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Abstract

Over the last decade, a wide range of training
and deployment strategies for Large Language
Models (LLMs) have emerged. Among these,
the prompting paradigms of Auto-Regressive
LLMs (AR-LLMs) have catalyzed a signifi-
cant surge. This paper embarks on a quest
to unravel the underlying factors behind the
triumph of AR-LLMs’ prompting paradigm.
This study summarizes and focuses on six dis-
tinct task-oriented channels, e.g., numeric pre-
fixes and free-form text, across diverse deploy-
ment paradigms By pivoting our focus onto
these channels, we can assess these paradigms
across crucial dimensions, such as task cus-
tomizability, transparency, and complexity to
gauge LLMs. The results emphasize the signif-
icance of utilizing free-form contexts as user-
directed channels for downstream deployment.
Moreover, we examine the stimulation of di-
verse cognitive behaviors in LLMs through the
adoption of free-form, verbal outputs and in-
puts as contexts. We detail four common cog-
nitive behaviors to underscore how AR-LLMs’
prompting successfully imitates human-like be-
haviors under the free-form modality and chan-
nel.

1 Introduction

ChatGPT has emerged as the most popular Al ap-
plication, with a vast user base. The success of
GPT models can be attributed to the scaling of
transformer-based neural networks and the exten-
sive pre-training data, as explored in previous stud-
ies (Radford et al., 2019; Brown et al., 2020). The
scope of this paper is directed towards Large Lan-
guage Models (LLMs) that are sufficiently large
to acquire world knowledge, commonsense, and
the linguistic capabilities required to attain high
performance on benchmarks such as GLUE (Wang
etal., 2019).

Although LLMs are commonly perceived as
general-purpose language intelligence models, the

practice often diverges from employing a singular,
all-encompassing model for every task. Instead, the
deployment frequently entails developing a suite of
specialized models tailored to specific tasks. This
specialization is facilitated through the introduction
of task-specific channels, modifying the model’s
structure or its pre-trained parameters to better suit
the nuances of individual tasks. This highlights a
departure from the ideal of a universal, one-size-
fits-all model, while the broad capabilities of LLMs
suggest they could serve as jack-of-all-trades in lan-
guage processing. This trend towards creating task-
specific models may stem from the tradition of eval-
uating linguistic intelligence through a variety of
distinct tasks and benchmarks (Wang et al., 2019),
with researchers striving to excel in these tasks in-
dependently to set new benchmarks. In this paper,
we delve into the mechanisms behind prevalent de-
ployment paradigms including AR-LLMs’ prompt-
ing, which underpins ChatGPT’s operation, and
highlight several critical observations: 1) Models
tailored with optimized task-specific channels often
suffer from issues related to task customizability,
transparency, and user-level complexity during de-
ployment, affecting their overall usability; 2) Antic-
ipated to mimic human-like intelligence, they often
exhibit slow thinking through shortcuts (Kahne-
man, 2011); 3) They frequently fall short in show-
casing advanced cognitive behaviors, which we
contend are vital for convincing users of the mod-
els’ intelligence. Conversely, AR-LLMs’ prompt-
ing paradigms introduce a more natural, human-
like channel (verbal free-form context) for repre-
senting a wide array of real-life tasks and employ
form-form output modalities to showcase cognitive
behaviors in complex scenarios.

Specifically, in this paper, we commence by ex-
amining the foundational principles of language
modeling, revisiting the notable split in language
modeling approaches that emerged in the late
2010s: auto-encoding LMs (AE-LMs) exemplified



by BERT (Jin et al., 2020) and auto-regressive LMs
(AR-LMs) exemplified by the GPT series (Radford
et al., 2018; Brown et al., 2020). Rather than delve
into an extensive array of deployment paradigms,
we introduce and discuss the concepts of modal-
ities and channels to investigate the usability of
the deployment paradigms (§2). Upon evaluating
different deployment paradigms for LLMs, it be-
comes clear that aside from the AR-LLMs’ prompt-
ing approach, other paradigms struggle to demon-
strate advanced human-like cognitive behaviors.
This shortfall is attributed to the constraints within
modalities and channels, coupled with a tendency
towards superficial learning, i.e., slow thinking (§3
and §4.1). In contrast, via specified context in the
free-from text, the AR-LLMs’ prompting strategy
imitate human-like cognitive behaviors, such as
reasoning, planning, and feedback learning, which
are elucidated in Table 2 (§4).

2 Deploying Large Language Models

This section elucidates the dual objectives under-
lying language models, which both aim to model
the joint probability distribution of text sequences
through self-supervised learning techniques and
generate text that is relevant to the given context.
After this introduction, we present a novel frame-
work that facilitate the characterization of various
deployment paradigms through two types of data
modalities, which support language comprehen-
sion, coupled with six unique channels for process-
ing these modalities.

2.1 The Fundamental Dichotomy in Language
Modeling

Objective of Language Modeling The goal of
language modeling is to estimate the joint probabil-
ity distribution of sequences of text (Bengio et al.,
2003). This involves developing two distinct yet
relaxed formulations for constructing LLMs that
leverage self-supervised learning from vast quan-
tities of unlabeled text data. The self-supervised
approach enables the training of LLMs on extensive
text corpora, a practice that has been thoroughly
investigated in various studies (Liu et al., 2019;
Wei et al., 2022a). This paper focuses on how the
intrinsic design of language models impacts their
usability and potential to express cognitive behav-
iors.

Auto-Regressive (Left-to-Right) Language Mod-
eling Typically, language modeling is ap-

proached by predicting the subsequent token in a
sequence based on the preceding tokens. This pre-
diction is quantified as the product of conditional
probabilities for each subsequent token, consid-
ering its previous tokens, in accordance with the
chain rule (Bengio et al., 2003).

N
P (w1,...,wy) :Hp(wt | wo, ..., wi—1)
t=1

ey

Here, wy serves as a marker for the beginning of
text.

Auto-Encoding (Denoising) Language Modeling
In the context of auto-encoding language model-
ing, noise is intentionally introduced to an input
sequence wy, wa, ...wy. The primary aim is to op-
timize

N
maxHP(wt]wl,...,wN) (2)
t=1
where w1, We, ...w N represents the altered, noise-
added version of the input sequence. The approach
of masking specific tokens in the text at random,
known as token-level masked language modeling
(Devlin et al., 2019), is a widely adopted strategy.
This involves substituting original tokens with a
special token, such as “[MASK]”, and training the
model to predict these original tokens based on the
context of the surrounding, unmasked tokens. The
discrepancy between the original and reconstructed
sequences is quantified through a reconstruction
loss:

N
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This denoising methodology also includes other
variants such as span-level masked language mod-
eling (Joshi et al., 2020), text infilling (Lewis et al.,
2020), among others.

2.2 Exploring the Modalities within Large
Language Models

This section delves into the concept of “modalities”
within LLMs, a term often implicitly associated
with research on multimodal systems to describe
diverse, human-like channels of communication,
such as text, speech, gestures, and visual inputs
(Bartneck et al., 2020). Here, “modalities” specifi-
cally refer to the various forms of input and output
data utilized in LLM deployment.



In the operation of both AR-LLMs and AE-
LLMs, we identify three primary modalities: a
unique textual modality for both the input and
output in AR-LLMs (unrestricted text), a distinct
textual modality for AE-LLMs (masked text or
contextualized n-grams), and a shared modality of
intermediate dense representations applicable to
both models: 1) Intermediate Dense Representa-
tions: Fundamentally, LLMs convert each word (or
subword) in a sequence into dense vector embed-
dings. These embeddings are generated through
a series of mathematical operations, such as the
self-attention mechanism, at every layer of the neu-
ral network, and are represented as {hi} for every
position 7 within the sequence and for every layer
{ in the model. Here, i ranges from 1 to N, with
N indicating the total number of elements in the
sequence, and [ spans from 1 to L, where L repre-
sents the complete count of layers within the model.
2) Textual Modalities: AE-LLMs feature an input
modality of masked text, with the output modality
being contextualized n-grams designed to recon-
struct the masked sections. Conversely, due to their
auto-regressive design, AR-LLMs are capable of
encoding any text as context and generating free-
form text outputs, thereby employing unrestricted
text for both input and output. These modalities
are inherently linked to their respective language
modeling strategies.

2.3 Task-specific Channels for Deployment

To tailor the core capabilities of LLMs for spe-
cific downstream tasks, both input and intermediate
modalities can be altered directly (for instance, by
appending prefixes or incorporating verbal context)
or indirectly through the use of parametric modules
such as neural networks, including adapters and
output layers as described subsequently. It’s worth
noting that direct modifications, such as prefixes,
can also be achieved using parametric modules.
These parametric modules undergo optimization
via task-specific supervised learning. In this con-
text, we describe the means for modality transfor-
mation aimed at specific tasks as task-specific chan-
nels. For clarify, modalities are the types of data or
the form in which data is processed, while channels
are the pathways or methods through which these
data modalities are adapted or transformed for spe-
cific tasks. Task-specific channels encompass: 1)
Adapter: Adapters are compact neural networks
that can be embedded between an LLM’s layers.
A well-known approach, adapter tuning (Houlsby

et al., 2019), involves optimizing the adapter’s pa-
rameters while leaving the original LLM param-
eters intact. These adapters are designed to ad-
just the intermediate layer representations to better
align with task-specific needs. 2) LLMs Them-
selves: An alternative strategy involves modifying
the LLM directly to produce task-specific represen-
tations by fine-tuning the model’s weights across
all or selected layers. This method of fine-tuning
is prevalent for AE-LLMs (Jin et al., 2020) and
has also been applied to AR-LLMs in early use of
GPT-like models (Radford et al., 2018). 3) Output
Layers: Once task-specific representations are pro-
duced by either adapters or the LLM directly, the
function of the output layers is to translate these rep-
resentations into a designated output space. These
layers typically consist of one or several linear lay-
ers. For example, linear functions are frequently
used for tasks involving classification, while tasks
that involve extractive question answering often
necessitate the use of two linear functions to de-
termine the beginning and concluding positions of
the answer within a text passage. 4) Activation
Prefixes: Within the scope of deploying LLMs
via task-specific supervised learning, where train-
ing neural networks is common, prefix tuning (Li
and Liang, 2021) presents an innovative method
that employs prefixes to directly modify intermedi-
ate representations. These prefixes are essentially
embeddings that are added at various layers, with
dimensions identical to those of token embeddings,
functioning as virtual tokens. Introducing these
prefixes at earlier stages in the model allows for
the infusion of task-specific information into more
advanced layers, thereby improving the model’s
alignment with the desired task objectives.
Beyond the four channels previously outlined,
verbal channels offer a unique approach for articu-
lating the task context in which LLMs can identify
and execute the intended tasks. These channels
include: 5) Verbal Free-form Context: In this
approach, a context is articulated using free-form
text, such as task instructions and few-shot demon-
strations, which can activate complex cognitive
functions. By merely incorporating task instruc-
tions within the context, AR-LLMSs are enabled to
undertake a multitude of tasks through zero-shot
prompts. Another widely adopted method is few-
shot prompting (Radford et al., 2019; Brown et al.,
2020), which involves learning from a limited num-
ber of examples for in-context learning without the
need for gradient updates, showcasing a human-



Channels Relevant Paradigms Customizability = Transparency Complexity
Adapter Adapter tuning X X T

Output layers LLM fine-tuning; X X T

Adapter tuning

LLMs LLM fine-tuning; PET X X T
Activation prefixes Prefix tuning X X T

Verbal free-form context ~AR-LLMSs’ prompting v v 0
Contextual text patterns PET; X v (PET); N xT

Auto-prompt

X(Auto-prompt)

Table 1: Evaluation of deployment channels for language models: A comparative analysis of task customizability,
transparency and complexity from the users’ perspective. PET: Pattern exploitation training; 7": the total number of

task; N: the number of patterns per task.

like efficiency in acquiring new tasks. This method
is particularly effective in eliciting cognitive behav-
iors akin to those observed with few-shot demon-
strations, with further details discussed in Section
4. It’s important to recognize that, in contrast to
channels that are easily differentiated by input-side
modalities (such as task-specific examples), this
channel (e.g., task instructions) can intertwine with
model inputs, e.g., task-specific examples. This
allows for the seamless integration of the models’
world knowledge into tasks, for instance, “sum-
marize deep learning technology”. 6) Contextual
Text Patterns: Given their training on a denois-
ing language model objective, AE-LLMs excel in
completing texts by filling in missing words, a trait
that can be leveraged for downstream tasks. Task-
specific patterns, in this regard, serve as a mecha-
nism to alter given task-specific examples. Typi-
cally, this involves appending the examples with a
cloze-style phrase or sentence (text with missing
words) tailored to the task, allowing the model to
predict the intended task outcomes based on the
placeholders filled within the text. Pattern Exploita-
tion Training (PET) (Schick and Schiitze, 2021) in-
volves the creative design of task-specific patterns
and the fine-tuning of LLMs to these patterns. Con-
versely, auto-prompt methods (Shin et al., 2020)
seek to optimize task-specific patterns to better fit
the models, enhancing their ability to interpret and
respond to the given tasks effectively.

3 Evaluation of Modalities and Channels

3.1 Evaluating Usability of Deployment
Channels

This section introduces a framework for assess-
ing the usability of language model deployment
channels, focusing on their customizability, trans-
parency, and complexity, as summarized in Table
1.

Customizability of User-level Tasks: Extent of
User Control over Channels Essentially, any
task can be articulated in human languages, such as
English, using free-form context. This adaptability
is a testament to the evolution of human language
over thousands of years, which has been refined to
describe a vast array of everyday and complex sci-
entific problems. Typically, in a zero-shot learning
context, the channel consists solely of task instruc-
tions within the prompts, capable of encompass-
ing a wide range of tasks. For instance, Wang
et al. (2022) have converted standard NLP datasets
designed for optimized channels into instruction-
based formats for 76 different tasks. Moreover,
free-form task instructions allow for nuanced con-
trol mechanisms, including explicit directives (such
as specifying output formats or initiating reason-
ing processes) and subtle cues (such as inducing
cognitive behaviors through few-shot examples).
These aspects will be further explored in Section
4 and summarized in Table 2. In contrast, since
other channels are set during the optimization pro-
cess for specific tasks, they lack the flexibility for
user-directed modifications. Channels that require
adjustments, such as fine-tuning the LLM, adapter
tuning, or prefix tuning, rely on supervised learn-
ing methods for configuration. Although prompt-
ing in AE-LLMSs could, in theory, facilitate task
adjustments at inference time without prior task-
specific fine-tuning—akin to AR-LLMs’ prompt-
ing approach—it often requires task-specific opti-
mization to achieve effective channel performance.
For example, techniques like Pattern Exploitation
Training (PET) (Schick and Schiitze, 2021) uti-
lize mathematical optimization to adapt models
to specific patterns, whereas Auto-prompt (Shin
et al., 2020) optimizes text patterns for language
models. The question of whether this need for op-
timization arises from the inherent complexities



of auto-encoding language models invites further
research.

User-level Transparency: Can Channel Formu-
lation Be Easily Understood by Users? The fo-
cus here is on the understandability of the channels
themselves to lay users, rather than their functional
effectiveness, as this greatly influences the user
experience. For example, the objective of an out-
put layer is clear — transforming LLM representa-
tions into a specific output format. However, the
process involving dense representations through
matrix multiplication is not intuitively understand-
able to the non-specialist. Moreover, text patterns
refined through AE-LLMs’ Auto-prompting often
lack the straightforwardness found in manually cre-
ated prompts.

User-level Complexity: Assessing the Number
of Conceptual Components This analysis evalu-
ates the conceptual load required to deploy 7' tasks
using various channels, moving away from the pa-
rameter size metric, which is more pertinent to
researchers and developers. Assuming each task is
accommodable across all channels, we quantify the
complexity as follows: For fine-tuned LLMs, pre-
fixes, adapters and output layers, each task-specific
adjustment equates to a complexity of 7', with T'
denoting the total number of tasks. Additionally,
N text patterns are devised per task, resulting in a
complexity of NV x T', where N represents the num-
ber of patterns per task. The complexity for verbal
free-form context is considered negligible, as these
are formulated spontaneously by users at the time
of use. From this framework, we can deduce the
complexity inherent to each deployment paradigm.
For instance, LLM fine-tuning, which necessitates
one LLM and one output layer per task, carries a
complexity of 2 x 7.

3.2 Evaluating Expressiveness of Modalities

During LLM fine-tuning and adapter tuning, the
task-specific output layers strictly limit the range
of possible outputs, hindering the potential for de-
tailed expressiveness and, by extension, advanced
cognitive behaviors. The output space is tightly de-
fined, with actions or labels being pre-determined
and given specific meanings through task-specific
supervised learning. Nonetheless, certain probing
techniques allow us to uncover the thought pro-
cesses behind their predictions, a topic we will
explore further in Section 4.1. When it comes
to AE-LLMs prompted with text patterns, these

models are limited to generating only specific to-
kens or words, constrained by the patterns set in
advance. These constraints, such as token posi-
tions and quantities dictated by the input patterns,
along with the need for grammatical and coherent
text completion, restrict the models’ ability to ar-
ticulate complex ideas, plans, and actions. On the
other hand, AR-LLMs’ prompting capitalizes on
their auto-regressive nature to produce unbounded,
free-form text, influenced solely by the given input
context. This capability is further demonstrated
in Section 4 and summarized in Table 2, showcas-
ing the open-ended expressiveness unique to the
AR-LLM prompting paradigm.

4 Cognitive Behaviors Under AR-LLMs’
Prompting Paradigm

This section elucidates the capability of AR-LLM
prompting paradigms to exhibit cognitive behaviors
expressed by the free-form modalities by mainpu-
lating the free-form channels. It’s important to clar-
ify that not every AR-LLM demonstrates cognitive
behaviors—smaller models like GPT-2 (Radford
et al., 2019) may not. Specifically, we analyze four
cognitive behaviors: thinking, reasoning, planning,
and feedback learning, leaving the examination of
their interrelationships for future research.

4.1 Thinking, Fast And Slow

At the core of cognitive behavior lies thinking. The
Kahneman’s framework (Kahneman, 2011) divides
thinking into two distinct systems: the fast system
operates through intuitive shortcuts for quick navi-
gation of daily situations without extensive analysis.
Conversely, the slow system, or System 2, involves
conscious, detailed and methodical examination of
information, necessitating logical deliberation to
arrive at decisions and address challenges.

Fast Thinking via Task-specific Channels Us-
ing channels trained through task-specific super-
vised learning can achieve performances that rival
or exceed human performance. Nonetheless, they
often struggle with generalizing to data from nat-
ural domain shifts, adversarial perturbations and
debiased data, as summarized by Li et al. (2023).
This limitation is consistently attributed to short-
cut learning, such as classifying sentences con-
taining the word “No” as “contradiction” in text
entailment tasks (Wallace et al., 2019; Du et al.,
2021). The intriguing question arises whether task-
specific channels can also develop System 2 — the



Behaviors  Context

Relevant Works

CoT triggers, e.g., “Let’s think step by

Zero-shot CoTs (Kojima et al., 2022), Auto-CoTs (Zhang et al., 2023)

Reasoning step”
Few-shot demos with CoTs Few-shot CoTs (Wei et al., 2022b),
CoTs-SC (Wang et al., 2023b), Auto-prompt (Zhang et al., 2023), ToT
(Yao et al., 2023a)
Zero-shot instruction Wang et al. (2023a)
Planning Few-shot demos with planning steps Huang et al. (2022)
Feedback  Observations from external environ- Reflexion (Shinn et al., 2023)
Learning ments

Outputs from LLM-Profiled Evaluators

Self-refine (Madaan et al., 2023), Reflexion (Shinn et al., 2023), RAP

(Hao et al., 2023)

Feedback from Tools

Guan et al. (2023), CRITIC (Gou et al., 2024)

Table 2: Cognitive behaviors enabled by free-form context. For the “Feedback Learning” sections, we illustrate the
contexts utilized to produce feedback. It’s worth noting that the methods for feedback adaptation might not always
employ free-form context; for instance, they may involve advanced search techniques as outlined in our study. The
final column presents examples of tasks for demonstration purposes, though the list is not comprehensive.

fast system. While the limited expressiveness of
task-specific outputs does not offer straightforward
evidence, Li and Liu (2023) employ a technical
probe (Sundararajan et al., 2017) to reveal that in-
dulgence in shortcut learning during task-specific
training impedes the development of the slow sys-
tem. While the mentioned research primarily ex-
amines the LLM fine-tuning paradigm, it’s our con-
tention that shortcut learning and the fast thinking
are likely prevalent across all the parametric chan-
nels, including prefixes and adapters, trained on su-
pervised datasets to some degree. This is attributed
to the inherent characteristics of gradient descent
optimization, as demonstrated by empirical find-
ings in Li and Liu (2023). Another empirical evi-
dence shows that methods like prefix and adapter
tuning, although more resilient, still notably fal-
ter under distribution shifts and adversarial attacks
(Han et al., 2021; Yang and Liu, 2022). The miti-
gated impact observed in prefix and adapter tuning
is attributed to the fact that the underlying LLMs
are not directly engaged as task-specific channels,
as explored by (Han et al., 2021). While we draw
parallels between reliance on shortcuts and fast
thinking within human cognition, some research
within the NLP field argues that such dependency
on shortcuts (dataset biases) detracts from the mod-
els’ relevance to human-level cognition (Zhong
et al., 2023). This perspective arises from the view
that the shortcuts might not reflect genuine human
cognitive activities within the field of NLP.

Minimal Fast Thinking Evident with AR-LLMs
Prompting Research findings (Si et al., 2023;

Zhang et al., 2022) consistently indicate the dif-
ficulty of inducing fast thinking in AR-LLMs
through prompting techniques. These models typ-
ically remain unfazed by various distributional
shifts, such as domain shift and adversarial per-
turbations. Min et al. (2022) demonstrate that,
even with few-shot demonstrations for in-context
learning, the models tend to leverage the structure
of these demonstrations to organize the genera-
tion rather than relying on simplistic input-to-label
mappings for predictions. Additionally, Raman
et al. (2023) show that PET prompting improve the
AE-LLMs’ ability to withstand adversarial attacks.
Nonetheless, this enhanced robustness is somewhat
restricted. The constrained effectiveness could be
attributed to the dependency on task-specific chan-
nels inherent during the deployment of the PET
prompting.

Slow Thinking in Prompting Paradigms The
remainder of this section will illustrate the capacity
of AR-LLMs’ prompting to replicate the human
slow thinking process through the exhibition of
effortful mental activities, as encapsulated in Table
2.

4.2 Reasoning

Reasoning is a thinking process to conclusions or
decisions with the sequential and interconnected
nature, i.e., chain-of-thoughts (CoTs) (Wei et al.,
2022b). This is the most common definition in the
NLP/LLM are to investigate the LLMs’ reasoning
ability. With a reasoning path in free-form modal-
ity, models can better solve complicated tasks re-



quiring multi-step reasoning compared to the con-
clusion without CoTs. As an illustration, Wei et al.
(2022b) substantially boosts model efficacy in solv-
ing mathematical reasoning bechmarks.

Reasoning is defined as the process of arriving at
conclusions or decisions through a sequential and
interconnected series of thoughts, often referred to
as a chain-of-thoughts (CoTs) (Wei et al., 2022b).
This definition is widely accepted in the field of
Natural Language Processing (NLP) for exploring
the reasoning capabilities of LLMs. By employ-
ing a reasoning path via the modality of free-form
text, models are more adept at tackling complex
tasks that necessitate multi-step reasoning, as op-
posed to reaching conclusions without the aid of
CoTs. Technically, the auto-regressive nature em-
ploys the thoughts or intermediate steps generated
as the prior for generating subsequent thoughts and,
ultimately, the final predictions.

Context for Eliciting Reasoning Two primary
contexts are employed to facilitate the creation
of intermediate reasoning steps: incorporating a
Chain of Thought (CoT) triggers in task instruc-
tions (zero-shot CoTs), such as “Let’s think step-
by-step” (Kojima et al., 2022), within prompts, or
integrating manually crafted reasoning steps in a
few-shot learning context (few-shot CoTs) (Wei
et al., 2022b). To circumvent the manual compi-
lation of few-shot demonstrations with reasoning
sequences, Zhang et al. (2023) developed a method
to automatically generate few-shot demonstrations
by choosing several queries and utilizing zero-shot
CoTs to craft reasoning sequences for each query
(Auto CoTs). Given that simple greedy decoding
(producing a single chain) is prone to error accu-
mulation in intermediate steps, Wang et al. (2023b)
propose generating multiple chains and consolidat-
ing them through majority voting, thereby enhanc-
ing model accuracy in both scenarios (CoTs-SC).

4.3 Planning

Planning involves the forethought and organiza-
tion of actions or steps to achieve a predetermined
objective. This process fundamentally requires a
comprehension or representation of the environ-
ment and involves breaking down tasks into smaller,
manageable subgoals. It represents a key cognitive
behavior modeled within the fields of Al Typical
planning methods break down tasks into subgoals
through explicit symbolic representation (Russell
and Norvig, 2010). For instance, partial-order plan-

ning ensures the logical sequencing of actions by
modeling actions, preconditions, effects, and the
relations among actions in such a way that actions
are logically sequenced to meet the goal’s precon-
ditions. Differing from traditional approaches that
rely on explicitly modeled knowledge and reason-
ing mechanisms, LL.Ms leverage their inherent
knowledge and inferential capabilities to mimic
planning. They do this by producing text sequences
that suggest a logical progression of steps or actions
directed towards an objective (Hao et al., 2023;
Wang et al., 2023a; Huang et al., 2022). This skill
stems from the models’ proficiency in forecasting
the subsequent most likely word sequence based
on a context indicative of planning or reasoning
processes.

Context to Elicit Plans Similar to the activation
of reasoning processes, the process of planning can
be prompted through the inclusion of specific plan-
ning cues in zero-shot scenarios, such as the prompt
“let’s carry out the plan” (Wang et al., 2023a), or
through the demonstration of planning steps in few-
shot examples (Huang et al., 2022). Experimental
findings indicate that instructions tailored to tasks
significantly enhance the performance of LLMs on
various tasks. For instance, directives like “pay
attention to calculation” (Hao et al., 2023) or “iden-
tify key variables and their corresponding figures
to formulate a plan” (Wang et al., 2023a) have been
shown to improve outcomes in tasks requiring nu-
merical reasoning.

Applying Planning for Sequential Decision-
making This ability is essential for addressing
problems requiring a series of decisions, especially
when deploying LLMs in open-world scenarios
like robotics. In such environments, tasks typically
need physical actions (grounded), involve translat-
ing broad objectives into actionable steps (high-
level), and present a vast range of possible actions
(open-ended). Research has demonstrated the effec-
tiveness of LLMs in deconstructing complex goals
into actionable sequences within such dynamic en-
vironments, as seen in projects like ALFWorld (Yao
et al., 2023b), VirtualHome (Huang et al., 2022),
and Minecraft (Wang et al., 2023c). An example
from ALFWorld illustrates this: achieving the ob-
jective of “examining paper under desklamp” ne-
cessitates LLMs to devise practical plans (e.g., ini-
tially approaching the coffee table, then acquiring
the paper and utilizing the desklamp) and subse-
quently generate textual instructions for execution



in real-world settings.

4.4 Feedback Learning

As Kahneman (2011) elucidates, although System 1
may rush to judgments that are biased or erroneous,
System 2 has the capacity to identify and rectify
these mistakes through introspection on the rapid
decisions made by System 1. Similarly, LLMs have
shown the ability to mimic this aspect of human
cognition.

Feedback Sources There are different sources of
feedback: 1) Feedback from LLM-profiled evalu-
ators: In such cases, LLM-profiled evaluators can
give feedback on previous generations. The evalua-
tors are normally prompted to follow certain eval-
uation metrics, such as determining the relevance
of a sub-question to the original question requiring
intricate, multi-step reasoning (Hao et al., 2023).
An example prompt could be: “Given a question,
assess if the subquestion aids in solving the original
question. Answer ’Yes’ or 'No’. Question: {goal};
Subquestion: {action}. Is the subquestion useful?”.
The generated feedback would be appended for
LLM actors to re-generate answers. 2) Feedback
from task-specific environments, e.g., (simulated)
embodied environments (Shinn et al., 2023). 3)
Feedback from tools, e.g., error messages from
Python interpreters (Gou et al., 2024). Typically,
raw feedback originating from external environ-
ments and tools undergoes a process of refinement
by LLM evaluators prior to being presented to LLM
actors. In the work by Yao et al. (2023b), LLMs
engaging with a Wikipedia API to search for en-
tities that do not exist, such as “Search[goddess
frigg]”, may encounter a 404 error, delivered in
JSON format. In response, an LLLM evaluator can
articulate feedback about the error related to their
action, such as stating, “Could not find goddess
frigg.”.

5 Future Work: Autonomous Cognitive
Behaviors

Instead of relying on explicit contextual cues to
trigger advanced cognitive functions, an intelli-
gent system is expected to independently engage
in reasoning, planning, and decision-making as it
interacts with the external world—for instance, by
seeking input from humans or utilizing available
tools. To foster such autonomous behaviors, vari-
ous algorithms aim to tune LLMs for independently
exhibiting behaviors that align with human cogni-

tive processes. For instance, Liu et al., Liu et al.
(2023) have developed techniques for instruction
tuning that facilitates autonomous reasoning. Yet,
the challenge remains in creating instructional data
that encapsulates higher-order cognitive functions.
A pivotal question emerges: How can various cog-
nitive behaviors be encapsulated within free-form
text (instruction data)? Addressing this question
is crucial for ensuring that the data used for tuning
mirrors human cognitive processes, thereby making
the resulting model actions more human-like. Un-
raveling this issue might necessitate insights from
both cognitive psychology and linguistics. Another
approach to tuning involves the use of reliable re-
ward models, such as reinforcement learning from
human feedback (RLHF) (Ouyang et al., 2022)
and behavior cloning (Nakano et al., 2021). Many
studies (Ouyang et al., 2022; Nakano et al., 2021)
develop reward models based on comparisons of
model-generated responses, with human evaluators
ranking these responses. An unresolved inquiry
remains: How can reward models be devised to
truly reflect human cognitive preferences?

6 Conclusion

In summary, our survey seeks to inspire further re-
search in Al, within the domain of language intelli-
gence and beyond, to move away from heavily opti-
mized task-specific channels. Instead, we advocate
for the adoption of natural and free-form modal-
ities throughout the pretraining phase via self-
supervised learning, followed by straightforward
inference-time deployment that eschews the neces-
sity for mathematically optimizing task-specific
channels. We developed an analytical framework
to examine the deployment of LL.Ms to reach the
conclusion. Besides, the auto-regressive nature
of free-form modalities, leveraged during pretrain-
ing, enhances the capacity for exhibiting a range
of human-like cognitive behaviors by utilizing the
free-form channel. It is important to clarify that
we do not advocate that LLMs possess conscious
thought. Rather, our findings illustrate how LLMs,
such as ChatGPT, can imitate the outcomes of hu-
man cognitive activities via the free-form modality
given suitable verbal context.

Limitations

This work acknowledges an omission of a signifi-
cant deployment strategy: the utilization of multi-
agent systems, as reviewed by Wang et al. (2024).



However, the prompting paradigm of AR-LLMs
and the cognitive behaviors encapsulated herein
serve as pivotal building blocks for LLM-based
agents. Instances include the integration of LLM-
profiled planners in recent studies by Huang et al.
(2022); Wang et al. (2023c); Dasgupta et al. (2022);
Wang et al. (2023a), alongside the formulation
of feedback-learning workflows by Shinn et al.
(2023); Gou et al. (2024).

References

Christoph Bartneck, Tony Belpaeme, Friederike Eyssel,
Takayuki Kanda, Merel Keijsers, and Selma Sa-
banovié. 2020. Human-robot interaction: An intro-
duction. Cambridge University Press.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. JMLR, 3:1137-1155.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Advances
in NIPS, volume 33, pages 1877-1901.

Ishita Dasgupta, Christine Kaeser-Chen, Kenneth
Marino, Arun Ahuja, Sheila Babayan, Felix Hill, and
Rob Fergus. 2022. Collaborating with language mod-
els for embodied reasoning. In Second Workshop on
Language and Reinforcement Learning.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi
Deshpande, Franck Dernoncourt, Jiuxiang Gu, Tong
Sun, and Xia Hu. 2021. Towards interpreting and
mitigating shortcut learning behavior of NLU models.
In NAACL-HLT, pages 915-929.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.
CRITIC: Large language models can self-correct
with tool-interactive critiquing. In The Twelfth Inter-
national Conference on Learning Representations.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan,
and Subbarao Kambhampati. 2023. Leveraging pre-
trained large language models to construct and uti-
lize world models for model-based task planning.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Wenjuan Han, Bo Pang, and Ying Nian Wu. 2021. Ro-
bust transfer learning with pretrained language mod-
els through adapters. In ACL-IJCNLP, pages 854—
861.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang,
Daisy Wang, and Zhiting Hu. 2023. Reasoning with
language model is planning with world model. In
EMNLP, pages 8154-8173.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In
ICML, pages 2790-2799.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In ICML, pages 9118-9147.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In AAAI, volume 34, pages 8018—
8025.

Mandar Joshi, Danqgi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. TACL, 8:64-77.

D. Kahneman. 2011. Thinking, Fast and Slow. Farrar,
Straus and Giroux.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in NIPS.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In ACL, pages 7871-7880.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
ACL-1JCNLP.

Xinzhe Li and Ming Liu. 2023. Make text unlearnable:
Exploiting effective patterns to protect personal data.
In TrustNLP, pages 249-259.

Xinzhe Li, Ming Liu, Shang Gao, and Wray Buntine.
2023. A survey on out-of-distribution evaluation of
neural nlp models. In IJCAI-23.

Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli
Zhang, Qiji Zhou, and Yue Zhang. 2023. Logi-
cot: Logical chain-of-thought instruction tuning. In
EMNLP.


https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=YoS-abmWjJc
https://openreview.net/forum?id=YoS-abmWjJc
https://openreview.net/forum?id=YoS-abmWjJc
https://doi.org/10.18653/v1/2021.naacl-main.71
https://doi.org/10.18653/v1/2021.naacl-main.71
https://doi.org/10.18653/v1/2021.naacl-main.71
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=zDbsSscmuj
https://openreview.net/forum?id=zDbsSscmuj
https://openreview.net/forum?id=zDbsSscmuj
https://openreview.net/forum?id=zDbsSscmuj
https://openreview.net/forum?id=zDbsSscmuj
https://doi.org/10.18653/v1/2021.acl-short.108
https://doi.org/10.18653/v1/2021.acl-short.108
https://doi.org/10.18653/v1/2021.acl-short.108
https://doi.org/10.18653/v1/2021.acl-short.108
https://doi.org/10.18653/v1/2021.acl-short.108
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://books.google.com.au/books?id=ZuKTvERuPG8C
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2023.trustnlp-1.22
https://doi.org/10.18653/v1/2023.trustnlp-1.22
https://doi.org/10.18653/v1/2023.trustnlp-1.22
https://openreview.net/forum?id=qlCtkvgQJH
https://openreview.net/forum?id=qlCtkvgQJH
https://openreview.net/forum?id=qlCtkvgQJH

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback. In Advances in NIPS.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In EMNLP,
pages 11048-11064.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in NIPS.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Mrigank Raman, Pratyush Maini, J Kolter, Zachary
Lipton, and Danish Pruthi. 2023. Model-tuning via
prompts makes NLP models adversarially robust. In
EMNLP, pages 9266-9286.

Stuart J Russell and Peter Norvig. 2010. Artificial intel-
ligence a modern approach. London.

Timo Schick and Hinrich Schiitze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In EACL, pages 255-269.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In EMNLP, pages
4222-4235.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in NIPS.

10

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang
Wang, Jianfeng Wang, Jordan Lee Boyd-Graber, and
Lijuan Wang. 2023. Prompting GPT-3 to be reliable.
In ICLR.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In ICML,
pages 3319-3328.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing nlp. In EMNLP-
IJCNLP, pages 2153-2162.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.
OpenReview.net.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):1-26.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In ACL, pages 2609-2634.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
ICLR.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,
Anjana Arunkumar, David Stap, Eshaan Pathak,
Giannis Karamanolakis, Haizhi Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong
Shen. 2022. Super-Naturallnstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks.
In EMNLP, pages 5085-5109.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023c. Describe,
explain, plan and select: Interactive planning with
LLMs enables open-world multi-task agents. In Ad-
vances in NIPS.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent abilities of large language models. TMLR.


http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://doi.org/10.18653/v1/2023.emnlp-main.576
https://doi.org/10.18653/v1/2023.emnlp-main.576
https://doi.org/10.18653/v1/2023.emnlp-main.576
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=98p5x51L5af
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://openreview.net/forum?id=KtvPdGb31Z
https://openreview.net/forum?id=KtvPdGb31Z
https://openreview.net/forum?id=KtvPdGb31Z
https://openreview.net/forum?id=KtvPdGb31Z
https://openreview.net/forum?id=KtvPdGb31Z
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022b. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in NIPS.

Zonghan Yang and Yang Liu. 2022. On robust prefix-
tuning for text classification. In ICLR.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models. In Ad-
vances in NIPS.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In ICLR.

Hongxin Zhang, Yanzhe Zhang, Ruiyi Zhang, and Diyi
Yang. 2022. Robustness of demonstration-based
learning under limited data scenario. In EMNLP,
pages 1769-1782.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In ICLR.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

11


https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=eBCmOocUejf
https://openreview.net/forum?id=eBCmOocUejf
https://openreview.net/forum?id=eBCmOocUejf
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/2022.emnlp-main.116
https://aclanthology.org/2022.emnlp-main.116
https://aclanthology.org/2022.emnlp-main.116

	Introduction
	Deploying Large Language Models
	The Fundamental Dichotomy in Language Modeling
	Exploring the Modalities within Large Language Models
	Task-specific Channels for Deployment

	Evaluation of Modalities and Channels
	Evaluating Usability of Deployment Channels
	Evaluating Expressiveness of Modalities

	Cognitive Behaviors Under AR-LLMs' Prompting Paradigm
	Thinking, Fast And Slow
	Reasoning
	Planning
	Feedback Learning

	Future Work: Autonomous Cognitive Behaviors
	Conclusion

