Under review as a conference paper at ICLR 2022

PROVABLY ROBUST TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge transfer is an effective tool for learning, especially when labeled data
is scarce or when training from scratch is prohibitively costly. The overwhelming
majority of transfer learning literature is focused on obtaining accurate models,
neglecting the issue of adversarial robustness. Yet, robustness is essential, par-
ticularly when transferring to safety-critical domains. We analyze and improve
the robustness of a popular transfer learning framework consisting of two parts: a
feature extractor and a classifier which is re-trained on the target domain. Our ex-
periments show how adversarial training on the source domain affects robustness
on source and target domain, and we propose the first provably robust transfer
learning models. We obtain strong robustness guarantees by bounding the worst-
case change in the extracted features while controlling the Lipschitz constant of
the classifier. Our models maintain high accuracy while significantly improving
provable robustness.

1 INTRODUCTION

Since their proposal, neural networks are constantly evolving as they are being adapted for many
diverse tasks. In general, they have a tendency to become more complex and larger, since e.g. over-
paramatrization has proven to be highly beneficial. Training such large and complex neural networks
usually requires a huge amount of (labeled) high-quality data. Since this amount of data is not avail-
able in all domains, transfer learning was proposed. The idea is to transfer the knowledge of a trained
model from the so called source domain to a similar, related task in a target domain for which only
a small amount of data exists. Usually, the transfer is considered successful if the model achieves
high accuracy on the target domain. However, accuracy is not the only desired property of neural
networks. Adversarial robustness is often equally important, especially in safety-critical domains.
Most standard (undefended) models, including transfer learning models as we show in Section 4, are
not robust to adversarial attacks. Attackers can easily craft deliberate and unnoticeable input pertur-
bations to change the prediction of a correctly classified instance to a different (wrong) class label.

We analyze and improve the robustness of a popular transfer learning framework consisting of two
parts: a feature extractor f which extracts representations from the inputs and is trained on the source
domain and a classifier ~ which maps extracted representations to predictions and is retrained on the
target domain. So far, the robustness of this popular framework has been analysed only by two stud-
ies. Shafahi et al. (2020) show that adversarial training of the feature extractor and using a classifier
with one layer improves robustness. Chen et al. (2021) extend the work of Shafahi et al. (2020)
by enforcing a fixed Lipschitz-constant on the (multi-layer) classifier f. They propose an adversar-
ial training procedure that minimizes the representation distance between inputs and corresponding
adversarial examples. However, they rely solely on PGD-attacks for robustness evaluation. A ro-
bustness study based on provable robustness that takes both the feature extractor and the classifier
into account, and quantifies how different design choices affect robustness, is still missing.

We fill this gap by analyzing the robustness of the feature extractor under various training proce-
dures and the robustness of the classifier under different constraints. To study the robustness of the
classifier proposed by Shafahi et al. (2020), we search for so called adversarial representations — per-
turbed representations that result in a wrong prediction but are close to the extracted representations
and reachable from the input space. If the classifier & is a one-layer neural network (i.e. logistic
regression), adversarial representations always exist for all inputs and all models regardless of the
training procedure and the constraints. We can find them by solving a simple quadratic optimization
problem with linear constraints. That is, we find the closest adversarial representation z’ to the un-

Under review as a conference paper at ICLR 2022

perturbed representation z = f(x) such that h(2’) # h(z). Therefore, we further test if the found
adversarial representation z’ is reachable from the input space. We say 2’ is reachable if we find a
input =" that minimizes ||z’ — f(x")||1, and results in a wrong prediction, i.e. h(f(z")) # h(2z)!.

Our analysis shows that enforcing a fixed Lipschitz constant on the classifier in combination with
adversarial training reduces the number of reachable adversarial representations and thus improves
model robustness. However, even for the most robust model, we still find reachable adversarial
representations, especially on the target domain. Thus, combining adversarial training with a fixed
Lipschitz constant on the classifier is not enough to make the transfer learning framework robust. To
obtain a provably robust framework, we propose to combine randomized smoothing, which allows to
bound the worst-case perturbation in the features, with a given Lipschitz constant on the classifier.
Since smoothing results in both verifiable and more robust models we obtain a provably robust
transfer learning framework.

2 RELATED WORK

Improving neural networks robustness is widely studied for standard tasks such as classification and
regression, but there are few works that analyze how robustness properties can be transferred from
the source to the target domain. In transfer learning, adversarial training has mainly been used to
obtain feature representations that generalize better and to improve model accuracy on unperturbed
data of the target domain. Allen-Zhu & Li (2021), Engstrom et al. (2019) and Ilyas et al. (2019)
show how adversarial training improves feature representations and results in representations that
are more aligned with humans. Utrera et al. (2021) and Salman et al. (2020a) analyze the effect of
robust training in transfer learning. While Salman et al. (2020a) shows that robust training improves
the accuracy on the unpertubed target domain data, Shafahi et al. (2020) shows the opposite, i.e. that
adversarial training on the target domain results in more robust but less accurate target models.

The works by Shafahi et al. (2020) and Chen et al. (2021) are the most closely related to ours. They
consider the same transfer learning framework as we do, i.e. models that can be decomposed into
a feature extractor f and a classifier h. The feature extractor is trained on the source domain and
is then frozen while the classifier & is retrained on the target domain. Shafahi et al. (2020) show
that adversarial training of the feature extractor and using a one-layer-classifier improves robustness
on the target domain. Chen et al. (2021) proposes an adversarial training procedure that minimizes
the distance between adversarial and unperturbed representations (i.e. the output of the feature
extractor f). Furthermore, Chen et al. (2021) argue that a one-layer-classifier is not accurate enough
on the target domain and thus propose to use a multi-layer classifier with a Lipschitz constant of 1
(enforced using spectral normalization) to improve accuracy and robustness. Neither of these works
studies provable robustness as we propose to do.

3 CONSTRAINED TRANSFER LEARNING MODELS

A simple but popular transfer learning framework consists of two parts: a so called feature extrac-
tor f and a classifier h (see Figure 1). The prediction for input « is obtained as * = h(f(x)).
The feature extractor is trained on the source domain and is then frozen, i.e. not changed during
training on the target domain, while the classifier is retrained on the target domain. The idea of this
framework is that in related tasks similar features are important, and thus the feature extractor can
be transferred from the source domain to the target domain without adaptions, while the classifier
maps extracted representations/features to classes and must be adapted to the target domain.

To improve the robustness of this framework we propose to: (i) make the feature extractor f robust
on the source domain since it is not changed afterwards, while (ii) simultaneously constraining the
classifier h so that retraining on the target domain does not decrease robustness. We achieve (i) via
adversarial training and/or randomized smoothing, and (ii) by enforcing a fixed Lipschitz constant
on the classifier. Enforcing a given Lipschitz constant on the entire model f(h(-)) decreases its
adaptability and tends to have a negative effect on the accuracy. However, constraining only the
classifier h can sidestep this limitation since mapping learned representations to classes is often

!'Unlike single-layer classifiers, we cannot compute the input corresponding to an adversarial representation
in closed form. We use project gradient descent instead.

Under review as a conference paper at ICLR 2022

_ /I C2
Br (.T) uz _ = -) C3
SOOIy hs -
Te L Ze 2 y.
loteiiii
ll u1 C1
input representation output
Figure 1: Transfer learning framework consisting of feature extractor f, on the source
domain and on the target domain. For input @, f(x) = =z returns the representations, while

hs(z) = hs(f(x)) and hr(z) = hp(f(x)) return the predictions on source and target domain
respectively. To make transfer learning provably robust, we propose to apply median smoothing on
f» and to enforce a Lipschitz constraint on hg and hp. Then, given a ball B,.(x) of radius r around
the clean &, we can compute a set that is guaranteed to contain the representations z’ = f(a’) for all
' € B,(x) (grey box). After propagating this set through hr we check if the prediction changes.

easier than directly mapping inputs to classes, especially if the extractor f learns well-separated
representations. As our results in Table 1 show, constraining only £ leads to comparable or better
accuracy on multi-layer classifiers. More importantly, given bounds on the output of the feature
extractor f (obtained via randomized smoothing, see Section 5), our constrained h enables us to
provide strong robustness guarantees.

Limitations of spectral normalization and orthonormal weight matrices. Chen et al. (2021)
recently suggested to enforce a Lipschitz constant of 1 on the classifier by dividing the weights of
each layer by their spectral norm (Miyato et al., 2018). Spectral normalization is popular because
it is inexpensive and easy to implement with a single step of power iteration. However, since this
approach only constrains the largest singular value of the weight matrix to be less than 1 it is not
gradient-norm preserving, and is thus suboptimal as shown by Anil et al. (2019). A better alternative
is to design a network with orthonormal weight matrices where all singular values equal 1 which
preserves the gradient-norm and is easier to train. However, to do so we need to rely on expensive
procedures such as Bjorck Orthonormalization (Cisse et al., 2017; Anil et al., 2019), the Caylee
transform (Trockman & Kolter, 2021), the exponential map of a skew-symmetric matrix (Singla &
Feizi, 2021), or a block-convolution orthogonal parameterization (Li et al., 2019).

Besides the computational limitations, Singla et al. (2021) argue that using orthonormal weight
matrices in the last layer has a negative effect during training. Namely, when updating a single
row W) (corresponding to class j) we necessarily have to update all other rows W; (corresponding
to all other classes) to preserve the orthogonality constraints W; L W;, so an update that learns
information about some class may necessitate the forgetting of information relevant for other classes.

Weight normalization based on the L.,-norm. Unlike previous work, we propose to normalize
the weights using the L,-norm. Our proposed weight normalization is computationally inexpen-
sive while providing similar benefits to orthonormal weights — most importantly we can still derive
provable robustness guarantees. Using as few constraints as possible preserves adaptability of the
classifier i, which is important for retraining and achieving high accuracy on the target domain.
Additionally, we combine our weight normalization with the gradient-norm preserving GroupSort
activation function proposed by Anil et al. (2019) since it stabilizes gradient-based training of multi-
layer Lipschitz-constrained networks and performs better than ReLU in practice.

Guarantees for L .-normalized networks. Let us consider learned representations z = f () and
z' = f(a') corresponding to inputs x, «’ and assume that ||z’ — z||c < . Let W () be the weight

matrix in the i-the layer. If W (%) is constrained such that ||[W || < k; where k; € R is a given
constant for layer 4, the distance between z and z’ after the linear transformation in the i-th layer is
bounded by the Cauchy-Schwarz inequality:

WO = 2)lloo < [WTOlsoll2’ — 2]|oc < Kid. W

Under review as a conference paper at ICLR 2022

Using an activation function with a Lipschitz constant of 1 (such as GroupSort) and considering
a classifier with I layers results in the following bound on the outputs y = h(f(x)) and vy =

h(f(")):

I
1y = Ylloo = lIh(z") = h(2)l|oe <6 [b)
=1

Now, for a given z and z’ we can easily verify whether they will obtain the same prediction. Let
5(z) = max(0, h;(z) —max;; hj(2)) be the classification margin where h;(z) is the logit for class
j and 7 is the correct label. If s(z) > 2-§ - Hi[:l k; then z is provably robust (see Anil et al. (2019)
and Tsuzuku et al. (2018)). Setting all k; = 1 we obtain a classifier h with a Lipschitz constant of 1
w.r.t. the L., norm.

Transfer benchmarks. Our analysis covers transfer learning tasks of different relatedness and dif-
ficulty. SVHN (Netzer et al., 2011) contains images of street view housing numbers, while MNIST
(LeCun & Cortes, 2010) contains images of handwritten digits. Using SVHN as source domain and
MNIST as target domain is a simple, related task, since the transfer is done from a difficult source
domain to a simple target domain. CIFAR10 (Krizhevsky et al., 2009) and STL10 (Adam Coates,
2011) contain images of objects and are related domains. Since CIFAR10 contains low-resolution
images (simple domain) and STL10 contains high-resolution images (difficult domain) transferring
from CIFAR10 to STL10 is a related, but difficult task. FashionMNIST/FMNIST (Xiao et al., 2017)
contains gray-scale images of clothes while KMNIST (Clanuwat et al., 2018) consists of images of
Japanese characters. Using FMNIST as source domain and KMNIST as target domain is a distant
transfer learning task. Since MNIST and KMNIST are both simple but distant domains, transferring
from MNIST to KMNIST is a medium related, simple transfer learning task.

Table 1: Effect of enforcing a Lipschitz constant of 1 on the accuracy on the source domain and
target domain. Constrained 4-layer classifiers are comparable or better than unconstrained.

SVHN — MNIST FMNIST — KMNIST CIFAR10 — STL10 MNIST — KMNIST

Constraint Layers source target source target source target source target
None 1 95.5 96.0 92.8 54.1 84.4 64.1 99.8 71.0
WN 1 95.5 90.2 92.7 36.0 85.7 62.7 99.5 50.6
None 4 96.0 97.7 93.4 78.8 83.5 68.0 99.6 87.4
WN 4 95.1 98.2 92.9 712 86.2 67.8 99.6 89.6

Table 1 clearly shows two important points. First, (slightly) distant transfer learning tasks such
as MNIST — KMNIST and FMNIST — KMNIST require multi-layer classifiers to achieve high
accuracy on the target domain. One-layer classifiers h, as suggested by Shafahi et al. (2020), are not
enough with and without weight normalization. They are not as adaptable as necessary and result
in lower accuracy on the target domain. Second, models that contain multi-layer classifiers with
Lipschitz constant 1 (WN) achieve similar accuracy as unconstrained models (None) regardless of
the relatedness between source and target domain. This clearly shows that we need a (constrained)
multi-layer classifier i to make the f(h(-)) framework robust while maintaining high accuracy.

4 How DO CONSTRAINTS AND ADVERSARIAL TRAINING AFFECT
ROBUSTNESS ON SOURCE AND TARGET DOMAIN?

First, we analyze how adversarial training of the feature extractor and enforcing a given Lipschitz
constant on the classifier affect the robustness of the transfer learning framework. We compare mod-
els with classifiers that have a Lipschitz constant of 1 and unconstrained classifiers in combination
with four training procedures. As baseline we use normal (standard) training on clean input data
with the cross entropy as loss function. The second training procedure, called noise, samples a noise
vector from a standard normal distribution, clips it such that it is bounded by the Lo-size of ¢, and
adds it to each input. Training is done on the noisy samples with the cross entropy loss function.
This training is also used for models subjected to randomized smoothing based verification (Cohen

Under review as a conference paper at ICLR 2022

et al., 2019). In the third training procedure, called adv, we compute adversarial examples using
PGD-attacks based on the Lo-norm with a perturbation size of £ and the cross entropy loss func-
tion. Our fourth training procedure called adv-d uses the same setting as the third one, but with a
loss function that linearly combines cross entropy with minimizing the distance between original
representations f(x) and adversarial representations f (') as proposed by (Chen et al., 2021).

Robustness of one-layer classifiers. Shafahi et al. (2020) claim that using a standard one-layer
classifier improves model robustness. Since the weights of the classifier can theoretically become
arbitrary large, this is a purely empirical result. We analyze this claim by quantifying the robustness
of differently trained one-layer classifiers. Since the classifier maps representations (i.e. the outputs
of the feature extractor) to classes, analyzing the robustness of the classifier requires us to operate in
the feature/representation space. To this end, we compute the representations z = f () correspond-
ing to a correctly classifier input « and search for representations 2z’ in the neighborhood of z that
result in a wrong prediction. Instead of doing a heuristic search for adversarial representations, we
propose to solve this problem exactly. Since we are analyzing one-layer classifiers, we can formulate
it as the following optimization problem:

min ||z — 2'||, s.t. (W2 +b;) — (W;2' +b;) <0 3)
2! j#i

where i is the correct class, W and b are the weights and bias of the one-layer classifier, and W is
the j-th row of W. If we assume that 2’ = z+eanduse 2’ — 2z = (z 4+ € — z) = € we can simplify
the objective function and the constraint, obtaining:

En;l#nZHeHQ s.t. Wa,e+6; <0 4)

where W, = W; — Wj and 0; = (W; — Wj)z 4 b; — b; are constants that we can pre-compute.
Since we use the Ly-norm as distance measure, Problem 4 is a quadratic optimization problem with
linear constraints and can be solved efficiently.

Table 2 shows different metrics for the adversarial representations, i.e. the percentage of found
adversarial representations that result in a wrong prediction (p,), the mean L, distance za between
z and 2z’. The larger the percentage and the smaller the distance, the less robust is the model. Our
representation search shows that adversarial representations can be found for all inputs and models
regardless of the constraints and the training procedure. Moreover, the distance between z and 2’ is
relatively small given that we are in a 640-dimensional (theoretically) unbounded space.

The adversarial representation search raises an obvious question: Are such representations reach-
able from the input space? Using a standard attack (i.e. PGD-attacks) can theoretically return
adversarial examples with a small distance in the input space (za), but a large distance in the fea-
ture/representation space. Thus, we search inputs &’ that minimize ||z’ — f(«”)||; and result in a
wrong prediction, i.e. h(f(x”)) # h(z). Since this problem cannot be solved in closed form, we
use project gradient descent with Ly (z’, f(2”)) as loss function.

Our input search (Table 2, right) shows that weight normalization strongly decreases the percentage
of reachable adversarial representations p,, i.e. representations for which we could find a close,
wrongly classified input. Combining weight normalization with any adversarial training procedure
further reduces the percentage or reachable adversarial features. For the SVHN — MNIST task
reachable adversarial representations can be found for about at least one-fifth of the inputs on source
and target domain. On the MNIST — KMNIST task, the source domain is simple and very robust,
but on the target domain reachable adversarial representations are found for at least 39% of the
inputs. All adversarial training procedures decrease the percentage of reachable representations
and provide adversarial samples with a small distance to the unperturbed input, where standard
adversarial training (adv) or training on noisy inputs (noise) results in the largest decrease.

In summary, even for the most robust model, reachable adversarial representations can be found
for at least about one-fifth of the inputs on the target domain. Thus, combining a fixed Lipschitz
constant with adversarial training is not strong enough to make this transfer learning framework
sufficiently robust. Since we cannot rely solely on heuristic defenses, we propose to design a prov-
ably robust feature extractor to obtain models that are guaranteed to preserve their robustness on the

Under review as a conference paper at ICLR 2022

Table 2: Computing adversarial representations z’ and inputs " on SVHN/MNIST (source) and
MNIST/KMNIST (target). Models: unconstrained (None), with Lipschitz constant 1 (WN). Metrics:
model accuracy (Acc.), percentage of found adversarial representations (p,) or adversarial inputs
(ps), mean L, distance between adversarial representations (za) and adversarial inputs (xa).

SVHN — MNIST Rep. Search Input Search
Data, Con. Training Acc. [%] p. [%] ZA P [%] TA ZA
normal 95.5 100 1.598 88.2 0.258 1.346
Source, noise 94.3 100 1.543 66.7 0.374 1.243
None adv 96.4 100 1.455 59.1 0.257 1.138
adv-d 96.3 100 0.375 92.9 0.540 0.440
normal 95.5 100 0.046 42.0 0.082 2.034
Source, noise 93.6 100 0.036 19.1 0.274 1.538
WN adv 96.2 100 0.059 21.0 0.102 1.641
adv-d 96.4 100 0.011 224 0.461 0.791
normal 96.0 100 0.152 51.7 0.122 1.454
Target, noise 95.7 100 0.152 334 0.265 0.732
None adv 96.8 100 0.195 27.7 0.180 0.755
adv-d 95.2 100 0.084 40.3 0.504 0.278
normal 90.2 100 0.207 45.7 0.127 1.692
Target, noise 90.8 100 0.034 20.4 0.247 0.921
WN adv 91.0 100 0.141 29.6 0.152 1.241
adv-d 78.9 100 0.050 36.3 0.221 0.679
MNIST — KMNIST Rep. search Input search
Data, Con. Training Acc. [%] p. [%] ZA P [%] TA ZA
normal 99.8 100 1.628 16.9 0.108 1.637
Source, noise 99.6 100 1.558 23.9 0.812 1.632
None adv 99.5 100 1.724 18.2 0.731 1.279
adv-d 99.6 100 0.672 81.8 0.860 0.911
normal 99.5 100 0.102 33.5 0.050 2.259
Source, noise 99.7 100 0.185 0.4 0.216 0.869
WN adv 99.6 100 0.105 0.5 0.060 1.013
adv-d 99.7 100 0.001 17.2 0.879 1.163
normal 71.0 100 0.103 51.7 0.285 0.774
Target, noise 72.3 100 0.099 58.5 0.499 0.579
None adv 72.4 100 0.106 55.3 0.574 0.538
adv-d 69.2 100 0.070 79.7 0.576 0.493
normal 50.6 100 0.171 52.1 0.233 0.991
Target, noise 51.3 100 0.129 475 0345 0.832
WN adv 51.3 100 0.112 39.2 0.461 0.600
adv-d 44.5 100 0.072 64.5 0.594 0.549

target domain. In the following chapter we propose such a framework by proposing representation
smoothing on the feature extractor f in combination with weight normalization of the classifier h.

5 PROVABLY ROBUST TRANSFER LEARNING MODELS

As shown in Section 4, making the transfer learning framework robust requires a robust feature ex-
tractor as well as a robust classifier. Since heuristic defences are always inevitably broken by new
attacks (Athalye et al., 2018; Tramer et al., 2020), we modify the transfer learning framework so
that it becomes provably robust. To achieve this goal, we propose to use randomized smoothing.
Randomized smoothing was suggested by Cohen et al. (2019) to certify predictions of classifiers
and usually results in both verifiable predictions and more robust models. The idea of smoothing
based verification techniques is to draw samples x; ~ A (x, o) from the close neighborhood of in-
put & and propagate all samples through the neural network. The smooth prediction is computed by
aggregating the outputs for all noisy samples. This aggregation can be done by computing the mean

Under review as a conference paper at ICLR 2022

or the median (Chiang et al., 2020). We evaluate the performance of label smoothing as proposed
by Cohen et al. (2019), and we propose two versions of median smoothing: logit smoothing on the
entire f(h(-)) model and representation smoothing on the extractor f.

Representation smoothing. The idea of our proposed approach is to smooth the feature extractor
f, thus making it robust, without affecting the classifier #. By combining representation smoothing
with a Lipschitz-constrained classifier /i, we can certify the predictions of the entire f(h(-)). Specif-
ically, we draw S random samples x; ~ N (zx, o), compute the corresponding features z; = f(x;)
and aggregate them by computing the median representation m = median{z;}_;, € RP. Here
D is the number of dimensions of the representation space (D = 640 for the architecture we use).
Now, using standard statistical methods (Chiang et al., 2020) we can obtain a guaranteed lower
bound I € RP and upper bound w € R” on m. To account for the multiple comparisons problem
that stems from smoothing in multiple dimensions we apply Bonferroni correction similar to Kumar
& Goldstein (2021). The predicted class c is obtained by propagating the representation median
through the classifier h and taking the argmax, i.e. ¢ = arg maxy, h(m)y. To verify if the prediction
is robust, we use the fact that the classifier h is L,-Lipschitz continuous. As explained in Section 3,
we compute the maximum deviation between the median and a point p € [I, u] w.r.t. to Lo,-norm
ie. § = max(Loo(u—m), Lo (m—1)) and the margin s(m) = max (0, ho(m) —maxgz. hy(m)).
If s(m) > 2.6 - k, where k is the Lipschitz constant of the classifier, then m is provably robust
and we return the prediction ¢, otherwise we abstain.

Logit smoothing. In contrast to representation smoothing, logit smoothing smoothes the whole
model, i.e. the feature extractor f and the classifier h. It operates in the logit space and aggregates
the outputs by computing the median of the logits. Since we operate in a multi-dimensional space,
we have to adapt median smoothing by using the Bonferroni correction (see Kumar & Goldstein
(2021) for details). Logit smoothing returns the median logit m € RX, a lower bound I € R¥
and an upper bound u € R¥ on it (where K is the number of classes). For classifiers, the smooth
prediction c is obtained as ¢ = arg maxy mg. Since we apply median smoothing for classification,
unlike Chiang et al. (2020) that use it for regression, we propose to extend it by an abstain option.
To this end, we test if more than one class might be predicted. This can be done by computing the
maximum lower bound, i.e. [, = maxy [}, and checking if uy < I.,Vk # c holds. If this inequality
if fulfilled, only one class can be predicted and we return it, otherwise we abstain.

Setup. We compare representation smoothing, logit smoothing, and label smoothing on the source
domain and the target domain, for unconstrained classifiers (None) and for classifiers with a Lip-
schitz constant of 1 enforced by our weight normalization (WN). We train the models using the
four procedures (normal, noise, adv, and adv-d) described in the previous section, and we add a fifth
training procedure (adv-s), proposed by Salman et al. (2020b) to improve the robustness of smoothed
models. In adv-s we explicitly account for the smoothing distribution when computing adversarial
examples. Table 3 and Table 4 quantify the verifiable robustness of our framework with a one-layer
and a four-layer classifier on SVHN — MNIST, MNIST — KMNIST, FMNIST — KMNIST.

Comparison of smoothing approaches. Representation smoothing results in a significantly higher
verifiable accuracy Ay than logit smoothing or label smoothing. On multi-layer classifiers (Table 3
and 4) representation smoothing verifies 2 — 3% more samples. For SVHN — MNIST with a one-
layer classifier, representation smoothing verifies about 20% more samples from the source domain
and about 30% more target domain samples. On the target domain, representation smoothing is able
to verify the majority of correct median predictions, while performance of label and logit smoothing
is decreased. The first reason for this might be that weight normalization improves the robustness
of the models. Second, representation smoothing aggregates the median in the high-dimensional
representation space and computes certificates based on the L..-norm, which is small and inde-
pendent of the number of dimensions. Combining L.,-norm with aggregation of the median in a
high-dimensional space might be beneficial in comparison to further propagation through the neu-
ral network and aggregation in a low dimension (logit) space. The Bonferroni correction, which is
stricter in the feature space than in the logit space, did not have an observable (negative) effect on
verifiable accuracy. Label smoothing and logit smoothing result in the same verifiable accuracy Ay, .
Since both approaches smooth in the logit space and are based on a highly similar theoretical frame-
work as well as the same parameters, this is expected. Regarding the median accuracy Ay, i.e.
using the smooth median without an abstain option to predict, representation smoothing and logit
smoothing achieve the same accuracy. One possible explanation is that this happens because the
classifier has a Lipschitz constant of 1.

Under review as a conference paper at ICLR 2022

Table 3: Smoothing on SVHN (source) — MNIST (target) using classifiers without (None) and with
Lipschitz constant 1 (WN). Columns: data (source/target), constraint (None/WN), accuracy of the
base classifier (Ap), median prediction accuracy (A), verifiable accuracy (Ay) and radius (Rad.)

1-layer classifier Base Label smooth. Representation smooth. Logit smooth.
Data, Con. Training Ap[%] Avy[%] Rad. Anr[%] Av[%] Apl%] Av[%]
normal 944 26.1 0.049 69.4 26.1
noise 93.2 79.8 0.153 93.5 79.8
Source adv 95.7 46.4 0.073 76.9 46.4
None adv-d 95.8 75.4 0.111 84.7 75.4
adv-s 94.2 82.1 0.166 94.6 82.1
normal 96.5 19.6 0.055 67.3 56.9 67.3 19.6
noise 92.9 66.0 0.152 93.3 91.0 93.3 66.0
Source adv 96.7 28.5 0.079 75.7 67.5 75.7 28.5
WN adv-d 96.7 57.9 0.096 83.0 80.4 83.0 57.9
adv-s 922 72.5 0.165 922 90.6 922 72.5
normal 96.2 21.5 0.13 83.9 215
noise 96.2 53.7 0.175 934 53.7
Target adv 97.3 38.8 0.155 92.6 38.8
None adv-d 96.4 82.0 0.173 91.7 82.0
adv-s 96.1 69.6 0.192 95.4 69.6
normal 89.6 53 0.116 83.1 63.8 83.1 53
noise 91.3 26.6 0.168 89.1 82.2 89.1 26.6
Target adv 89.9 11.1 0.135 83.0 68.6 83.0 11.1
WN adv-d 71.5 51.6 0.148 74.3 69.9 74.3 51.6
adv-s 90.1 36.5 0.179 89.6 83.8 89.6 36.5
4-layer classifier Base Label smooth. Representation smooth. Logit smooth.
Data, Con. Training Apg[%] Ay[%] Rad. Ap[%] Ay %] Ap[%] Ay[%)]
normal 95.5 61.6 0.065 70.0 61.6
noise 932 91.0 0.155 93.0 91.0
Source adv 95.7 63.7 0.072 80.0 63.7
None adv-d 96.7 78.9 0.075 79.9 78.9
adv-s 93.2 81.4 0.167 93.6 81.4
normal 95.4 59.7 0.054 69.3 67.2 69.3 59.7
noise 93.0 89.8 0.153 92.9 92.5 92.9 89.8
Source adv 95.8 59.2 0.062 66.2 64.9 66.2 59.2
WN adv-d 96.8 78.5 0.096 79.8 79.4 79.8 78.5
adv-s 923 90.9 0.165 93.7 92.9 93.7 90.9
normal 97.8 50.6 0.136 88.1 50.6
noise 97.1 86.6 0.185 96.2 86.6
Target adv 97.3 58.8 0.15 87.7 58.8
None adv-d 97.9 89.8 0.17 91.0 89.8
adv-s 98.4 96.6 0.201 98.5 96.6
normal 98.1 64.8 0.12 80.8 77.8 80.8 64.8
noise 97.7 90.8 0.18 96.4 95.5 96.4 90.8
Target adv 98.5 71.8 0.147 89.7 88.1 89.7 71.8
WN adv-d 98.6 85.8 0.168 87.9 87.5 87.9 85.8
adv-s 97.4 95.7 0.199 97.4 97.4 974 95.7

Comparison of training procedures. The highest median accuracy and verifiable accuracy on
the source and the target domain are most often obtained by using adversarial training based on
attacks computed on the smooth model (adv-s) as proposed by (Salman et al., 2020b). Training
on noisy samples (noise) is the second best training procedure, while standard adversarial training
(adv) or including minimization of the representation distance between adversarial examples and
unperturbed data in the loss function (adv-d) performs better than standard training (normal).

Comparison of classifiers with and without Lipschitz constant of 1. Models with a classifier of
Lipschitz constant 1 (WN, dark background) and unconstrained models (bright background) result
in similar verifiable accuracy according to label and logit smoothing. However, since representation
smoothing significantly increases the verifiable accuracy (and requires a given Lipschitz constant on
the classifier), combining representation smoothing with weight normalization (and adv-s training)
results in the most robust models on the target domain as well as on the source domain.

Under review as a conference paper at ICLR 2022

Table 4: Smoothing on MNIST/FMNIST (source) — KMNIST (target) using 4-layer classifiers
without (None) and with Lipschitz constant 1 (WN). Columns: data (source/target), constraint
(None/WN), accuracy of the base classifier (4), median prediction accuracy (Ajy), verifiable ac-
curacy (Ay) and radius (Rad.).

MNIST — KMNIST Base Label smooth. Representation smooth. Logit smooth.
Data, Con. Training Apg[%] Ay[%] Rad. Ap[%] Ay [%] Ap[%] Ay[%]
normal 99.8 92.6 0.188 93.6 92.6
noise 99.4 99.4 0.208 99.5 99.4
Source adv 99.5 79.9 0.174 82.2 79.9
None adv-d 99.6 97.5 0.202 97.9 97.5
adv-s 99.8 99.6 0.208 99.7 99.6
normal 99.6 88.3 0.193 89.8 89.2 89.8 88.3
noise 99.7 99.6 0.208 99.7 99.6 99.7 99.6
Source adv 99.9 97.6 0.196 98.3 98.2 98.3 97.6
WN adv-d 99.4 98.5 0.202 99.0 99.0 99.0 98.5
adv-s 100.0 99.9 0.209 99.9 99.9 99.9 99.9
normal 86.8 67.4 0.131 77.6 67.4
noise 88.3 80.4 0.178 88.4 80.4
Target adv 87.6 60.0 0.127 71.7 60.0
None adv-d 92.0 87.5 0.182 90.3 87.5
adv-s 87.2 81.1 0.183 87.5 81.1
normal 88.0 65.5 0.143 80.7 78.3 80.7 65.5
noise 91.2 82.7 0.187 90.8 89.5 90.8 82.7
Target adv 87.4 63.1 0.143 75.8 73.5 75.8 63.1
WN adv-d 92.3 89.6 0.191 91.3 91.1 91.3 89.6
adv-s 88.6 80.8 0.187 88.0 87.3 88.0 80.8
FMNIST — KMNIST Base Label smooth. Representation smooth. Logit smooth.
Data, Con. Training Ap[%] Ay[%] Rad. Ap[%] Ay [%] Ap[%] Ay[%]
normal 93.2 69.0 0.108 77.5 69.0
noise 91.6 89.1 0.176 91.6 89.1
Source adv 93.3 67.1 0.128 82.6 67.1
None adv-d 95.1 88.5 0.146 88.6 88.5
adv-s 91.8 90.1 0.191 92.2 90.1
normal 92.7 62.8 0.092 73.0 70.8 73.0 62.8
noise 92.7 91.2 0.181 93.0 92.2 93.0 91.2
Source adv 932 78.4 0.126 83.9 82.5 83.9 78.4
WN adv-d 94.1 90.2 0.168 90.3 90.2 90.3 90.2
adv-s 91.8 91.0 0.19 91.8 914 91.8 91.0
normal 80.4 1.3 0.015 34.8 1.3
noise 79.4 24.7 0.063 67.8 24.7
Target adv 79.6 24 0.022 44.5 24
None adv-d 78.5 399 0.051 49.5 39.9
adv-s 74.5 234 0.072 64.4 234
normal 77.1 0.1 0.016 31.7 17.2 31.7 0.1
noise 83.6 25.3 0.065 68.0 61.5 68.0 25.3
Target adv 77.4 2.5 0.039 51.2 35.8 51.2 2.5
WN adv-d 86.4 56.6 0.087 66.6 62.9 66.6 56.6
adv-s 80.7 46.0 0.112 78.9 74.4 78.9 46.0

6 CONCLUSION

This work analyzes and improves the robustness of a popular transfer learning framework consisting
of a feature extractor and a classifier which is re-trained on the target domain. Enforcing a given
Lipschitz constant on the classifier in combination with adversarial training of the feature extrac-
tor decreases the number of reachable adversarial representations. Representation smoothing of a
feature extractor, which was trained using smooth adversarial training, in combination with a clas-
sifier that has a Lipschitz constant of 1, results in a transfer learning framework that is provably and
significantly more robust on the source domain as well as on the target domain.

Under review as a conference paper at ICLR 2022

7 REPRODUCIBILITY STATEMENT

Detailed information about the data sets, the transfer learning tasks, models, attacks and randomized
smoothing is provided in the subsections of section A.1.

REFERENCES

Andrew Y. Ng Adam Coates, Honglak Lee. An analysis of single layer networks in unsupervised
feature learning. AISTATS, 2011.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning, 2021.

Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
291-301. PMLR, 09-15 Jun 2019.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274-283. PMLR, 2018.

Dian Chen, Hongxin Hu, Qian Wang, Yinli Li, Cong Wang, Chao Shen, and Qi Li. Cartl: Coopera-
tive adversarially-robust transfer learning, 2021.

Ping-yeh Chiang, Michael J. Curry, Ahmed Abdelkader, Aounon Kumar, John Dickerson, and Tom
Goldstein. Detection as regression: Certified object detection by median smoothing, 2020.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International Conference on Machine
Learning, pp. 854-863. PMLR, 2017.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. Neural Information Processing Systems,
Machine Learning for Creativity and Design Workshop, 2018.

Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via random-
ized smoothing, 2019.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Aleksander
Madry. Adversarial robustness as a prior for learned representations, 2019.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features, 2019.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10. Canadian Institute for Advanced
Research, 2009.

Aounon Kumar and Tom Goldstein. Center smoothing: Provable robustness for functions with
metric-space outputs, 2021.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. National Institute of Standards
and Technology, 2010.

Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse, and Jorn-Henrik Jacobsen.
Preventing gradient attenuation in lipschitz constrained convolutional networks. Advances in
neural information processing systems, 32:15390-15402, 2019.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Read-
ing digits in natural images with unsupervised feature learning. Neural Information Processing
Systems, Deep Learning and Unsupervised Feature Learning Workshop, 2011.

10

Under review as a conference paper at ICLR 2022

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adver-
sarially robust imagenet models transfer better?, 2020a.

Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya Razenshteyn, and Sebastien
Bubeck. Provably robust deep learning via adversarially trained smoothed classifiers, 2020b.

Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David Jacobs, and Tom
Goldstein. Adversarially robust transfer learning, 2020.

Sahil Singla and Soheil Feizi. Skew orthogonal convolutions. arXiv preprint arXiv:2105.11417,
2021.

Sahil Singla, Surbhi Singla, and Soheil Feizi. Householder activations for provable robustness
against adversarial attacks, 2021.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. arXiv preprint arXiv:2002.08347, 2020.

Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley transform.
arXiv preprint arXiv:2104.07167, 2021.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certifica-
tion of perturbation invariance for deep neural networks, 2018.

Francisco Utrera, Evan Kravitz, N. Benjamin Erichson, Rajiv Khanna, and Michael W. Mahoney.
Adversarially-trained deep nets transfer better: Illustration on image classification, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. Zalando SE, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017.

11

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 DETAILS OF THE EXPERIMENTAL SETUP

Data Sets. We use six data sets: The SVHN data set (Netzer et al., 2011) contains images of street
view housing numbers, which are transformed to gray-scale during pre-processing. The MNIST
data set (LeCun & Cortes, 2010) consists of gray-scale images of handwritten digits. While the
CIFARI10 data set (Krizhevsky et al., 2009) contains 3 x 32 x 32 (low-resolution) images, STL10
(Adam Coates, 2011) contains 3 x 96 (high-resolution) images of objects. Both data sets have 9
overlapping classes (airplane, bird, car, cat, deer, dog, horse, ship, truck) and one different class
(frog in CIFAR10, monkey in STL10). The FashionMNIST/FMNIST data set (Xiao et al., 2017)
contains gray-scale images of clothes and the KMNIST (Clanuwat et al., 2018) data set consists of
gray-scale images of Japanese characters. Each training set is split into in training data (90%) and
validation data (10%).

Transfer Learning Tasks Based on the six data sets discussed above we create four transfer learn-
ing tasks of different relatedness and difficulty. Usually a transfer learning task is simpler if the
source domain is more complex or general compared to the target domain than the other way round.
We consider the following transfer tasks (source domain — target domain): SVHN — MNIST
(highly related), CIFAR10 — STL10 (related and difficult because of the transfer from a simple/low-
resolution to a complex/high-resolution domain), MNIST — KMNIST (related) and FMNIST —
KMNIST (distant).

Models. All models are based on the WideResNet-32-10 architecture (Zagoruyko & Komodakis,
2017) and can be decomposed in a feature extractor and a classifier. The feature extractor consists
of 32 convolutional layers and a widening factor of 10. The classifiers consist of one or four fully
connected layers with GroupSort activation functions (Anil et al., 2019). Models are implemented
in Pytorch and optimized using Adam optimizer and a learning rate of 0.0001. Training is done on
GPUs (1 TB SSD) with early stopping by evaluating the validation set loss using a frequency of 2

and a patience of 10 epochs. Weight normalization is implemented such that each row Wj(i) eR”

of the weight matrix W () is split into directions Vj(i) € R” and magnitude gj(-i) € R, ie. Wj(i) =

g(,i)V}(i) /||Vj(i) || During training, the parameters are updated and the magnitudes are projected

back onto the allowed set restricted by the norm thresholds k;, i.e. g](,i) = min(g](,i), k;). Since

Ly(x) C Loo (), this enforces the desired Lipschitz constant w.r.t. L,-norm on the weight matrix.
We use the Lo norm of each row, because an update does not clip the largest value to the Lipschitz
i)

constant k (and might result in a matrix with w! . = k for many entries), but preserves the direction

J»
of an updated w.r.t. the row during training.

Attacks. We use two different attack types: Noise attacks and Project Gradient Descent (PGD)
attacks with attack radii of 0.1. The perturbation is bounded by the Lo-norm and applied to the input
after data normalization. For adversarial training we use 10-step PGD attacks, while robustness
analysis uses 50-step PGD attacks.

Randomized Smoothing. Randomized smoothing techniques draw samples x; ~ N (x, o) from
the close neighborhood of input x, propagate them through the neural network and aggregate the
outputs to obtain a smooth prediction. We use ¢ = 0.1, draw 500 samples for each input and bind
the probability of returning an incorrect answer/prediction by o = 10~%. Since median smoothing
for multi-dimensional problems must be adapted to the number of dimensions, we scale such that
the overall o remains 10~ as described in Kumar & Goldstein (2021). Smoothing experiments are
performed on a balanced, randomly chosen subset of the test set, which consists of 1000 instances.

Adversarial Feature and Input search. Since computing adversarial features z” for a one-layer
classifier is a linear optimization problem, we solve it be using Gurobi. For the input search we use
project gradient descent (with learning rate 0.05, regularization of 0.1 and at most 1000 steps) and
minimize the L;-distance between adversarial features 2z’ and features 2"’ = f(a’’) corresponding to
input z’. The adversarial feature search and the input search are performed on a balanced, randomly
chosen subset of the test set, which consists of 1000 instances.

12

