb 1

-2 — log Iy + a(my — Ip)| + = log |mg|| .
We note that, for a general o and M, including diagonal and block-diagonal cases, the PEP proce-
dure above as well the approximate marginal likelihood for the regression case is computationally

intractable (i.e., cubic in IV) due to the need to find the (block-)diagonal of D;f/ QMD}T/ 2 We will
now discuss the tractable special cases.

log b+

Remark 1 When M is diagonal or block-diagonal, the approximate marginal likelihood and poste-
rior approximation above are only tractable as o — 0. Specifically, when M = diag({m,}_,),
the objective becomes the variational bound of |Titsias| (2025); |Bui et al.| (2025), and when
M = blkdiag({my}2_,), the objective matches the variational bound in eq. .

Remark 2 When M = mly, the approximate marginal likelihood and posterior approxima-
tion are computationally tractable for all «’s. In particular, the optimal q(u) is q(u)
p(w)N (y; Kea Kt u, mablkdiag({Dyg,¢, }2_,) + 0*In), and the approximate marginal likelihood
becomes,

Fo(8,m) =log N (y; 0, Qg + mablkdiag({Ds,s, }2_,) + 0*1y)

l—« Oszff N N
- zb: {log I+ ——— } — %log(l +a(m—1))+ Elog(m). (14)

In this special case, we note the following. First, as a sanity check, we can see that when m = 1, we
recover the Power-EP approximate marginal likelihood of |Bui et al.| (2017):

be fy

Fo.m=1(0) = log N'(y;0, Qg + ablkdiag(Dg) + 0Iy) — ——— Z log I, + a—2%*

Second, when o = 1, the objective in eq. becomes Fg o=1(0,m) = logN(y;0, Qg +
mblkdiag(Dg) + 0?Iy). When m = 1, this becomes the PITC marginal likelihood and for
block size equal to one it further reduces to FITC (Quinonero-Candela & Rasmussen, [2005)).

Third, as a« — 0, we recover the spherical bound in (Bui et al., 2025} [Titsias, [2025}; |/Artemeyv et al.}
2021). Only in this setting, we can derive the optimal m = (1+ N1 " d,/0%)""



Fin:% inspired by the uncollapsed variational bound, we can optimise an uncollapsed version of
14

eq. (14) that supports stochastic optimisation as follows,
Fo,r(q(u),0, M) = —KL[q(w)||p(u Z [ / ) log N (ys; Ke,uKutt, maDe e, + 0°T,)
11—« Oémebfb N N
70 ; {log I, + 0 log (1 4+ a(m —1)) + 3 log(m).

That is, instead of running the PEP procedure, we can optimise the objective above to yield the same
fixed point as PEP. We attempt to visualise the connections between the methods, the special cases
and the broader literature in fig. [T}

5 Experiments

Having described the new block-diagonal structure in sparse variational GPs and revisited the unified
work of Bui et al.|(2017) in light of the new approximate posteriors, we will detail the experiments
to qualitatively investigate (i) if the proposed block-diagonal approximation in section [3] yields
better performance and, if yes, how, and (ii) whether having m # 1 benefits power expectation
propagation in section [4] the same way it does to variational inference. All experiments were
done on either a V100 GPU or a MacBook laptop. We provide an implementation here https:
//github.com/thangbui/tighter_sparse_gp.

5.1 1-D regression and biases in hyperparameter estimation

We first illustrate the difference between the proposed and existing methods on a simple 1D regression
problem (Snelson & Ghahramani, [2005). In particular, we compare Titsias’ collapsed bound in eq. (4)
[SGPR], the bound of [Titsias| (2025)); Bui et al.| (2025) in eq. @ [T-SGPR], the bound with block
diagonal M in eq. (8) with 10 and 20 blocks [20 and 10 data points per block, respectively, BT-SGPR],
the PEP approach of Bui et al.|(2017) with o = 0.5 [PEP], and the PEP approach in eq. with
B = N and a = 0.5 [T-PEP]. We used 5 inducing points in this experiment. The key results are
summarised in fig. 2] It can be observed that (i) the block-diagonal approximation improves over
the diagonal one in this example, (ii) increasing the number of training points in each block tightens
the bound, (iii) the structured posterior approximation also helps in PEP, and (iv) hyperparameter
optimisation using a more structured approximation tend to result in a smaller noise variance and a
larger kernel variance. We note that the PEP approximate marginal likelihood is not guaranteed to be
a lower bound and therefore optimising it can result in pathological behaviours, for example, when
« = 1, the noise variance can be severely underestimated (Bauer et al., [2016).

| — SGPR
T-SGPR
9x 107! —— BT-SGPR [20 blocks]
BT-SGPR [10 blocks]
. PEP@=05
8x 10~ — TPEPa=
~ a=05

6x1071

negative lower bound / N

»{SGPR: 07=0.087, [;=0.435, 0?=0.126

5x1071

\ BT-SGPR 20: 0f=0.127, /=0.436, 0°=0.109 ‘\ T-PEP a = 0.5: 07=0.133, /;=0.420, 0>=0.089|

-25 - -25 Exact GP: 02=0.769, [;=0.612, 02=0.080

o 10 20 30 40 50 -1 0 1 2 3 4 5 6 7 -1 0 1 2 3 4 5 6 7
iteration x X

Figure 2: Left: Variational bounds during training on the Snelson dataset. Middle and right: Predictive
mean and intervals using various methods and the final hyperparameter values.

To further investigate point (iv), we picked a subset of the KIN40K dataset with 5,000 data points,
and ran an experiment to compare the sparse approximations with exact GP. For each method, we
recorded in table [I] the exact or approximate log marginal likelihood, the predictive performance
measured by root mean squared error (RMSE) and log likelihood (LL), the noise standard deviation
o and the kernel lengthscales. Similar to the observation in the Snelson dataset above, the noise
estimate is smaller when moving from M = Iy to increasingly more structured M, translating


https://github.com/thangbui/tighter_sparse_gp
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to better predictions. The trend seems to be consistent across two numbers of inducing points. In
addition, there is no notable difference in the lengthscales between PEP, T-PEP, and the structured
variational approximations; however, these methods tend to leverage more dimensions than SGPR
for M = 256.

Table 1: Exact/approximate marginal likelihoods, predictive performance, and lengthscales given by
various methods on 5,000 samples from the KIN40K dataset.

M =256 M=512

Method Obj. RMSE LL o lengthscales| Obj. RMSE LL o lengthscales
Exact -0.66 0.12  0.80 0.00 -0.66 0.12 0.80 0.00
SGPR 088 026 -0.14 0.30 066 022 002 025
T-SGPR 078 022 -0.06 0.26 0.51 0.18 0.11 021
BT-SGPR [50] | 0.75 022  -0.05 0.25 0.50 0.18 0.12 0.20
BT-SGPR [10] | 0.66 020 -0.03 0.23 044 0.17 0.13 0.19
PEP [0.5] 066 023 -0.02 0.22 042 020 0.14 0.19
T-PEP [0.5] 048 020 0.02 0.18 0.18 0.16 0.19 0.14

5.2 Block-diagonal structured variational approximation

We next ran an experiment to validate the utility of the proposed block-structured approximation
in section [3| on four real-world regression datasetsﬂ For each dataset and each inducing point
configuration (M = 256 or M = 512), we compare the uncollapsed variational bounds of [Titsias
(2009); Hensman et al.|(20135) [eq. (E]) SVGP], |Titsias|(2025); Bui et al.|(2025) [eq. @ T-SVGP], and
the proposed bound in eq. @) [BT-SVGP], corresponding to M = Iy, M = diag({m,,}Y_,]), and
M = blkdiag({m,}2_,), respectively. We repeated the experiment 10 times, each using a random
train/test split, a batch size of 500 (also the block size), random partitioning of the training data into
blocks, and 300 epochs for training. The average variational bound (ELBO) and test performance
after training are shown in fig.[3| Similar to the earlier experiments, the benefit of the block-structured
approximation is also clearly demonstrated here: it tightens the variational bound compared to that of
the diagonal M and consistently yields comparable or better predictive performance. We note again
that (i) the estimated observation noise tends to be smaller when employing the new bound (see the
appendix), and (ii) there is a minimal implementation overhead compared to [Titsias| (2009, [2025));
Bui et al.|(2025) to result in these gains.
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Figure 3: Lower bounds (ELBO) and predictive performance of various variational methods with
M = Iy [SVGP], M = diag({m, }2_,) [T-SVGP], and M = blkdiag({m,}Z ;) [BT-SVGP].

'We used the splits available in this repository https://github.com/treforevans/uci_datasets|
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5.3 Power-EP with a structured approximate posterior [M = mIy]

As shown in section (4] the structured approximate posterior considered by [Titsias| (2025) can be
utilised in PEP and in the regression case, the approximate posterior and marginal likelihood are
analytically available. To evaluate its practical utility, we ran an experiment on five small regression
datasets, comparing the PEP approach of Bui et al.|(2017) [IM = Iy] to the proposed approach in
section ] [M = mlIy]. The typical performance across various inducing point configurations is
shown in fig. ] with the full results included in the appendix. It is noticeable that the Power-EP
scheme with m # 1 tends to outperform the corresponding setting when m = 1. To elucidate the
trend, we plot the difference between the performance of M = Iy and M = mlIy in fig. E} We note
that m # 1 outperforms m = 1 on all datasets in terms of RMSE, but log-likelihood performance
degrades when « is closer to 1. These results suggest that for m # 1, intermediate « values such as
0.5 are most competitive in terms of both RMSE and LL, in line with recommendations from [Bui
et al.[(2017) when m = 1.
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Figure 4: Predictive performance of power expectation propagation with M = Iy and M = mlIy
on two UCI datasets. Results for other datasets are in the appendix.
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Figure 5: Difference in PEP performance between M = Iy and M = mIy on five UCI datasets.

6 Related work

The use of inducing points for sparse approximations in Gaussian processes has a rich history, to
name a few approaches, sparse online GPs (Csaté6 & Opper, 2002), DTC (Seeger et al., [2003)),
FITC approximation (Snelson & Ghahramani, [2005)), and PITC (Quinonero-Candela & Rasmussen,
2005). The most notable was the variational approach of [Titsias| (2009)), who introduced a principled
method for selecting inducing points by optimising a variational lower bound. |[Hensman et al.
(2013} 2015)) extended this approach to enable stochastic optimisation and non-Gaussian likelihoods,
significantly broadening the applicability of sparse GPs to large datasets. Other work on inducing
point methods have exploited Kronecker products (Wilson & Nickischl [2015), nearest neighbour
structures (Tran et al., [2021; Wu et al.,|2022) and inter-domain inducing points (Lazaro-Gredilla &



Figueiras-Vidal, |2009; [Hensman et al.l | 2018)). Also, recent theoretical work (Burt et al.,|2020)) studied
the approximation convergence with respect to the number of inducing points.

Our work is most closely related to the recent advances by [Titsias| (2025)); Bui et al.[(2025)), who
showed that relaxing the standard assumption with diagonal scaling matrices improves the variational
bound. Our block-diagonal extension naturally builds upon this line of work, showing practical
benefits. Similarly, our extension of the PEP framework builds directly on[Bui et al.|(2017)), expanding
their unifying perspective by incorporating structured posterior approximations. Note that our work
is distinct from the PITC approximation. PITC is derived from the prior modification perspective,
where the prior is modified so that the blocks of function values are conditionally independent given
the inducing points. Bui et al.|(2017) showed that this is equivalent to EP when retaining the prior
conditional in the approximate posterior, which differs from our proposed structured conditional
distribution.

A key component in the sparse GP approximate posterior is g(w), and imposing additional structures
for this object will likely lead to improvement. For example, |Shi et al.| (2020) showed that ¢(w) can
be parameterised by two sets of inducing points, orthogonal to each other, leading to better predictive
performance at a much lower compute cost compared to doubling up the inducing points in the
standard SVGP approximation. This line of work is complementary to our work here, as it focuses on
a different aspect of the posterior, and thus, the two approaches can be combined.

A well-known pathology of variational sparse GP regression is the large estimated observation
noise variance (Bauer et al.,[2016). It can be partially alleviated by changing the objective function
(Jankowiak et al.,|2019) or mixing separate schemes for learning and inference (Li et al.| [2023). Our
work shows that principled structured variational approximations can also partly address this issue.

7 Summary

Approximation schemes using inducing points are the method of choice for scaling GP models to
large datasets. We show that (i) these methods can be improved by introducing additional structures in
the approximate posterior and (ii) these new structures can be applied to various inference strategies,
including PEP and variational inference. The resulting methods show comparable or better predictive
performance and smaller hyperparameter estimation biases in many standard regression tasks.

There are several potential future directions. First, we have assumed that the size of the data blocks
in a dataset is the same and the data partitioning in the experiments was random, but these can be
adjusted based on the data characteristics, potentially tightening the variational objective further.
Second, the power hyperparameter o in PEP can be made private per block; this will require an
understanding of when variational or EP might work best and how to dynamically select a.. Third,
a full discussion for non-Gaussian likelihoods and models beyond GP regression (e.g., deep GPs,
GP latent variable models) and how they benefit from structured approximations is a promising
exploratory direction.
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A Full derivation of the block-diagonal variational bound

We start with a general posterior approximation of the form:

q(f) = p(frpulf,w)a(flu)g(u) (15)
a(flu) = N(f; KK iu, C) (16)

where we have not specified the form of the covariance matrix C. The variational lower bound to the
log marginal likelihood is

F(q.0) = ~KLg(uw)|[p(w)] - / g(wKLg(f1w)||p(F]w)] + / g(w)g(flw) logp(ylf) (17)

Setting the gradient wrt ¢(w) to zeros gives, g(u) x p(u) exp| [ ¢(f|u)log p(y|f)]. In the regression
case, p(y|f) = N(y; f,0?1y) and thus,

/q(fIU) logp(ylf) = /N(f;KquJ&u,C)logN(y;f,UQIN) (18)

= log N (y; Kra K but, 0%Iy) — T;trace(C). (19)
The middle term in the bound can be simplified to,
[ @KL )l Flw) = trace(DFC) + 5 log [Da| - 3logCl ~ 5. 0)
Substituting this and the optimal ¢(u) back to the bound gives,
F =log N(y:0,Qq +0°Ly) — %trace[(D;ﬁ +0?Iy)C] - %log D + %mg C| + %
When C = D:i_f/ 2MD111./ 2, the collapsed bound above becomes,

1 1
F(0) =log N (y;0,Qg + 0’Iy) — 3 Z [UQtrace[mefbfb] + trace[my] — log |my| — Ny | .
b

We can find the gradient of the bound wrt my,

G, 1. _ _
aTnbf =3 [0 2Dg,¢, + I, — m; '] (21)

Setting this to zero gives m; = (I, + 0'_2befb)_1, and the resulting m-collapsed bound:

1
F =log N (y;0, Qg + 0’Iy) — 3 > log T, + 0Dy, |. (22)
b

When the block size is 1, the above bounds become the bounds presented in (Titsias| (2025); [Bui et al.
(2025).

We now consider a special case when we let all m;, matrices to be the same, m; = m. The gradient
wrt m in this case is,

0 1 _ _
om’ " 2 zb: [07*Dygp, + 1, —m ™. (23)

This leads to the optimal m, m = (I, + B~*0~2 )", Dy, )", and the corresponding m-collapsed
bound,

B 1
F =1logN(y;0,Qg + o*Iy) — 510g|1b+B—UQZb:beﬁ,|. (24)

A special case is when the block size is only 1, we arrive at the spherical diagonal approximation
M = mlI (Titsias| [2025} |Artemev et al., [2021)). Note that, since the log-determinant is a concave
function on the cone of positive definite matrices, we can apply Jensen’s inequality to show that the
bound above (when all m blocks are the same) is less tight compared to the bound when all blocks
are different.

12



B Power-EP posterior and approximate marginal likelihood

B.1 Power EP steps

Given a data set of N input-output pairs {x,,, y, }._,, we use M pseudo-points y at locations z to
approximate the exact posterior. Power-EP posits the following approximation to the joint:

p(£,y) = p(frf.ul £, w)p(flu)p prbm P(f2p.ulfw)a(Flu)p th

where we have partitioned the data into B disjoint blocks, b indexes blocks of data and t;(u)
are the approximate factors. Crucially, we employ a structured conditional approximate posterior

q(flu) = N(f; KeaKglu, D;f/ QMD;/ ?). The Power-EP procedure with power « iteratively
updates the factors {t,}Z | as follows:

1. Deletion step: Compute the cavity distribution by removing a fraction « of one approximate
factor:

u) _
u)
where g(u) = p(u) [, tp(u) and ¢\ (u) = q(u)/t%(u)

2. Projection step: First, compute the tilted distribution by incorporating a corresponding
fraction of the true likelihood factor:

B = ¢ ()P Wil £i) = p(fr ulfw)a(F 1)V (w)p® (vl £i) (26)

Second, project the tilted distribution onto the new approximate posterior using KL diver-
gence:

) o Bl a0 B gl wa( g (w), 25)

q(f) + arg {Ir(l;r)l KL[p(f)llq(f)] (27)

Due to the structure of the approximate posterior, this minimisation is achieved when the
moments at the pseudo-inputs are matched: E;f)[p(u)] = Eq(p)[o(u)], where ¢(u) =
{u, uuT} are the sufficient statistics (Bui et al., 2017). In practice, this can be done by
using the moment-matching shortcut involving the gradients of the log-normalising constant
of the tilted distribution.

3. Update step: Compute the new fraction by dividing the new approximate posterior by the

cavity:
q(f)
Eirnew (W) = —— (28)
o) = i)
The factor then is updated using t;(u) = t; new(w) or with damping, ¢;(u) = tzl od(u) -
t?HCW( )
B.2 Optimal factors
The factors are parameterised as follows,
1
ty(u) = N(w; 2, T1p, Top) = zpexp(u’ Ty y — iuTTgvbu) (29)
The posterior distribution over u is therefore ¢(u) = N'(u; m, S), where
ST =Kgu+> Tap (30)
b
S’lm:ZTLb. (31)
b

13



Similarly, the cavity distribution over w is ¢\*(u) = N (u; m\?, S\*), where

SV =Koa+ > Top+(1—a)Ty; =8"" —aTy, (32)
bo£i
g\i =1\ — Z T+ (1 — a)Tl,i =S 'm-— aoTy ;. (33)
boti

The moments of the tilted distribution (and the new posterior) can be computed efficiently using the
following shortcuts,

; ;. dlog Z;
m=m\ + Vv B (34)
- dmg,
; : d?log Zi i
VAR VAUNTR VAU Eat A V) (35)
ufzd \iy9 fiu
(my)
where Z; = [ @\'(£:)p*(yi| fi)df; is the normaliser of the tilted distribution.
At convergence, the optimal form of Ty, is rank-N,, Top = wbv; wa, where w;, =
b,—1 _ br\b b _ d%logZ
Vq\m V\b =K, Kug,, v = —d21 _Vt\mV,\m V}Ab, and dy = o %b);’

In the regression case, at convergence, t,(u) = N (K¢, o Kqbw; ys, a[Déf/QMDif/z]bb + o%I,). We
can check this by computing the contribution of an « fraction of the exact likelihood to the posterior
q(u),

/ a(Folw)p® (sl fo)d i = / N(Fy: KoK olu, DY2MDY 2N (4o £, 021)dfs  (36)

o N (yp; Ky uK b, Dy "MDY/ ], + 0%1, /), 37)
which is exactly an a-fraction of the optimal factor listed above.

B.3 Power-EP approximate marginal likelihood

After convergence, Power EP provides an approximate log marginal likelihood:

log Zpgp = log / p(f2f.ulF w)a(flu)p th (38)
= G(q(u)) = G(p(u)) + ;Eb: [log Zy+ G(g\(u)) — Q(q(u))} + élog Zg, (39)
where
log Z, = log / q(£5lw)q " (w)p® (yy| f)d fodu (40)
log 2, = log | ql—%fb|u>q\b<u>pa(fb|u>dfbdu @1
Glg(uw)) = 5 Tog(2m) + 1 log V| + Jm™V "' @)
G(p(w)) = 7 log(2m) + ;log Kl @3)
G(q\ () = - log(2m) + 5 log [V\'] 4 Jm\PTV\ I’ @)

In the regression case, following closely the steps in (Bui et al.,[2017)), we can derive the closed-form
approximate log marginal likelihood

log Zpgp = logN(y; 0,Qg + ablkdiag({[D¥2MD¥2]bb}bB:1) +0?1y)

1/2 1/2
x| [Dgt“MDg ],

1 1
a2 dog T, + afmy — 1,)] + ; log [my|

log

(2

(45)
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B.4 Extension to classification

Instead of working with individual factors, we can use the stochastic Power-EP parameterisation (L1
et al., 2015)) , i.e., assuming contributions from all blocks to the posterior are equal ¢;,(u) = t(u).
In addition, instead of running stochastic Power-EP iteration, we can directly work with g(u) o
p(u)tB (u) and optimise the Power-EP energy, also known as the black-box a-divergence objective
(Hernandez-Lobato et al.,[2016)). We will explore this direction in future work.

C Additional experimental results

C.1 Experimental set-up

In addition to the details in the main text, we provide additional information here. For all experiments
involving the block-diagonal matrix M, we randomly partitioned the training data into B blocks.
In the Snelson, kin40k, and Power-EP experiments, we optimised the collapsed bound using the
L-BFGS optimiser. In the block-diagonal experiments with medium-scale datasets, we used the
Adam optimiser with a learning rate of 0.005. To initialise the inducing point locations, we picked
M random training inputs in the Snelson experiment, and employed k-means clustering for all other
experiments. For the later datasets, we used the median distance between the data points to initialise
the lengthscales and set the initial observation noise variance to 0.1.

C.2 Snelson dataset

We compared several sparse variational GP variants, including SGPR, T-SGPR, and BT-SGPR, with
M = 10 to exact GP regression, and the objective and hyperparameters collected during optimisation
are included in fig.[6] We note that, by using structured approximations, (i) the variational bound that
is provably tighter for fixed hyperparameters indeed is tighter in practice, and (ii) the observation
noise variance (the kernel variance) is smaller (larger).

—— SGPR

T-SGPR
—— BT-SGPR [20 blocks]
BT-SGPR [10 blocks]
— Exact GPR

100k

6x107"

6x107!
4x107t

kernel variance

3x107!

4x1071

negative log likelihood or lower bound / N

2x107t
3x107!

10° 10t 10° 10t
iteration iteration

9x107!

8x107!

7x107 \'

6x107t

lengthscale
observation noise variance

VAL o]

O
10° 101 10° 10%
iteration iteration

Figure 6: Objectives and hyperparameters provided by sparse variational and exact methods.
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C.3 KIN40K hyperparameters

We include the full results, including the standard errors, for the KIN4OK experiment in table@

C.4 Block-diagonal structured variational approximation

In addition to the predictive performance metrics in the main text, we also recorded the estimated
hyperparameters when using the new structured variational approximations. These results are included
in fig.[7] and agree with observations in smaller datasets (Snelson and kin40k): kernel variance and
observation noise variance tend to be larger and smaller, respectively, when using the improved
bounds.

C.5 Power-EP

We include the full results for all five datasets considered in the main text in fig. [§]
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims: a new block-diagonal structured variational approximation and an
improved Power-EP framework for sparse GPs. These are presented in sections [3]and ] and
experiments are provided in section 5]

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We provided several limitations (and potential future directions) at the end of
section[7]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The posterior approximation and bounds are provided in the main text, with
the full derivations in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided all necessary information (number of epochs, batch size, block
size, number of splits, source of data) to repeat the experiments. Code will be provided upon
acceptance.
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Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We used publicly available datasets, typically used in the sparse GP litera-
ture. The implementation was built on GPflow, and released here https://github. com/
thangbui/tighter_sparse_gp.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided sufficient information to replicate.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We have reported all error bars in the main text and the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have added a comment about the compute workers in section 3]
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We, at all times, follow all general research ethics and the NeurIPS code of
ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The proposed methods will benefit probabilistic ML practitioners. We do not
expect any near-term societal impacts of our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: We did not use any models or datasets that require safeguards.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We used open-source data sets and software packages.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human subjects involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: We did not use LLMs for this submission.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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