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Abstract001

Recent work has identified retrieval heads (Wu002
et al., 2025b), a subset of attention heads re-003
sponsible for retrieving salient information in004
long-context language models (LMs), as mea-005
sured by their copy-paste behavior in Needle-006
in-a-Haystack tasks. In this paper, we introduce007
QRHEAD (Query-Focused Retrieval Head), an008
improved set of attention heads that signifi-009
cantly enhance retrieval from long contexts.010
We identify QRHEAD by aggregating attention011
scores with respect to the input query, using012
real-world tasks such as long-context QA. We013
further introduce QRRETRIEVER, an efficient014
and effective retriever that uses the accumu-015
lated attention mass of QRHEAD as retrieval016
scores. We evaluate QRRETRIEVER as a re-017
ranker on the BEIR benchmark and find that018
it achieves strong zero-shot performance, out-019
performing other LLM-based re-rankers such020
as RankGPT. We also use QRRETRIEVER for021
long-context reasoning by selecting the most022
relevant parts with the highest retrieval scores.023
On long-context, multi-hop reasoning tasks024
LongMemEval and CLIPPER, this yields over025
10% performance gains over full context and026
outperforms strong dense retrievers. Further027
analysis shows that both the query-context at-028
tention scoring and task difficulty are crucial for029
identifying QRHEAD with strong downstream030
utility. Overall, our work contributes a general-031
purpose retriever and offers interpretability in-032
sights into the long-context capabilities of LMs.033

1 Introduction034

Retrieving salient information from long contexts035

serves as a foundation for language models (LMs),036

enabling a wide range of downstream applications,037

such as long document understanding and passage038

re-ranking. Prior work has identified a subset of at-039

tention heads in transformers (Vaswani et al., 2017)040

that are responsible for retrieving relevant informa-041

tion, known as retrieval heads (Wu et al., 2025b).042
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Figure 1: Top: Masking the top 32 original retrieval
heads (Wu et al., 2025b) of Llama-3.1-8B-Instruct. Bot-
tom: Masking the top 32 QRHeads which has a more
pronounced impact on Needle-in-a-Haystack.

However, these retrieval heads are identified 043

based on the frequency of their copy-paste op- 044

erations in a simple synthetic task—Needle-in-a- 045

Haystack (NIAH; Kamradt, 2024). Although they 046

exhibit some significance on downstream tasks, 047

such as extractive question answering, we argue 048

that the copy-paste objective and synthetic data 049

used to identify them are misaligned with how lan- 050

guage models retrieve pertinent information in real- 051

world settings. 052

To this end, we propose a more effective ap- 053

proach for identifying retrieval heads and intro- 054

duce QRHEAD, a distinct subset of attention heads 055

whose attention mass plays a more critical role in 056

retrieving relevant information from long contexts. 057

Compared to original retrieval heads, our method 058

incorporates two key changes: (1) a query-context 059

scoring function that measures attention mass allo- 060

cated to pertinent context spans with respect to an 061

input query, and (2) the use of more natural data 062

from real-world tasks, such as question answering 063

over long texts. Our method only requires a small 064
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amount of data to be effective. As shown in Fig-065

ure 1, we detect QRHEAD using 70 examples from066

a natural long-context QA task, LongMemEval,067

and find masking them out results in more severe068

degradation in NIAH compared to original retrieval069

heads detected from in-domain data.070

Furthermore, we build QRRETRIEVER on top071

of QRHEAD as a general-purpose retriever for im-072

proving LMs on diverse long-context downstream073

applications. Given a query and a set of passages074

(e.g., a claim and a book consisting of multiple075

chapters), QRRETRIEVER scores each passage us-076

ing the aggregated attention mass from the QR-077

HEAD of a language model, and returns the top-078

ranked passages. Using QRHEADS, we instantiate079

QRRETRIEVER with multiple LMs of different080

scales (3B–70B) and families (Llama-3.1, Llama-081

3.2, and Qwen).082

We evaluate QRRETRIEVER as a re-ranker on083

the standard BEIR benchmark (Thakur et al., 2021).084

It exhibits strong zero-shot performance across085

diverse domains and outperforms other LLM-086

based re-rankers, such as RankGPT (Sun et al.,087

2024). We further evaluate QRRETRIEVER on088

two long-context, multi-hop reasoning tasks: Long-089

MemEval (Wu et al., 2025a) and CLIPPER (Pham090

et al., 2025). Using QRRETRIEVER to select091

top-ranked documents yields substantial improve-092

ments in retrieval recall and downstream task093

performance. For example, with Llama-3.1-8B-094

Instruct, QRRETRIEVER outperforms dense re-095

trievers and improves performance by over 10% on096

both datasets, compared to full-context generation.097

Finally, we provide extensive analyses of the ef-098

fectiveness of QRHEAD. First, using QRHEAD099

outperforms both full attention heads and origi-100

nal retrieval heads. Second, QRHEAD generalizes101

across input lengths—the heads identified at 32K102

tokens transfer well to tasks with 128K context103

lengths. Lastly, we show that both key modifica-104

tions—our query-focused scoring objective and the105

use of natural data—contribute to the improved106

downstream performance of QRHEAD over origi-107

nal retrieval heads. Together, these findings high-108

light the practicality and robustness of QRHEAD as109

a foundation for long-context retrieval and suggest110

opportunities for further exploration of retrieval111

mechanisms in language models.112

2 Background: Retrieval Heads 113

Retrieval heads are a specialized subset of atten- 114

tion heads that are pivotal for extracting relevant 115

information from long input contexts. 116

Original retrieval heads. Wu et al. (2025b) first 117

discovered a set of retrieval heads that exhibit copy- 118

paste behavior during decoding—effectively copy- 119

ing tokens from the long context input context into 120

the generated output. Their retrieval head detec- 121

tion method roots from the Needle-in-a-Haystack 122

test (NIAH) with a triple (C, q, a) of context, ques- 123

tion, and answer: the answer span a (the “nee- 124

dle”) is embedded within a long context sequence 125

C = d1...a...dN where d1, ..., dN are N irrelevant 126

sequences (the “haystack”). The LM is tasked to 127

generate an answer to q based on the provided con- 128

text. Successful generation of a demonstrates ef- 129

fective copy-paste behavior by extracting a from 130

the haystack and copying it over to the output. To 131

quantify this behavior, the retrieval score of an at- 132

tention head h is defined as the fraction of tokens 133

copied from a by the head h during decoding: 134

Retrieval_Score(h) =
|gh ∩ a|

|a|
, (1) 135

where gh denotes the set of tokens copied by head 136

h to the output. Attention heads with the highest 137

retrieval scores are selected as retrieval heads. 138

Shortcomings. The scoring mechanism de- 139

scribed above focuses only on attention heads that 140

perform strict copy-paste operations, potentially 141

missing heads involved in semantic-based retrieval, 142

such as paraphrasing or reasoning over relevant 143

context. Moreover, recent work has shown that 144

heads identified through copy-paste metrics exhibit 145

limited cross-domain generalizability (Zhao et al., 146

2024). This suggests that the simplified formula- 147

tion may not fully capture the complexity of in- 148

context retrieval behavior in LLMs and has limited 149

relevance for downstream applications. 150

3 QRHEAD: Identifying Query-Focused 151

Retrieval Heads 152

In this section, we introduce a new approach for de- 153

tecting retrieval heads that significantly improves 154

upon prior retrieval head detection. For clarity, 155

we refer to our heads as Query-Focused Retrieval 156

Heads (QRHEAD) and the original retrieval heads 157

as RETHEAD. Our approach introduces two key 158

improvements. First, we propose a query-focused 159
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Retrieval Heads (Wu et al., 2025)

QRHeads (Ours)

Once upon   a   time      ... ...     happily ever after.
Irrelevant context Irrelevant context

The best thing ... eat a sandwich.
Needle sentence

Q: What is the best thing 

to do in San Francisco? A: to eat

Use max attention score to find heads that 
copy-paste from needle sentence

During the 1930s and 1940s ... In evolutionary biology, ...
Distracting context Distracting context

1858 – Charles R. Darwin and ...
Gold context

Q: who proposed evolution as the 

basis of biological development?

Sum of attention scores on the  
gold context, averaged across 
query tokens.

Data: synthetic (i.e., NIAH)

Objective: simple copy-pasting

Data: realistic w/ distracting context

Objective: query-context attention

Distracting context: Hard negatives in open-domain 
QA or other texts within the same document

Figure 2: Comparison between Retrieval Heads (Wu et al., 2025b) and QRHEADS (Ours).

retrieval score (QRscore), which captures query-160

context attention rather than relying solely on copy-161

paste behavior (§3.1). Second, we leverage realis-162

tic tasks that require in-context retrieval to identify163

effective heads (§3.2). Lastly, we present a com-164

parison between QRHEAD and RETHEAD (§3.3).165

Task formulation: LMs for in-context retrieval.166

Our study focuses on the task of in-context retrieval167

with LMs, i.e., identifying relevant information168

from given context. Formally, let Σ denote the vo-169

cabulary. Given an input query q ∈ Σ∗ and a con-170

text D ∈ Σ∗, the objective is to retrieve the most171

relevant information from the context with respect172

to q, denoted as D[q] ⊆ D. Typically, the context173

D consists of a sequence of passages (or chunks),174

represented as D = {d1, d2, . . . , dN}. With both q175

and D jointly fed into an LM as input, we assign176

a score R(q, di) to each passage di with respect to177

q. We measure the effectiveness of the retriever by178

evaluating whether the top-scored passages align179

with the ground-truth relevant documents D∗
[q].

1180

3.1 Scoring Heads with Query-Context181

Attention182

Instead of scoring attention heads based on their183

activations in copy-paste operations, we propose to184

evaluate them based on their effectiveness in real-185

istic in-context retrieval tasks. This offers a more186

general and realistic measure of retrieval capability,187

as it captures semantic relevance rather than relying188

solely on verbatim copying.189

Query-focused retrieval score (QRscore). We190

use QRscore as a measure of the retrieval capabil-191

ity of an attention head in response to a specific192

query. Formally, let h ∈ H be an attention head193

1We note NIAH task can also be viewed as a special case
of this formulation, where the gold document set only contains
one document (the needle).

within the language model, and let Ah denote the 194

attention weights (post-softmax) of head h over 195

a query prompt {D, q}, such as a prompt with a 196

book followed by a question over its contents. The 197

query-focused attention scores of head h towards a 198

document di is calculated as follows: 199

QRscoreh(q, di) =
1

|q|
∑
tq∈q

∑
td∈di

A
tq→td
h (2) 200

where tq denotes tokens in the query q, td repre- 201

sents tokens in the document di, and A
tq→td
h is the 202

attention weight of h from tq to td. This formula- 203

tion quantifies the degree to which head h focuses 204

on document di in response to q. Lastly, we aggre- 205

gate the scores for all documents di within the gold 206

document set D∗
[q], resulting in the final QRscore 207

for head h with respect to the query q: 208

QRscoreh(q) =
1

|q|
∑

di∈D∗

∑
tq∈q

∑
td∈di

A
tq→td
h (3) 209

3.2 Detecting QRHEAD on Real-World Tasks 210

With the QRscore defined in Eq. 3, we can now 211

quantify the retrieval capabilities of each attention 212

head over a given set of documents in response to 213

a query. To achieve this, we leverage a head de- 214

tection dataset T = {(q,D,D∗
[q])}, which consists 215

of a query q, a set of candidate documents D, and 216

the corresponding gold documents D∗
[q]. Notably, 217

our approach does not require explicit answers to 218

the queries—only the annotations of the gold docu- 219

ment. Using this detection dataset T , we compute 220

the empirical effectiveness of an attention head h 221

for retrieval as follows: 222

QRscoreh,T =
1

|T |
∑

(q,D,D∗)∈T

QRscoreh(q) (4) 223

As shown in Figure 2, instead of synthetic needle- 224

in-a-haystack task (NIAH) (Kamradt, 2023), we 225
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use more realistic in-context retrieval task for head226

detection (e.g., claim verification over books). We227

argue that more natural and realistic distractors pro-228

vide more effective supervision that allows identify-229

ing heads that are better at differentiating relevant230

contexts from distracting context. We also note that231

even a small amount (< 100) of realistic data points232

can be sufficient, allowing us to find QRHEADS233

heads that contribute to improved downstream per-234

formance (see §6.1 for detailed results).235

3.3 Comparing QRHEAD and RETHEAD236

We have demonstrated our method for detect-237

ing QRHEAD, which improves upon RETHEAD.238

Here, we compare the two head sets within the239

same model, using Llama-3.1-8B-Instruct (Llama-240

3 Team, 2024) as a case study, where we identify241

the top QRHEAD and top RETHEAD242

First, following the analysis setup of Wu et al.243

(2025b), we measure the impact of pruning by the244

performance drop on NIAH test. Specifically, we245

prune the top 32 heads (roughly 3% of all attention246

heads in LLaMA-3.1-8B), following the commonly247

reported 5% sparsity level of retrieval heads in Wu248

et al. (2025b); Zhao et al. (2024). As shown in249

Figure 1, pruning the top 32 QRHEAD results in250

near-complete failure on the NIAH performance,251

whereas pruning the top 32 RETHEAD yields a252

much smaller performance decline.2 In addition,253

we find substantial divergence between the two254

sets. Among the top 32 and top 64 heads, only 8255

and 32 overlap, respectively. This less than 25%256

overlap in the top 32 highlights the distinct roles of257

QRHEAD and RETHEAD.258

4 Building General-Purpose Retriever259

with QRHEAD260

In this section, we describe how the detected261

QRHEAD can be used in downstream applica-262

tions. Specifically, we find the attention mass of263

QRHEAD provides highly reliable signals for in-264

context retrieval.265

4.1 The Method266

Given a selected set of QRHEAD Hselect, a query267

q, and a collection of passages D, we compute the268

retrieval score for each passage di by aggregating269

the QRscore across all heads in Hselect:270

R(q, di) =
1

|Hselect|

∑
h∈Hselect

QRscoreh(q, di). (5)271

2See Appendix B for results on Qwen-2.5-7B-Instruct.

Passages are then weighed using their retrieval 272

scores. We call our retrieval system QRRE- 273

TRIEVER. It offers several advantages: (1) Model- 274

agnostic: compatible with any transformer-based 275

LMs without modification, (2) Efficient: leverages 276

attention patterns to process long contexts simulta- 277

neously without expensive generation or pairwise 278

comparisons, (3) High-performing: outperforms 279

various baselines, as shown in §5. 280

Implementation details. To mitigate intrinsic bi- 281

ases in LMs’ attention weights, we adopt the score 282

calibration method proposed by Chen et al. (2025). 283

Instead of directly using R(q, di) as the score, we 284

additionally compute baseline score, R(qnull, di), 285

using a context-free null query qnull ("N/A"). We 286

use calibrated the score R(q, di)−R(qnull, di) as 287

the final retriever score. 288

4.2 Applications 289

Long-context reasoning. Language models, in- 290

cluding long-context language models, often strug- 291

gle with performance degradation when processing 292

long contexts (Yen et al., 2025; Ye et al., 2025; Liu 293

et al., 2024). To address this, we integrate QRRE- 294

TRIEVER within a retrieval-augmented generation 295

(RAG) framework. Given a long-context input and 296

a query, we segment the input into smaller chunks 297

and use QRRETRIEVER to score and subsequently 298

extract the most relevant ones. The extracted con- 299

texts are concatenated to create a reduced context 300

that is then given to the LM for generation. 301

Passage re-ranking. Text retrieval powers 302

many retrieval-augmented downstream applica- 303

tions (Lewis et al., 2020). A critical component 304

in the retrieval pipeline is the re-ranker, which re- 305

orders the passages returned by a first-stage re- 306

triever to enhance top passage relevance (Nogueira 307

and Cho, 2020; Ma et al., 2024). QRRETRIEVER 308

can naturally be used as a re-ranker as part of any 309

retrieval pipeline without any fine-tuning by simply 310

concatenating the retrieved passages in the input 311

and scoring their relevance directly. 312

5 Experiments 313

We evaluate QRRETRIEVER on two tasks: long- 314

context reasoning (§5.2) and re-ranking (§5.3). 315

5.1 Base Models and Baselines 316

Base LMs. We experiment with open-weight, 317

instruction-tuned LMs from two families across 318
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LongMemEval CLIPPER

RETRIEVER
RETRIEVAL END-TO-END RETRIEVAL END-TO-END
RECALL@K PERFORMANCE RECALL@K PERFORMANCE
k = 5 k = 10 Top-5 Top-10 k = 3 k = 5 Top-3 Top-5

Base LM: Llama-3.2-3B-Instruct
Full context - - 28.1 - - 25.2
BM25 57.5 67.5 46.1 44.9 74.6 83.7 20.0 22.8
Contriever 62.7 79.2 48.6 46.5 60.2 78.9 12.6 18.4
Stella 63.9 77.6 44.9 47.7 83.3 90.0 21.3 25.1

RankGPT 1.8 3.4 23.5 23.3 16.8 27.3 3.6 8.8
RankGPTBubble 2.1 3.8 24.0 24.4 17.0 27.4 3.8 8.8
ICR 68.8 78.8 46.5 45.8 75.7 86.1 22.4 23.7
QRRETRIEVER (Ours) 76.5 86.1 47.4 48.6 87.9 94.6 24.0 24.4

Base LM: Llama-3.1-8B-Instruct
Full context - - 46.5 - - 31.3
BM25 57.5 67.5 48.8 50.9 74.6 83.7 37.9 37.9
Contriever 62.7 79.2 52.6 55.4 60.2 78.9 28.2 31.1
Stella 63.9 77.6 50.9 58.4 83.3 90.0 38.8 39.6

RankGPT 2.1 4.0 26.7 24.2 30.0 39.4 15.9 19.4
RankGPTBubble 8.3 9.0 28.1 27.0 36.7 44.3 19.7 20.4
ICR 78.2 85.3 58.4 58.1 89.9 95.4 43.8 42.3
QRRETRIEVER (Ours) 85.6 91.8 59.5 60.2 93.7 97.0 46.5 44.4

Base LM: Llama-3.1-70B-Instruct
Full context - - 34.2 - - 63.9
BM25 57.5 67.5 52.8 53.0 74.6 83.7 60.1 66.5
Contriever 62.7 79.2 53.7 60.5 60.2 78.9 38.5 49.7
Stella 63.9 77.6 56.3 62.3 83.3 90.0 65.9 71.2

RankGPT 1.8 3.5 21.2 27.4 57.0 63.4 44.7 50.4
RankGPTBubble 47.9 49.0 44.0 42.6 74.3 78.8 58.4 61.5
ICR 45.6 58.2 43.0 48.4 88.3 94.2 71.0 73.3
QRRETRIEVER (Ours) 77.5 88.3 64.2 63.3 95.5 98.2 76.7 74.1

Table 1: Results on LongMemEval and CLIPPER. The base model denotes the LM used for both the retriever and
end-to-end generation. QRHEADS used for CLIPPER are found through using LongMemEval.

different sizes, including Llama-3.2 (3B), Llama-319

3.1 (8B and 70B) of Llama family (Llama-3 Team,320

2024), and Qwen2.5 (7B) of Qwen family (Yang321

et al., 2024). With QRRETRIEVER, we use 16322

heads for models with fewer than 10B parame-323

ters, and 32 heads for LLaMA-3.1-70B. This corre-324

sponds to approximately 1–2% of the total attention325

heads, given the sparsity of retrieval heads.326

Baselines. We compare our methods against sev-327

eral strong baselines. Following Wu et al. (2025a),328

we compare against dense retrievers, including329

Contriever (Izacard et al., 2022) and 1.5B Stella330

V5 (Zhang et al., 2025), two popular strong dense331

retrievers. For Contriever, we truncate the input332

to 512 tokens according to its maximum context333

length. We also compare against existing LLM-334

based re-rankers, including:335

• RankGPT (Sun et al., 2024) is a generative336

re-ranker that instructs LLMs to output the337

ranking order of a given set of documents338

based on a query. We experiment with two339

variants of RankGPT: (1) RankGPT with-340

out sliding window, which directly inputs all341

documents into the model prompt simultane-342

ously, and (2) RankGPT with sliding window343

(RankGPTBubble), which leverages bubble sort to344

rank smaller subsets of documents incrementally.345

• In-Context-Reranker (ICR; Chen et al., 2025) 346

is a re-ranker that also leverages the attention for 347

relevance scoring. ICR uses full attention heads 348

for scoring relevace, whereas we only use the 349

attention weights of selected QRHEADS. 350

5.2 Long-Context Multi-Hop Reasoning 351

Datasets. We use 1) LongMemEval (Wu et al., 352

2025a), which evaluates the long-term memory ca- 353

pabilities of LLM-driven chat assistants, and 2) 354

CLIPPER (Pham et al., 2025), which evaluate 355

claim-verification over books. Both datasets fea- 356

ture long-contexts (90K to 120K) and require multi- 357

hop reasoning over several pieces of evidences. We 358

segment each dataset according to its natural struc- 359

ture (e.g., message in multi-turn conversation or 360

chapters in a book). For evaluation, we measure 361

retrieval performance using recall and assess down- 362

stream task performance with accuracy. Please 363

refer to Appendix A for more details. 364

Data for head detection. We detect QRHEAD 365

using a small subset of single-hop data from Long- 366

MemEval, specifically the single-session-user sub- 367

set consisting of 70 examples, which we exclude 368

from downstream evaluation. We use the set of 369

heads for both LongMemEval and CLIPPER, test- 370

ing generalization to multi-hop reasoning. 371
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NQ COVID NFCorpus FiQA Scifact Scidocs FEVER Climate DBPedia Robust04 News Avg

BM25 30.5 59.5 32.2 23.6 67.9 14.9 65.1 16.5 31.8 40.7 39.5 38.4

Base LM: Llama-3.2-3B-Instruct

RankGPT 30.0 59.5 32.2 23.6 67.9 14.9 65.9 17.1 31.8 40.7 39.5 38.5
RankGPTBubble 33.2 61.8 32.0 22.4 66.1 14.8 65.8 17.1 34.8 40.5 40.2 39.0

ICR 48.0 71.3 33.6 31.6 73.1 16.1 83.8 23.8 34.8 47.1 44.3 46.1
QRRETRIEVER (Ours) 54.0 77.2 35.0 35.2 74.5 17.1 84.8 24.6 35.9 49.8 45.0 48.5

Base LM: Llama-3.1-8B-Instruct

RankGPT 30.0 59.5 32.2 23.6 67.9 14.9 65.9 16.8 31.8 40.7 39.5 38.4
RankGPTBubble 53.7 75.5 34.3 31.4 69.3 17.4 67.5 23.8 42.9 47.8 46.2 46.3

ICR 53.7 73.3 34.8 36.1 75.5 17.4 87.1 25.2 36.9 49.1 44.4 48.5
QRRETRIEVER (Ours) 57.2 76.7 35.3 39.5 76.0 17.9 86.3 24.1 36.6 50.7 46.0 49.7

Base LM: Qwen-2.5-7B-Instruct

RankGPT 30.0 59.5 32.2 23.6 67.9 14.9 65.9 16.8 31.8 40.7 39.5 38.4
RankGPTBubble 42.7 70.5 34.1 29.5 69.3 16.6 70.5 19.7 37.1 46.4 43.6 43.6

ICR 41.1 65.3 32.6 27.1 70.8 15.1 80.8 19.7 34.9 43.2 40.3 42.8
QRRETRIEVER (Ours) 48.8 67.7 33.1 29.8 70.9 14.2 82.7 19.8 35.5 43.7 40.5 44.2

Base LM: Llama-3.1-70B-Instruct

RankGPT 45.4 62.7 33.6 28.6 71.3 16.1 74.2 18.9 37.6 41.3 39.8 42.7
RankGPTBubble 58.4 81.2 36.1 41.0 76.1 20.2 80.0 25.1 45.5 59.0 48.5 51.9

ICR 57.0 71.9 34.0 37.9 73.5 17.5 87.5 22.6 38.3 39.1 39.0 47.1
QRRETRIEVER (Ours) 60.5 74.8 34.7 43.8 76.5 18.5 86.7 23.2 35.9 51.8 44.1 50.1

Table 2: Performance comparison (nDCG@10) on BEIR benchmarks across LMs. QRRETRIEVER generally
outperforms other baselines across all models. With Llama-3.1-70B, QRRETRIEVER underperforms RankGPT
with (Bubble sort), which requires substantial amount of LLM generation calls.

QRRETRIEVER achieves strong retrieval per-372

formance for long contexts, leading to improved373

end-to-end performance. Table 1 demonstrates374

the strong performance of QRRETRIEVER on both375

LongMemEval and CLIPPER: it outperforms other376

baselines regarding both retrieval recall and end-377

to-end performance. For instance, Llama-3.1-8B-378

Instruct as the base LM, we see end-to-end perfor-379

mance improvements of over 10% on both tasks380

with Llama-3.1-8B-Instruct.381

QRRETRIEVER generalizes across domains.382

The fact that QRRETRIEVER outperforming off-383

the-shelf dense retrievers (Contriever and Stella)384

by a large margin on LongMemEval and CLIPPER.385

In particular, none of these methods are trained or386

calibrated on CLIPPER. The better performance of387

QRRETRIEVER suggests its stronger cross-domain388

generalization capabilities than dense retrievers.389

Moreover, while QRHEADS are detected using390

only the single-hop questions, it also performs well391

on the multi-hop questions.392

QRRETRIEVER scales with the model sizes.393

We note that LM-based re-rankers show incon-394

sistent performance patterns across model scales:395

RankGPT achieves near-zero retrieval recall with396

small models, and retrieval performance of ICR397

sees significant degradation when scaling up model398

size from 8B to 70B. At the same time, the perfor-399

mance of QRRETRIEVER generally improves as 400

the model size scales up. 401

5.3 Passage Re-Ranking 402

To test the general applicability of QRRE- 403

TRIEVER, we evaluate our method on BEIR bench- 404

mark (Thakur et al., 2021) consisting of diverse do- 405

mains. We compare against zero-shot LLM-based 406

re-rankers, RankGPT and ICR. 407

Setting. Our setting largely follows prior 408

work (Chen et al., 2025). We re-rank 200 passages 409

retrieved using BM25, resulting a overall context 410

length ranging from 16K to 64K depending on the 411

average document length of domains. We report the 412

performance on the set of tasks used in Chen et al. 413

(2025), we sub-sampled 512 random questions for 414

each domain for evaluation. 415

Data for head detection. For BEIR, we utilize 416

the 128 (held-out) data points from NQ and use 417

them for on all other domains zero-shot. 418

Results. Table 2 summarizes the BEIR results, 419

demonstrating the strong effectiveness of QRRE- 420

TRIEVER as a general-purpose retriever. For mod- 421

els under 10B parameters, QRRETRIEVER consis- 422

tently outperforms other baselines. With LLaMA- 423

3.1-8B, it achieves an average score of 49.7, out- 424

performing RankGPT by 3.4 points and ICR by 1.2 425
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BEIRSHUFFLED LONGMEM
NDCG@10 RECALL

L
la

m
a-

8B RANDOMHEADS 37.5 59.8
FULLHEADS 42.8 73.2
RETRIEVALHEADS 43.4 81.5
QRHEADS 47.5 85.6

Q
w

en
-7

B RANDOM 19.9 57.2
FULL HEADS 22.6 67.1
RETRIEVAL HEADS 27.4 70.7
QRHEADS 31.9 83.2

Table 3: Comparison across head selection strategies.
Using QRHEADS substantially outperforms using all
heads or using original retrieval heads.

Model: LLama-3.1-8B-Instruct
NQ+Fever LongMemEval

32K 128K 32K 128K

ICR 66.7 56.5 85.2 78.2
QRRETRIEVER32K 70.1 63.9 89.2 85.2
QRRETRIEVER128K 68.8 67.2 89.2 85.6

Model: Qwen-2.5-7B-Instruct
NQ+Fever LongMemEval

32K 64K 32K 64K

ICR 40.0 17.4 83.4 67.1
QRRETRIEVER32K 51.9 25.3 90.2 77.9
QRRETRIEVER64K 54.1 29.1 90.1 77.0

Table 4: Results on short-to-long generalization of QR-
HEADS. QRHEADS detected with relative short-context
data can be used for retrieval on longer contexts.

points. For the larger LLaMA-3.1-70B model, QR-426

RETRIEVER significantly surpasses ICR, though427

it generally lags RankGPTBubble (which require428

over 200 generation calls). Nevertheless, QRRE-429

TRIEVER achieves the best performance on several430

domains, suych as SciFact and FEVER.431

6 Analysis432

6.1 Impact of Head Selection433

We provide further ablation on head selection, the434

core idea behind QRRETRIEVER. We experiment435

with different sets of heads, including (1) using our436

QRHEADS, (2) using all the attention heads (Full),437

(3) using original retrieval head (Retrieval), and438

(4) using randomly selected heads (Random). We439

use 16 heads for all settings. Table 3 presents the440

retrieval performance on LongMemEval re-ranking441

performance on BEIR (aggregated across tasks).3442

The performance gaps between different strategies443

demonstrate the importance of using the right heads444

for retrieval. Using original retrieval heads is effec-445

tive, compared to using random heads or full heads.446

Using our improved QRHEADS consistently out-447

performs using original retrieval heads.448

3Here, we use BEIR where input documents are randomly
shuffled rather than ranked by BM25. This setup allows uni-
form evaluation of retrieval across the full context.

Data BEIRSHUFFLED LONGMEM
NDCG@10 RECALL

Model: LLama-3.1-8B-Inst
QRHEADS NQ 47.5 83.9
QRHEADS LME 47.1 85.6
QRHEADS NIAH 46.8 83.4
RETHEAD NIAH 43.4 81.5

Model: Qwen-2.5-7B-Inst
QRHEADS NQ 31.9 80.2
QRHEADS LME 32.1 83.2
QRHEADS NIAH 30.9 79.7
RETHEAD NIAH 27.4 70.7

Table 5: Analysis of factors contributing to improved
head selection. Applying QRScore (§3.1) on NIAH
results in more effective heads than the original retrieval
heads. Using QRScore on realistic tasks yields the most
effective head selection overall.

6.2 Generalizability Across Lengths 449

We test the length generalization of QRHEADS: if 450

we detect QRHEADS on relatively short context 451

length (32K), can the heads generalize to longer 452

context lengths (128K)? 453

We test such short-to-long generalization by con- 454

trolling the number of documents (messages). The 455

resulting in datasets of different lengths ranging 456

from 32K to 128K tokens. We detect QRHEADS 457

from both short and long datasets and test their 458

performance on re-ranking tasks (using two rep- 459

resentative subsets: NQ and Fever) and Long- 460

MemEval. For Qwen-2.5-7B, we set the longer 461

context length to 64K due to its original 32K limit. 462

As shown in Table 4, QRHEAD detected using 463

short-context data can generalize to longer-context 464

settings, though heads detected from longer data 465

generally yield better long-context performance. 466

6.3 What Contributes to Better Selection? 467

In §3, we describe two key factors for head detec- 468

tion: using query-context attention objective, and 469

using realistic data. To assess the importance of 470

these factors, we experiment with detecting heads 471

on NIAH using QRScore (§3). As shown in Table 5, 472

applying QRScore on NIAH leads to improved per- 473

formance compared to using the original retrieval 474

heads detected from the same task. However, us- 475

ing realistic tasks with QRScore yields the best 476

overall performance. These results highlight the 477

importance of both the scoring method and head 478

detection data. 479

6.4 Sensitivity of QRHEADS Detection to 480

Variation in Detection Data 481

In Section 5.3, we show using a small number of 482

samples from NQ is sufficient to identify effec- 483

tive QRHEADS for BEIR re-ranking tasks. e as- 484
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Overlap (Top 64) BEIR
Set0 Set1 Set2 nDCG@10

Model: LLama-3.1-8B-Inst
QRHEADSSet0 64 51 51 49.8
QRHEADSSet1 51 64 53 49.7
QRHEADSSet2 51 53 64 49.9

Model: Qwen-2.5-7B-Inst
QRHEADSSet0 64 50 53 44.2
QRHEADSSet1 50 64 57 44.4
QRHEADSSet2 53 57 64 44.5

Table 6: Left: Overlap in QRHEADS identified us-
ing three disjoint sets of 128 random samples from
NQ. Right: BEIR performance (nDCG@10) using QR-
HEADS detected from each sample set.

sess the robustness of this head detection process485

to different random samples of detection set, by486

experimenting with three disjoint random subsets487

of NQ, each containing 128 examples. Table 6488

presents the overlap among the top-64 heads se-489

lected from these subsets and their performance on490

BEIR benchmark. Across two LLMs from differ-491

ent model families (Llama and Qwen), we observe492

a high degree of consistency with over 50 heads493

overlapping among the top 64 across subsets. Fur-494

thermore, the downstream performance remains495

stable across these variations. These results indi-496

cate that QRRETRIEVER can be reliably identified497

using a small sample of data.498

6.5 Discussion: Retrieval-Generation Gap499

Interestingly, we observe that even compact LMs500

exhibit strong retrieval capabilities despite their501

limited generation abilities. As shown in Table 1,502

on CLIPPER, Llama-3.2-3B-Instruct achieves a Re-503

call@10 of 86.1, closely matching the 88.3 score of504

the much larger LlamA-3.1-70B. However, Llama-505

3.2-3B only achieves a final end-to-end perfor-506

mance of 24.0, largely lagging 70B’s performance507

of 76.7. We hypothesize that the long-context lim-508

itations of compact models stem more from their509

generation capabilities than from their retrieval abil-510

ities, revealing a significant retrieval–generation511

gap. These findings open up promising future di-512

rections. Compact LMs could serve as efficient513

long-context retrievers, paired with larger models514

for the actual generation.515

7 Related Work516

LM-based retrieval and re-ranking. LMs are517

widely used in retrieval, including embedding-518

based methods (Muennighoff, 2022; Lee et al.,519

2021) and generative approaches (Tay et al., 2022;520

Cao et al., 2021; Sun et al., 2023). For re-ranking, 521

instruction-tuned LMs been adapted as re-rankers 522

in various ways (Sun et al., 2024; Drozdov et al., 523

2023; Sachan et al., 2023; Ma et al., 2023; Pradeep 524

et al., 2023), leveraging their generation capabil- 525

ities. Similar to our approach, recent work has 526

explored using logits (Reddy et al., 2024) or ag- 527

gregated attention scores (Chen et al., 2025) for 528

re-ranking. In contrast, we identify a specialized 529

set of attention heads responsible for retrieval, of- 530

fering improved performance and interpretability. 531

Localizing model behavior. Interpretability stud- 532

ies have shown that many core behaviors of LMs, 533

including in-context learning (Olsson et al., 2022; 534

Todd et al., 2024; McDougall et al., 2023) and 535

retrieval (Wu et al., 2025b), can be traced to spe- 536

cialized transformer modules (Meng et al., 2022; 537

Dai et al., 2022; Stolfo et al., 2024). Techniques 538

have been proposed to localize such modules with 539

a small amount of data (Meng et al., 2022; Geiger 540

et al., 2024; Bhaskar et al., 2024), and to inter- 541

vene on them for control (Li et al., 2023; Yin et al., 542

2024; Huang et al., 2025) or efficiency (Tang et al., 543

2025; Xiao et al., 2025). However, only a few 544

works (Zhao et al., 2024) have examined attention 545

head specialization in long-context settings, where 546

attention is known to be not robust (Liu et al., 2024; 547

Xiao et al., 2024), and it is an open question if inter- 548

vening the localized modules is crucial in practical 549

settings (Hase et al., 2023; Wang and Veitch, 2024). 550

Our work contributes to this line of research by 551

finding better specialized set of attention heads that 552

explain the model behavior for query-focused long- 553

context retrieval, and that can be practically useful 554

for zero-shot efficient retrieval. 555

8 Conclusion 556

We introduced Query-Focused Retrieval Heads 557

(QRHEADS), a set of attention heads specialized 558

in identifying query-relevant information in long- 559

context inputs. Detected using query-context atten- 560

tion scores on realistic data, QRHEADS are better 561

aligned with practical retrieval tasks than original 562

retrieval heads. Built on top of QRHEADS, our 563

retrieval method QRRETRIEVER achieves strong 564

performance on both long-context reasoning and 565

re-ranking tasks, outperforming dense retrievers 566

and other LLM-based re-rankers in many settings. 567

These findings highlight the practical utility of QR- 568

HEADS and offer insights for further improving 569

retrieval with LMs. 570
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Limitations571

Our work detects improved retrieval heads and572

builds general-purpose retrievers based on them.573

We do not explore techniques that involve updat-574

ing model parameters, as our goal is to develop575

flexible methods that can directly use off-the-shelf576

models as retrievers. Consequently, we leave to fu-577

ture work the investigation of parameter-updating578

techniques that leverage insights from QRHEADS.579

While our method finds that QRHEADS can en-580

hance downstream performance, and shows the im-581

portance of two factors leading to selection of better582

heads. We lack a complete understanding of the583

internal mechanism accounting for QRHEADS’s584

effectiveness. Future work could apply circuit anal-585

ysis techniques (e.g., Bhaskar et al. (2024); Shi586

et al. (2024)) to dissect the fine-grained behaviors587

and roles of these heads.588

Our evaluation primarily targets passage re-589

ranking and long-context multi-hop reasoning tasks.590

Although our approach is conceptually applica-591

ble to broader long-context tasks—such as long-592

document summarization (Shaham et al., 2023; La-593

ban et al., 2024)—it remains unclear whether it594

generalizes to such tasks without thorough empiri-595

cal validation.596

Finally, our experiments are limited to English597

datasets. As LMs may exhibit different behaviors598

across languages, the cross-lingual robustness of599

our approach remains an open question.600
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A Details about Evaluation Datasets 844

We use LongMemEval (Wu et al., 2025a) and CLIP- 845

PER (Pham et al., 2025) for evaluating our systems 846

on long-context reasoning. 847

LongMemEval evaluates the long-term mem- 848

ory capabilities of LLM-driven chat assistants 849

across five fundamental abilities: information ex- 850

traction, multi-session reasoning, temporal rea- 851

soning, knowledge updates, and abstention. We 852

segment the LongMemEval-S dataset (∼115k to- 853

kens/question) at the round level, where each round 854

is a document consisting of a single user message 855

paired with the corresponding assistant response. 856

CLIPPER targets narrative claim verification—a 857

challenging long-context reasoning task that re- 858

quires verifying claims over entire books, with an 859

average length of 90K tokens and 23 chapters. In 860

CLIPPER, data is split at the chapter level, with 861

each chapter treated as an individual document dur- 862

ing retrieval. 863

Evaluation Process For each question, we first 864

feed the entire context (e.g., all chapters or dialogue 865

rounds) into the language model without using any 866

first-stage retriever. We compute a retrieval score 867

for each document or segment using our method de- 868

scribed in §4. We then select the top-k documents 869

based the scores, concatenate them, and feed them 870

together with the query into the language model 871

in a second pass to generate the final answer. We 872

choose k = 5, 10 for LongMemEval and k = 3, 5 873

for Clipper. We report retrieval performance us- 874

ing recall and downstream task performance using 875

accuracy. 876

B NIAH Test on Qwen-2.5-7B-Instruct 877

We evaluate Qwen-2.5-7B-Instruct on the NIAH 878

test by masking selected attention heads. As shown 879

in Figure 3 and Figure 4, pruning the top 16 QR- 880

HEAD leads to a more substantial degradation in 881

NIAH performance compared to pruning the top 16 882

RETHEAD, indicating the greater functional impor- 883

tance of QRHEAD. When pruning the top 32 heads, 884

the performance gap between QRHEAD and RET- 885

HEAD narrows, suggesting that QRHEAD achieves 886

better efficiency and effectiveness with fewer heads 887

for retrieval in NIAH task. 888
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Figure 3: Top: Masking 16 random heads of Qwen2.5-
7B-Instruct. Middle: Masking the top 16 original re-
trieval heads (Wu et al., 2025b). Bottom: Masking the
top 16 QRHeads.

C License of Datasets889

The licenses datasets used in our work include:890

• LongMemEval (Wu et al., 2025a) under MIT891

License.892

• Clipper (Pham et al., 2025) under Apache li-893

cense 2.0.894

• NQ (Kwiatkowski et al., 2019) under Creative895

Commons Attribution Share Alike 3.0.896

• BEIR (Thakur et al., 2021) under Creative897

Commons Attribution Share Alike 4.0 Read898

on choosealicense.com899

D Computational Resources and Model900

Sizes901

We use Llama-3.2 (3B), Llama-3.1 (8B and902

70B) (Llama-3 Team, 2024), and Qwen2.5903

(7B) (Yang et al., 2024). 8B models were run using904

a single NVIDIA A100 GPU with 80GB of mem-905

ory, and 70B models were run using 4 A100 GPUs.906
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Figure 4: Top: Masking 32 random heads of Qwen2.5-
7B-Instruct. Middle: Masking the top 32 original re-
trieval heads (Wu et al., 2025b). Bottom: Masking the
top 32 QRHeads.

All experiments were conducted on A100-based 907

infrastructure. 908

E Potential Risks of Our Work 909

N/A. Our work investigates the capabilities of 910

existing language models, without proposing 911

new model architectures or training procedures. 912

While large language models pose well-known 913

risks—including potential misuse, generation of 914

harmful content, and encoding of societal bi- 915

ases—our study does not introduce new risks be- 916

yond those already covered in the broader literature. 917

As such, we do not believe any specific risk miti- 918

gation measures are necessary for the scope of this 919

work. 920
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