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Abstract

Over the last decade, a wide range of training001
and deployment strategies for Large Language002
Models (LLMs) have emerged. Among these,003
the prompting paradigms of Auto-Regressive004
LLMs (AR-LLMs) have catalyzed a signifi-005
cant surge. This paper embarks on a quest006
to unravel the underlying factors behind the007
triumph of AR-LLMs’ prompting paradigm.008
This study summarizes and focuses on six dis-009
tinct task-oriented channels, e.g., numeric pre-010
fixes and free-form text, across diverse deploy-011
ment paradigms By pivoting our focus onto012
these channels, we can assess these paradigms013
across crucial dimensions, such as task cus-014
tomizability, transparency, and complexity to015
gauge LLMs. The results emphasize the signif-016
icance of utilizing free-form contexts as user-017
directed channels for downstream deployment.018
Moreover, we examine the stimulation of di-019
verse cognitive behaviors in LLMs through the020
adoption of free-form, verbal outputs and in-021
puts as contexts. We detail four common cog-022
nitive behaviors to underscore how AR-LLMs’023
prompting successfully imitates human-like be-024
haviors under the free-form modality and chan-025
nel.026

1 Introduction027

ChatGPT has emerged as the most popular AI ap-028

plication, with a vast user base. The success of029

GPT models can be attributed to the scaling of030

transformer-based neural networks and the exten-031

sive pre-training data, as explored in previous stud-032

ies (Radford et al., 2019; Brown et al., 2020). The033

scope of this paper is directed towards Large Lan-034

guage Models (LLMs) that are sufficiently large035

to acquire world knowledge, commonsense, and036

the linguistic capabilities required to attain high037

performance on benchmarks such as GLUE (Wang038

et al., 2019).039

Although LLMs are commonly perceived as040

general-purpose language intelligence models, the041

practice often diverges from employing a singular, 042

all-encompassing model for every task. Instead, the 043

deployment frequently entails developing a suite of 044

specialized models tailored to specific tasks. This 045

specialization is facilitated through the introduction 046

of task-specific channels, modifying the model’s 047

structure or its pre-trained parameters to better suit 048

the nuances of individual tasks. This highlights a 049

departure from the ideal of a universal, one-size- 050

fits-all model, while the broad capabilities of LLMs 051

suggest they could serve as jack-of-all-trades in lan- 052

guage processing. This trend towards creating task- 053

specific models may stem from the tradition of eval- 054

uating linguistic intelligence through a variety of 055

distinct tasks and benchmarks (Wang et al., 2019), 056

with researchers striving to excel in these tasks in- 057

dependently to set new benchmarks. In this paper, 058

we delve into the mechanisms behind prevalent de- 059

ployment paradigms including AR-LLMs’ prompt- 060

ing, which underpins ChatGPT’s operation, and 061

highlight several critical observations: 1) Models 062

tailored with optimized task-specific channels often 063

suffer from issues related to task customizability, 064

transparency, and user-level complexity during de- 065

ployment, affecting their overall usability; 2) Antic- 066

ipated to mimic human-like intelligence, they often 067

exhibit slow thinking through shortcuts (Kahne- 068

man, 2011); 3) They frequently fall short in show- 069

casing advanced cognitive behaviors, which we 070

contend are vital for convincing users of the mod- 071

els’ intelligence. Conversely, AR-LLMs’ prompt- 072

ing paradigms introduce a more natural, human- 073

like channel (verbal free-form context) for repre- 074

senting a wide array of real-life tasks and employ 075

form-form output modalities to showcase cognitive 076

behaviors in complex scenarios. 077

Specifically, in this paper, we commence by ex- 078

amining the foundational principles of language 079

modeling, revisiting the notable split in language 080

modeling approaches that emerged in the late 081

2010s: auto-encoding LMs (AE-LMs) exemplified 082
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by BERT (Jin et al., 2020) and auto-regressive LMs083

(AR-LMs) exemplified by the GPT series (Radford084

et al., 2018; Brown et al., 2020). Rather than delve085

into an extensive array of deployment paradigms,086

we introduce and discuss the concepts of modal-087

ities and channels to investigate the usability of088

the deployment paradigms (§2). Upon evaluating089

different deployment paradigms for LLMs, it be-090

comes clear that aside from the AR-LLMs’ prompt-091

ing approach, other paradigms struggle to demon-092

strate advanced human-like cognitive behaviors.093

This shortfall is attributed to the constraints within094

modalities and channels, coupled with a tendency095

towards superficial learning, i.e., slow thinking (§3096

and §4.1). In contrast, via specified context in the097

free-from text, the AR-LLMs’ prompting strategy098

imitate human-like cognitive behaviors, such as099

reasoning, planning, and feedback learning, which100

are elucidated in Table 2 (§4).101

2 Deploying Large Language Models102

This section elucidates the dual objectives under-103

lying language models, which both aim to model104

the joint probability distribution of text sequences105

through self-supervised learning techniques and106

generate text that is relevant to the given context.107

After this introduction, we present a novel frame-108

work that facilitate the characterization of various109

deployment paradigms through two types of data110

modalities, which support language comprehen-111

sion, coupled with six unique channels for process-112

ing these modalities.113

2.1 The Fundamental Dichotomy in Language114

Modeling115

Objective of Language Modeling The goal of116

language modeling is to estimate the joint probabil-117

ity distribution of sequences of text (Bengio et al.,118

2003). This involves developing two distinct yet119

relaxed formulations for constructing LLMs that120

leverage self-supervised learning from vast quan-121

tities of unlabeled text data. The self-supervised122

approach enables the training of LLMs on extensive123

text corpora, a practice that has been thoroughly124

investigated in various studies (Liu et al., 2019;125

Wei et al., 2022a). This paper focuses on how the126

intrinsic design of language models impacts their127

usability and potential to express cognitive behav-128

iors.129

Auto-Regressive (Left-to-Right) Language Mod-130

eling Typically, language modeling is ap-131

proached by predicting the subsequent token in a 132

sequence based on the preceding tokens. This pre- 133

diction is quantified as the product of conditional 134

probabilities for each subsequent token, consid- 135

ering its previous tokens, in accordance with the 136

chain rule (Bengio et al., 2003). 137

P (w1, . . . , wN ) =

N∏
t=1

P (wt | w0, . . . , wt−1)

(1)
138

Here, w0 serves as a marker for the beginning of 139

text. 140

Auto-Encoding (Denoising) Language Modeling 141

In the context of auto-encoding language model- 142

ing, noise is intentionally introduced to an input 143

sequence w1, w2, ...wN . The primary aim is to op- 144

timize 145

max

N∏
t=1

P (wt | ŵ1, . . . , ŵN ) (2) 146

where ŵ1, ŵ2, ...ŵN represents the altered, noise- 147

added version of the input sequence. The approach 148

of masking specific tokens in the text at random, 149

known as token-level masked language modeling 150

(Devlin et al., 2019), is a widely adopted strategy. 151

This involves substituting original tokens with a 152

special token, such as “[MASK]”, and training the 153

model to predict these original tokens based on the 154

context of the surrounding, unmasked tokens. The 155

discrepancy between the original and reconstructed 156

sequences is quantified through a reconstruction 157

loss: 158

Lreconstruction = −
N∑
t=1

logP (wt | ŵ1, . . . , ŵN )

(3) 159

This denoising methodology also includes other 160

variants such as span-level masked language mod- 161

eling (Joshi et al., 2020), text infilling (Lewis et al., 162

2020), among others. 163

2.2 Exploring the Modalities within Large 164

Language Models 165

This section delves into the concept of “modalities” 166

within LLMs, a term often implicitly associated 167

with research on multimodal systems to describe 168

diverse, human-like channels of communication, 169

such as text, speech, gestures, and visual inputs 170

(Bartneck et al., 2020). Here, “modalities” specifi- 171

cally refer to the various forms of input and output 172

data utilized in LLM deployment. 173
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In the operation of both AR-LLMs and AE-174

LLMs, we identify three primary modalities: a175

unique textual modality for both the input and176

output in AR-LLMs (unrestricted text), a distinct177

textual modality for AE-LLMs (masked text or178

contextualized n-grams), and a shared modality of179

intermediate dense representations applicable to180

both models: 1) Intermediate Dense Representa-181

tions: Fundamentally, LLMs convert each word (or182

subword) in a sequence into dense vector embed-183

dings. These embeddings are generated through184

a series of mathematical operations, such as the185

self-attention mechanism, at every layer of the neu-186

ral network, and are represented as
{
hli
}

for every187

position i within the sequence and for every layer188

l in the model. Here, i ranges from 1 to N , with189

N indicating the total number of elements in the190

sequence, and l spans from 1 to L, where L repre-191

sents the complete count of layers within the model.192

2) Textual Modalities: AE-LLMs feature an input193

modality of masked text, with the output modality194

being contextualized n-grams designed to recon-195

struct the masked sections. Conversely, due to their196

auto-regressive design, AR-LLMs are capable of197

encoding any text as context and generating free-198

form text outputs, thereby employing unrestricted199

text for both input and output. These modalities200

are inherently linked to their respective language201

modeling strategies.202

2.3 Task-specific Channels for Deployment203

To tailor the core capabilities of LLMs for spe-204

cific downstream tasks, both input and intermediate205

modalities can be altered directly (for instance, by206

appending prefixes or incorporating verbal context)207

or indirectly through the use of parametric modules208

such as neural networks, including adapters and209

output layers as described subsequently. It’s worth210

noting that direct modifications, such as prefixes,211

can also be achieved using parametric modules.212

These parametric modules undergo optimization213

via task-specific supervised learning. In this con-214

text, we describe the means for modality transfor-215

mation aimed at specific tasks as task-specific chan-216

nels. For clarify, modalities are the types of data or217

the form in which data is processed, while channels218

are the pathways or methods through which these219

data modalities are adapted or transformed for spe-220

cific tasks. Task-specific channels encompass: 1)221

Adapter: Adapters are compact neural networks222

that can be embedded between an LLM’s layers.223

A well-known approach, adapter tuning (Houlsby224

et al., 2019), involves optimizing the adapter’s pa- 225

rameters while leaving the original LLM param- 226

eters intact. These adapters are designed to ad- 227

just the intermediate layer representations to better 228

align with task-specific needs. 2) LLMs Them- 229

selves: An alternative strategy involves modifying 230

the LLM directly to produce task-specific represen- 231

tations by fine-tuning the model’s weights across 232

all or selected layers. This method of fine-tuning 233

is prevalent for AE-LLMs (Jin et al., 2020) and 234

has also been applied to AR-LLMs in early use of 235

GPT-like models (Radford et al., 2018). 3) Output 236

Layers: Once task-specific representations are pro- 237

duced by either adapters or the LLM directly, the 238

function of the output layers is to translate these rep- 239

resentations into a designated output space. These 240

layers typically consist of one or several linear lay- 241

ers. For example, linear functions are frequently 242

used for tasks involving classification, while tasks 243

that involve extractive question answering often 244

necessitate the use of two linear functions to de- 245

termine the beginning and concluding positions of 246

the answer within a text passage. 4) Activation 247

Prefixes: Within the scope of deploying LLMs 248

via task-specific supervised learning, where train- 249

ing neural networks is common, prefix tuning (Li 250

and Liang, 2021) presents an innovative method 251

that employs prefixes to directly modify intermedi- 252

ate representations. These prefixes are essentially 253

embeddings that are added at various layers, with 254

dimensions identical to those of token embeddings, 255

functioning as virtual tokens. Introducing these 256

prefixes at earlier stages in the model allows for 257

the infusion of task-specific information into more 258

advanced layers, thereby improving the model’s 259

alignment with the desired task objectives. 260

Beyond the four channels previously outlined, 261

verbal channels offer a unique approach for articu- 262

lating the task context in which LLMs can identify 263

and execute the intended tasks. These channels 264

include: 5) Verbal Free-form Context: In this 265

approach, a context is articulated using free-form 266

text, such as task instructions and few-shot demon- 267

strations, which can activate complex cognitive 268

functions. By merely incorporating task instruc- 269

tions within the context, AR-LLMs are enabled to 270

undertake a multitude of tasks through zero-shot 271

prompts. Another widely adopted method is few- 272

shot prompting (Radford et al., 2019; Brown et al., 273

2020), which involves learning from a limited num- 274

ber of examples for in-context learning without the 275

need for gradient updates, showcasing a human- 276
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Channels Relevant Paradigms Customizability Transparency Complexity

Adapter Adapter tuning ✗ ✗ T
Output layers LLM fine-tuning;

Adapter tuning
✗ ✗ T

LLMs LLM fine-tuning; PET ✗ ✗ T
Activation prefixes Prefix tuning ✗ ✗ T
Verbal free-form context AR-LLMs’ prompting ✓ ✓ 0
Contextual text patterns PET;

Auto-prompt
✗ ✓(PET);

✗(Auto-prompt)
N × T

Table 1: Evaluation of deployment channels for language models: A comparative analysis of task customizability,
transparency and complexity from the users’ perspective. PET: Pattern exploitation training; T : the total number of
task; N : the number of patterns per task.

like efficiency in acquiring new tasks. This method277

is particularly effective in eliciting cognitive behav-278

iors akin to those observed with few-shot demon-279

strations, with further details discussed in Section280

4. It’s important to recognize that, in contrast to281

channels that are easily differentiated by input-side282

modalities (such as task-specific examples), this283

channel (e.g., task instructions) can intertwine with284

model inputs, e.g., task-specific examples. This285

allows for the seamless integration of the models’286

world knowledge into tasks, for instance, “sum-287

marize deep learning technology”. 6) Contextual288

Text Patterns: Given their training on a denois-289

ing language model objective, AE-LLMs excel in290

completing texts by filling in missing words, a trait291

that can be leveraged for downstream tasks. Task-292

specific patterns, in this regard, serve as a mecha-293

nism to alter given task-specific examples. Typi-294

cally, this involves appending the examples with a295

cloze-style phrase or sentence (text with missing296

words) tailored to the task, allowing the model to297

predict the intended task outcomes based on the298

placeholders filled within the text. Pattern Exploita-299

tion Training (PET) (Schick and Schütze, 2021) in-300

volves the creative design of task-specific patterns301

and the fine-tuning of LLMs to these patterns. Con-302

versely, auto-prompt methods (Shin et al., 2020)303

seek to optimize task-specific patterns to better fit304

the models, enhancing their ability to interpret and305

respond to the given tasks effectively.306

3 Evaluation of Modalities and Channels307

3.1 Evaluating Usability of Deployment308

Channels309

This section introduces a framework for assess-310

ing the usability of language model deployment311

channels, focusing on their customizability, trans-312

parency, and complexity, as summarized in Table313

1.314

Customizability of User-level Tasks: Extent of 315

User Control over Channels Essentially, any 316

task can be articulated in human languages, such as 317

English, using free-form context. This adaptability 318

is a testament to the evolution of human language 319

over thousands of years, which has been refined to 320

describe a vast array of everyday and complex sci- 321

entific problems. Typically, in a zero-shot learning 322

context, the channel consists solely of task instruc- 323

tions within the prompts, capable of encompass- 324

ing a wide range of tasks. For instance, Wang 325

et al. (2022) have converted standard NLP datasets 326

designed for optimized channels into instruction- 327

based formats for 76 different tasks. Moreover, 328

free-form task instructions allow for nuanced con- 329

trol mechanisms, including explicit directives (such 330

as specifying output formats or initiating reason- 331

ing processes) and subtle cues (such as inducing 332

cognitive behaviors through few-shot examples). 333

These aspects will be further explored in Section 334

4 and summarized in Table 2. In contrast, since 335

other channels are set during the optimization pro- 336

cess for specific tasks, they lack the flexibility for 337

user-directed modifications. Channels that require 338

adjustments, such as fine-tuning the LLM, adapter 339

tuning, or prefix tuning, rely on supervised learn- 340

ing methods for configuration. Although prompt- 341

ing in AE-LLMs could, in theory, facilitate task 342

adjustments at inference time without prior task- 343

specific fine-tuning—akin to AR-LLMs’ prompt- 344

ing approach—it often requires task-specific opti- 345

mization to achieve effective channel performance. 346

For example, techniques like Pattern Exploitation 347

Training (PET) (Schick and Schütze, 2021) uti- 348

lize mathematical optimization to adapt models 349

to specific patterns, whereas Auto-prompt (Shin 350

et al., 2020) optimizes text patterns for language 351

models. The question of whether this need for op- 352

timization arises from the inherent complexities 353
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of auto-encoding language models invites further354

research.355

User-level Transparency: Can Channel Formu-356

lation Be Easily Understood by Users? The fo-357

cus here is on the understandability of the channels358

themselves to lay users, rather than their functional359

effectiveness, as this greatly influences the user360

experience. For example, the objective of an out-361

put layer is clear — transforming LLM representa-362

tions into a specific output format. However, the363

process involving dense representations through364

matrix multiplication is not intuitively understand-365

able to the non-specialist. Moreover, text patterns366

refined through AE-LLMs’ Auto-prompting often367

lack the straightforwardness found in manually cre-368

ated prompts.369

User-level Complexity: Assessing the Number370

of Conceptual Components This analysis evalu-371

ates the conceptual load required to deploy T tasks372

using various channels, moving away from the pa-373

rameter size metric, which is more pertinent to374

researchers and developers. Assuming each task is375

accommodable across all channels, we quantify the376

complexity as follows: For fine-tuned LLMs, pre-377

fixes, adapters and output layers, each task-specific378

adjustment equates to a complexity of T , with T379

denoting the total number of tasks. Additionally,380

N text patterns are devised per task, resulting in a381

complexity of N×T , where N represents the num-382

ber of patterns per task. The complexity for verbal383

free-form context is considered negligible, as these384

are formulated spontaneously by users at the time385

of use. From this framework, we can deduce the386

complexity inherent to each deployment paradigm.387

For instance, LLM fine-tuning, which necessitates388

one LLM and one output layer per task, carries a389

complexity of 2× T .390

3.2 Evaluating Expressiveness of Modalities391

During LLM fine-tuning and adapter tuning, the392

task-specific output layers strictly limit the range393

of possible outputs, hindering the potential for de-394

tailed expressiveness and, by extension, advanced395

cognitive behaviors. The output space is tightly de-396

fined, with actions or labels being pre-determined397

and given specific meanings through task-specific398

supervised learning. Nonetheless, certain probing399

techniques allow us to uncover the thought pro-400

cesses behind their predictions, a topic we will401

explore further in Section 4.1. When it comes402

to AE-LLMs prompted with text patterns, these403

models are limited to generating only specific to- 404

kens or words, constrained by the patterns set in 405

advance. These constraints, such as token posi- 406

tions and quantities dictated by the input patterns, 407

along with the need for grammatical and coherent 408

text completion, restrict the models’ ability to ar- 409

ticulate complex ideas, plans, and actions. On the 410

other hand, AR-LLMs’ prompting capitalizes on 411

their auto-regressive nature to produce unbounded, 412

free-form text, influenced solely by the given input 413

context. This capability is further demonstrated 414

in Section 4 and summarized in Table 2, showcas- 415

ing the open-ended expressiveness unique to the 416

AR-LLM prompting paradigm. 417

4 Cognitive Behaviors Under AR-LLMs’ 418

Prompting Paradigm 419

This section elucidates the capability of AR-LLM 420

prompting paradigms to exhibit cognitive behaviors 421

expressed by the free-form modalities by mainpu- 422

lating the free-form channels. It’s important to clar- 423

ify that not every AR-LLM demonstrates cognitive 424

behaviors—smaller models like GPT-2 (Radford 425

et al., 2019) may not. Specifically, we analyze four 426

cognitive behaviors: thinking, reasoning, planning, 427

and feedback learning, leaving the examination of 428

their interrelationships for future research. 429

4.1 Thinking, Fast And Slow 430

At the core of cognitive behavior lies thinking. The 431

Kahneman’s framework (Kahneman, 2011) divides 432

thinking into two distinct systems: the fast system 433

operates through intuitive shortcuts for quick navi- 434

gation of daily situations without extensive analysis. 435

Conversely, the slow system, or System 2, involves 436

conscious, detailed and methodical examination of 437

information, necessitating logical deliberation to 438

arrive at decisions and address challenges. 439

Fast Thinking via Task-specific Channels Us- 440

ing channels trained through task-specific super- 441

vised learning can achieve performances that rival 442

or exceed human performance. Nonetheless, they 443

often struggle with generalizing to data from nat- 444

ural domain shifts, adversarial perturbations and 445

debiased data, as summarized by Li et al. (2023). 446

This limitation is consistently attributed to short- 447

cut learning, such as classifying sentences con- 448

taining the word “No” as “contradiction” in text 449

entailment tasks (Wallace et al., 2019; Du et al., 450

2021). The intriguing question arises whether task- 451

specific channels can also develop System 2 — the 452
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Behaviors Context Relevant Works

Reasoning CoT triggers, e.g., “Let’s think step by
step.”

Zero-shot CoTs (Kojima et al., 2022), Auto-CoTs (Zhang et al., 2023)

Few-shot demos with CoTs Few-shot CoTs (Wei et al., 2022b),
CoTs-SC (Wang et al., 2023b), Auto-prompt (Zhang et al., 2023), ToT
(Yao et al., 2023a)

Planning
Zero-shot instruction Wang et al. (2023a)

Few-shot demos with planning steps Huang et al. (2022)
Feedback
Learning

Observations from external environ-
ments

Reflexion (Shinn et al., 2023)

Outputs from LLM-Profiled Evaluators Self-refine (Madaan et al., 2023), Reflexion (Shinn et al., 2023), RAP
(Hao et al., 2023)

Feedback from Tools Guan et al. (2023), CRITIC (Gou et al., 2024)

Table 2: Cognitive behaviors enabled by free-form context. For the “Feedback Learning” sections, we illustrate the
contexts utilized to produce feedback. It’s worth noting that the methods for feedback adaptation might not always
employ free-form context; for instance, they may involve advanced search techniques as outlined in our study. The
final column presents examples of tasks for demonstration purposes, though the list is not comprehensive.

fast system. While the limited expressiveness of453

task-specific outputs does not offer straightforward454

evidence, Li and Liu (2023) employ a technical455

probe (Sundararajan et al., 2017) to reveal that in-456

dulgence in shortcut learning during task-specific457

training impedes the development of the slow sys-458

tem. While the mentioned research primarily ex-459

amines the LLM fine-tuning paradigm, it’s our con-460

tention that shortcut learning and the fast thinking461

are likely prevalent across all the parametric chan-462

nels, including prefixes and adapters, trained on su-463

pervised datasets to some degree. This is attributed464

to the inherent characteristics of gradient descent465

optimization, as demonstrated by empirical find-466

ings in Li and Liu (2023). Another empirical evi-467

dence shows that methods like prefix and adapter468

tuning, although more resilient, still notably fal-469

ter under distribution shifts and adversarial attacks470

(Han et al., 2021; Yang and Liu, 2022). The miti-471

gated impact observed in prefix and adapter tuning472

is attributed to the fact that the underlying LLMs473

are not directly engaged as task-specific channels,474

as explored by (Han et al., 2021). While we draw475

parallels between reliance on shortcuts and fast476

thinking within human cognition, some research477

within the NLP field argues that such dependency478

on shortcuts (dataset biases) detracts from the mod-479

els’ relevance to human-level cognition (Zhong480

et al., 2023). This perspective arises from the view481

that the shortcuts might not reflect genuine human482

cognitive activities within the field of NLP.483

Minimal Fast Thinking Evident with AR-LLMs484

Prompting Research findings (Si et al., 2023;485

Zhang et al., 2022) consistently indicate the dif- 486

ficulty of inducing fast thinking in AR-LLMs 487

through prompting techniques. These models typ- 488

ically remain unfazed by various distributional 489

shifts, such as domain shift and adversarial per- 490

turbations. Min et al. (2022) demonstrate that, 491

even with few-shot demonstrations for in-context 492

learning, the models tend to leverage the structure 493

of these demonstrations to organize the genera- 494

tion rather than relying on simplistic input-to-label 495

mappings for predictions. Additionally, Raman 496

et al. (2023) show that PET prompting improve the 497

AE-LLMs’ ability to withstand adversarial attacks. 498

Nonetheless, this enhanced robustness is somewhat 499

restricted. The constrained effectiveness could be 500

attributed to the dependency on task-specific chan- 501

nels inherent during the deployment of the PET 502

prompting. 503

Slow Thinking in Prompting Paradigms The 504

remainder of this section will illustrate the capacity 505

of AR-LLMs’ prompting to replicate the human 506

slow thinking process through the exhibition of 507

effortful mental activities, as encapsulated in Table 508

2. 509

4.2 Reasoning 510

Reasoning is a thinking process to conclusions or 511

decisions with the sequential and interconnected 512

nature, i.e., chain-of-thoughts (CoTs) (Wei et al., 513

2022b). This is the most common definition in the 514

NLP/LLM are to investigate the LLMs’ reasoning 515

ability. With a reasoning path in free-form modal- 516

ity, models can better solve complicated tasks re- 517
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quiring multi-step reasoning compared to the con-518

clusion without CoTs. As an illustration, Wei et al.519

(2022b) substantially boosts model efficacy in solv-520

ing mathematical reasoning bechmarks.521

Reasoning is defined as the process of arriving at522

conclusions or decisions through a sequential and523

interconnected series of thoughts, often referred to524

as a chain-of-thoughts (CoTs) (Wei et al., 2022b).525

This definition is widely accepted in the field of526

Natural Language Processing (NLP) for exploring527

the reasoning capabilities of LLMs. By employ-528

ing a reasoning path via the modality of free-form529

text, models are more adept at tackling complex530

tasks that necessitate multi-step reasoning, as op-531

posed to reaching conclusions without the aid of532

CoTs. Technically, the auto-regressive nature em-533

ploys the thoughts or intermediate steps generated534

as the prior for generating subsequent thoughts and,535

ultimately, the final predictions.536

Context for Eliciting Reasoning Two primary537

contexts are employed to facilitate the creation538

of intermediate reasoning steps: incorporating a539

Chain of Thought (CoT) triggers in task instruc-540

tions (zero-shot CoTs), such as “Let’s think step-541

by-step” (Kojima et al., 2022), within prompts, or542

integrating manually crafted reasoning steps in a543

few-shot learning context (few-shot CoTs) (Wei544

et al., 2022b). To circumvent the manual compi-545

lation of few-shot demonstrations with reasoning546

sequences, Zhang et al. (2023) developed a method547

to automatically generate few-shot demonstrations548

by choosing several queries and utilizing zero-shot549

CoTs to craft reasoning sequences for each query550

(Auto CoTs). Given that simple greedy decoding551

(producing a single chain) is prone to error accu-552

mulation in intermediate steps, Wang et al. (2023b)553

propose generating multiple chains and consolidat-554

ing them through majority voting, thereby enhanc-555

ing model accuracy in both scenarios (CoTs-SC).556

4.3 Planning557

Planning involves the forethought and organiza-558

tion of actions or steps to achieve a predetermined559

objective. This process fundamentally requires a560

comprehension or representation of the environ-561

ment and involves breaking down tasks into smaller,562

manageable subgoals. It represents a key cognitive563

behavior modeled within the fields of AI. Typical564

planning methods break down tasks into subgoals565

through explicit symbolic representation (Russell566

and Norvig, 2010). For instance, partial-order plan-567

ning ensures the logical sequencing of actions by 568

modeling actions, preconditions, effects, and the 569

relations among actions in such a way that actions 570

are logically sequenced to meet the goal’s precon- 571

ditions. Differing from traditional approaches that 572

rely on explicitly modeled knowledge and reason- 573

ing mechanisms, LLMs leverage their inherent 574

knowledge and inferential capabilities to mimic 575

planning. They do this by producing text sequences 576

that suggest a logical progression of steps or actions 577

directed towards an objective (Hao et al., 2023; 578

Wang et al., 2023a; Huang et al., 2022). This skill 579

stems from the models’ proficiency in forecasting 580

the subsequent most likely word sequence based 581

on a context indicative of planning or reasoning 582

processes. 583

Context to Elicit Plans Similar to the activation 584

of reasoning processes, the process of planning can 585

be prompted through the inclusion of specific plan- 586

ning cues in zero-shot scenarios, such as the prompt 587

“let’s carry out the plan” (Wang et al., 2023a), or 588

through the demonstration of planning steps in few- 589

shot examples (Huang et al., 2022). Experimental 590

findings indicate that instructions tailored to tasks 591

significantly enhance the performance of LLMs on 592

various tasks. For instance, directives like “pay 593

attention to calculation” (Hao et al., 2023) or “iden- 594

tify key variables and their corresponding figures 595

to formulate a plan” (Wang et al., 2023a) have been 596

shown to improve outcomes in tasks requiring nu- 597

merical reasoning. 598

Applying Planning for Sequential Decision- 599

making This ability is essential for addressing 600

problems requiring a series of decisions, especially 601

when deploying LLMs in open-world scenarios 602

like robotics. In such environments, tasks typically 603

need physical actions (grounded), involve translat- 604

ing broad objectives into actionable steps (high- 605

level), and present a vast range of possible actions 606

(open-ended). Research has demonstrated the effec- 607

tiveness of LLMs in deconstructing complex goals 608

into actionable sequences within such dynamic en- 609

vironments, as seen in projects like ALFWorld (Yao 610

et al., 2023b), VirtualHome (Huang et al., 2022), 611

and Minecraft (Wang et al., 2023c). An example 612

from ALFWorld illustrates this: achieving the ob- 613

jective of “examining paper under desklamp” ne- 614

cessitates LLMs to devise practical plans (e.g., ini- 615

tially approaching the coffee table, then acquiring 616

the paper and utilizing the desklamp) and subse- 617

quently generate textual instructions for execution 618
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in real-world settings.619

4.4 Feedback Learning620

As Kahneman (2011) elucidates, although System 1621

may rush to judgments that are biased or erroneous,622

System 2 has the capacity to identify and rectify623

these mistakes through introspection on the rapid624

decisions made by System 1. Similarly, LLMs have625

shown the ability to mimic this aspect of human626

cognition.627

Feedback Sources There are different sources of628

feedback: 1) Feedback from LLM-profiled evalu-629

ators: In such cases, LLM-profiled evaluators can630

give feedback on previous generations. The evalua-631

tors are normally prompted to follow certain eval-632

uation metrics, such as determining the relevance633

of a sub-question to the original question requiring634

intricate, multi-step reasoning (Hao et al., 2023).635

An example prompt could be: “Given a question,636

assess if the subquestion aids in solving the original637

question. Answer ’Yes’ or ’No’. Question: {goal};638

Subquestion: {action}. Is the subquestion useful?”.639

The generated feedback would be appended for640

LLM actors to re-generate answers. 2) Feedback641

from task-specific environments, e.g., (simulated)642

embodied environments (Shinn et al., 2023). 3)643

Feedback from tools, e.g., error messages from644

Python interpreters (Gou et al., 2024). Typically,645

raw feedback originating from external environ-646

ments and tools undergoes a process of refinement647

by LLM evaluators prior to being presented to LLM648

actors. In the work by Yao et al. (2023b), LLMs649

engaging with a Wikipedia API to search for en-650

tities that do not exist, such as “Search[goddess651

frigg]”, may encounter a 404 error, delivered in652

JSON format. In response, an LLM evaluator can653

articulate feedback about the error related to their654

action, such as stating, “Could not find goddess655

frigg.”.656

5 Future Work: Autonomous Cognitive657

Behaviors658

Instead of relying on explicit contextual cues to659

trigger advanced cognitive functions, an intelli-660

gent system is expected to independently engage661

in reasoning, planning, and decision-making as it662

interacts with the external world—for instance, by663

seeking input from humans or utilizing available664

tools. To foster such autonomous behaviors, vari-665

ous algorithms aim to tune LLMs for independently666

exhibiting behaviors that align with human cogni-667

tive processes. For instance, Liu et al., Liu et al. 668

(2023) have developed techniques for instruction 669

tuning that facilitates autonomous reasoning. Yet, 670

the challenge remains in creating instructional data 671

that encapsulates higher-order cognitive functions. 672

A pivotal question emerges: How can various cog- 673

nitive behaviors be encapsulated within free-form 674

text (instruction data)? Addressing this question 675

is crucial for ensuring that the data used for tuning 676

mirrors human cognitive processes, thereby making 677

the resulting model actions more human-like. Un- 678

raveling this issue might necessitate insights from 679

both cognitive psychology and linguistics. Another 680

approach to tuning involves the use of reliable re- 681

ward models, such as reinforcement learning from 682

human feedback (RLHF) (Ouyang et al., 2022) 683

and behavior cloning (Nakano et al., 2021). Many 684

studies (Ouyang et al., 2022; Nakano et al., 2021) 685

develop reward models based on comparisons of 686

model-generated responses, with human evaluators 687

ranking these responses. An unresolved inquiry 688

remains: How can reward models be devised to 689

truly reflect human cognitive preferences? 690

6 Conclusion 691

In summary, our survey seeks to inspire further re- 692

search in AI, within the domain of language intelli- 693

gence and beyond, to move away from heavily opti- 694

mized task-specific channels. Instead, we advocate 695

for the adoption of natural and free-form modal- 696

ities throughout the pretraining phase via self- 697

supervised learning, followed by straightforward 698

inference-time deployment that eschews the neces- 699

sity for mathematically optimizing task-specific 700

channels. We developed an analytical framework 701

to examine the deployment of LLMs to reach the 702

conclusion. Besides, the auto-regressive nature 703

of free-form modalities, leveraged during pretrain- 704

ing, enhances the capacity for exhibiting a range 705

of human-like cognitive behaviors by utilizing the 706

free-form channel. It is important to clarify that 707

we do not advocate that LLMs possess conscious 708

thought. Rather, our findings illustrate how LLMs, 709

such as ChatGPT, can imitate the outcomes of hu- 710

man cognitive activities via the free-form modality 711

given suitable verbal context. 712

Limitations 713

This work acknowledges an omission of a signifi- 714

cant deployment strategy: the utilization of multi- 715

agent systems, as reviewed by Wang et al. (2024). 716
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However, the prompting paradigm of AR-LLMs717

and the cognitive behaviors encapsulated herein718

serve as pivotal building blocks for LLM-based719

agents. Instances include the integration of LLM-720

profiled planners in recent studies by Huang et al.721

(2022); Wang et al. (2023c); Dasgupta et al. (2022);722

Wang et al. (2023a), alongside the formulation723

of feedback-learning workflows by Shinn et al.724

(2023); Gou et al. (2024).725
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