
Reward Model Aggregation

Zihao Wang†1, 3, Chirag Nagpal2, Alexander D’Amour1, Victor Veitch ‡1,3, and Sanmi Koyejo ‡1,4

1Google DeepMind
2Google Research

3University of Chicago
4Stanford University

Abstract

Aligning language models requires guiding outputs towards desired properties
using reward models. This paper tackles the challenge of combining multiple
reward models for diverse objectives. We introduce methods for aggregating
these rewards using logical operations. Experiments confirm our methods beat
traditional aggregation techniques and underscore the significance of proper
reference values.

1 Introduction

It is common practice to finetune large language models to bias their outputs towards having
desirable properties—e.g., to be helpful, harmless, factual, or creative [Ouy+22; Sti+20; Zie+19].
This is typically done by defining a reward model that measures the degree to which an output
has the desired property, and then running a finetuning procedure that biases towards outputs
with high reward. In this note, we’re concerned with the case where we have multiple distinct
goals—and a reward model for each goal—and we want to finetune a language model to be
‘good’ on multiple accounts.

In practice, the reward models are usually by training a classifier on a dataset of prompts and
responses labelled with the desired property. This can be done either pointwise—each example
labelled good or bad—or pairwise—each prompt has a set of responses, labelled by which is
preferred on the desired property. The idea in this note is simply that by interpreting the reward
models probabilistically, we are led to natural procedures for combining multiple rewards.

2 Pointwise rewards

Suppose we have data (X , Y, GA) where X is a prompt, Y is a response, and GA is a binary
label indicating whether the response is good on some property A. If we learn a reward model
RA(x , y) by minimizing CrossEntropy risk of predicting GA from (x , y)—the standard for pointwise
rewards—then, ignoring finite sample issues, we can interpret the learned reward model as:

RA(x , y) = logit P(G = 1|x , y) (1)

(The logit scale is chosen for compatibility with the pairwise case below.)

Now suppose we have two reward models RA and RB for two different properties A and B. The
following result gives a natural way to combine them.

Theorem 2.1. Define

RGA∧GB
:= logit(σ(RA)σ(RB)) (2)

RGA∨GB
:= logit(σ(RA) +σ(RB)−σ(RA)σ(RB)). (3)

†Work done while interning at Google DeepMind
‡Equal Contributions

Workshop on Instruction Tuning and Instruction Following at NeurIPS 2023.



Suppose that if RA and RB correspond to logit probabilities as in eq. (1), and that GA and GB are
independent conditional on X , Y . Then RGA∧GB

and RGA∨GB
are the reward models we would have

learned by predicting GA ∧ GB and GA ∨ GB respectively.

(The proof is straightforward)

Theorem 2.1 gives us a way to combine reward models trained from pointwise data. However, in
practice, pairwise data are more abundant than pointwise data.

3 Pairwise rewards

The pairwise case is subtler. Here, we have data (X , Y0, Y1, G̃A) where X is a prompt, Y0 and
Y1 are responses, and G̃A is a binary label indicating whether Y1 is preferred to Y0 on some
property A. Learning a reward model RA(x , y) via Bradley-Terry ([BT52]) (the standard approach)
yields:

P(G̃A = 1 | x , y0, y1) = σ(RA(x , y1)− RA(x , y0)) (4)

The challenge is that now RA cannot be naturally interpreted as a logit probability. The issue is
that the reward model is only identified up to an additive function of x; i.e., if we change

RA(x , y)→ RA(x , y) + c(x) (5)

then eq. (4) is unchanged. However, logit probabilities do not have this property.

The idea here is to transform the pairwise reward model into one that can be interpreted as a
logit probability. Then, theorem 2.1 can be used to combine rewards. For a fixed language model
π(Y | x) and reward function RA we define rq

A(x) to be the q-th quantile of the distribution of
rewards for x , when Y is sampled from the language model π(Y | x). Then,

Theorem 3.1. Suppose that yq(x) is a response such that R(yq, x) = rq
A(x). Assuming Bradley-Terry,

we have
RA(x , y)− rq

A(x) = logit P(Y preferred to yq on property A | x) (6)

That is: if we subtract off a quantile of the distribution of rewards, the modified reward function
can be naturally interpreted as a logit probability of a binary random variable. Then we can use
theorem 2.1 for reward aggregations.

4 Experiment

4.1 Experiment Setup

Training the Reward Models: We train models for evaluating helpfulness and harmlessness
using the anthropics hh-rlhf preference dataset [Bai+22]. This training involves fine-tuning a T5
base model ([Raf+20]) utilizing the Bradley-Terry model.

Sampling Approach: We use the best-of-k approach, a method that chooses the answer with
the highest (combined) reward from the top k potential responses generated by the model. This
method helps refine the sampling distribution of the selected Language Model (LM), specifically
the PaLM 2 XS ([Ani+23]), which has been fine-tuned on FLAN instructions ([Wei+21]) and the
helpfulness data.

Evaluations: Evaluation involves comparing the new and original sampling distributions. We
randomly select a sample, y0, from the original LM and another sample, y1, using the best-of-k
approach. The win rate is computed by comparing these two samples, scored using the same
reward models used for aggregations. The win in "AND" for y1 means it has better rewards than
y0 in both properties A and B. The win in "OR" for y1 means it outperforms y0 in at least one
property. This method offers insight into the effectiveness of the new sampling distribution. Refer
to fig. 1 for visual representation.

Combining Rewards: In the process of combining rewards, two significant decisions are made:
the choice of combination methods, and the selection of reference reward (rref).

1. Combination Method: Rewards are combined using distinct methods (after subtracting
off reference rref):

2



• Derived Method: Applying theorem 2.1 gives σAND and σOR functions, defined as:

RσAND
(x , y) := logit(σ(RA(x , y)− rref

A (x))σ(RB(x , y)− rref
B (x)))

RσOR
(x , y) := logit(σ(RA(x , y)− rref

A (x)) +σ(RB(x , y)− rref
B (x))

−σ(RA(x , y)− rref
A (x))σ(RB(x , y)− rref

B (x)))

• Simple Summation Method: Employs straightforward summation of the rewards.

2. Selection of Reference Reward (rref): Based on the combination method used, the
reference reward is chosen using two approaches:

• Oracle-Median Method: Sample 60 additional responses from the original LM and
use the sample median as reference. This is not computationally feasible during
deployment.

– Referred as "sigmoid_AND_oracle_median" when used with σAND.

– Referred as "sigmoid_OR_oracle_median" when used with σOR.

• Predict-Median Method: Uses a model to estimate the median rewards from the
original LM.

– Referred as "sigmoid_AND_predict_median" when used with σAND.

– Referred as "sigmoid_OR_predict_median" when used with σOR.

• No Subtraction Method: No subtraction is performed, keeping the original reward
values intact.

– Referred as "sigmoid_AND" when used with σAND.

– Referred as "sigmoid_OR" when used with σOR.

(a) win rate for AND (b) win rate for OR

Figure 1: Reference centering and choosing the aggregation function matched to the logical goal gives
good performance.

Summary of Methods:

• sigmoid_AND_oracle_median: Uses sample median rewards from additional responses
as rref, combined with σAND.

• sigmoid_AND_predict_median: Uses a model to estimate the median rewards as rref,
combined with σAND.

• sigmoid_AND: Uses 0 as rref, combined with σAND.

• sigmoid_OR_oracle_median: Uses sample median rewards from additional responses
as rref, combined with σOR.

3



• sigmoid_OR_predict_median: Uses a model to estimate the median rewards as rref,
combined with σOR.

• sigmoid_OR: Uses 0 as rref, combined with σOR.

• sum: Employs simple summation for combining rewards.

4.2 Observations

We have two main claims:

1. We can implement logical OR or logical AND with a suitable choice of combination
function, and can beat summation in their corresponding metrics.

2. The choice of reference reward rref used to convert pairwise rewards to pointwise
rewards has a substantive effect.

Combining functions correspond to logical AND, OR In fig. 1, we can see these our derived
approaches correspond to logical AND, OR respectively, and are not compatible. Using the
corresponding approach beats using simple summation in AND, OR respectively.

The choice of reference rewards rref has a substantive effect It’s a natural choice to use
median rewards for reference values, on both property A and B. In fig. 1, we see that using a
good estimate of it improves results compared to subtracting off 0.

4



References
[Ani+23] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa,

P. Bailey, Z. Chen, et al. “Palm 2 technical report”. arXiv preprint arXiv:2305.10403
(2023) (cit. on p. 2).

[Bai+22] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort,
D. Ganguli, T. Henighan, et al. “Training a helpful and harmless assistant with
reinforcement learning from human feedback”. arXiv preprint arXiv:2204.05862
(2022) (cit. on p. 2).

[BT52] R. A. Bradley and M. E. Terry. “Rank analysis of incomplete block designs: i. the
method of paired comparisons”. Biometrika 3/4 (1952) (cit. on p. 2).

[Ouy+22] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S.
Agarwal, K. Slama, A. Ray, et al. “Training language models to follow instructions
with human feedback”. Advances in Neural Information Processing Systems (2022)
(cit. on p. 1).

[Raf+20] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu. “Exploring the limits of transfer learning with a unified text-to-text
transformer”. The Journal of Machine Learning Research 1 (2020) (cit. on p. 2).

[Sti+20] N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei,
and P. F. Christiano. “Learning to summarize with human feedback”. Advances in
Neural Information Processing Systems (2020) (cit. on p. 1).

[Wei+21] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le.
“Finetuned language models are zero-shot learners”. arXiv preprint arXiv:2109.01652
(2021) (cit. on p. 2).

[Zie+19] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano,
and G. Irving. “Fine-tuning language models from human preferences”. arXiv preprint
arXiv:1909.08593 (2019) (cit. on p. 1).

5


	Introduction
	Pointwise rewards
	Pairwise rewards
	Experiment
	Experiment Setup
	Observations


