
Learning dynamics in linear recurrent neural networks

Alexandra M. Proca 1 Clémentine C.J. Dominé 2 Murray Shanahan 1 Pedro A.M. Mediano 1 3

Abstract

Recurrent neural networks (RNNs) are power-
ful models used widely in both machine learn-
ing and neuroscience to learn tasks with tempo-
ral dependencies and to model neural dynamics.
However, despite significant advancements in the
theory of RNNs, there is still limited understand-
ing of their learning process and the impact of the
temporal structure of data. Here, we bridge this
gap by analyzing the learning dynamics of linear
RNNs (LRNNs) analytically, enabled by a novel
framework that accounts for task dynamics. Our
mathematical result reveals four key properties of
LRNNs: (1) Learning of data singular values is
ordered by both scale and temporal precedence,
such that singular values that are larger and oc-
cur later are learned faster. (2) Task dynamics
impact solution stability and extrapolation ability.
(3) The loss function contains an effective reg-
ularization term that incentivizes small weights
and mediates a tradeoff between recurrent and
feedforward computation. (4) Recurrence encour-
ages feature learning, as shown through a novel
derivation of the neural tangent kernel for finite-
width LRNNs. As a final proof-of-concept, we
apply our theoretical framework to explain the
behavior of LRNNs performing sensory integra-
tion tasks. Our work provides a first analytical
treatment of the relationship between the tempo-
ral dependencies in tasks and learning dynamics
in LRNNs, building a foundation for understand-
ing how complex dynamic behavior emerges in
cognitive models.

1Department of Computing, Imperial College London, Lon-
don, United Kingdom 2Gatsby Computational Neuroscience Unit,
University College London, London, United Kingdom 3Division
of Psychology and Language Sciences, University College Lon-
don, London, United Kingdom. Correspondence to: Alexandra M.
Proca <a.proca22@imperial.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Recurrent neural networks (RNNs) are important tools in
both machine learning and neuroscience for learning tasks
with temporal dependencies. Recently, (linear) recurrent
architectures (state space models), have had a resurgence of
popularity in long-range sequence modeling (Gu et al., 2020;
2022; Orvieto et al., 2023; Gu & Dao, 2024). In tandem
with the success of dynamical systems theory in describing
neural activity related to motor control, working memory,
and decision-making (Remington et al., 2018a; Vyas et al.,
2020; Khona & Fiete, 2021), RNNs have also become a
popular choice for cognitive models of neural dynamics
(Barak, 2017), as they not only replicate recurrent dynamics
recorded in animals but are also capable of performing ab-
stractions of the same cognitive tasks used in experiments
(Mante et al., 2013; Engel et al., 2015; Chaisangmongkon
et al., 2017; Wang et al., 2017; Masse et al., 2018; Reming-
ton et al., 2018b; Orhan & Ma, 2018; Masse et al., 2020;
Beirán et al., 2023). More generally, RNNs present an in-
teresting model of study due to the complex computational
capabilities given by their hidden layer that evolves with
time and which is a universal approximator of any open
dynamical system (Doya, 1993; Schäfer & Zimmermann,
2007).

Accompanying the popularity of RNNs, there have been
significant efforts dedicated to their theoretical understand-
ing, both from deep learning theoreticians (Cohen-Karlik
et al., 2023; Orvieto et al., 2024; Zucchet & Orvieto, 2024)
and neuroscientists relating these findings to observations
about the brain (Sussillo & Barak, 2013; Mastrogiuseppe &
Ostojic, 2018; Yang et al., 2019; Schuessler et al., 2020a;b;
Turner et al., 2021; Dubreuil et al., 2022; Farrell et al.,
2022; Turner & Barak, 2023; Driscoll et al., 2024; Liu et al.,
2024). However, most theoretical studies of RNNs are done
at the end of training — analyzing properties of the so-
lutions they find, but ignoring the learning process itself
(Saxe et al., 2020). Of the work that does study learning,
the focus is often related to practical considerations about
training, such as learning long-range dependencies. Overall,
despite the widespread use and known complex computa-
tional abilities of RNNs, it is still unknown how their under-
lying functional structures emerge as a result of training on
temporally-structured tasks.

1

Learning dynamics in linear recurrent neural networks

One related line of previous work has focused on using deep
linear networks to analyze learning dynamics (Saxe et al.,
2014; 2018; Braun et al., 2022; Dominé et al., 2025). Al-
though unable to solve nonlinear problems (note however
that there has been progress to overcome this limitation
(Saxe et al., 2022; Sandbrink et al., 2024)), these networks
exhibit complex nonlinear learning dynamics and are analyt-
ically tractable, providing a useful framework for theoretical
investigation. Applied to cognitive neuroscience, the study
of learning dynamics has been used to propose a theory of
semantic development (Saxe et al., 2018), cognitive flexi-
bility (Sandbrink et al., 2024), and localization in receptive
fields (Lufkin et al., 2024), among other work. Despite its
successes, the analytical treatment of learning dynamics in
linear networks has primarily remained in the domain of
feedforward networks. In order to more broadly characterize
learning, however, theory needs to account for the impact
of dynamic task settings and the rich structure endowed by
recurrent networks, especially since it is such a critical com-
ponent of neural computation. Of the few prior studies of
learning dynamics in linear RNNs, Schuessler et al. (2020b)
showed that networks make low-rank changes to their con-
nectivity during learning and Smékal et al. (2024) showed
how overparameterization accelerates convergence time by
studying the frequency domain. However, the influence of
temporally structured data on learning has not been studied
analytically to our knowledge.

In this work, we study the learning dynamics of linear RNNs
(LRNN) to better understand the influence of temporal data
on learning in recurrent cognitive systems, unifying the
areas of RNN theory and learning dynamics. Our theoreti-
cal results contribute to explanations of many phenomena
spanning both topics, including low-rank connectivity (Mas-
trogiuseppe & Ostojic, 2018), rich and lazy learning (Farrell
et al., 2023), extrapolation capabilities (Cohen-Karlik et al.,
2023), and network stability (Sompolinsky et al., 1988).
Taken together, this represents a substantial step towards
the theoretical understanding of learning in recurrent deep
learning models, building a foundation for new theories and
hypotheses of learning in neural networks and the brain.

Our contributions are as follows:

• We provide, for the first time, a closed-form analytical
expression for the energy function of LRNNs decou-
pled along singular/eigen-value dimensions. We use
this result, together with a novel framework to describe
task dynamics, to accurately predict solutions found by
LRNNs.

• We identify how both the magnitude and temporal or-
dering of singular values affect learning speed.

• We describe how task dynamics impact solution stabil-
ity and extrapolation ability, even in cases where the

network achieves 0 loss.

• We identify an effective regularization term in the en-
ergy function that incentivizes small weights, and a
phase transition in the connectivity modes that leads to
low-rank solutions.

• We derive the neural tangent kernel (Jacot et al., 2018)
for finite-width LRNNs and show that recurrence facil-
itates feature learning.

• We demonstrate the generalizability of our results by
applying our theoretical framework to describe the be-
havior of LRNNs trained on sensory integration tasks,
relaxing our prior assumptions.

2. Mathematical setup
2.1. Model

We study a LRNN (Figure 1) parameterized by matrices
Wx ∈ RNh×Nx ,Wh ∈ RNh×Nh ,Wy ∈ RNy×Nh with a
hidden state ht ∈ RNh that receives an input xt ∈ RNx

at each timestep t and updates its hidden state. For sim-
plicity, in the main text we study the single-output case,
where the network only produces an output ŷT ∈ RNy at
the last timestep T . In Appendix M, we generalize our ap-
proach to networks trained to produce outputs ŷt at every
timestep t (the autoregressive T-output case). The network
is characterized by the equations

ht+1 = Whht +Wxxt , (1)
ŷT = WyhT+1 . (2)

We initialize the hidden layer h1 as a vector of zeros, yield-
ing

ht+1 =

t∑
i=1

W t−i
h Wxxi . (3)

We analyze learning in the LRNN when trained using back-
propagation through time on the squared error over P tra-
jectories {xp,1,xp,2, . . . ,xp,T ,yp,T }Pp=1

L =
1

2

P∑
p=1

∥yp,T −Wy(

T∑
i=1

WT−i
h Wxxp,i)∥2 (4)

2.2. Temporal singular values

With the model and loss function fixed, our next step is
to specify a task for the model to learn. In this linear set-
ting, the task is fully specified by the sequence of matrices
ΣY Xt =

∑P
p=1 yp,Tx

⊤
p,t, the input-output correlation ma-

trix between the input xp,t at timestep t and the final output

2

Learning dynamics in linear recurrent neural networks

......

Figure 1. Linear RNN model captures task dynamics through
temporally-dependent singular values. The data correlation ma-
trices ΣY Xt have constant left and right singular vectors, varying
only in their singular values St across time.

target yp,T . Extending the approach by Saxe et al. (2014;
2018), we can represent these matrices through either their
singular value decomposition (SVD; case 1 in the assump-
tions below), or their eigendecomposition (case 2), which
enables us to account for task dynamics. In the main text,
we follow the precedence from prior work and base our
analysis around a derivation using SVD, which, although
more restrictive with task dynamics, simplifies the setting
and allows for non-square networks. Then, in Appendices N
and O, we use an eigendecomposition to derive a similar
but more general form (accounting for complex eigenvalues
thus allowing for rotational dynamics) and show that our
framework and results extend naturally to this case. To sim-
plify our derivations, we make the following assumptions:

Assumption 1 (whitened input): Inputs are uncorrelated
and whitened across all timesteps and dimensions, such
that ΣXtXt = I; ΣXtXt′ = 0, t ̸= t′.

Assumption 2 (constant singular vectors or eigenvectors):
All input-output correlation matrices have either (1)
constant left and right singular matrices Uy, Vx and
only vary in their singular values St over a trajectory,
such that ΣY Xt = UyStV

⊤
x ,∀t; or (2) constant

eigenvectors P and only vary in their eigenvalues D
over a trajectory, such that ΣY Xt = PDtP

†.

Assumption 3 (aligned model): The model is aligned to
either (1) the data singular vectors at initialization such
that U⊤

y Wy(0)Ry, R
⊤
y WhRx, R

⊤
x Wx(0)Vx yield di-

agonal matrices W y(0),Wh(0),W x(0) for some or-
thogonal matrices Ry, Rx, or (2) the data eigenvectors
P such that P †Wy(0)P ,P †Wh(0)P ,P †Wx(0)P yield
diagonal matrices W y(0),Wh(0),W x(0).

Although seemingly restrictive, we argue these assump-
tions still capture meaningful learning scenarios. For ex-
ample: (1) data can be whitened using the innovations
form of a Kalman filter (Durbin & Koopman, 2012); (2)

singular/eigen-vectors are constant if data is generated by
a diagonalizable LRNN teacher (Appendices B and N),
and in fact, because we don’t restrict the dynamics of the
singular/eigen-values, our form captures more general set-
tings than the standard teacher-student setup (which con-
strains task dynamics to the form δλT−t); (3) prior work
has shown that model alignment occurs early in training for
networks initialized with small random weights (Atanasov
et al., 2022) and there are theoretical and practical justifi-
cations for diagonalizable state spaces (Hazan et al., 2018;
Gupta & Berant, 2022).

3. Results
3.1. LRNN energy function

With the aforementioned assumptions, we can diagonalize
the network, eliminating cross-terms. Let aα, bα, cα be the
αth diagonal entry of W x,Wh,W y, respectively, and sα,t
be the αth singular value (SV) of St. Assuming a small
learning rate 1/τ (i.e., the gradient flow regime), we can
write the gradients of the network parameters as a set of
differential equations in terms of these variables, or connec-
tivity modes, the dynamics of which decouple across SV
dimensions α (Appendix B). We refer to aα as the input, bα
the recurrent, and cα the output connectivity mode. Their
dynamics are given by

τ
d

dtθ
aα =

T∑
i=1

cαb
T−i
α (sα,i − cαb

T−i
α aα) (5)

τ
d

dtθ
bα =

T−1∑
i=1

(T − i)cαb
T−i−1
α aα(sα,i − cαb

T−i
α aα)

(6)

τ
d

dtθ
cα =

T∑
i=1

bT−i
α aα(sα,i − cαb

T−i
α aα) , (7)

where tθ refers to timesteps of gradient-based learning as
opposed to the trajectory timesteps t. Our first result shows
that these dynamics arise from gradient descent on an energy
function.

Lemma 3.1. Given Assumptions 1-3, the energy function
of the LRNN is given by

E(aα, bα, cα) =
1

2τ

T∑
i=1

(sα,i − cαb
T−i
α aα)

2 . (8)

To ease notation, we omit specifying α when referring to
connectivity modes in the remainder of the paper, although
note that all terms (st, a, b, c) still refer to a particular SV
dimension α. We also generally refer to the input-output
modes (ac) together and treat them as a single term since
there isn’t any meaningful distinction between them.

3

Learning dynamics in linear recurrent neural networks

0 10000 20000 30000 40000
training steps (t)

0

1

2

in
pu

t-o
ut

pu
t m

od
e

(a
c)

learning input-output, fixed recurrent

2
1
0.5
theory

0 10000 20000 30000 40000
training steps (t)

0.0

0.7

1.0

1.2

re
cu

rre
nt

 m
od

e
(b

)

learning recurrent, fixed input-output

f(, t)
1
0.7T t

0.7t

theory

Figure 2. Learning dynamics of input-output and recurrent
connectivity modes in a linear RNN. Data singular values st can
be decomposed into a scaling term δ and temporal term f(λ, t).
(Left) The input-output modes learn the scaling component, while
(right) recurrent modes learn the dynamic component. The col-
ored lines are simulations and dashed lines are the corresponding
theoretical predictions.

To provide some intuition about the reduced form, the mag-
nitude of the data SVs (sα,t) correspond to the strength of
correlation between the input (xt) at trajectory timestep t
and the output target (yT) in different SV dimensions α. In
this work, we’re interested in understanding how recurrence
and the task dynamics (given by s1:T) impacts the LRNN’s
learning dynamics.

3.2. Solutions to LRNN learning dynamics

While perhaps trivial, we can think of the LRNN as perform-
ing two functions: the input-output mode (ac) performs a
constant scaling and the recurrent mode (b) learns a time-
dependent function. Thus, by decomposing the data SVs
(s1:T) into a constant and temporal component, we might
better understand the solutions LRNNs converge to. We de-
compose each data SV as st = δf(λ, t), where δ is constant
across all data SVs, and f(λ, t) is some function parameter-
ized by λ that is dependent on trajectory timestep t.

We derive a full solution for the learning dynamics of the
input-output modes when recurrent modes are frozen (Ap-
pendix C), as well as a local approximation to the recurrent
modes when input-output modes are frozen (Appendix D).
Intuitively, the network should use recurrent modes to learn
the dynamic component of the data since it varies in its con-
tribution to the output through time, whereas input-output
modes do not vary with time and thus can only contribute
some form of scaling. By studying the learning dynamics of
the recurrent and input-output modes separately, we confirm
that they indeed learn these different components (Figure 2).

The distinction between dynamic and scaling components of
data SVs also highlights an important difference in learning
dynamics between (deep) feedforward and recurrent linear
networks. Feedforward linear networks learn the largest SVs
first. In recurrent networks, however, the loss is computed

over T SVs in each dimension (as opposed to one) and the
network must optimize for SVs across time. A consequence
is that SVs at different timesteps are weighted differently in
the gradient. SV trajectories that are larger and have SVs
occurring later in the trajectory are learned faster (assuming
recurrent connectivity modes are initialized b < 1). We can
see this effect by looking at the gradients of the connectivity
modes (Equations (5) to (7)): gradients from early trajectory
timesteps are weighted by the recurrent mode b exponen-
tially with trajectory length. Since we initialize connectivity
modes to be less than 1, this has the effect of downscaling
the gradient contribution from earlier trajectory timesteps
compared to later timesteps. Thus, we see a more complex
portrait of the effect of both SV magnitude and SV dynam-
ics (time) playing into the ordering of learning in recurrent
networks. This effect can be seen in Figure 2 (right)– the
blue curve converges to a smaller solution than the orange
curve but is initially learned faster, which differs from the
behavior of feedforward networks (e.g., the left plot), and is
driven by the fact that the singular value at the last timestep
is larger for the dimension of the blue mode than the orange
mode (from δ). We study this further in Appendix E.

3.3. Task dynamics determine solution stability and
extrapolation ability

RNNs suffer from problems related to stability during train-
ing and inference. By stability we refer to the state of the
RNN parameters which may lead to exploding gradients
or diverging hidden layer activity. Because of the expo-
nential effect of the recurrent layer, (nonlinear) RNNs with
eigenvalues larger than 1 exhibit chaotic behavior (Som-
polinsky et al., 1988). By looking at the energy function
(Equation (8)), we can further see the well-known effect of
vanishing (exploding) gradients, given by |b| < 1 (|b| > 1)
as T → ∞ (Bengio et al., 1994; Hochreiter et al., 2001;
Pascanu et al., 2012), which makes training on tasks with
long-range dependencies challenging and to which there
have been numerous methods introduced to alleviate these
difficulties (Hochreiter & Schmidhuber, 1997; Le et al.,
2015; Orvieto et al., 2023; Zucchet et al., 2023). Another
open problem in RNNs is their ability to extrapolate (or in-
terpolate) to sequence lengths that differ from those trained
on, which is not well understood (Cohen-Karlik et al., 2023;
Beirán et al., 2023). Here, we study how network stabil-
ity and extrapolation ability are impacted by an additional
factor: the underlying task dynamics a RNN is trained on.

To do this, we study task dynamics that are perfectly learn-
able (provably the only task dynamics with 0-loss solutions;
Appendix F), but differ in their hidden layer stability or abil-
ity to extrapolate. Recall that we can decompose data SVs
as st = δf(λ, t). We distinguish between three cases with
known analytical 0-loss solutions (Appendix F.3), which
offer natural settings to study how perfectly-learnable data

4

Learning dynamics in linear recurrent neural networks

extrapolate to other trajectory lengths T

dynamics with early-importance are unstable

Figure 3. Task dynamics determine solution stability and extrapolation ability. For RNNs trained on (left) constant dynamics
(f(λ, t) = 1), solution stability is dependent on the scaling term δ, where δ → 0 is stable and δ ≫ 0 is less stable. (Middle) Inverse-
exponential (f(λ, t) = λT−t) and (right) exponential (f(λ, t) = λt) dynamics produce unstable solutions when λ > 1 and λ < 1,
respectively, which correspond to early-importance dynamics (st > st+1). Further, the solution to the input-output modes (ac = δλT)
for exponential dynamics depends on trajectory length, so solutions learned for one length will not extrapolate to other trajectory lengths.

impacts solution stability and extrapolation ability. We con-
sider cases where the data SVs are constant (f(λ, t) = 1),
change inverse-exponentially (f(λ, t) = λT−t), or change
exponentially (f(λ, t) = λt). By varying δ, λ, we can pa-
rameterize the task dynamics differently and elicit particular
network behavior. We note that technically all of these
dynamics can be reparameterized as inverse-exponential dy-
namics when the trajectory length is fixed (Appendix F.1),
but for simplicity, we will keep these separate.

For constant task dynamics, the global solution exists at
b = 1, ac = δ; this can be understood as ‘equally weight-
ing’ the input at each timestep, while the input-output
connectivity modes learn an appropriate scaling δ. For
inverse-exponential task dynamics, the minimum is found
at b = λ, ac = δ, as the dynamics of the singular values
(st = δf(λ, t), f(λ, t) = λT−t) correspond exactly to the
dynamics of the LRNN (cbT−ta). Finally, for exponential
task dynamics, the minimum exists at b = 1/λ, ac = δλT .

By studying these solutions, we can first observe that
inverse-exponential and exponential task dynamics yield un-
stable solutions (where the recurrent mode b > 1) for λ > 1
and λ < 1, respectively (green dashed lines in Figure 3).
In both cases, the data SVs decrease across the trajectory
(st > st+1); we hence refer to this as early-importance.
Due to the instability of exploding gradients as the recurrent
mode b increases over 1, early-importance dynamics are
more challenging, if not impossible, to learn as trajectory
length increases (T → ∞).

Constant dynamics are essentially an intermediary between
exponential and inverse-exponential dynamics (i.e., because
f(λ = 1, t) = 1t = 1T−t = 1). Constant dynamics are
common, as they correspond to basic integration of input.
They also present a way to study the influence of the scaling
term (δ) on solution stability. Constant dynamics have stable
solutions when the scaling term is small (δ → 0) because
it keeps SVs and input-output modes small as the recurrent

mode (b) approaches 1; however, when the scaling term
is large (δ >> 0), optimization is more challenging as
solutions approach unstable solutions near b = 1 (left in
Figure 3). This observation about δ also generalizes to other
dynamics when the solution for the recurrent mode is not
close to 0 (b ≫ 0).

Although each case of task dynamics we consider here has
a 0-loss solution, not all of these solutions extrapolate per-
fectly to other trajectory lengths T . In particular, the global
solution for exponential task dynamics is dependent on the
trajectory length T (ac = δλT). As such, this solution will
not perfectly extrapolate to trajectory lengths that differ to
the one trained on, and in fact the error will grow as the
difference in trajectory length increases (see Appendix F.1).

In conclusion, we can see that even for data that is perfectly
learnable, properties of the task dynamics crucially impact
the stability of solutions and the ability to extrapolate to
other trajectory lengths. In particular, we find that (1) data
with correlations that decrease over trajectory time produce
unstable solutions, (2) task dynamics with a large scaling
term (δ) are less stable, and (3) task dynamics with solu-
tions that depend on trajectory length (such as exponential
dynamics) do not extrapolate with 0-loss to other trajectory
lengths. We show in Section 3.6 and Appendix L that these
findings hold for RNNs without our theoretical assumptions.

3.4. Connectivity modes exhibit phase transitions
between recurrent and feedforward computations

In the previous section we studied task dynamics with per-
fect solutions. However, most real-world tasks will, natu-
rally, not exhibit inverse-exponential dynamics and may not
have perfect 0-loss solutions (although the loss may be low
in practice). A separate observation is that RNNs initialized
with small random weights seem to learn low-rank solutions
along effective ‘task-dimensions’ (Schuessler et al., 2020b;

5

Learning dynamics in linear recurrent neural networks

0 1 1.2
recurrent computation ()

0.0

0.2

0.4

0.6

0.8

1.0
re

cu
rre

nt
 m

od
e

(b
) constant task dynamics

0-loss solution

0 1
recurrent computation ()

0.0

0.5

1.0

1.5

2.0

re
cu

rre
nt

 m
od

e
(b

) exponential task dynamics

0 1 2.4
recurrent computation ()

0

1

2

3

4

re
cu

rre
nt

 m
od

e
(b

) Dirac delta task dynamics

0 1 1.2
recurrent computation ()

0.00

0.25

0.50

0.75

1.00

1.25

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0 1
recurrent computation ()

0.00

0.25

0.50

0.75

1.00

1.25

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0 1 2.4
recurrent computation ()

0.00

0.25

0.50

0.75

1.00

1.25

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fe
ed

fo
rw

ar
d

co
m

pu
ta

tio
n

(
)

Figure 4. Task dynamics modulate phase transitions of network connectivity modes. We plot the learned solution of the connectivity
modes for (left) constant, (middle) exponential, and (right) Dirac delta task dynamics. When the recurrent computation of the task dynamics
(x-axis) is small, (top) recurrent modes (b) remain near 0 and (bottom) input-output modes (ac) learn the feedforward computation (κ;
indicated by color). As the recurrent computation increases, the network transitions to instead learn the recurrent computation (dotted line
is the 0-loss solution), manifesting as a phase transition in both the recurrent and input-output connectivity modes.

Liu et al., 2024). This motivates us to ask a question that
is two-fold: (1) how task dynamics impact what a LRNN
learns when it cannot perfectly fit (all of) the data, and (2)
when pruning connectivity modes (and hence low-rank so-
lutions) may be a useful strategy. To gain intuition, we can
rewrite the energy function as a sum of two terms.
Lemma 3.2. The energy function of a LRNN can be decom-
posed into a data-driven term and an effective regularization
term given by

E =
1

2τ

(
T∑

i=1

s2i − 2sicb
T−ia

)
︸ ︷︷ ︸

data-driven term

+
1

2τ
c2a2

1− b2T

1− b2︸ ︷︷ ︸
effective regularization term

.

(9)

where, as T → ∞, the second term goes to infinity for
cba ≫ 0.

For task dynamics that are learnable with low loss, both
terms cancel out. However, when the LRNN cannot fit
the data, the second term acts as an effective regularizer
that incentivizes connectivity modes to remain close to 0
(Appendix G). This suggests that LRNNs might have an
implicit bias towards effectively low-rank solutions, both
when tasks span only a few dimensions (i.e., sα,t ≈ 0,∀t
for most α) and when tasks are not perfectly learnable.

To further investigate how data impacts what a LRNN learns,
we modify the task dynamics we studied earlier (constant,
exponential, inverse-exponential) to have a SV at the last
timestep, sT , that does not follow the task dynamics as the
rest of the trajectory. More specifically,

st =

{
δf(λ, t) if t < T

κ if t = T
(10)

where κ ̸= δf(λ, T). Here, there is no way for the network
to perfectly fit the task dynamics (which would only be the
case if κ = δf(λ, T)). We can think of the two cases as a
recurrent contribution to the task dynamics (t < T) and a
feedforward contribution (t = T).

Using this setup, we experiment with varying each of the
different parameters to show that each one can affect the
underlying task dynamics and consequently influence the
network’s behavior. For example, when studying constant
task dynamics (where λ = 1 by default), we change the
value of the scaling term (δ). Instead, when studying expo-
nential task dynamics, we change the dynamic term (λ).

Finally, in all settings, we vary the feedforward computa-
tion (κ) independently of the other (recurrent) parameters, to
study how the network deals with the tradeoff between learn-
ing solutions for t < T and t = T , which cannot be learned
simultaneously. In particular, this construction forces the
network to either approximate the recurrent dynamics (con-
stant: ac → δ, b → λ; exponential: ac → δλT , b → 1/λ)
or the feedforward computation (ac → κ, b → 0), each of
which will incur a non-zero error from its counterpart.

We run simulations varying across these different task dy-
namics and plot the final solutions the connectivity modes
converge to (Figure 4). We find that the aforementioned
tradeoff between recurrent and feedforward computation
manifests as a rapid phase transition of connectivity mode
values across different task dynamics and becomes sharper
as trajectory length T increases. We show that this phase
transition can be induced by varying either the scaling term
(δ; left in Figure 4) or the dynamic term (λ; middle in
Figure 4). When the error term is dominated by the feed-
forward computation (κ is large, δf(λ, t) is small), the net-
work effectively prunes the recurrent mode (b → 0) rather

6

Learning dynamics in linear recurrent neural networks

0.0
1

0.0
6

0.1
2

0.1
7

0.2
3

0.2
8

0.3
4

0.3
9

0.4
5 0.5

initialization scale

1

2

3

4

5

6

7

8

tra
je

ct
or

y
le

ng
th

 (T
)

aligned weights

0.0
1

0.0
6

0.1
2

0.1
7

0.2
3

0.2
8

0.3
4

0.3
9

0.4
5 0.5

initialization scale

1

2

3

4

5

6

7

8

tra
je

ct
or

y
le

ng
th

 (T
)

unaligned weights

0.0

0.2

0.4

0.6

0.8

ke
rn

el
 d

ist
an

ce

Figure 5. Recurrence encourages feature learning. Phase plots
illustrating the kernel distance of the NTK from initialization as
a function of trajectory length and initialization scale for LRNN
initialized with weights that are (left) aligned and (right) unaligned.

than approximating the recurrent computation (s1:T−1) and
the input-output mode learns the feedforward computation
(ac ≈ κ). As δf(λ, t) increases and the recurrent computa-
tion becomes more important (has a greater contribution to
the loss), the network rapidly transitions to a regime where
it approximates the task dynamics and approaches the 0-
loss solution for the case where κ = δf(λ, T), following
the dynamic trajectory to the last timestep (dashed line in
Figure 4) and ignoring the feedforward computation.

To further illustrate the tradeoff between feedforward and
recurrent computation, we simulate networks trained on task
dynamics produced by two Dirac delta functions, which
have no 0-loss solution:

st =

β if t = 1

κ if t = T

0 otherwise
(11)

As before, we vary the recurrent and feedforward compu-
tations separately by independently changing β and κ. As
shown in Figure 4 (right), we again see a sharp transition
as the recurrent computation (β) increases, where the re-
current mode becomes non-zero, while simultaneously, the
input-output mode decreases in magnitude. In Appendix H,
we show that the phase transition depends only on the ra-
tio of recurrent to feedforward computation (β/κ), such
that the recurrent computation is pruned when this ratio is
small. Using Landau theory, we show analytically that this
corresponds to a first-order phrase transition for T > 3.

Taken altogether, these results suggest an implicit bias to-
wards small weights and low-rank connectivity in RNNs,
mediated by an effective regularization term. They fur-
ther illustrate a tradeoff between feedforward and recurrent
computations, and show cases where the network prunes
connectivity modes to deal with task dynamics that are not
perfectly learnable, leading to low-rank connectivity. If the
recurrent part of the computation is small, and/or there is a
strong correlation with the input at the final timestep and the
output, the network will prune that dimension, leading to a
low-rank RNN. While this behavior might seem an artifact

of the setting, we emphasize that the cases we study here
are likely not the only task dynamics with representational
tradeoffs when there are T singular values to fit to in a single
dimension. It’s unclear how RNNs might prioritize learning
certain computations over others in various scenarios. These
results, together with those on learning speed (Section 3.2),
suggest a recency bias, although the cumulative effect of the
recurrent computation can outweigh this.

3.5. Recurrence facilitates rich learning

Prior work has identified two distinct learning regimes in
neural networks: feature learning (rich learning), where
networks learn structured task-relevant representations, and
non-feature learning (lazy learning), where networks per-
form high-dimensional projections of the input (Heij et al.,
2007; Yang, 2020; Farrell et al., 2023); rich learning typ-
ically occurs in networks initialized with small random
weights and lazy in networks with large weights. Significant
progress has been made in the theoretical understanding
of these regimes, particularly in feedforward architectures
(Arora et al., 2019; Azulay et al., 2021; Braun et al., 2022;
Saxe et al., 2022; Kunin et al., 2024; Dominé et al., 2025).
However, research into how non-feedforward architectures
affect these learning regimes remain limited. Notably, Liu
et al. (2024) examined the role of weight connectivity in
shaping learning regimes in RNNs and Schuessler et al.
(2024) showed that RNNs have different learning regimes
characterized by either aligned or oblique recurrent dynam-
ics. Building on this line of inquiry, we explore how re-
currence impacts feature learning dynamics. Specifically,
we investigate whether recurrent architectures impose addi-
tional constraints on the learning problem, thereby biasing
the network towards the rich learning regime.

The rich and lazy learning regimes are typically evaluated
using the neural tangent kernel (NTK) (Jacot et al., 2018),
which is constant during lazy learning and non-constant
during rich learning. We derive the NTK for finite-width
LRNNs (Appendix I), which we then use to study what
learning regimes emerge in LRNNs with different initial-
izations and trajectory lengths. Importantly, our derivation
does not place any assumptions on the alignment of LRNN
weights as in the prior sections.

To quantify feature learning, we measure the kernel distance
between the NTK at initialization and the end of training
for LRNNs trained on constant task dynamics as a function
of trajectory length and weight initialization scale in both
the aligned and unaligned case (Figure 5). As expected, we
see that the kernel moves further in networks with smaller
initializations relative to the target (= 1), but surprisingly,
the NTK still moves substantially even across larger initial-
izations (Appendix J). We also find that the kernel distance
increases as the network transitions from a feedforward net-

7

Learning dynamics in linear recurrent neural networks

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0

si
ng

ul
ar

 v
al

ue
s

yT=mean(x1 : T)

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

1.2

si
ng

ul
ar

 v
al

ue
s

yT=sum(x1 : T)

recurrent
input-output
global solution

0 500 1000 1500 2000 2500

training steps (tθ)

0

20

40

60

lo
ss

 (
)

0 100 200 300 400 500

training steps (tθ)

0

200

400

600

800

1000

1200

lo
ss

 (
)

T=4
extrapolation to T=50
extrapolation to T=75
extrapolation to T=100

Figure 6. Theory predicts learned solutions and extrapolation
ability in sensory-integration task. We train LRNNs on either
producing an output that is the (left) mean of the input in each
dimension, or the (right) sum. (Top) The LRNN singular values
converge to our theoretical predictions for constant task dynam-
ics. (Bottom) We accurately predict extrapolation ability for sum-
integration, and lack thereof for mean-integration.

work (i.e., T = 1) to a recurrent network, indicating greater
feature learning. In Appendix J, we further study the effects
of rotational tasks, larger initializations and widths, and
independently-initialized modes.

3.6. Sensory integration task

Although in this work we study a simplified setting that
cannot fully capture all of the rich neural dynamics exhibited
in animals, LRNNs can still learn and perform some basic
computations studied in neuroscience, such as temporal
integration of input and rotational dynamics (Khona & Fiete,
2021). Here, as a proof of concept, we study a sensory
integration task where we remove our prior assumptions
about whitened data and aligned weights, and show that the
insights developed in our theoretical model generalize to
predict behavior in this setting.

We consider two versions of a sensory integration task where
the network is given noisy input in several dimensions and
tasked with producing either the mean input activity in each
dimension, or the sum of the input in each dimension. We
train LRNNs with small random weights, making no other
architectural assumptions. In such a task, the output is
equally correlated across inputs at all trajectory timesteps,
thus exhibiting constant dynamics. Our theory predicts that
networks trained on tasks with constant dynamics produce
recurrent modes equal to one, and that the input-output
modes learn to scale these dynamics. In the case where the
output is a sum of inputs, no additional scaling is necessary
so input-output modes should become one, while in the case
where the output is the mean, the input-output modes should
become 1/T to appropriately scale.

Our theory also predicts that task dynamics that produce
solutions dependent on trajectory length will be unable to
extrapolate to other trajectory lengths. Thus, since input-
output modes should learn 1/T for the mean-integration
task, we do not expect it to extrapolate to other trajectory
lengths, while we would expect the sum-integration task to
extrapolate perfectly.

By simulating networks on the sensory integration tasks
and plotting the network SVs, we see that our theory in-
deed predicts the solutions found by networks for both
mean-integration and sum-integration (top row in Figure 6).
As expected, we also find that the networks trained on
sum-integration tasks are able to extrapolate to other tra-
jectory lengths perfectly, while networks trained on mean-
integration accumulate error as a function of the difference
in trajectory length from that trained on (bottom row in Fig-
ure 6). In Appendix L, we further extend this setting to show
that our predictions about stability (early-importance versus
late-importance dynamics) are validated in networks with-
out our assumptions. In summary, these results illustrate the
application of our theoretical framework for understanding
the behavior and capabilities of LRNNs more generally.

4. Discussion & Related Work
Summary of results. In this work, we extend the grow-
ing literature on learning dynamics to a new architecture,
linear RNNs. We derive an analytical solution to the energy
function and learning dynamics of LRNNs under certain
conditions, using a novel approach that accounts for task
dynamics. Unlike feedforward networks, LRNNs learn
data singular values ordered by both their scale and tempo-
ral precedence, with larger and later singular values being
learned first. We identify how task dynamics impact solu-
tion stability and extrapolation ability, an often understudied
aspect of RNN dynamics. We further reveal a tradeoff be-
tween recurrent and feedforward computation that leads to
low-rank solutions, mediated by an effective regularization
term in the energy function. We extend existing work on
rich and lazy learning in RNNs beyond the effect of initial
connectivity by deriving the NTK for finite-width LRNNs
and showing that recurrence encourages feature learning.
Finally, we demonstrate an application of our results in a sen-
sory integration task where we relax our prior assumptions
and find that our theory explains the behavior of LRNNs.

Learning dynamics in linear networks. Differing from
prior work on learning dynamics in linear networks (Saxe
et al., 2014; 2018; 2022; Braun et al., 2022; Sandbrink et al.,
2024; Dominé et al., 2025), we study a recurrent network,
allowing us to analyze how other architectures constrain
optimization in ways that differ from feedforward ones. No-
tably, Schuessler et al. (2020b) previously studied learning

8

Learning dynamics in linear recurrent neural networks

dynamics in LRNNs to study how networks make low-rank
changes to their connectivity, but used a task with constant
input in the limit of infinite trajectory length, and Smékal
et al. (2024) studied learning in the frequency domain but
focused on the effects of overparameterization on conver-
gence time. Instead, our work accounts for the effect of task
dynamics, which are critically important for modeling and
understanding dynamic cognitive behavior.

Stability and extrapolation. The problem of stability in
training RNNs is a well-studied problem (Bengio et al.,
1994; Hochreiter et al., 2001; Pascanu et al., 2012; Zuc-
chet & Orvieto, 2024) with numerous proposed solutions
(Hochreiter & Schmidhuber, 1997; Le et al., 2015; Orvieto
et al., 2023; Zucchet et al., 2023). Here, we highlight an
additional, understudied factor — the impact of task dy-
namics. We show how certain task dynamics (those with
early-importance) can lead to unstable training regimes as a
result of the solutions they drive the network to. This sug-
gests that practical approaches to such problems should take
task dynamics into account when designing new solutions.
Although less theoretically understood (Emami et al., 2021;
Cohen-Karlik et al., 2022; Beirán et al., 2023), our frame-
work sheds light on how task dynamics impact LRNN’s
extrapolation to sequence lengths different to those in the
training set and how this is driven by a mismatch between
architecture and the latent structure of the data.

Low-rank connectivity. Networks with low-rank con-
nectivity have been used as more interpretable models
from which to study dynamics related to cognition (Mas-
trogiuseppe & Ostojic, 2018; Schuessler et al., 2020a;b;
Dubreuil et al., 2022), motivated by the fact that neural
population activity is often low-dimensional, and it’s been
shown that RNNs learn low-rank solutions along task di-
mensions (Schuessler et al., 2020b). Complementing this
work, we identify an effective regularization term in the
energy function that incentivizes small-weight solutions and
demonstrate specific cases of task dynamics where RNNs
prune connectivity modes resulting in low-rank connectivity.

Rich and lazy learning. Neural networks can lie in two
different learning regimes (so-called rich or lazy) depend-
ing on their weight initialization and width, and there is
increasing evidence that these regimes are related to the
representational geometry of different brain regions (Rigotti
et al., 2013; Bernardi et al., 2020; Flesch et al., 2022; Farrell
et al., 2023; Payeur et al., 2023). Most theoretical studies
of rich and lazy learning have been done in feedforward
networks, with the exception of Liu et al. (2024), which
showed that connectivity rank impacts features learning,
and Schuessler et al. (2024), which showed that the scale of
the readout acts as a control parameter between aligned and
oblique dynamics in RNNs. Here we reveal an additional

factor impacting feature learning: the effect of recurrence.
Although lazy learning is still possible in recurrent networks
(e.g., with larger weight initializations or widths), we find
that recurrence induces substantial NTK movement.

Limitations and future directions. In this work, we per-
form our theoretical analysis on LRNNs with data-aligned
weights, trained on tasks with input-output correlations
that have constant singular/eigen-vectors. While our form
based on SVD severely restricts the expressivity of the net-
work, our derivation based on an eigendecomposition (Ap-
pendix N) relieves many of these limitations, whereby our
framework and results naturally extend to this case. Inter-
estingly, other work has shown that there are some practical
justifications for using diagonal state spaces (Gupta & Be-
rant, 2022; Orvieto et al., 2023), and it’s also a common
choice in theoretical work (Hazan et al., 2018; Zucchet &
Orvieto, 2024).

In this paper, we make several choices when constructing the
setting we study, including our focus on the single-output
case (rather than an autoregressive one), our initialization of
the hidden layer at 0, and our use of small networks. While
we do extend our main derivations to the autoregressive
(T -output) case, fully characterizing the behavior of RNNs
will require charting these different settings.

Finally, although linear networks are more tractable, many
computations of interest can only be implemented in RNNs
with nonlinear dynamics. Thus, an important future direc-
tion of theory will be to find new ways to study learning
in networks with nonlinearities, potentially through gating
(Saxe et al., 2022; Sandbrink et al., 2024; Jarvis et al., 2025).
It’s an open question to what extent the findings in this work
will generalize to other settings, but we believe the frame-
work we have constructed is flexible and will support new
research inquiries in this direction.

5. Conclusion
This work presents a theoretical study of learning dynam-
ics in linear RNNs and the effect of temporally-structured
data. It presents one of the few studies of learning dynam-
ics in recurrent networks, and, to our best knowledge, the
first to account for the effect of task dynamics and to more
explicitly connect recurrence to feature learning by study-
ing the transition from feedforward to recurrent networks
using trajectory length. This study generates new insights
into the learning process of RNNs and encourages further
theoretical developments to consider the learning process
and the impact of temporal data when studying RNNs. We
hope future work can characterize how complex dynamics,
such as those in the brain, are developed during learning
and ultimately, help us better understand cognition from a
dynamic perspective.

9

Learning dynamics in linear recurrent neural networks

Acknowledgements
AP is funded by the Imperial College London President’s
PhD Scholarship. CD was supported by the Gatsby Chari-
table Foundation (GAT3755). This research was funded in
part by the Wellcome Trust [216386/Z/19/Z].

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Alemohammad, S., Wang, Z., Balestriero, R., and Baraniuk,

R. The recurrent neural tangent kernel. International
Conference on Learning Representations, 2021.

Arora, S., Cohen, N., Golowich, N., and Hu, W. A conver-
gence analysis of gradient descent for deep linear neural
networks. International Conference on Learning Repre-
sentations, 2019.

Atanasov, A., Bordelon, B., and Pehlevan, C. Neural net-
works as kernel learners: The silent alignment effect.
International Conference on Learning Representations,
2022.

Azulay, S., Moroshko, E., Nacson, M. S., Woodworth, B. E.,
Srebro, N., Globerson, A., and Soudry, D. On the implicit
bias of initialization shape: Beyond infinitesimal mirror
descent. International Conference on Machine Learning,
pp. 468–477, 2021.

Barak, O. Recurrent neural networks as versatile tools of
neuroscience research. Current Opinion in Neurobiology,
46:1–6, 2017.

Beirán, M., Meirhaeghe, N., Sohn, H., Jazayeri, M., and
Ostojic, S. Parametric control of flexible timing through
low-dimensional neural manifolds. Neuron, 111:739–
753.e8, 2023.

Bengio, Y., Simard, P. Y., and Frasconi, P. Learning long-
term dependencies with gradient descent is difficult. IEEE
Transactions on Neural Networks, 5 2:157–66, 1994.

Bernardi, S., Benna, M. K., Rigotti, M., and Salzman, C. D.
The geometry of abstraction in the hippocampus and
prefrontal cortex. Cell, 183:954–967.e21, 2020.

Braun, L., Dominé, C., Fitzgerald, J., and Saxe, A. Exact
learning dynamics of deep linear networks with prior
knowledge. Advances in Neural Information Processing
Systems, 35:6615–6629, 2022.

Chaisangmongkon, W., Swaminathan, S. K., Freedman,
D. J., and Wang, X.-J. Computing by robust transience:
How the fronto-parietal network performs sequential,
category-based decisions. Neuron, 93:1504–1517.e4,
2017.

Cohen-Karlik, E., David, A. B., Cohen, N., and Globerson,
A. On the implicit bias of gradient descent for tempo-
ral extrapolation. International Conference on Artificial
Intelligence and Statistics, 151, 2022.

Cohen-Karlik, E., Menuhin-Gruman, I., Giryes, R., Co-
hen, N., and Globerson, A. Learning low dimensional
state spaces with overparameterized recurrent neural nets.
International Conference on Learning Representations,
2023.

Dominé, C. C., Anguita, N., Proca, A. M., Braun, L., Kunin,
D., Mediano, P. A., and Saxe, A. M. From lazy to rich:
Exact learning dynamics in deep linear networks. Inter-
national Conference on Learning Representations, 2025.

Doya, K. Universality of fully-connected recurrent neural
networks. IEEE Transactions on Neural Networks, 1993.

Driscoll, L., Shenoy, K., and Sussillo, D. Flexible multi-
task computation in recurrent networks utilizes shared
dynamical motifs. Nature Neuroscience, 2024.

Dubreuil, A. M., Valente, A., Beirán, M., Mastrogiuseppe,
F., and Ostojic, S. The role of population structure in com-
putations through neural dynamics. Nature Neuroscience,
25:783 – 794, 2022.

Durbin, J. and Koopman, S. J. Time Series Analysis by State
Space Methods. OUP Oxford, 2012.

Emami, M. M., Sahraee-Ardakan, M., Pandit, P., Rangan,
S., and Fletcher, A. K. Implicit bias of linear rnns. Inter-
national Conference on Machine Learning, 2021.

Engel, T. A., Chaisangmongkon, W., Freedman, D. J., and
Wang, X.-J. Choice-correlated activity fluctuations under-
lie learning of neuronal category representation. Nature
Communications, 6, 2015.

Farrell, M., Recanatesi, S., and Shea-Brown, E. From lazy to
rich to exclusive task representations in neural networks
and neural codes. Current opinion in neurobiology, 83:
102780, 2023.

Farrell, M. T., Recanatesi, S., Moore, T., Lajoie, G., and
Shea-Brown, E. Gradient-based learning drives robust
representations in recurrent neural networks by balancing
compression and expansion. Nature Machine Intelligence,
4:564 – 573, 2022.

10

Learning dynamics in linear recurrent neural networks

Flesch, T., Juechems, K., Dumbalska, T., Saxe, A., and
Summerfield, C. Orthogonal representations for robust
context-dependent task performance in brains and neural
networks. Neuron, 110(7):1258–1270, 2022.

Fort, S., Dziugaite, G. K., Paul, M., Kharaghani, S., Roy,
D. M., and Ganguli, S. Deep learning versus kernel
learning: an empirical study of loss landscape geome-
try and the time evolution of the neural tangent kernel.
Advances in Neural Information Processing Systems, 33:
5850–5861, 2020.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. Conference on Language
Modelling, 2024.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo: Re-
current memory with optimal polynomial projections. Ad-
vances in Neural Information Processing Systems, 2020.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. International
Conference on Learning Representations, 2022.

Gupta, A. and Berant, J. Diagonal state spaces are as ef-
fective as structured state spaces. Advances in Neural
Information Processing Systems, abs/2203.14343, 2022.

Hazan, E., Lee, H., Singh, K., Zhang, C., and Zhang,
Y. Spectral filtering for general linear dynamical sys-
tems. Advances in Neural Information Processing Sys-
tems, 2018.

Heij, C., Ran, A. C., and Van Schagen, F. Introduction to
Mathematical Systems Theory. Springer, 2007.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber,
J. Gradient Flow in Recurrent Nets: the Difficulty of
Learning Long-Term Dependencies. IEEE, 2001.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in Neural Information Processing Systems, pp.
8571–8580, 2018.

Jarvis, D., Klein, R., Rosman, B., and Saxe, A. M. Make
haste slowly: A theory of emergent structured mixed
selectivity in feature learning relu networks. International
Conference on Learning Representations, 2025.

Khona, M. and Fiete, I. R. Attractor and integrator networks
in the brain. Nature Reviews Neuroscience, 23:744 – 766,
2021.

Kunin, D., Raventós, A., Dominé, C., Chen, F., Klindt,
D., Saxe, A., and Ganguli, S. Get rich quick: exact
solutions reveal how unbalanced initializations promote
rapid feature learning. Advances in Neural Information
Processing Systems, 2024.

Le, Q. V., Jaitly, N., and Hinton, G. E. A simple way
to initialize recurrent networks of rectified linear units.
ArXiv, 2015.

Liu, Y. H., Baratin, A., Cornford, J., Mihalas, S., Shea-
Brown, E., and Lajoie, G. How connectivity structure
shapes rich and lazy learning in neural circuits. Interna-
tional Conference on Learning Representations, 2024.

Lufkin, L., Saxe, A. M., and Grant, E. Nonlinear dynamics
of localization in neural receptive fields. In Advances in
Neural Information Processing Systems, 2024.

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T.
Context-dependent computation by recurrent dynamics
in prefrontal cortex. Nature, 503:78 – 84, 2013.

Masse, N. Y., Yang, G. R., Song, H. F., Wang, X.-J., and
Freedman, D. J. Circuit mechanisms for the maintenance
and manipulation of information in working memory.
Nature Neuroscience, 22:1159 – 1167, 2018.

Masse, N. Y., Rosen, M. C., and Freedman, D. J. Reevaluat-
ing the role of persistent neural activity in short-term
memory. Trends in Cognitive Sciences, 24:242–258,
2020.

Mastrogiuseppe, F. and Ostojic, S. Linking connectivity,
dynamics, and computations in low-rank recurrent neural
networks. Neuron, 99(3):609–623, 2018.

Molano-Mazón, M., Barbosa, J., Pastor-Ciurana, J., Fradera,
M., Zhang, R.-Y., Forest, J., del Pozo, J., Ji-An, L., Cueva,
C., de la Rocha, J., Narain, D., and Yang, G. R. Neu-
roGym: An open resource for developing and sharing
neuroscience tasks. 2022.

Orhan, A. E. and Ma, W. J. A diverse range of factors affect
the nature of neural representations underlying short-term
memory. Nature Neuroscience, 22:275 – 283, 2018.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre,
C., Pascanu, R., and De, S. Resurrecting recurrent neural
networks for long sequences. International Conference
on Machine Learning, 2023.

Orvieto, A., De, S., Gulcehre, C., Pascanu, R., and Smith,
S. L. Universality of linear recurrences followed by non-
linear projections: Finite-width guarantees and benefits
of complex eigenvalues. 2024.

11

Learning dynamics in linear recurrent neural networks

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
Conference on Machine Learning, 2012.

Payeur, A., Orsborn, A. L., and Lajoie, G. Neural manifolds
and learning regimes in neural-interface tasks. bioRxiv,
2023.

Remington, E. D., Egger, S. W., Narain, D., Wang, J., and
Jazayeri, M. A dynamical systems perspective on flexible
motor timing. Trends in Cognitive Sciences, 22(10):938–
952, 2018a.

Remington, E. D., Narain, D., Hosseini, E. A., and Jazayeri,
M. Flexible sensorimotor computations through rapid
reconfiguration of cortical dynamics. Neuron, 98:1005–
1019.e5, 2018b.

Rigotti, M., Barak, O., Warden, M. R., Wang, X.-J., Daw,
N. D., Miller, E. K., and Fusi, S. The importance of
mixed selectivity in complex cognitive tasks. Nature,
497:585–590, 2013.

Sandbrink, K. J., Bauer, J. P., Proca, A. M., Saxe, A. M.,
Summerfield, C., and Hummos, A. Flexible task abstrac-
tions emerge in linear networks with fast and bounded
units. 2024.

Saxe, A., Sodhani, S., and Lewallen, S. J. The neural race
reduction: Dynamics of abstraction in gated networks.
In International Conference on Machine Learning, pp.
19287–19309. PMLR, 2022.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact solu-
tions to the nonlinear dynamics of learning in deep linear
neural networks. International Conference on Learning
Representations, 2014.

Saxe, A. M., McClelland, J. L., and Ganguli, S. A mathe-
matical theory of semantic development in deep neural
networks. Proceedings of the National Academy of Sci-
ences, 116:11537 – 11546, 2018.

Saxe, A. M., Nelli, S., and Summerfield, C. If deep learning
is the answer, what is the question? Nature Reviews
Neuroscience, 22:55 – 67, 2020.

Schuessler, F., Dubreuil, A., Mastrogiuseppe, F., Ostojic, S.,
and Barak, O. Dynamics of random recurrent networks
with correlated low-rank structure. Physical Review Re-
search, 2(1):013111, 2020a.

Schuessler, F., Mastrogiuseppe, F., Dubreuil, A., Ostojic, S.,
and Barak, O. The interplay between randomness and
structure during learning in rnns. In Advances in Neural
Information Processing Systems, 2020b.

Schuessler, F., Mastrogiuseppe, F., Ostojic, S., and Barak,
O. Aligned and oblique dynamics in recurrent neural
networks. eLife, 2024.

Schäfer, A. M. and Zimmermann, H. G. Recurrent neu-
ral networks are universal approximators. International
Journal of Neural Systems, 17(4):253–63, 2007.

Smékal, J., Smith, J., Kleinman, M., Biderman, D., and
Linderman, S. Towards a theory of learning dynamics in
deep state space models. ICML 2024 Next Generation of
Sequence Modeling Architectures Workshop, 2024.

Sompolinsky, H., Crisanti, A., and Sommers, H.-J. Chaos
in random neural networks. Physical review letters, 61
(3):259, 1988.

Sussillo, D. and Barak, O. Opening the black box: Low-
dimensional dynamics in high-dimensional recurrent neu-
ral networks. Neural Computation, 25:626–649, 2013.

Turner, E. and Barak, O. The simplicity bias in multi-task
rnns: Shared attractors, reuse of dynamics, and geomet-
ric representation. In Advances in Neural Information
Processing Systems, 2023.

Turner, E., Dabholkar, K., and Barak, O. Charting and
navigating the space of solutions for recurrent neural
networks. In Advances in Neural Information Processing
Systems, 2021.

Vyas, S., Golub, M. D., Sussillo, D., and Shenoy, K. V.
Computation through neural population dynamics. An-
nual Review of Neuroscience, 43:249–275, 2020.

Wang, J., Narain, D., Hosseini, E. A., and Jazayeri, M.
Flexible timing by temporal scaling of cortical responses.
Nature Neuroscience, 21:102 – 110, 2017.

Yang, G. Tensor programs ii: Neural tangent kernel for any
architecture. ArXiv, 2020.

Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T.,
and Wang, X.-J. Task representations in neural networks
trained to perform many cognitive tasks. Nature Neuro-
science, 22:297 – 306, 2019.

Zucchet, N. and Orvieto, A. Recurrent neural networks:
vanishing and exploding gradients are not the end of
the story. Advances in Neural Information Processing
Systems, 2024.

Zucchet, N., Meier, R., Schug, S., Mujika, A., and Sacra-
mento, J. Online learning of long-range dependencies. Ad-
vances in Neural Information Processing Systems, 2023.

12

Learning dynamics in linear recurrent neural networks

Appendix

Table of Contents
A Notation 14

B Derivation of gradient flow equations and energy function 15

C Exact solution of input-output connectivity modes 17

D Local approximation of recurrent connectivity modes 17
D.1 Analytical approximation using Faà di Bruno formula and Bell polynomials 18

E Effect of task dynamics on the ordering of learning 19

F Zero-loss solutions only exist for inverse-exponential task dynamics 20
F.1 Discussion on exponential task dynamics as reparameterization of inverse-exponential task dynamics . . . 20

F.2 Proof . 20

F.3 Global solutions of task dynamics . 21

G Effective regularization term incentivizes small-weights 23

H Connectivity modes exhibit phase transition as a function of task dynamics 23
H.1 T = 3 case . 25

H.2 T > 3 case . 25

I Finite-width neural tangent kernel of LRNN 26

J Analyzing the impact of recurrence on feature learning 28

K Impact of connectivity modes on the energy function 31

L Early-importance task dynamics lead to unstable solutions 32

M Extending to the (autoregressive) T -output case 33
M.1 Exact solution of input-output connectivity modes . 34

M.2 Local approximation of recurrent connectivity modes . 35

M.3 Zero-loss solutions only exist for inverse-exponential task dynamics . 35

M.4 Existence of effective regularization term . 35

M.5 Neural tangent kernel . 35

N Generalizing gradient flow equations to the eigenspace to capture rotations 35

O Learning dynamics of rotations in the complex plane 37

P Simulations 41
P.1 LRNN initialization . 41

P.2 Training . 41

P.3 Recovering connectivity modes . 42

P.4 Tasks . 42

13

Learning dynamics in linear recurrent neural networks

A. Notation

Table A1. Notation
Symbol Description

t trajectory timestep
T trajectory length (final timestep)
tθ learning timestep
τ learning timescale (inverse learning rate)
η learning rate
P dataset size
p data sample index
Nx input size
Nh hidden size
Ny output size
xp,t ∈ RNx input sample p at timestep t
ht+1 = Whht +Wxxt ∈ RNh hidden state at timestep t+ 1
ŷt = Wyht+1 ∈ RNy model output at timestep t
yp,t ∈ RNy output target at timestep t
Wx ∈ RNh×Nx input weight matrix
Wh ∈ RNh×Nh recurrent weight matrix
Wy ∈ RNy×Nh output weight matrix
ΣY Xt =

∑P
p=1 yp,Tx

⊤
p,t input-output correlation matrix between input xt at trajectory timestep t and final output target yT

ΣXtXt′ =
∑P

p=1 xp,tx
⊤
p,t′ input-input correlation matrix between input xt at trajectory timestep t and xt′ at t′

UyStV
⊤
x = ΣY Xt singular value decomposition of input-output correlation matrix for input at timestep t

PDtP
† = ΣY Xt eigendecomposition of input-output correlation matrix for input at timestep t

W x diagonalized input matrix
Wh diagonalized recurrent matrix
W y diagonalized output matrix
α singular/eigen-value dimension
aα input connectivity mode at dimension α
bα recurrent connectivity mode at dimension α
cα output connectivity mode at dimension α
sα,t singular value of St at dimension α
dα,t eigenvalue of Dt at dimension α
E energy function of connectivity modes decoupled along singular/eigen-value dimensions
δ constant component/parameter of data singular/eigen-values (when st, dt = δf(λ, t))
λ dynamic component/parameter of data singular/eigen-values (when st, dt = δf(λ, t))
f(λ, t) = 1 constant task dynamics
f(λ, t) = λT−t inverse-exponential task dynamics
f(λ, t) = λt exponential task dynamics
κ ‘feedforward computation’ (= sT) in phase transition experiments
β ‘recurrent computation’ (= s1) in Dirac delta task dynamics
˜ indicating teacher parameters
u = ac single variable for input-output modes
⋆ indicating global solution
ΣYtXt′ =

∑P
p=1 yp,tx

⊤
p,t′ input-output correlation matrix between input at timestep t′ and output at timestep t (t′ ≤ t) for autoregressive case

† conjugate transpose of a matrix
∗ complex conjugate
Rδ radial component of δ (= Rδe

ϕδi)
ϕδ angle component of δ
Rλ radial component of λ (= Rλe

ϕλi)
ϕλ angle component of λ

14

Learning dynamics in linear recurrent neural networks

B. Derivation of gradient flow equations and energy function
Recall our model definition as

ht+1 = Whht +Wxxt (12)

=

t∑
i=1

W t−i
h Wxxi (13)

ŷt = Wyht+1 (14)

with a loss of

L =
1

2

P∑
p=1

∥yp,T −Wy(

T∑
i=1

WT−i
h Wxxp,i)∥2 (15)

By taking the derivative of the loss with respect to each set of parameters Wx,Wh,Wy , we get the following equations

∂L
∂Wx

= −
P∑

p=1

 T∑
i=1

W
(T−i)⊤
h W⊤

y

yT,p −
T∑

j=1

WyW
T−j
h Wxxj,p)

x⊤
i,p

 (16)

∂L
∂Wh

= −
P∑

p=1

T−1∑
i=1

T−i−1∑
r=0

W
(r)⊤
h W⊤

y

yT,p −
T∑

j=1

WyW
T−j
h Wxxj,p

x⊤
i,pW

⊤
x W

(T−i−1−r)⊤
h

 (17)

∂L
∂Wy

= −
P∑

p=1

 T∑
i=1

yT,p −
T∑

j=1

WyW
T−j
h Wxxj,p

x⊤
i,pW

⊤
x W

(T−i)⊤
h

 (18)

We define the input-output correlation matrices between an input at trajectory timestep t and the final output as

ΣY Xt =

P∑
p=1

yp,Tx
⊤
p,t (19)

(20)

and the input-input correlation matrices between two inputs at trajectory timesteps t, t′ as

ΣXtXt′ =

P∑
p=1

xp,tx
⊤
p,t′ (21)

(22)

Under the assumption of whitened input with 0 mean, the input-input correlation matrices become ΣXtXt′ = 0,∀t ̸= t′ and
ΣXtXt = I . Substituting the correlation matrices and assuming the gradient flow regime where the learning rate (η = 1/τ)
is small, we can rewrite the gradient equations above as a set of differential equations over training time tθ

τ
d

dtθ
Wx =

T∑
i=1

W
(T−i)⊤
h W⊤

y (ΣY Xi −WyW
T−i
h Wx) (23)

τ
d

dtθ
Wh =

T−1∑
i=1

T−i−1∑
r=0

W
(r)⊤
h W⊤

y (ΣY Xi −WyW
T−i
h Wx)W

⊤
x W

(T−i−1−r)⊤
h (24)

τ
d

dtθ
Wy =

T∑
i=1

(ΣY Xi −WyW
T−i
h Wx)W

⊤
x W

(T−i)⊤
h (25)

We assume that the input-output correlation matrices have constant left and right singular vectors across trajectory timesteps,
such that only their singular values vary through time. Although this may seem like a restrictive assumption, note that this
assumption holds for any data generated by a teacher linear RNN with weights that can be diagonalized.

15

Learning dynamics in linear recurrent neural networks

Proof. Data generated by a linear RNN teacher parameterized by W̃x, W̃h, W̃y that can be diagonalized with SVD has
constant left and right singular vectors across trajectory timesteps.

ΣY Xt =

P∑
p=1

yp,Tx
⊤
p,t (26)

=

P∑
p=1

W̃yW̃
T−t
h W̃xxp,tx

⊤
p,t (27)

= W̃yW̃
T−t
h W̃x (28)

We assume W̃h is diagonalized by orthogonal matrices R̃y, R̃x such that W̃y = UySyR̃
⊤
y , W̃x = R̃xSxV

⊤
x , W̃h = R̃yShR̃

⊤
x .

Then,

W̃yW̃
T−t
h W̃x = UyStV

⊤
x (29)

We place no additional assumptions on the temporal dynamics of the singular values through time St, such that they could
be generated by any dynamic process. Substituting the singular value decomposition (SVD) of the data-correlation matrix
into the gradient flow equations yields

τ
d

dtθ
Wx =

T∑
i=1

W
(T−i)⊤
h W⊤

y (UySiV
⊤
x −WyW

T−i
h Wx) (30)

τ
d

dtθ
Wh =

T−1∑
i=1

T−i−1∑
r=0

W
(r)⊤
h W⊤

y (UySiV
⊤
x −WyW

T−i
h Wx)W

⊤
x W

(T−i−1−r)⊤
h (31)

τ
d

dtθ
Wy =

T∑
i=1

(UySiV
⊤
x −WyW

T−i
h Wx)W

⊤
x W

(T−i)⊤
h (32)

Similarly to Saxe et al. (2014; 2018), we assume the LRNN is data-aligned at initialization such that for some orthogonal
matrices Ry, Rx, R⊤

y Wh(0)Rx = Wh(0), R⊤
x Wx(0)Vx = W x(0), U⊤

y Wy(0)Ry = W y(0), where W x,Wh,W y are
diagonal matrices. Atanasov et al. (2022) showed that this alignment happens early in training for networks initialized with
small random weights. Performing a change of variables in the gradient flow equations and simplifying yields,

τ
d

dtθ
W x =

T∑
i=1

W
(T−i)⊤
h W

⊤
y (Si −W yW

T−i

h W x) (33)

τ
d

dtθ
Wh =

T−1∑
i=1

T−i−1∑
r=0

W
(r)⊤
h W

⊤
y (Si −W yW

T−i

h W x)W
⊤
x W

(T−i−1−r)⊤
h (34)

τ
d

dtθ
W y =

T∑
i=1

(Si −W yW
T−i

h W x)W
⊤
x W

(T−i)⊤
h (35)

Let aα, bα, cα be the αth diagonal entry of W x,Wh,W y , respectively, and sα,t be the αth singular value of St. We can then
rewrite the above equations in terms of these variables, or connectivity modes that decouple along singular value dimensions

16

Learning dynamics in linear recurrent neural networks

α,

τ
d

dtθ
aα =

T∑
i=1

bT−i
α cα(sα,i − cαb

T−i
α aα) (36)

τ
d

dtθ
bα =

T−1∑
i=1

T−i−1∑
r=0

b(r)α cα(sα,i − cαb
T−i
α aα)aαb

(T−i−1−r)
α (37)

=

T−1∑
i=1

(T − i)cα(sα,i − cαb
T−i
α aα)aαb

(T−i−1)
α (38)

τ
d

dtθ
cα =

T∑
i=1

(sα,i − cαb
T−i
α aα)aαb

T−i
α (39)

These dynamics arise from gradient descent on the energy function

E =
1

2τ

∑
α

T∑
i=1

(sα,i − cαb
T−i
α aα)

2 (40)

To ease notation, we omit specifying α when referring to connectivity modes, although note that all terms (st, a, b, c) still
refer to a particular singular value dimension α.

C. Exact solution of input-output connectivity modes
We solve for the learning dynamics of the input-output connectivity modes when the recurrent connectivity mode is frozen.
If we assume balanced weights such that a = c, we can solve for both modes u = ac together.

τ
d

dtθ
u = c(τ

d

dtθ
a) + a(τ

d

dtθ
c) (41)

= c(

T∑
i=1

bT−ic(si − cbT−ia)) + a(

T∑
i=1

abT−i(s− cbT−ia)) (42)

= 2u(

T∑
i=1

bT−i(si − bT−iu)) (43)

This equation can be integrated to yield

tθ = τ

∫ u(tθ)

u(0)

du∑T
i=1 2ub

T−i(si − ubT−i)
(44)

=
τ

2

log(u)− log(
∑T

i=1 b
T−isi − ub2(T−i)∑T

i=1 b
T−isi

u(tθ)
u(0) (45)

=
τ

2
∑T

i=1 b
T−isi

log
u(tθ)(

∑T
i=1 b

T−isi − u(0)b2(T−i))

u(0)(
∑T

i=1 b
T−isi − u(tθ)b2(T−i))

(46)

u(tθ) =
e2tθ(

∑T
i=1 bT−isi)/τ (

∑T
i=1 b

T−isi)

(
∑T

i=1 b
T−isi)/u(0)− (

∑T
i=1 b

2(T−i)) + e2tθ(
∑T

i=1 bT−isi)/τ (
∑T

i=1 b
2(T−i))

(47)

D. Local approximation of recurrent connectivity modes
Due to the exponential term, the learning dynamics of the recurrent mode b are difficult to solve for. Instead, we take an
approach similar to Schuessler et al. (2020b), by performing a Taylor expansion on the learning dynamics of b through
training time (with input-output modes held constant),

b(tθ/τ) =

∞∑
n=0

dnb(0)

dtnθ

(tθ/τ)
n

n!
(48)

17

Learning dynamics in linear recurrent neural networks

First we solve for the nth partial derivative of the energy function E with respect to the recurrent mode b which has an
explicit closed-form solution given by

dnE

dbn
=

T−n∑
i=1

(T − i)

n−1∏
j=1

(T − i− j)

 sicab
T−i−n

−
(2T−n)/2∑

i=1

(T − i)

n−1∏
j=1

(2T − 2i− j)

 c2a2b2T−2i−n

(49)

Recall that in the gradient flow regime, the recurrent mode b changes continuously according to db
dtθ

= dE
db . Thus, to compute

higher-order derivatives of b,

dnb

dtnθ
=

d

dtθ
(
dn−1b

dtn−1
θ

) (50)

=
d

db
(
dn−1b

dtn−1
θ

)
db

dtθ
(51)

=
d

db
(
dn−1b

dtn−1
θ

)
dE

db
. (52)

Note that this is a recursive operation and does not give a simple closed-form expression.

Applying this to higher-orders and using chain rule, we compute the time-derivatives of b up to 5th order,

db

dtθ
=

dE

db
(53)

d2b

dt2θ
=

d2E

db2
dE

db
(54)

d3b

dt3θ
=

(
(
d2E

db2
)2 +

d3E

db3
dE

db

)
dE

db
(55)

d4b

dt4θ
=

(
4
d2E

db2
d3E

db3
(
dE

db
)1 + (

d2E

db2
)3 +

d4E

db4
(
dE

db
)2
)

dE

db
(56)

d5b

dt5
=

(
(
d2E

db2
)4 + 11(

d2E

db2
)2
d3E

db3
(
dE

db
) + 4(

d3E

db3
)2(

dE

db
)2 + 7

d4E

db4
d2E

db2
(
dE

db
)2 +

d5E

db5
(
dE

db
)3
)

dE

db
(57)

We then approximate the learning dynamics of the recurrent mode b and substitute the formula above for the nth partial
derivative of the energy function

b(tθ/τ) ≈ b(0) +
dE

db
(tθ/τ) +

d2E

db2
dE

db

(tθ/τ)
2

2!
+

(
(
d2E

db2
)2 +

d3E

db3
dE

db

)
dE

db

(tθ/τ)
3

3!
(58)

+

(
4
d2E

db2
d3E

db3
(
dE

db
)1 + (

d2E

db2
)3 +

d4E

db4
(
dE

db
)2
)

dE

db

(tθ/τ)
4

4!
(59)

+

(
(
d2E

db2
)4 + 11(

d2E

db2
)2
d3E

db3
(
dE

db
) + 4(

d3E

db3
)2(

dE

db
)2 + 7

d4E

db4
d2E

db2
(
dE

db
)2 +

d5E

db5
(
dE

db
)3
)

dE

db

(tθ/τ)
5

5!
(60)

+O(6) (61)

In practice, when simulating the learning dynamics using this approximation, we apply the solution locally across a window
of size ∆ and iterate over each window b(tθ : tθ +∆). The window-size is dependent on the smoothness of the connectivity
mode dynamics (i.e., how sharp the gradient is).

D.1. Analytical approximation using Faà di Bruno formula and Bell polynomials

Here we use the Faà di Bruno formula/Bell polynomials to write out a combinatorial solution for the nth derivative of b,
which can be used to expand the learning dynamics of b to higher orders without repeated recursive chain rule. Using this

18

Learning dynamics in linear recurrent neural networks

approach, the nth derivative of b is

dnb

dtnθ
=

n−1∑
k=1

dk+1E

dbk+1
Bn−1,k[

db

dtθ
,
d2b

dt2θ
, . . . ,

dn−kb

dtn−k
θ

] (62)

=

n−1∑
k=1

dk+1E

dbk+1

∑
{m1,m2,...,mn−k}

(n− 1)!

m1!m2! . . .mn−k!

n−k∏
j=1

1

j!mj
(
djb

dtjθ
)mj (63)

where the summation over {m1,m2, . . . ,mn−k} indicates a summation over all n− k partitions of nonnegative integers
satisfying

m1 +m2 + · · ·+mn−k = k (64)
1m1 + 2m2 + · · ·+ (n− k)mn−k = n1 (65)

Although useful, we note that this approach still requires substitution of other lower-order terms of b (because of the djb

dtjθ
term). The equation can be substituted back into the Taylor expansion of b through training time,

b(tθ/τ) =

∞∑
n=0

dnb(0)

dtnθ

(tθ/τ)
n

n!
(66)

= b(0) +
dE

db
(tθ/τ) +

∞∑
n=2

n−1∑
k=1

dk+1E

dbk+1

∑
{m1,m2,...,mn−k}

(n− 1)!

m1!m2! . . .mn−k!

n−k∏
j=1

1

j!mj
(
djb

dtjθ
)mj

 (tθ/τ)
n

n!

(67)

E. Effect of task dynamics on the ordering of learning
To illustrate the effect of the ordering of singular values on learning speed, we compare task dynamics where the network
connectivity modes learn solutions of the same magnitude (for different modes such that input-output and recurrent modes
“swap” solutions), but the ordering of singular values is either ascending or descending. More specifically, we consider the
case of inverse-exponential task dynamics given by st = δf(λ, t); f(λ, t) = λT−t. The solution for inverse-exponential
dynamics are ac = δ, b = λ. Thus, we switch the values for δ, λ (orange: δ = 1.1, λ = 0.5, blue: δ = 0.5, λ = 1.1) for two
simulations so that the network connectivity modes learn solutions of the same magnitude (so that we somewhat control
for the effect that larger singular values has on accelerating learning speed), but the task dynamics either have ascending
or descending singular values over the trajectory length, and, more importantly, the magnitude of the SVs at the end of
the trajectory differ. We indeed see that modes trained on task dynamics with larger singular values occurring later in the
trajectory learn faster. As we discuss in the main text, this is due to the fact that the recurrent connectivity mode b scales
the gradient contribution for early trajectory timesteps exponentially. Since b is initialized to be less than 1, this has the
effect of downscaling the gradient contribution of earlier timesteps compared to later ones. This manifests in singular values
occurring later in the trajectory to “contribute more” to learning (when b < 1), such that modes trained on task dynamics
with larger and later singular values learn faster (because they have larger gradient updates).

19

Learning dynamics in linear recurrent neural networks

0 100 200 300 400 500
training timesteps t

0.0

0.2

0.4

0.6

0.8

1.0

co
nn

ec
tiv

ity
 m

od
es

recurrent (b)
input-output (ac)

1 7
trajectory timesteps (t)

0.0

0.2

0.4

0.6

0.8

1.0

ta
sk

 d
yn

am
ics

 (s
t)

st < st + 1
st > st + 1

Figure A1. Large singular values occurring later in trajectory of the task dynamics accelerate learning compared to earlier ones.
Networks trained on task dynamics with larger singular values occurring later in the trajectory learn faster..

This relates to the well-studied problems of learning of long-range dependencies and vanishing gradients in RNNs, as data
from earlier timesteps are harder to learn as trajectory length increases because of the exponential downscaling effect of the
recurrent mode. Here, we build on these ideas to understand learning speed and its dependency on task dynamics, including
both the ordering of singular values and their scale.

This also relates to our study on the tradeoff between feedforward versus recurrent computation in LRNNs in Section 3.4.
Because later singular values have a greater effect on the gradient of the loss, the feedforward computation is effectively
favored in learning, although the cumulative effect of the recurrent computation can of course outweigh this.

F. Zero-loss solutions only exist for inverse-exponential task dynamics
F.1. Discussion on exponential task dynamics as reparameterization of inverse-exponential task dynamics

In the main text, we refer to inverse-exponential and exponential task dynamics separately. Here, we make the distinction
that although we refer to these separately, they can both be rewritten as reparameterizations of each other (i.e., exponential
task dynamics can be rewritten in the inverse-exponential form and vice versa) specifically when the trajectory length is held
constant. We refer to inverse-exponential and exponential dynamics separately in the main text primarily to distinguish
between cases that extrapolate (or don’t) and illustrate how RNNs can learn perfect solutions that do not match the
ground-truth data generating process.

In particular, for fixed T , exponential task dynamics given by st = δf(λ, t) where f(λ, t) = λt can equivalently be written
as st = δλT g(λ, t) for g(λ, t) = (1λ)

T−t.

This illustrates how and why LRNNs can still learn a perfect solution to exponential task dynamics for a fixed trajectory
length (by overfitting), but because their architecture does not match the latent structure of the ground-truth data generating
process, the network will not extrapolate to other trajectory lengths. More generally, we can see how mismatches between
latent task dynamics and the network’s recurrent dynamics can lead to non-extrapolating solutions. Of course, this does not
occur when data is generated by a teacher network with a matched architecture because the latent form of the task dynamics
and recurrent dynamics are the same.

F.2. Proof

Here we prove that zero-loss solutions only exist for inverse-exponential task dynamics. Recall the energy function is given
by

E =
1

2τ

T∑
i=1

(si − cbT−ia)2 (68)

20

Learning dynamics in linear recurrent neural networks

The only task dynamics with zero-loss solutions in aligned LRNNs are those with inverse-exponential task dynamics
(st = δλT−t ∀t).

Proof. The term (si − cbT−ia)2 is a quadratic function and thus is nonnegative for real numbers, meaning that the 0-loss
solution to the energy function must satisfy (si − cbT−ia) = 0 ∀i. Furthermore, because (si − cbT−ia)2 is a quadratic
function, there exists a unique global minimum when si = cbT−ia. Thus, the only zero-loss solutions exist at cbT−ia = si,
which can only be all satisfied simultaneously when si = δλT−i.

F.3. Global solutions of task dynamics

Here, we solve for the global solutions of constant, inverse-exponential, and exponential task dynamics.

F.3.1. CONSTANT TASK DYNAMICS

Constant task dynamics are defined as singular values st = δf(λ, t) where f(λ, t) = 1,∀t, such that s1:T = δ. The global
solution for constant task dynamics is given by b = 1, ac = δ.

Proof. The 0-loss solution corresponding to the global minimum given by ac, b must satisfy
∑T

i=1(si − cbT−ia) = 0. This
condition will be satisfied if cbT−ia = si ∀i. For singular values following constant dynamics, this becomes

T∑
i=1

(δ − cbT−ia) (69)

At i = T , the expression becomes

cbT−Ta = δ (70)
ca = δ (71)

Then, substituting ca = δ when i = T − 1,

cbT−(T−1)a = δ (72)
cba = δ (73)
b = 1 (74)

Substituting the solution into our original expression

T∑
i=1

(δ − δ(1)T−i) (75)

T∑
i=1

(δ − δ) = 0 (76)

F.3.2. INVERSE-EXPONENTIAL TASK DYNAMICS

Inverse-exponential task dynamics are defined as singular values st = δf(λ, t) where f(λ, t) = λT−t. The global solution
for inverse-exponential task dynamics is given by b = λ, ac = δ.

Proof. The 0-loss solution corresponding to the global minimum given by ac, b must satisfy
∑T

i=1(si − cbT−ia) = 0. This
condition will be satisfied if cbT−ia = si ∀i. For singular values following inverse-exponential dynamics, this becomes

T∑
i=1

(δλT−i − cbT−ia) (77)

21

Learning dynamics in linear recurrent neural networks

At i = T , the expression becomes

cbT−Ta = δλT−T (78)
ca = δ (79)

Then, substituting ca = δ when i = T − 1,

cbT−(T−1)a = δλT−(T−1) (80)
cba = δλ (81)
b = λ (82)

Substituting the solution into our original expression

T∑
i=1

(δλT−i − δλT−i) = 0 (83)

F.3.3. EXPONENTIAL TASK DYNAMICS

Exponential task dynamics are defined as singular values st = δf(λ, t) where f(λ, t) = λt. The global solution for
exponential task dynamics is given by b = 1/λ, ac = δλT .

Proof. The 0-loss solution corresponding to the global minimum given by ac, b must satisfy
∑T

i=1(si − cbT−ia) = 0. This
condition will be satisfied if cbT−ia = si ∀i. For singular values following exponential dynamics, this becomes

T∑
i=1

(δλt − cbT−ia) (84)

At i = T , the expression becomes

cbT−Ta = δλT (85)

ca = δλT (86)

Then, substituting ca = δλT when i = T − 1,

cbT−(T−1)a = δλT−1 (87)

cba = δ
λT

λ
(88)

b =
1

λ
(89)

Substituting the solution into our original expression

T∑
i=1

(δλi − δλT (1/λ)T−i) (90)

T∑
i=1

(δλi − δλTλi−T) (91)

T∑
i=1

(δλi − δλi) = 0 (92)

(93)

22

Learning dynamics in linear recurrent neural networks

Figure A2. Effective regularization term is constant across task dynamics and incentivizes small weights. The phase plots show the
energy function terms: (left) the data-driven term, (middle) the effective regularization, and (right) the error/energy, as a function of the
connectivity modes for Dirac delta task dynamics with (top) s1 = 0.5, (middle) s1 = 1.5, and (bottom) s1 = 2.5.

.

G. Effective regularization term incentivizes small-weights
As discussed in Section 3.4, the energy function can be split into a data-driven term and an effective regularization term.
Note that the form of the effective regularization term comes from the fact that

∑T
i=1 b

2(T−i) is a geometric series that can
be rewritten as 1−b2T

1−b2 . We plot the two terms, as well as their sum (the error), across different connectivity mode values to
visualize the energy landscape (Figure A2). We do this for Dirac delta task dynamics where we keep the singular value at
the last timestep constant (sT = 1) and change the singular value at the first timestep across each row (s1 = β). We can
see how the effective regularization term affects the energy landscaping, forcing parameters to remain in a small-weight
regime and how it mediates between the transition from feedforward computation to recurrent computation by forcing the
input-output mode to decrease in magnitude when the recurrent mode increases in magnitude.

H. Connectivity modes exhibit phase transition as a function of task dynamics
Here, we use Landau theory to show that the qualitative behavior we observe in Section 3.4 is characterized by a phase
transition in the connectivity modes as a function of the ratio between recurrent and feedforward computations. We prove
that for trajectory length T = 3, there is a smooth second-order phase transition and that for larger trajectory lengths T > 3,
there are first-order phase transitions.

To simplify the problem, we consider Dirac delta task dynamics and show that the ratio of s1/sT acts as a control parameter
mediating the phase transition of connectivity modes up to a scaling.

Proof. The phase transition of the Dirac delta task dynamics is solely controlled by the ratio s1/sT (up to a scaling).
Treating the input-output weights as one term u = ac, the energy function for Dirac delta task dynamics can be written out
as

E = (s1 − ubT−1)2 + (sT − u)2 +

T−1∑
i=2

(−ubT−i)2 (94)

23

Learning dynamics in linear recurrent neural networks

Let u′ = u/sT . Then, by dividing the energy function by s2T , we get

E

s2T
= (

s1
sT

− u′bT−1)2 + (1− u′)2 +

T−1∑
i=2

(−u′bT−i)2 (95)

We can see from this form that the impact of the data on the energy function can be reduced to a ratio of s1/sT , up to a
scaling.

Because only the ratio matters, we can make the substitution s1/sT = β2 to reduce the number of parameters. This is
equivalent to the Dirac delta task dynamics given by

st =

β if t = 1

1/β if t = T

0 otherwise
(96)

In this form, as β increases, the recurrent computation increases and the feedforward computation decreases. This
simplification still captures the phenomena we’re interested in: how the ratio between the recurrent and the feedforward
computation affects the connectivity mode phase transition.

Returning back to the original form of the energy function,

E = (β − ubT−1)2 + (
1

β
− u)2 +

T−1∑
i=2

(−ubT−i)2 (97)

= β2 − 2βubT−1 + u2b2(T−1) +
1

β2
− 2u

β
+ u2 + u2

T−1∑
i=2

b2(T−i) (98)

= β2 +
1

β2
− 2u(βbT−1 +

1

β
) + u2

(
1 + b2(T−1) +

T−1∑
i=2

b2(T−i)

)
︸ ︷︷ ︸∑T−1

i=0 b2i

(99)

We can then solve for the minimum of the energy function with respect to the input-output modes u (letting u⋆ denote the
optimum)

∂E

∂u
= −2(βbT−1 +

1

β
) + 2u⋆

T−1∑
i=0

b2i = 0 (100)

u⋆ =
βbT−1 + 1

β∑T−1
i=0 b2i

(101)

Substituting back into the energy function and simplifying yields the effective energy E⋆(β) where u is always at its
minimum:

E⋆(β) = β2 +
1

β2
−

(βbT−1 + 1
β)

2∑T−1
i=0 b2i

(102)

The trivial (symmetric) solution to minimize E is given by b = 0, u = 1
β , yielding E = β2. A phase transition requires that

for some range of β, there is another solution where b ̸= 0 and E < β2.

24

Learning dynamics in linear recurrent neural networks

H.1. T = 3 case

We first consider the case where T = 3 and show that there is a continuous second-order phase transition as β increases. We
expand the energy function for b near 0 to identify a critical point.

E⋆(β) = β2 +
1

β2
−

(βb2 + 1
β)

2

1 + b2 + b4
(103)

= β2 +
1

β2
−

1
β2 + 2b2 + k2b4

1 + b2 + b4
(104)

Using a binomial approximation (1 + b2 + b4)−1 ≈ 1− b2 − b4,

E⋆(β) ≈ β2 +
1

β2
− (

1

β2
+ 2b2 + k2b4)(1− b2 − b4) (105)

= β2 + (
1

β2
− 2)b2 + (

1

β2
+ 2− β2)b4 + (2 + β2)b6 + β2b8 (106)

which takes on the Landau form of F (β, b) = F0 +A(β)b2 + B(β)
2 b4 + We identify a continuous second-order phase

transition given by the quadratic coefficient A(β) = 1
β2 − 2. Solving for the critical point where there is a sign change in

the coefficient of b2,

β =
1√
2

(107)

We can see that at this critical point, A(β) = 0 and the system becomes unstable to fluctuations in b. Then, for k > 1√
2

,
A(β) < 0 and the minimum of E exists at some value b ̸= 0. This also marks a transition in u⋆ due to its dependence on b.

H.2. T > 3 case

Recall the effective energy function given by

E⋆(β) = β2 +
1

β2
−

1
β2 + 2bT−1 + β2b2(T−1)∑T−1

i=0 b2i
(108)

We can rewrite the geometric sum
∑T−1

i=0 b2i as 1−b2T

1−b2 . Substituting in and expanding the terms yields

E⋆(β) = β2 +
1

β2
−

(1
β2 − b2

β2 + 2bT−1 − 2bT+1 + β2b2(T−1) − β2b2T)

1− b2T
(109)

From this expression, we can observe that for b near 0 (i.e., the denominator 1 − b2T ≈ 1), the quadratic coefficient
A(β) = 1

β2 is always positive, indicating that there is no small-b instability and no second-order phase transition as β
changes. Hence, we instead consider the large b case to study whether there is a point where large b overtakes the trivial
solution. Rewriting the energy function in terms of the dominating terms,

E⋆(β) ∼ β2 +
1

β2
− −β2b2T

−b2T
(110)

=
1

β2
(111)

Thus for large b, the energy becomes E = 1
β2 . Comparing to the energy for the trivial solution E = β2, we see that for large

b and β > 1, the energy is lower than the trivial solution (1
β2 < β2), indicating that the system has a first-order transition at

β = 1 to nonzero b and corresponding change in u⋆.

25

Learning dynamics in linear recurrent neural networks

0.5 1.0 1.5 2.0
recurrent computation

0.0

0.5

1.0

1.5

2.0
op

tim
um

 re
cu

rre
nt

 m
od

e
(b

(
))

T = 3
T = 4
T = 100

0.5 1.0 1.5 2.0
recurrent computation ()

0

2

4

6

8

10

op
tim

um
 in

pu
t-o

ut
pu

t m
od

e
(u

(
))

1/ 2

0.5 1.0 1.5 2.0
recurrent computation ()

0

1

2

3

4

m
in

im
ize

d
en

er
gy

 (E
(

))

2

Figure A3. Connectivity modes undergo a phase transition as the recurrent and feedforward computation is varied. The change
in (left) recurrent and (center) input-output connectivity modes as a function of β are plotted, as well as (right) the minimum effective
energy. The vertical dash-dot lines denote the critical points identified at 1/

√
2 and 1. The black dashed line in the center figure denotes

the trivial solution for the input-output modes at u = 1
β2 and in the right figure denotes the energy for the trivial solution at E = β2..

We verify our work in simulation by plotting the minimizing recurrent modes and input-output modes, and the corresponding
energy, for different values of β in Figure A3. As predicted, a second-order phase transition in b occurs at the critical point
1√
2

for T = 3 and a first-order phase transition occurs near the critical point 1 for T > 3. This accompanied by the deviation
of the input-output modes from the trivial solution 1

β2 and with an energy lower than the trivial solution β2. For larger
trajectory lengths, the simplifying approximations we make accumulate some error such that the critical point occurs at
values slightly larger than 1, but we observe empirically that the critical point stabilizes around β ≈ 1.08 across larger
trajectory lengths.

This matches what we observe empirically in Figure 4, whereby the recurrent mode b remains close to 0 and the input-output
modes ac match the singular value at the last timestep (sT = κ) for small values of s1 (β). As β increases and the ratio of
s1/sT changes, the energy function reaches a critical point marking a first-order phase transition, where b becomes nonzero,
accompanied by a rapid change in ac.

Here we adopted the Dirac delta setting for mathematical simplicity, but we see that a similar phase transition of connectivity
modes occurs for other task dynamics dependent on the relationship of the ‘recurrent’ computation (i.e., s1:T−1) to
the ‘feedforward’ computation (sT) (Figure 4). This suggests an inherent interplay or trade-off between recurrent and
feedforward computation in LRNNs (in the single-output case), dependent on the underlying task dynamics.

I. Finite-width neural tangent kernel of LRNN
Here we derive the finite-width neural tangent kernel (NTK) (Jacot et al., 2018) for a LRNN where the loss is computed
over the final output of the network, following a similar approach to Braun et al. (2022) in deep linear networks.

Recall the network function of the LRNN at training step tθ is

ŶT,tθ (X1:T) = Wy

T∑
i=1

WT−i
h WxXi (112)

After taking a training step with learning rate η, the network function becomes

ŶT,tθ+1(X1:T) = (Wy − η
∂L
∂Wy

)

T∑
i=1

(Wh − η
∂L
∂Wh

)T−i(Wx − η
∂L
∂Wx

)Xi (113)

26

Learning dynamics in linear recurrent neural networks

Using the binomial expansion (a− b)n =
∑n

k=0(−1)k
(
n
k

)
an−kbk,

(Wh − η
∂L
∂Wh

)T−i =

T−i∑
k=0

(−1)k
(
T − i

k

)
WT−i−k

h (η
∂L
∂Wh

)k (114)

= WT−i
h +

T−i∑
k=1

(−1)k
(
T − i

k

)
WT−i−k

h (η
∂L
∂Wh

)k (115)

Substituting back,

ŶT,tθ+1(X1:T) = (Wy − η
∂L
∂Wy

)

T∑
i=1

(WT−i
h +

T−i∑
k=1

(−1)k
(
T − i

k

)
WT−i−k

h (η
∂L
∂Wh

)k)(Wx − η
∂L
∂Wx

)Xi (116)

=

T∑
i=1

[WyW
T−i
h WxXi +Wy(

T−i∑
k=1

(−1)k
(
T − i

k

)
WT−i−k

h (η
∂L
∂Wh

)k)WxXi (117)

−WyηW
T−i
h

∂L
∂Wx

Xi −Wyη(

T−i∑
k=1

(−1)k
(
T − i

k

)
WT−i−k

h (η
∂L
∂Wh

)k)
∂L
∂Wx

Xi (118)

− η
∂L
∂Wy

WT−i
h WxXi − η

∂L
∂Wy

(

T−i∑
k=1

(−1)k
(
T − i

k

)
WT−i−k

h (η
∂L
∂Wh

)k)WxXi (119)

+ η
∂L
∂Wy

ηWT−i
h

∂L
∂Wx

xi + η
∂L
∂Wy

η(

T−i∑
k=1

(−1)k
(
T − i

k

)
WT−i−k

h (η
∂L
∂Wh

)k)
∂L
∂Wx

Xi] (120)

The gradient flow equation describing the dynamics of the network function is then

ŶT,tθ+1 − ŶT,tθ

η
=

T∑
i=1

[Wy(

T−i∑
k=1

(−1)k
(
T − i

k

)
WT−i−k

h (η)k−1(
∂L
∂Wh

)k)WxXi −WyW
T−i
h

∂L
∂Wx

Xi (121)

−Wy(

T−i∑
k=1

(−1)k
(
T − i

k

)
WT−i−k

h (η
∂L
∂Wh

)k)
∂L
∂Wx

Xi −
∂L
∂Wy

T∑
i=1

WT−i
h WxXi (122)

− ∂L
∂Wy

(

T−i∑
k=1

(−1)k
(
T − i

k

)
WT−i−k

h (η
∂L
∂Wh

)k)Wxxi +
∂L
∂Wy

ηWT−i
h

∂L
∂Wx

Xi (123)

+
∂L
∂Wy

η(

T−i∑
k=1

(−1)k
(
T − i

k

)
WT−i−k

h (η
∂L
∂Wh

)k)
∂L
∂Wx

Xi] (124)

As the learning rate η → 0 (the gradient flow regime),

τ
ŶT

dtθ
=

T∑
i=1

(−WyW
T−i
h

∂L
∂Wx

− (T − i)WyW
T−i−1
h

∂L
∂Wh

Wx − ∂L
∂Wy

WT−i
h Wx)Xi (125)

Substituting the partial derivatives of the loss,

τ
ŶT

dtθ
=

T∑
i=1

−WyW
T−i
h (

T∑
j=1

W
(T−j)⊤
h W⊤

y (YT −Wy

T∑
k=1

WT−k
h WxXk)X

⊤
j)Xi (126)

− (T − i)WyW
T−i−1
h (

T−1∑
j=1

T−j−1∑
r=0

W
(r)⊤
h W⊤

y (YT −Wy

T∑
k=1

WT−k
h WxXk)X

⊤
j W⊤

x W
(T−j−1−r)⊤
h WxXi (127)

− ((YT −Wy

T∑
k=1

WT−k
h WxXk)(

T∑
j=1

X⊤
j W⊤

x W
(T−j)⊤
h))WT−i

h WxXi (128)

27

Learning dynamics in linear recurrent neural networks

Finally, we use the identity vec(AXB) = (B⊤ ⊗A)vec(X) to derive the NTK (∇θvec(ŶT)∇θvec(ŶT)) on the left-side
of the vectorizing function

τ
dvec(ŶT)

dtθ
= (

T∑
i=1

T−1∑
j=1

−X⊤
i Xj ⊗WyW

T−i
h W

(T−j)⊤
h W⊤

y (129)

− [

T−i−1∑
r=0

−(T − i)X⊤
i W⊤

x W
(T−k−1−r)
h WxXj ⊗WyW

T−i−1
h W

(r)⊤
h W⊤

y] (130)

− INy ⊗X⊤
i W⊤

x W
(T−i)⊤
h W

(T−j)
h WxXj)vec(YT −Wy

T∑
k=1

WT−k
h WxXk) (131)

∇θvec(ŶT)∇θvec(ŶT) = (

T∑
i=1

T−1∑
j=1

X⊤
i Xj ⊗WyW

T−i
h W

(T−j)⊤
h W⊤

y (132)

+ [

T−i−1∑
r=0

−(T − i)X⊤
i W⊤

x W
(T−k−1−r)
h WxXj ⊗WyW

T−i−1
h W

(r)⊤
h W⊤

y] (133)

+ INy
⊗X⊤

i W⊤
x W

(T−i)⊤
h W

(T−j)
h WxXj) (134)

J. Analyzing the impact of recurrence on feature learning
Here we study how increasing trajectory length T (becoming more ‘recurrent’) and the scale of initialization weights
influence the learning dynamics of the network, as measured by the movement of the NTK and illustrated in Figure 5. We
conduct several different experiments in networks with aligned and unaligned weights and observe that both settings yield
similar qualitative behavior. Networks with unaligned weights are initialized with weights drawn from a normal distribution
centered at 0 with a specified variance (initialization scale), and networks with aligned weights have singular vectors (or
eigenvectors for the rotational task below) aligned with the data correlation matrix singular vectors (eigenvectors) and
connectivity modes initialized at the corresponding initialization scale. Hence, both settings have the same expected spectral
radius (equal to the initialization scale), but different means and variance (unaligned: mean is 0, variance is initialization
scale; aligned: mean is initialization scale, variance is 0). During training, we calculate the kernel distance of the NTK at
training step tθ (K(tθ)) from its initialization (K(0)) to quantify feature learning. Following the definition in Fort et al.
(2020), the kernel distance D(tθ) is defined as

D(tθ) = 1− ⟨K(0),K(tθ)⟩
∥K(0)∥F ∥K(tθ)∥F

, (135)

We visualize the kernel distance between initialization and the end of training as heatmaps, varying the trajectory length
and the initialization scale to study how these two factors impact the NTK. In the main text (Figure 5), we show the
case where networks are trained to perform perfect integration (summation) of input (i.e., constant task dynamics where
λ = 1, δ = 1, st = 1). For completeness, in Figure A4 we also show networks trained on rotational task dynamics of
angle ϕλ = π/12 and radius Rλ = 1 (i.e., inverse-exponential task dynamics where λ = 1e

π
12 i, δ = 1, dt = δλT−t; see

Appendices N and O for details on rotational task dynamics).

We consistently see that recurrence (T > 1) leads to kernel movement across a large range of initialization strengths which
contrasts with feedforward networks (T = 1). This occurs in both aligned and unaligned networks.

28

Learning dynamics in linear recurrent neural networks

0.0
1

0.0
6

0.1
2

0.1
7

0.2
3

0.2
8

0.3
4

0.3
9

0.4
5 0.5

initialization scale

1

2

3

4

5

6

7

8

tra
je

ct
or

y
le

ng
th

 (T
)

aligned weights

0.0
1

0.0
6

0.1
2

0.1
7

0.2
3

0.2
8

0.3
4

0.3
9

0.4
5 0.5

initialization scale

1

2

3

4

5

6

7

8

tra
je

ct
or

y
le

ng
th

 (T
)

unaligned weights

0.0

0.2

0.4

0.6

0.8

ke
rn

el
 d

ist
an

ce

Figure A4. NTK distance is qualitatively similar in rotational task. Phase plots illustrating the kernel distance of the NTK from
initialization to the end of training. Networks are trained to perform rotations of angle ϕλ = π/12 and show qualitatively similar behavior
as networks trained on constant task dynamics in Figure 5. .

Infinite width. As stated in the main text, a network’s learning regime is determined by its initialization scale and its
hidden layer width. It’s known that as networks increase in width (infinite-width limit) and/or initialization scale of the
weights, feature learning is reduced and instead lazy learning occurs. Since our first experiments (Figures 5 and A4) show
that the NTK changes more as networks transition from feedforward to recurrent networks, a natural next question is whether
lazy learning is still induced by large initializations and network widths in recurrent networks. To study the impact of
increasing network width, we repeat the same experiment on networks with unaligned weights trained on constant task
dynamics (Figure 5), keeping all parameters identical except for the hidden layer size, which is set to 300 (rather than 4 as
before), while the task itself only spans 4 singular value dimensions. While the RNNs we study are still small compared to
the size of networks used for typical applications, they are still significantly overparameterized relative to the task we train
on and serve as a qualitative comparison between different network widths. In Figure A5, we see that, although there is
still substantial kernel movement, especially as trajectory length increases, this occurs primarily at smaller initializations
compared to the prior experiments. Although we only study a network of size 300, it’s likely that this pattern continues with
larger network widths (Alemohammad et al., 2021), as in feedforward networks.

0.0
1

0.0
6

0.1
2

0.1
7

0.2
3

0.2
8

0.3
4

0.3
9

0.4
5 0.5

initialization scale

1
2
3
4
5
6
7
8tra

je
ct

or
y

le
ng

th
 (T

)

0.2

0.4

0.6

0.8

ke
rn

el
 d

ist
an

ce

Figure A5. Effects of recurrence on NTK movement are reduced with increasing width. Phase plots illustrating the kernel distance of
the NTK from initialization when the hidden layer size is set to 300 compared to size 4 in LRNNs with unaligned weights. There is still
movement in the NTK, but at smaller initialization scales compared to networks with smaller widths.

.

29

Learning dynamics in linear recurrent neural networks

Large initialization scale. Next, we study the effect of larger initializations (which typically induce lazy learning) on
kernel distance. This is more challenging to do in recurrent networks than feedforward networks because of the instability
of training as initializations approach 1. However, networks with aligned weights are comparatively more stable during
training because their optimization is slightly simplified from its initialization. We show the results in Figure A6. As we
can see, the effect of longer trajectory length yielding greater kernel distance persists across large initializations as well,
especially in unaligned networks. However, we also see, especially in aligned networks, that this kernel distance decreases
as initialization approaches 1. This is expected. Under the aligned configuration, (singular/eigen-) vector rotation (which
typically occurs early in training in unaligned networks in the rich learning regime) to align with the task is unnecessary
and only the scaling from initialization changes. In this case, when the network’s initialization is close to the target value,
the adjustments required to fit the target are minimized and the kernel distance is smaller. In the tasks we study here, the
target has a magnitude of 1, explaining why smaller initialization scales result in more pronounced NTK movement and
why initializations close to 1 result in minimal movement for aligned networks. In contrast, unaligned networks still have
pronounced kernel distance at large initializations likely because vector rotation still substantially changes the NTK beyond
scaling of (singular/eigen-) values. The fact that kernel distance still substantially changes at large initialization scales is
quite surprising, but supports the idea that the optimization of the recurrent layer might force some form of feature learning.

0.0
2

0.1
3

0.2
4

0.3
5

0.4
6

0.5
6

0.6
7

0.7
8

0.8
9 1.0

initialization scale

1

2

3

4

5

6

7

8

tra
je

ct
or

y
le

ng
th

 (T
)

aligned weights

0.0
2

0.1
3

0.2
4

0.3
5

0.4
6

0.5
6

0.6
7

0.7
8

0.8
9 1.0

initialization scale

1

2

3

4

5

6

7

8

tra
je

ct
or

y
le

ng
th

 (T
)

unaligned weights

0.0

0.2

0.4

0.6

0.8

ke
rn

el
 d

ist
an

ce

Figure A6. Effects of recurrence on NTK movement persist across larger initializations. Phase plots illustrating the kernel distance of
the NTK from initialization across larger initializations for (left) aligned and (right) unaligned weights. The white boxes indicate NaNs.
As expected, networks with aligned weights decrease in kernel distance as their initialization approaches the target value at 1 because
there is no (singular/eigen-) vector alignment occurring and the change in parameters to fit the target is minimal. However, networks with
unaligned weights still exhibit substantial kernel movement even for large weight initializations, which is particularly surprising.

.

Independently initialized modes Our final experiment studies how the initialization of input-output modes and recurrent
modes affect kernel distance, and whether there is any meaningful difference between them. This experiment is motivated
by Schuessler et al. (2024), which found that the initialization strength of the readout weight (analogous to output modes in
our case) acts as a control parameter in RNNs that induces either aligned (‘rich’) dynamics, or oblique (‘lazy’) dynamics.
Although we do not explicitly study the alignment of the dynamics (note that aligned dynamics differs from what we here
refer to as aligned weights), we are interested in seeing how the scaling of the input-output mode might impact kernel
distance when varied independently from the recurrent mode. We note, however, that our setting differs from Schuessler
et al. (2024) in that we study linear RNNs, which might substantially change network behavior.

Interestingly, by independently varying the initialization strength of the input-output modes and recurrent modes, we see that
the initialization of the recurrent mode more strongly impacts kernel distance than the input-output modes– the recurrent
mode mostly determines the NTK distance. Intuitively, this seems reasonable given that the NTK distance increases with
trajectory length (corresponding to the ‘recurrent mode’ entering into the function performed by the network more). This
result also supports the idea that the increase in NTK distance with trajectory length is driven by the repeated application
of the recurrent mode and modulated by its initialization. We suggest that the constrained optimization in RNNs might
encourage or force feature learning in recurrent modes, but more work is needed to understand this. In Appendix K, we
show that the energy function is impacted differently by errors in recurrent connectivity modes versus input-output modes,

30

Learning dynamics in linear recurrent neural networks

0.0
1

0.1
2

0.2
3

0.3
4

0.4
5

0.5
6

0.6
7

0.7
8

0.8
9 1.0

recurrent initialization scale

1.0
0.89
0.78
0.67
0.56
0.45
0.34
0.23
0.12
0.01in

pu
t-o

ut
pu

t i
ni

tia
liz

at
io

n
sc

al
e T = 2

0.0
1

0.1
2

0.2
3

0.3
4

0.4
5

0.5
6

0.6
7

0.7
8

0.8
9 1.0

recurrent initialization scale

1.0
0.89
0.78
0.67
0.56
0.45
0.34
0.23
0.12
0.01in

pu
t-o

ut
pu

t i
ni

tia
liz

at
io

n
sc

al
e T = 6

0.0
1

0.1
2

0.2
3

0.3
4

0.4
5

0.5
6

0.6
7

0.7
8

0.8
9 1.0

recurrent initialization scale

1.0
0.89
0.78
0.67
0.56
0.45
0.34
0.23
0.12
0.01in

pu
t-o

ut
pu

t i
ni

tia
liz

at
io

n
sc

al
e

0.0
1

0.1
2

0.2
3

0.3
4

0.4
5

0.5
6

0.6
7

0.7
8

0.8
9 1.0

recurrent initialization scale

1.0
0.89
0.78
0.67
0.56
0.45
0.34
0.23
0.12
0.01in

pu
t-o

ut
pu

t i
ni

tia
liz

at
io

n
sc

al
e

0.0

0.2

0.4

0.6

0.8

ke
rn

el
 d

ist
an

ce

un
al

ig
ne

d
we

ig
ht

s

 a

lig
ne

d
we

ig
ht

s

Figure A7. Initialization of recurrent modes more strongly impacts NTK movement. Phase plots illustrating the kernel distance
of the NTK from initialization for different trajectory lengths ((left) T = 2, (right) T = 6) as a function of initialization strength of
input-output and recurrent connectivity modes, which are independently varied. Visualized for RNNs with (top) aligned and (bottom)
unaligned weights. .

which might provide some intuition for the differences we discuss here.

A note of caution that the continuous increase in kernel distance with trajectory length in these experiments does not
necessarily indicate that the network continues becoming a ‘richer’ learner as T → ∞, but is likely, at least in part, due
to the fact that changes in the weights are amplified more by the NTK for longer trajectory lengths. This makes it more
challenging to compare NTK movement across different trajectory lengths. Nevertheless, the NTK is still non-constant in
the cases with non-zero kernel distance, indicating some feature learning is occurring.

Returning back to Schuessler et al. (2024), we see that in our setting the initialization of the input-output mode does not
appear to substantially affect the NTK behavior. One possible reason may simply be that this effect arises specifically in
nonlinear networks, or in networks trained on particular tasks (not constant integration as we consider here). It might also be
the case that the distinction between aligned and oblique dynamics are not adequately captured by the NTK distance, and
that separate analyses are required to evaluate these differences. We leave this to future work.

K. Impact of connectivity modes on the energy function
Here, we analyze how the energy function is impacted differently by errors in the recurrent connectivity mode versus the
input-output connectivity modes.

Recall the energy function is given by

E =
1

2τ

T∑
i=1

(si − cbT−ia)2 (136)

and that we can decompose the data singular values as st = δf(λ, t). We make a change of variables such that ac = δ+∆ac

and b = f(λ, i)1/(T−i) + ∆bi . When ∆ac = ∆bi = 0 ∀i, ac, b are at the global solution. Substituting into the energy

31

Learning dynamics in linear recurrent neural networks

function,

E =
1

2τ

T∑
i=1

(δf(λ, i)− (δ +∆u)(f(λ, i)
1/(T−i) +∆bi)

T−i)2 (137)

To analyze the effect of error in the input-output modes, we first consider the case where ∆bi = 0 ∀i.

E =
1

2τ

T∑
i=1

(δf(λ, i)− (δ +∆ac)f(λ, i))
2 (138)

=
1

2τ

T∑
i=1

(−∆acf(λ, i))
2 (139)

We can see that the error of the input-output connectivity modes ∆ac enters into the energy function quadratically. Instead,
for the case where ∆ac = 0 and ∆bi ̸= 0,

E =
1

2τ

T∑
i=1

(δf(λ, i)− δ(f(λ, i)1/(T−i) +∆bi)
T−i)2 (140)

=
1

2τ

T∑
i=1

(δf(λ, i)− δ(

T−i∑
k=0

(
T − i

k

)
(f(λ, i)1/(T−i))T−i−k∆k

bi))
2 (141)

=
1

2τ

T∑
i=1

(δf(λ, i)− δ(f(λ, i) +

T−i∑
k=1

(
T − i

k

)
(f(λ, i)1/(T−i))T−i−k∆k

bi))
2 (142)

=
1

2τ

T∑
i=1

(−δ

T−i∑
k=1

(
T − i

k

)
(f(λ, i)1/(T−i))T−i−k∆k

bi)
2 (143)

Here we can see that the error of the recurrent connectivity mode ∆bi enters into the energy function exponentially with
time.

L. Early-importance task dynamics lead to unstable solutions
We extend our sensory integration task in the main text to consider the impact of increasing versus decreasing task dynamics
on stability of the network. Similar to before, we remove prior assumptions about whitened data and aligned weights,
and show that our predictions made in aligned linear RNNs generalize. Our setting is identical to that in Section 3.6
except that rather than taking the output to be the mean or the sum of the input in each dimension, we instead vary the
relation to be scaled with increasing weight over time (late-importance: yT = 0.1

∑T
t=1 txt) or decreasing weight over

time (early-importance: yT =
∑T

t=1
1
txt). We select tasks that do not have inverse-exponential dynamics to illustrate the

generality of our theory (and also verify that this behavior occurs with inverse-exponential dynamics). Our theory predicts
that early-importance task dynamics (if the scaling term reflected in the input-output modes is sufficiently large) are unstable.
To visualize stability of learning, we plot the gradient of the hidden layer (dHT

dtθ
) throughout training. We see that in the

late-importance case, the network singular values converge to the same solutions in each dimension and the hidden layer
gradient remains small (< 10−3). Conversely, for early-importance task dynamics, we observe that optimization is more
challenging as only some of the network singular values converge to the solution and others fluctuate at local minima. In
parallel, the hidden layer gradient is larger (∼ 0.3) and fluctuates throughout training. We are only able to visualize this
effect because we study a network trained on a trajectory length of 6 (T = 6): for large T , exploding gradients make training
impossible.

32

Learning dynamics in linear recurrent neural networks

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

si
ng

ul
ar

 v
al

ue
s

late importance (yT=0.1∑
t
(txt))

recurrent
input-output

0 2500 5000 7500 10000 12500 15000 17500 20000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

si
ng

ul
ar

 v
al

ue
s

early importance (yT=∑
t
(1txt))

0 2000 4000 6000 8000 10000
training steps (tθ)

−0.0003

0.0000

0.0003

hi
dd

en
 la

ye
r g

ra
di

en
t (

dH
T

dt
θ

)

0 2500 5000 7500 10000 12500 15000 17500 20000
training steps (tθ)

−0.5

0.0

0.5

1.0

hi
dd

en
 la

ye
r g

ra
di

en
t (

dH
T

dt
θ

)

Figure A8. Early-importance task dynamics yield unstable solutions. We train LRNNs with small, random weights on either a task
with (left) late-importance dynamics (yT = 0.1

∑
t(txt)) or (right) early-importance dynamics (yT =

∑
t(

1
t
xt)). (Top) All of the

LRNN singular values converge to the same solution when task dynamics are stable (late-importance), but not when they are unstable
(early-importance). (Bottom) The hidden layer gradient illustrates the (in)stability of each network, smoothly converging to 0 through
training with small magnitude in the late-importance case and fluctuating throughout training with large magnitude in the early-importance
case. .

M. Extending to the (autoregressive) T -output case
Although our main analyses in this work focus on the single-output case for simplicity, here we extend our main theoretical
framework to the T -output case for completeness. The network receives an input xt ∈ RNx at each timestep t and produces
an output at every timestep ŷt ∈ RNy . In this case, the loss is computed over the output at every timestep over P trajectories
{xp,1,xp,2, . . . ,xp,T ,yp,1,yp,2, . . . ,yp,T }

L =
1

2

P∑
p=1

T∑
t=1

∥yp,t −Wy(

t∑
i=1

W t−i
h Wxxp,i)∥2 (144)

The derivation is the same as the single-output case, except that now, there is an addition summation over the input-output
correlation matrices for the output at different timesteps

ΣYtXt′ =

P∑
p=1

yp,tx
⊤
p,t′ (145)

Under the same assumptions as before of whitened input with 0 mean and the gradient flow regime, the gradient equations

33

Learning dynamics in linear recurrent neural networks

become

τ
d

dtθ
Wx =

T∑
t=1

t∑
i=1

W
(t−i)⊤
h W⊤

y (ΣYtXi −WyW
t−i
h Wx) (146)

τ
d

dtθ
Wh =

T∑
t=1

t−1∑
i=1

t−i−1∑
r=0

W
(r)⊤
h W⊤

y (ΣYtXi −WyW
t−i
h Wx)W

⊤
x W

(t−i−1−r)⊤
h (147)

τ
d

dtθ
Wy =

T∑
t=1

t∑
i=1

(ΣYtXi −WyW
t−i
h Wx)W

⊤
x W

(t−i)⊤
h (148)

Again, assuming the input-output correlation matrices have constant left and right singular vectors across trajectory timesteps
and that the LRNN is data-aligned at initialization, we get diagonal matrices W x,Wh,W y ,

τ
d

dtθ
W x =

T∑
t=1

t∑
i=1

W
(t−i)⊤
h W

⊤
y (St,i −W yW

t−i

h W x) (149)

τ
d

dtθ
Wh =

T∑
t=1

t−1∑
i=1

t−i−1∑
r=0

W
(r)⊤
h W

⊤
y (St,i −W yW

t−i

h W x)W
⊤
x W

(t−i−1−r)⊤
h (150)

τ
d

dtθ
W y =

T∑
t=1

t∑
i=1

(St,i −W yW
t−i

h W x)W
⊤
x W

(t−i)⊤
h (151)

where St,i is the singular value matrix of the input-output correlation matrix between Yt at trajectory time t and Xi at
trajectory time i.

Rewriting the equations in terms of the decoupled connectivity modes along each singular value dimension

τ
d

dtθ
aα =

T∑
t=1

t∑
i=1

bt−i
α cα(sα,t,i − cαb

t−i
α aα) (152)

τ
d

dtθ
bα =

T∑
t=1

t−1∑
i=1

t−i−1∑
r=0

b(r)α cα(sα,t,i − cαb
t−i
α aα)aαb

(t−i−1−r)
α (153)

=

T∑
t=1

t−1∑
i=1

(t− i)cα(sα,t,i − cαb
t−i
α aα)aαb

(t−i−1)
α (154)

τ
d

dtθ
cα =

T∑
t=1

t∑
i=1

(sα,t,i − cαb
t−i
α aα)aαb

t−i
α (155)

These dynamics arise from gradient descent on the energy function

E =
1

2τ

∑
α

T∑
t=1

t∑
i=1

(sα,t,i − cαb
t−i
α aα)

2 (156)

Here we discuss the extension of some of our results to the autoregressive case, although we note that fully characterizing
the network behavior in this setting will be an important direction for future work.

M.1. Exact solution of input-output connectivity modes

We can apply the same approach as in Appendix C to get the exact solutions of the input-output connectivity modes in the
autoregressive case, which is given by:

u(tθ) =
e2tθ(

∑T
t=1

∑t
i=1 bt−ist,i)/τ (

∑T
t=1

∑t
i=1 b

t−ist,i)

(
∑T

t=1

∑t
i=1 b

t−ist,i)/u(0)− (
∑T

t=1

∑t
i=1 b

2(t−i)) + e2tθ(
∑T

t=1

∑t
i=1 bt−ist,i)/τ (

∑T
t=1

∑t
i=1 b

2(t−i))
(157)

34

Learning dynamics in linear recurrent neural networks

M.2. Local approximation of recurrent connectivity modes

Again, we can apply the same approach as in Appendix D, performing a Taylor expansion of the learning dynamics of the
recurrent mode. The equations in Appendix D remain identical except for the nth partial derivative of the energy function
with respect to the recurrent mode b, which is given by the following in the autoregressive case:

dnE

dbn
=

T∑
t=1

t−n∑
i=1

(t− i)

n−1∏
j=1

(t− i− j)

 st,icab
t−i−n

−
T∑

t=1

(2t−n)/2∑
i=1

(t− i)

n−1∏
j=1

(2t− 2i− j)

 c2a2b2t−2i−n

(158)

By substituting this form of dnE
dbn , the approximation of the recurrent learning dynamics can be computed for the autoregres-

sive case.

M.3. Zero-loss solutions only exist for inverse-exponential task dynamics

The autoregressive case has an energy function that is very similar to the single-output case. In this case, following the same
logic as Appendix F, zero-loss solutions only exist for inverse-exponential task dynamics given by the form st,i = δλt−i∀t, i.
This has its global solution at b = λ, ac = δ.

M.4. Existence of effective regularization term

By decomposing the energy function in the autoregressive case here, we can see that an effective regularization term appears
as before, albeit in a different form:

E =
1

2τ

(
T∑

t=1

t∑
i=1

s2t,i − 2st,icb
t−ia

)
︸ ︷︷ ︸

data-driven term

+
1

2τ
c2a2

T (1− b2)− b2(1− b2T)

(1− b2)2︸ ︷︷ ︸
effective regularization term

(159)

M.5. Neural tangent kernel

Using the same approach as in Appendix I, the NTK is given by:

∇θvec(Ŷt)∇θvec(Ŷt) = (

T∑
t=1

t∑
i=1

t−1∑
j=1

X⊤
i Xj ⊗WyW

t−i
h W

(t−j)⊤
h W⊤

y (160)

+ [
t−i−1∑
r=0

−(t− i)X⊤
i W⊤

x W
(t−k−1−r)
h WxXj ⊗WyW

t−i−1
h W

(r)⊤
h W⊤

y] (161)

+ INy
⊗X⊤

i W⊤
x W

(t−i)⊤
h W

(t−j)
h WxXj) (162)

N. Generalizing gradient flow equations to the eigenspace to capture rotations
In the main body of the paper, we study learning dynamics in the parameter singular value space, assuming that the network
aligns itself with the input-output correlation matrices’ singular vectors. This has the advantage of allowing for different
input and output sizes and is also easier to analyze because singular values are real and nonnegative. However, one notable
limitation of studying the learning dynamics in the singular value space is that it restricts expressivity of the network. In
particular, the assumption of constant left and right singular vectors, necessary to simplify the gradient forms and arrive at
decoupled connectivity modes, restricts the RNN to unidirectional scaling and summation (i.e., integration) of input.

In this section, we derive our main gradient equations in the eigenspace to capture the other primary computation a linear
RNN can perform: rotations (oscillations). Notably, this derivation allows for complex eigenvalues and still has decoupled
gradient dynamics across different dimensions. We make the same assumptions on the input as before, namely that inputs
are whitened with 0 mean, and we assume the gradient flow regime. The derivation remains the same as in Appendix B until

35

Learning dynamics in linear recurrent neural networks

Equation (23), which we copy here for convenience:

τ
d

dtθ
Wx =

T∑
i=1

W
(T−i)⊤
h W⊤

y (ΣY Xi −WyW
T−i
h Wx) (163)

τ
d

dtθ
Wh =

T−1∑
i=1

T−i−1∑
r=0

W
(r)⊤
h W⊤

y (ΣY Xi −WyW
T−i
h Wx)W

⊤
x W

(T−i−1−r)⊤
h (164)

τ
d

dtθ
Wy =

T∑
i=1

(ΣY Xi −WyW
T−i
h Wx)W

⊤
x W

(T−i)⊤
h (165)

Whereas before in Appendix B we assumed that the input-output correlation matrices ΣY Xt have constant left and right
singular vectors, here we instead assume that the input-output correlation matrices are normal and have constant eigenvectors
across trajectory timesteps. This is a more general assumption than that of constant left and right singular vectors, because it
allows for complex eigenvalues and thus captures rotational teachers.

Proof. Data generated by a linear RNN teacher parameterized by diagonalizable matrices W̃x, W̃h, W̃y with the same
eigenvectors P have constant eigenvectors across trajectory timesteps.

ΣY Xt =

P∑
p=1

yp,Tx
⊤
p,t (166)

=

P∑
p=1

W̃yW̃
T−t
h W̃xxp,tx

⊤
p,t (167)

= W̃yW̃
T−t
h W̃x (168)

= PDyP
†(PDhP

†)T−tPDxP
† (169)

= PDyDhDxP
† (170)

= PDtP
† (171)

where P † denotes the conjugate transpose of P .

Substituting the diagonalized form of the data-correlation matrix ΣY Xt into the gradient flow equations yields

τ
d

dtθ
Wx =

T∑
i=1

W
(T−i)⊤
h W⊤

y (PDiP
† −WyW

T−i
h Wx) (172)

τ
d

dtθ
Wh =

T−1∑
i=1

T−i−1∑
r=0

W
(r)⊤
h W⊤

y (PDiP
† −WyW

T−i
h Wx)W

⊤
x W

(T−i−1−r)⊤
h (173)

τ
d

dtθ
Wy =

T∑
i=1

(PDiP
† −WyW

T−i
h Wx)W

⊤
x W

(T−i)⊤
h (174)

For a real matrix A, A⊤ = A†. Using this, we can rewrite the transposed parameter matrices above as

τ
d

dtθ
Wx =

T∑
i=1

W
(T−i)†
h W †

y (PDiP
† −WyW

T−i
h Wx) (175)

τ
d

dtθ
Wh =

T−1∑
i=1

T−i−1∑
r=0

W
(r)†
h W †

y (PDiP
† −WyW

T−i
h Wx)W

†
xW

(T−i−1−r)†
h (176)

τ
d

dtθ
Wy =

T∑
i=1

(PDiP
† −WyW

T−i
h Wx)W

†
xW

(T−i)†
h (177)

(178)

36

Learning dynamics in linear recurrent neural networks

As before, we assume the LRNN is data-aligned at initialization, but in the eigenspace, such that the network has
the same eigenvectors as the data correlation eigenvectors P . More specifically, Wx(0) = PW x(0)P

†,Wh(0) =
PWh(0)P

†,Wy(0) = PW y(0)P
†, where W x,Wh,W y are diagonal matrices of eigenvalues. We substitute the di-

agonalized form, use (PDP †)† = PD∗P † (where D∗ denotes the conjugate of D), and simplify to get:

τ
d

dtθ
W x =

T∑
i=1

W
∗(T−i)

h W
∗
y(Di −W yW

T−i

h W x) (179)

τ
d

dtθ
Wh =

T−1∑
i=1

T−i−1∑
r=0

W
∗(r)
h W

∗
y(Di −W yW

T−i

h W x)W
∗
xW

∗(T−i−1−r)

h (180)

τ
d

dtθ
W y =

T∑
i=1

(Di −W yW
T−i

h W x)W
∗
xW

∗(T−i)

h (181)

Let aα, bα, cα, dα,i be the αth diagonal entry of W x,Wh,W y, Di, respectively. We can rewrite the above equations in
terms of these connectivity modes that decouple along eigenvalue dimensions α.

τ
d

dtθ
aα =

T∑
i=1

b∗(T−i)
α c∗α(dα,i − cαb

T−i
α aα) (182)

τ
d

dtθ
bα =

T−1∑
i=1

(T − i)c∗α(dα,i − cαb
T−i
α aα)a

∗
αb

∗(T−i−1)
α (183)

τ
d

dtθ
cα =

T∑
i=1

(dα,i − cαb
T−i
α aα)a

∗
αb

∗(T−i)
α (184)

Finally, we can formulate an energy function by writing the gradient flow equations of the connectivity modes as the
Wirtinger partial derivatives of the complex conjugates:

E =
1

2τ

T∑
i=1

(di − cbT−ia)(di − cbT−ia)∗ (185)

=
1

2τ

T∑
i=1

|di − cbT−ia|2 (186)

τ
d

dtθ
a = − ∂E

∂a∗
(187)

τ
d

dtθ
b = − ∂E

∂b∗
(188)

τ
d

dtθ
c = − ∂E

∂c∗
(189)

(190)

In the case where all terms are real, the energy function has an identical form to the SVD case considered in the main text.
We make some initial investigations into the behavior of the connectivity modes and task dynamics in the complex plane in
Appendix O, but note that this will be an important direction for future work.

O. Learning dynamics of rotations in the complex plane
In this section, we study the learning dynamics of networks trained on rotational task dynamics (i.e., with complex
eigenvalues) and show that our general framework extends naturally to this case. In particular, task dynamics are now
represented by the data-correlation eigenvalues, which are potentially complex-valued but can still be decomposed into
constant and dynamic components, such that dt = δf(λ, t). The task dynamics with 0-loss solutions (constant, inverse-
exponential, and exponential) that we consider in the main text extend to this case and yield the same solutions as before, as
shown in Figure A9.

37

Learning dynamics in linear recurrent neural networks

1 0 1
real

1

0

1

im
ag

in
ar

y
constant f(, t) = 1

task
dynamics

1 0 1
real

1

0

1

im
ag

in
ar

y

inverse-exponential f(, t) = T t

1 0 1
real

1

0

1

im
ag

in
ar

y

exponential f(, t) = t

0 2000 4000
training steps (t)

0.0

0.5

1.0

re
cu

rre
nt

 m
od

e
(b

)

= 1

0 2000 4000
training steps (t)

0.0

0.5

1.0

re
cu

rre
nt

 m
od

e
(b

)

0 2000 4000
training steps (t)

0.5

0.0

0.5

1.0

re
cu

rre
nt

 m
od

e
(b

)

1/
radius (R)
angle (, radians)

0 2000 4000
training steps (t)

0.0

0.2

0.4

0.6

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0 2000 4000
training steps (t)

0.0

0.5

1.0

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0 2000 4000
training steps (t)

2

1

0

1

in
pu

t-o
ut

pu
t m

od
e

(a
c)

T

1

8

tra
je

ct
or

y
tim

es
te

ps
 (t

)

Figure A9. Learning of different rotational task dynamics in the complex plane. The task dynamics with zero-loss solutions that we
consider in the main text extend naturally to rotational dynamics in the complex plane– (left) constant f(λ, t) = 1, (middle) inverse-
exponential f(λ, t) = λT−t, and (right) exponential f(λ, t) = λt. (Top row) We plot examples of the task dynamics for the three cases
in the complex plane. We keep the rotational angle the same across the different dynamics (constant ϕδ = π/6; inverse-exponential,
exponential ϕλ = π/6) and vary the radius to yield stable dynamics (constant Rδ = 0.7, inverse-exponential Rλ = 0.9, exponential
Rλ = 1.05). We plot the learning dynamics of (middle row) the recurrent mode b and (bottom row) the input-output mode ac in terms
of their polar coordinates to show how the network learns (orange) the radius and (blue) angle components of the complex-valued
data-correlation eigenvalues. In all cases, the different components of the connectivity modes converge to the predicted global optimums
for the different task dynamics.

Eigenvalues in polar coordinates. More specifically, we can rewrite the complex eigenvalues in terms of polar coordinates
in the complex plane such that δ = Rδe

ϕδi, λ = Rλe
ϕλi. This means that inverse-exponential task dynamics correspond

to f(λ, t) = RT−t
λ e(T−t)ϕλi, with the same global solutions as before at b = λ = Rλe

ϕλi, ac = δ = Rδe
ϕδi. Similarly,

exponential task dynamics are given by f(λ, t) = Rt
λe

tϕλi, with global solutions at b = 1
λ = 1

Rλe
ϕλi , ac = δλT =

Rδe
ϕδi(Rλe

ϕλi)T . Finally, constant task dynamics are given by f(λ = 1, t) = 1, with trivial solutions given by b = λ =
1, ac = δ = Rδe

ϕδi.

Learning dynamics in polar coordinates. One interesting observation is that the learning dynamics of different modes
differ significantly when studied in the complex plane. While the learning of the radius is consistent with the dynamics
in non-rotational LRNNs, the dynamics of the rotational angle differ substantially (Figure A9), including across different
connectivity modes and task dynamics. In particular, the angle component begins adapting immediately at the onset of
training, especially compared to the radial component. We suspect this behavior may be similar to the phenomena of
eigenvector alignment which happens early in training (Atanasov et al., 2022), although in this case the eigenvalue angle is
aligning rather than the eigenvectors themselves.

38

Learning dynamics in linear recurrent neural networks

1 0 1
real

1.0

0.5

0.0

0.5

1.0

im
ag

in
ar

y

= /8

task
dynamics

1 0 1
real

1.0

0.5

0.0

0.5

1.0

im
ag

in
ar

y

= /8

1 0 1
real

1.0

0.5

0.0

0.5

1.0

im
ag

in
ar

y

= /4

1 0 1
real

1.0

0.5

0.0

0.5

1.0

im
ag

in
ar

y

= 5 /4 (or 3 /4)

0 2000 4000
training steps (t)

0.00

0.25

0.50

0.75

1.00

re
cu

rre
nt

 m
od

e
(b

)

0 2000 4000
training steps (t)

0.0

0.5

1.0
re

cu
rre

nt
 m

od
e

(b
)

0 2000 4000
training steps (t)

0.00

0.25

0.50

0.75

1.00

re
cu

rre
nt

 m
od

e
(b

)

0 2000 4000
training steps (t)

2

1

0

1

re
cu

rre
nt

 m
od

e
(b

)

global solution
radius (R)
angle (, radians)

0 2000 4000
training steps (t)

0.00

0.25

0.50

0.75

1.00

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0 2000 4000
training steps (t)

0.00

0.25

0.50

0.75

1.00

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0 2000 4000
training steps (t)

0.00

0.25

0.50

0.75

1.00

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0 2000 4000
training steps (t)

0.00

0.25

0.50

0.75

1.00

in
pu

t-o
ut

pu
t m

od
e

(a
c)

1

12

tra
je

ct
or

y
tim

es
te

ps
 (t

)

Figure A10. Learning of inverse-exponential task dynamics with different rotational angles. We study how different rotational angles
ϕ impact task dynamics (top row) and learning dynamics ((middle row) recurrent mode, (bottom row) input-output mode), keeping the
radius constant (R = 1) for ϕ = π/8,−π/8, π/4,−3π/4. In the two leftmost columns, by studying complex conjugates, we can see that
positive imaginary parts (R sin(ϕ) > 0) produce clockwise rotations, and negative imaginary parts produce counterclockwise rotations,
and that these also correspond to the direction of perturbation in the input-output modes. In the two rightmost columns, we can see how
increasing the rotational angle impacts the geometry of the task dynamics. We can also see that the mode trained on ϕ = 5π/4 converges
the slowest because its optimum lies the furthest from the initialization at b(0) = 0.1.

Solution stability, extrapolation ability, and the ordering of learning. One consequence of the direct extension of the
task dynamics we consider and their solutions to the complex plane is that we can show that our results of task dynamics
determining solution stability and extrapolation ability still hold. Networks trained on exponential task dynamics still fail to
extrapolate because the global solution is dependent on trajectory length (a⋆c⋆ = δλT). Furthermore, ‘early-importance’
task dynamics lead to unstable solutions, yielding eigenvalues greater than 1. In the case of complex eigenvalues, early-
importance task dynamics correspond to dynamics where the radius decreases over the trajectory, also known as a spiral
sink. Finally, the same principle of ‘larger and later’ eigenvalues being learned faster still applies in this setting. This is
especially evident by comparing convergence speeds for different radii Rλ, Rδ (not shown), same as we do in Appendix E.

For simplicity, in the remainder of this section, we analyze the consequences of different λ (setting δ = 1) for inverse-
exponential task dynamics (dt = δf(λ, t); f(λ, t) = λT−t; i.e., a rotational LRNN teacher). Because only λ is complex-
valued in this case, we drop the subscripts on the radius and angle task dynamic parameters from hereon and simply refer
to λ as λ = Reϕi. Note however that different values of δ (= Rδe

ϕδi) still impact task dynamics and learning dynamics,
although we do not study this here.

Impact of rotational angle. We illustrate some examples of how changing different components of λ — the angle ϕ
(Figure A10) and the radius R (Figure A11) — manifest in the task dynamics, the learning dynamics, and the network
solutions. Recall that inverse-exponential task dynamics are given by dt = δλT−t = δRT−te(T−t)ϕi. The rotational angle
is given by ϕ. When the imaginary part of the solution (λ) is positive such that R sin(ϕ) > 0, the task dynamics rotate
clockwise in the complex plane (ϕ = π/8 in Figure A10). Conversely, when the imaginary part is negative (R sin(ϕ) < 0),
the task dynamics rotate counterclockwise in the complex plane (ϕ = −π/8 in Figure A10). In the case we study here,
although the scaling component of the task dynamics δ is real-valued, the input-output modes still adapt along a (small)

39

Learning dynamics in linear recurrent neural networks

1 0 1
real

1

0

1

im
ag

in
ar

y
R = 0.4

task
dynamics

1 0 1
real

1

0

1

im
ag

in
ar

y

R = 0.9

1 0 1
real

1

0

1

im
ag

in
ar

y

R = 1

1 0 1
real

1

0

1

im
ag

in
ar

y

R = 1.05

0 2000 4000 6000
training steps (t)

0.00

0.25

0.50

0.75

1.00

re
cu

rre
nt

 m
od

e
(b

)

0 2000 4000 6000
training steps (t)

0.00

0.25

0.50

0.75

1.00
re

cu
rre

nt
 m

od
e

(b
)

0 2000 4000 6000
training steps (t)

0.00

0.25

0.50

0.75

1.00

re
cu

rre
nt

 m
od

e
(b

)

0 2000 4000 6000
training steps (t)

0.00

0.25

0.50

0.75

1.00

re
cu

rre
nt

 m
od

e
(b

)

0 2000 4000 6000
training steps (t)

0.00

0.25

0.50

0.75

1.00

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0 2000 4000 6000
training steps (t)

0.00

0.25

0.50

0.75

1.00

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0 2000 4000 6000
training steps (t)

0.00

0.25

0.50

0.75

1.00

in
pu

t-o
ut

pu
t m

od
e

(a
c)

0 2000 4000 6000
training steps (t)

0.00

0.25

0.50

0.75

1.00

in
pu

t-o
ut

pu
t m

od
e

(a
c)

global solution
radius (R)
angle (, radians)

1

15

tra
je

ct
or

y
tim

es
te

ps
 (t

)

Figure A11. Learning of inverse-exponential task dynamics with different radii. We study how different radii R impact task dynamics
(top row) and learning dynamics ((middle row) recurrent mode, (bottom row) input-output mode), keeping the rotational angle constant
(ϕ = π/6) for R = 0.4, 0.9, 1, 1.05. First we can see that radii less than 1 (R = 0.4, 0.9) produce spiral source dynamics (or late-
importance dynamics) where the radius increases through the trajectory of the task dynamics. Conversely, radii greater than 1 (R = 1.05)
produce the opposite– spiral sinks or early-importance dynamics, which also lead to (middle and bottom) unstable solutions. Finally, radii
equal to 1 (R = 1) produce a circular rotation/limit cycle in the task dynamics. Finally, by comparing small radii (R = 0.4) and large
radii (R = 1.05), we can see that larger radii correspond to faster learning.

imaginary part before converging to a final real-valued solution. The sign of this imaginary part is determined by the sign of
the imaginary part of the recurrent mode (i.e., both recurrent and input-output modes learn along either negative imaginary
parts or both along positive imaginary parts). Furthermore, the magnitude of the imaginary deviation of the input-output
modes is dependent on the magnitude of the angle (ϕ = π/4 in Figure A10).

Rotational angle affects learning speed. By studying the complex plane, we can also see that learning speed is impacted
by the distance from initialization to the global optimum and that the rotational angle influences this in a way that differs
from only considering the magnitude of the eigenvalue/radius being learned. In particular, we know that trajectories with
‘larger and later’ eigenvalues/radii are learned faster (Appendix E). However, learning speed is also impacted by the distance
from initialization to the solution, and in the complex plane this can be independent from the magnitude of the radius,
which is especially clear when studying the effect of the rotational angle. For example, a set of modes all trained on
inverse-exponential task dynamics with a radius of R = 1 will learn at different speeds depending on their rotational angle
(ϕ) relative to some fixed initialization. If the recurrent modes are all initialized at, say, b(0) = 0.2, modes with their solution
further from initialization (as given by their rotational angle; for instance at ϕ = ±3π/4) will learn slower, and modes with
solutions closer to initialization (for instance at ±ϕ = π/4) will learn faster. On the other hand, if the network is initialized
at b(0) = −0.2, this effect is reversed and the modes trained on task dynamics with a rotational angle ϕ = ±3π/4 will learn
faster and ±ϕ = π/4 will learn slower. This effect is subtly noticeable in Figure A10 comparing between ϕ = π/8 versus
ϕ = −3π/4. However, we note that this effect mostly emerges if weights have large initializations. When initializing the
network with small random weights, this effect is quite small and learning speed is mostly determined by the magnitude of
the eigenvalues.

40

Learning dynamics in linear recurrent neural networks

Impact of radius. The task dynamics we study in the main text correspond exactly to the case when the rotational angle is
zero. In fact, some of the same phenomena apply here and are determined by the radius R. In the case of inverse-exponential
dynamics, a radius less than 1 corresponds to what we call ‘late-importance’ task dynamics (where the data-correlation
eigenvalues increase across the trajectory |dt| < |dt+1|), which manifests as task dynamics with increasing radius across
the trajectory in the complex plane such that RT−t < RT−(t+1), producing a spiral source (R = 0.4, 0.9 in Figure A11).
When the radius is 1, we have a perfect rotation, or limit cycle (R = 1 in Figure A11). Finally, if the radius is greater than 1
and we have ‘early-importance’ task dynamics (data-correlation eigenvalues decrease across the trajectory |dt| > |dt+1|),
the radius of the rotation RT−t > RT−(t+1) (or the data-correlation eigenvalues) decreases across trajectory, producing a
spiral sink (R = 1.05 in Figure A11).

As we noted earlier, we can see that early-importance task dynamics (or task dynamics that produce spiral sinks),
have global solutions at b > 1, yielding unstable solutions (R = 1.05 in Figure A11). Similarly to before, we also see that
learning speed is dependent on the radius size such that larger radii R are learned faster than smaller ones (R = 0.4 versus
R = 1.05 in Figure A11), again recapitulating a similar result to that of the largest singular values being learned first in
Saxe et al. (2014).

P. Simulations
Code for all simulations can be found at https://github.com/aproca/LRNN dynamics

P.1. LRNN initialization

P.1.1. ALIGNED LRNN

To initialize aligned LRNNs, we reverse-engineer the weight matrices starting from the connectivity modes as described
in Appendix B and Appendix N. We specify the initialization of the connectivity modes (input, recurrent, output) in each
dimension as hyperparameters, which are the diagonal matrices W x,Wh,W y .

SVD For the form based on SVD, we create orthogonal matrices Rx, Ry = (Rx)
−1 and use the left and right singular

matrices Uy, Vx of the data correlation matrices (see below in Appendix P.4.1) to form the weight matrices according to:

Wx = RxW xV
⊤
x (191)

Wh = RyWhR
⊤
x (192)

Wy = UyW yR
⊤
y (193)

Eigendecomposition For the form based on an eigendecomposition, we use the eigenvectors of the data correlation
matrices to form the real-valued weight matrices according to

Wx = PW xP
† (194)

Wh = PWhP
† (195)

Wy = PW yP
† (196)

P.1.2. UNALIGNED LRNN

We create unaligned LRNNs by initializing the weights with a Gaussian distribution of mean 0 and standard deviation
σ/

√
Nin, where σ is a specified hyperparameter and Nin is the row-size of the corresponding weight matrix.

P.2. Training

Networks are trained using gradient descent on the mean squared error and automatic differentiation in order to validate our
theoretical results. We modify our learning timescale to account for the additional scalars introduced by taking the mean
over P samples the and output dimension Ny (τ = PNy/η, where η is the learning rate) when comparing to simulation.

41

Learning dynamics in linear recurrent neural networks

P.3. Recovering connectivity modes

Recall that the learning dynamics are decoupled along singular value (or eigenvalue) dimensions (α) for networks with
aligned weights at initialization.

SVD The matrices Ry, Rx, Uy, Vx used for initializing LRNN weights will stay constant throughout training. To recover
the connectivity modes, which drive learning in the network, at a particular time in training, we simply perform the inverse
of the operation done at initialization,

W x(tθ) = R⊤
x Wx(tθ)Vx (197)

Wh(tθ) = R⊤
y Wh(tθ)Rx (198)

W y(tθ) = U⊤
y Wy(tθ)Ry (199)

When using networks that are not initialized with aligned weights, we just compute the singular values of each weight
matrix.

Eigendecomposition Similarly, the eigenvectors P used for initializing LRNN weights will also stay constant throughout
training. To recover the connectivity modes, we again perform the inverse of the operation done at initialization,

W x(tθ) = P †Wx(tθ)P (200)

Wh(tθ) = P †Wh(tθ)P (201)

W y(tθ) = P †Wy(tθ)P (202)

P.4. Tasks

P.4.1. STRUCTURED TASK DYNAMICS

SVD To create data with input-output correlation matrices that have constant left and right singular vectors and temporally-
structured singular value dynamics, we similarly reverse-engineer the equations in Appendix B. We first generate random
Gaussian input (X1:T) centered at 0, which is then whitened.

The data singular values S1:T are created by setting the singular values in each dimension α and at each trajectory timestep
t according to the specified task dynamics f (constant: f(λα, t) = 1, exponential f(λα, t) = λt

α, inverse-exponential
f(λα, t) = λT−t

α) and hyperparameters δα, λα, such that sα,t = δαf(λα, t).

We generate the left and right singular vectors Uy, Vx by taking the SVD of a random matrix. Finally, we create the output
according to

YT =

T∑
i=1

UySiV
⊤
x Xt (203)

Eigendecomposition We take a similar approach, except with an eigendecomposition. The eigenvalues D1:T are created
by setting the (potentially complex-valued) eigenvalues in each dimension α and at each trajectory timestep t according to
the specified task dynamics f(λα, t).

To construct the data correlation matrices (ΣY X1:T) with constant eigenvectors (P) across time, we use a block-
diagonal aproach (i.e., a real Schur form ΣY Xt = QHQ−1 where H is upper or lower quasi-triangular and Q is
orthogonal). The eigenvalues are selected such that each complex eigenvalue has a complex conjugate in another
dimension. For the eigenvalues at each trajectory timestep Dt, we construct a block diagonal matrix Ht, such that
for each real eigenvalue there is a 1×1 block and for each pair of complex conjugate eigenvalues µ±iν, there is a 2×2 block

[
µ −ν
ν µ

]

42

Learning dynamics in linear recurrent neural networks

Next, we construct the orthogonal matrix Q. For each real eigenvalue, we add as a column a one-hot vector with the value
one in the dimension of the eigenvalue. For each complex eigenvalue block, we create complex column vectors: [1, i]⊤ for
µ+ iν and [1,−i]⊤ for µ− iν in their respective block dimensions and 0 elsewhere. Similar to the SVD case, we use the
same constructed Q across time, only changing the eigenvalues according to the task dynamics, such that ΣY Xt = QHtQ

−1.
We create the output according to

YT =

T∑
i=1

QHiQ
−1Xt (204)

P.4.2. MODIFIED TASK DYNAMICS

In Section 3.4, we study how changing the relationship between the correlations of input from the past (1 : T − 1) and
the input at the last timestep (T) influences the solutions learned by connectivity modes. To do this, we simply create the
singular values from 1 : T − 1 as in Appendix P.4.1, but change the the singular values at the last timestep T to some
specified value.

For the Dirac delta task, we simply set the singular values at the first (S1) and last (ST) timesteps to some specified values,
and set the rest of the singular values to 0.

P.4.3. SENSORY INTEGRATION TASKS

To create the sensory-integration tasks, we use the multisensory integration task from Neurogym (Molano-Mazón et al.,
2022) to generate stimuli in four input dimensions (removing the fixation input). We do not modify the data further (i.e., it is
not whitened).

For the experiments on extrapolation ability, to create the target, we simply take the mean or the sum of the inputs along the
trajectory in each dimension.

For the experiments on stability, we create the target by either computing yT = 0.1
∑T

t=1 txt for late importance or
yT =

∑T
t=1

1
txt for early importance.

43

	Introduction
	Mathematical setup
	Model
	Temporal singular values

	Results
	LRNN energy function
	Solutions to LRNN learning dynamics
	Task dynamics determine solution stability and extrapolation ability
	Connectivity modes exhibit phase transitions between recurrent and feedforward computations
	Recurrence facilitates rich learning
	Sensory integration task

	Discussion & Related Work
	Conclusion
	
	Appendix
	Notation
	Derivation of gradient flow equations and energy function
	Exact solution of input-output connectivity modes
	Local approximation of recurrent connectivity modes
	Analytical approximation using Faà di Bruno formula and Bell polynomials

	Effect of task dynamics on the ordering of learning
	Zero-loss solutions only exist for inverse-exponential task dynamics
	Discussion on exponential task dynamics as reparameterization of inverse-exponential task dynamics
	Proof
	Global solutions of task dynamics
	Constant task dynamics
	Inverse-exponential task dynamics
	Exponential task dynamics

	Effective regularization term incentivizes small-weights
	Connectivity modes exhibit phase transition as a function of task dynamics
	T=3 case
	T>3 case

	Finite-width neural tangent kernel of LRNN
	Analyzing the impact of recurrence on feature learning
	Impact of connectivity modes on the energy function
	Early-importance task dynamics lead to unstable solutions
	Extending to the (autoregressive) T-output case
	Exact solution of input-output connectivity modes
	Local approximation of recurrent connectivity modes
	Zero-loss solutions only exist for inverse-exponential task dynamics
	Existence of effective regularization term
	Neural tangent kernel

	Generalizing gradient flow equations to the eigenspace to capture rotations
	Learning dynamics of rotations in the complex plane
	Simulations
	LRNN initialization
	Aligned LRNN
	Unaligned LRNN

	Training
	Recovering connectivity modes
	Tasks
	Structured task dynamics
	Modified task dynamics
	Sensory integration tasks

