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ABSTRACT

Detection Transformers (DETR) are renowned object detection pipelines, however
computationally efficient multiscale detection using DETR is still challenging. In
this paper, we propose a Cross-Resolution Encoding-Decoding (CRED) mechanism
that allows DETR to achieve the accuracy of high-resolution detection while
having the speed of low-resolution detection. CRED is based on two modules;
Cross Resolution Attention Module (CRAM) and One Step Multiscale Attention
(OSMA). CRAM is designed to transfer the knowledge of low-resolution encoder
output to a high-resolution feature. While OSMA is designed to fuse multiscale
features in a single step and produce a feature map of a desired resolution enriched
with multiscale information. When used in prominent DETR methods, CRED
delivers accuracy similar to the high-resolution DETR counterpart in roughly 50%
fewer FLOPs. Specifically, state-of-the-art DN-DETR, when used with CRED
(calling CRED-DETR), becomes 76% faster, with ∼ 50% reduced FLOPs than its
high-resolution counterpart with 202G FLOPs on MS-COCO benchmark. We plan
to release pretrained CRED-DETRs for use by the community.

1 INTRODUCTION

Detection Transformers (DETR) (Carion et al., 2020) are end-to-end object detection frameworks
without post-processing, such as anchor boxes, box matching, and non-maximal suppression (NMS)
that are required in ConvNet-based detectors (Ren et al., 2015; Liu et al., 2016). Since their first entry
(Carion et al., 2020), DETRs have evolved, mainly regarding query design (Gao et al., 2021b; Zhu
et al., 2021; Meng et al., 2021; Wang et al., 2021; Liu et al., 2022; Li et al., 2022) to improve the
detection performance, while recent DETR pipelines achieve that via salient points (Liu et al., 2023)
or unsupervised pretraining (Chen et al., 2023).

State-of-the-art DETRs exploit high-resolution features (known as Dilated Convolution or DC variant)
(Liu et al., 2022; Li et al., 2022) or dense multi-scale features (Zhang et al., 2023b) to push the
detection accuracy further. However, they suffer from high computation complexity w.r.t. their
accuracy gains. For example, DAB DETR (Liu et al., 2022) with high-resolution features improved
2.3AP, but it introduces a 114% rise in FLOPs.

The primary reason is the quadratic computational complexity (Dai et al., 2021) of the Transformer’s
attention mechanism (Zhang et al., 2023a) w.r.t. the spatial size, i.e., a Transformer is O(H2W 2)
complex in processing a feature map of a spatial size of H ×W . Hence, doubling the resolution of
the encoder input quadruples its computations while also affecting the decoder. Although deformable
attention (Zhu et al., 2021) addresses this issue, it causes additional runtime overhead due to irregular
memory accesses.

To address this issue, recent IMFA (Zhang et al., 2023a) proposes using a low-resolution feature map
and Top-K sparsely sampled higher-resolution features (Figure 1). IMFA exhibits improvements in
accuracy with lower FLOPs. However, sparse sampling incurs memory access costs due to irregular
memory access, which becomes prevalent with more samples. Recent (Li et al., 2023) exploits
attention among only interleaved tokens for reducing computations in multiscale attention in the
encoder. (Zhao et al., 2024b) works on reduced resolution images (640× 640) instead of high
resolution settings (800×1200) on standard DETR.

Our aim aligns with improving DETR speed and accuracy by using multiscale features at high-
resolution settings. However, our key motivation is based on our finding that the encoder consists
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Figure 1: Left: Single-Scale and/ DC DETR. Middle: IMFA DETR (Zhang et al., 2023a). Right: CRED DETR
(Ours). Multiple arrows between two modules indicate layerwise refinement. Stage-1 features are generally not
used due to large resolution and small receptive field.

of most computations relative to the decoder. Therefore, we propose a principal design change in
the DETR pipeline, i.e., feeding the encoder with low-resolution while feeding the decoder with a
high-resolution feature obtained from the backbone. By keeping the encoder input low-resolution,
we save computations, while by keeping the decoder input high-resolution, we provide the decoder
access to fine-grained details. Since the high-resolution features from the backbone lack large spatial
context (Carion et al., 2020), we develop a novel Cross Resolution Attention Module (CRAM). It
utilizes encoder output that has a global context and transfers this information into the high-resolution
feature map. When this feature map is fed to the decoder, the decoder has access to the fine-grained
details and the global context, thus improving the accuracy and runtime.

Then, by exploiting this capability of CRAM to transfer the information from low-resolution encoder
output to high-resolution feature, we propose to reduce the resolution of an encoder further to save
computations. This behavior is intended to develop faster DETRs offering speed-accuracy tradeoffs.
However, feeding the encoder naively with reduced resolution degrades its performance. Hence, we
devise a novel module called One Step Multiscale Attention (OSMA), which attends to multiscale
information in one step and can produce tokens or feature maps of the desired resolution enriched
with multiscale information. When the encoder is fed the tokens produced by OSMA at aggressively
low resolution, accuracy is considerably improved while avoiding any runtime overhead relative to
the baseline which was fed with a low-resolution backbone output.

We name our overall approach as Cross-Resolution Encoding-Decoding (CRED), shown in Figure 1.
We demonstrate that our CRED-enhanced DETR can attain an AP (average precision) equivalent
to the original DETR’s high-resolution counterpart in 50% fewer FLOPs at 76% improved runtime.
For instance, DN-DETR (Li et al., 2022)+CRED reduces FLOPs from 202G to 103G (∼ 50%↓↓) and
improves FPS from 13FPS to 23FPS (∼ 76%↑↑) without losing accuracy. In addition, applying CRED
in DETR variants (Meng et al., 2021; Liu et al., 2022; Zhang et al., 2023a) consistently improves
their accuracy and runtime compared with their DC variants. To improve runtime further, we half
the encoder resolution via OSMA. Interestingly, we only observe −1AP in this configuration while
the runtime is further improved by 84% compared with the vanilla DC variant. This signifies the
potential of Cross-Resolution Encoding-Decoding mechanism in DETRs.

2 PRELIMINARY

This section revisits the architectural design of vanilla DETR (Carion et al., 2020) and advanced
DETRs (Liu et al., 2022; Li et al., 2022; Zhu et al., 2021). DETR comprises a backbone, a Transformer
encoder, and a Transformer decoder. In a backbone (Li et al., 2022), it is common to keep five stages,
each operating at a resolution half of its previous stage. Thus, the final stage (stage-5) runs at a
stride of 32 at the original resolution. Once an image I ∈ R3×H×W is fed into a backbone (Figure 1),
the backbone output Fb ∈ RC×H0×W0 is fed to a Transformer encoder, producing encoded feature
embeddings or tokens Fe ∈ Rd×H0×W0 . These embeddings are fed to the Transformer decoder to
produce a fixed number of queries (Nq), each representing an object detectable in the image. The
queries are passed through two Feedforward neural Networks (FFN) to obtain the object class and its
bounding box. During training, bipartite or Hungarian matching (Carion et al., 2020) is performed
for one-to-one assignments of ground truth and predictions.

In DETR pipelines (Carion et al., 2020; Liu et al., 2022; Li et al., 2022), the embeddings Fe are
directly fed to the decoder where the Nq queries interact with H0×W0 features in Fe via cross attention.
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Figure 2: CRAM: Cross Resolution Attention Module.

The encoder complexity is O(H2
0W 2

0 ) in its self-attention, whereas for the decoder, it is O(NqH0W0) in
cross attention and O(N2

q ) in its self-attention. In DETRs, Nq is relatively smaller, i.e., 300; however,
H0W0 is quite a large number depending on the image size, e.g., 1280× 800 (Liu et al., 2022; Li
et al., 2022). Hence, most of the computations are concentrated in the encoder. When opting for
high-resolution detection, known as the DC variant (Liu et al., 2022; Li et al., 2022), the backbone
output stride is set lower than 32. For this purpose, stage-5 of the backbone is set to run at stride 16
(Meng et al., 2021; Liu et al., 2022; Li et al., 2022) w.r.t. the image, thereby doubling the resolution
of Fb. This leads to quadratic growth in the encoder computations due to the increased resolution
(Dai et al., 2021).

In this paper, we rethink the encoder-decoder information flow while leveraging multiscale features
in a computationally efficient manner. Summarily, we propose an approach that feeds the encoder
with a stride ≥ 32 while feeding the decoder with a stride ≤ 32 to harness the best of both worlds, i.e.,
the accuracy of high-resolution detection and speed of low-resolution detection. To our knowledge,
such a mechanism has not been demonstrated in DETRs.

3 METHOD

We propose to enhance the DETR design with the two modules. Firstly, we develop CRAM
which enables Cross-Resolution Encoding-Decoding. Secondly, we develop OSMA module, which
facilitates generating feature maps enriched with multiscale information in a computationally efficient
manner and further enhances the performance of CRED.

3.1 CROSS RESOLUTION ATTENTION MODULE (CRAM)

As mentioned in Sec. 2, high-resolution detection improves DETR accuracy, but high-resolution
input to the encoder is compute-intensive due to its quadratic complexity (Dai et al., 2021). Hence,
we feed the encoder with low resolution while feeding the decoder with high resolution, calling it
cross-resolution encoding-decoding paradigm. However, the information flow between them no
longer exists due to the different input sources to the encoder and decoder. Hence, we develop CRAM
that acts as a bridge between the encoder and decoder in the proposed cross-resolution encoding
decoding paradigm. The overall design of our approach (CRAM) is shown in Figure 2.

Consider two feature maps X ∈ RC×h×w and Y ∈ RC×H×W . In our Cross-Resolution Encoding-
Decoding approach, the low-resolution feature X is fed to the encoder layers, while the high-resolution
feature Y is fed to the attention transfer module. To transfer the knowledge of the encoder embed-
dings (Xe = Encoder(X), Xe ∈ RC×h×w) to Y , we spatially upsample (X̂e = Upsample(Xe)|H,W X̂e ∈
RC×H×W ) the encoder output to match the resolution of Y , and a concatenation operation is performed.

Now, we use a linear projection layer, which combines the features information of the high-
resolution features and the upsampled low-resolution feature from the encoder. The output
(Z = Linear(Cat(Y,Xe))) is normalized via LayerNorm (Ba et al., 2016) and passed through SiLU
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activation (Hendrycks & Gimpel, 2016) (Ŷe = SiLU(LayerNorm(Z)), Ŷe ∈ RC×H×W ). We use the
residual connections to facilitate smoother optimization. This process is repeated as many times as
the number of encoder layers to refine the high-resolution Y by transferring the knowledge embedded
in the encoder layers. The input to CRAM is initialized with the high-resolution feature from an
intermediate backbone stage (Sec. 2), whereas the final Ŷe is fed to the decoder for the predictions

Computation Complexity An encoder layer has O(h2w2) complexity to process its input Xe ∈
Rh×w. In our case, we feed the encoder with Xe ∈ RH/r×W/r, where r ≥ 2, and feed the decoder with
Xd ∈ RH×W . In aggregation, we have a total complexity of O(H2W 2

r4 +HW ), which is far lower than
the vanilla encoder complexity of O(H2W 2). With this strategy, we achieve accuracy equivalent to
when the encoder is fed with the high-resolution feature while having at least 50% fewer overall
computations for r = 2. Specifically, w.r.t. vanilla encoder with high resolution, a FLOP saving of
50% is obtained. See Sec 4.2 for the computational complexity analysis.

Why Could Cross Resolution Attention Transfer Improve Performance? In vanilla DETR
design, the encoder embeddings are produced from stage-5 (low-resolution) and have global receptive
filed via self-attention (Dosovitskiy et al., 2020), which are fed to the decoder for the predictions.
However, these embeddings do not have fine details of smaller objects. On the other hand, the
high-resolution input Y (earlier stages, e.g., stage-4) to CRAM has a small receptive field but has
details of smaller objects.

In CRAM, the concatenation operation followed by a linear layer infuses the local and global context
to produce fine-grained, high-resolution features, similar to what earlier semantic segmentation
approaches (Zhao et al., 2017) used for improving performance. In the same way, with this operation,
the high-resolution feature Y acquires a global receptive field when concatenated with the encoder
embedding or tokens Xe. After the layerwise refinement, it is fed to the decoder, which improves the
accuracy and speed; even the encoder still functions at a smaller resolution.

3.2 ONE STEP MULTISCALE ATTENTION (OSMA)

In single-scale operation of DETRs (Liu et al., 2022; Li et al., 2022), the backbone output Fb is fed
to the encoder. However, Fb does not have direct access to the multiscale information. Whereas
multiscale DETRs feed the encoder with either sampled (Zhu et al., 2021) or dense multiscale features
(Zhang et al., 2023b), which is computationally heavy.

We propose OSMA, which produces Fo enriched with multiscale information, i.e., the best of
both single-scale and multiscale methods without progressive fusion, i.e., fusing two scales at a
time (yol)(Figure 1). In general, Fb has a stride 32 w.r.t. the input (He et al., 2016); however, using
multiscale features, OSMA can produce a feature map Fo (‘o’ refers to OSMA) of stride greater or
lesser than 32 which directly controls the encoder computations. With this functionality, OSMA
offers better features or tokens enriched with multiscale information to be utilized by the encoder.

OSMA has three main steps: First, Local aggregation of multiscale features, Second, performing one-
step attention on the aggregated features, and Third, broadcasting the output into desired resolution.

Local Aggregation of Multiscale Features. This step aggregates n multiscale features F i ∈RC×Hi×Wi

obtained from the backbone, where i = 0,1, ...n−1 is the scale index (Figure 3). In this step, all the
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features are first divided into non-overlapping grids of size gi = 2i ∗g. The total number of grids for
all the scales is equal and is given by Ng = Hi/gi ×Wi/gi.

Let F i
j ∈ RC×g×g denotes feature map of jth-grid of F i, where j = {0,1, ...Ng}. For each scale, we

flatten F i
j in spatial dimension and stack all its features with its corresponding grids in other scales, as

shown in colors in Figure 3. This results in a matrix M j ∈ RC×T for each grid. This step is repeated
for each non-overlapping grid, and we obtain Ng matrices, referring as Q ∈ RNg×T×C. The number
Ng is absorbed into the batch dimension while processing batched training or inference so that all
the matrices can be processed in parallel. This step requires all the feature maps F i to be an integral
multiple of g. Hence, we align all the feature maps w.r.t. gi before performing local aggregation via
bilinear interpolation. See Table 5 for ablation on ‘g’.

One Step Multiscale Attention. We perform information fusion by attending to all the multiscale
features and their channels simultaneously, thus calling it a one-step multiscale attention. We describe
this process for a single grid or M j, also depicted in Figure 4.

In the attention process, M j undergoes a 1×1 convolution operation with weights W ∈ Rd×T×1×1

which projects M j in a d dimensional latent space. The 1×1 layer combines information from all the
T multiscale features with a unit stride. In this way, the output of multiscale information becomes
richer. Then, we perform a layer normalization over the columns of M j followed by SiLU activation
(See Sec. 4.2).

This process is repeated for feature refinement, and the penultimate 1×1 layer produces P channels.
The final layer is a linear projection applied over the columns of M̂ j to refine the column information
because a column becomes a feature ∈ RC in the output feature map Fo. The output of this step
Q̂ ∈ RNg×P×C is broadcasted into a feature based on the requirements, as discussed next. Output
Feature Broadcasting. This step broadcasts Q̂ into a feature map Fo of the desired resolution based
on the pair {g0,P}. For example, for g0 = 1, if we aim to produce a feature Fo of size H0 ×W0, the
value of P will be set to 1, or if a feature Fo of size 2H0 ×2W0 is required, P can be set to 4, or if a
feature Fo of size H0/2×W0/2 is needed, {g0 = 2,P = 1} can be used.

This flexibility of generating Fo of desired resolution allows controlling the encoder’s input resolution
and, hence, its computations. Meanwhile, multiscale information infusion helps improve DETR
accuracy with a slight computational overhead. We have studied various {g0,P} combinations, and
our empirical results show that {g0 = 1,P = 1} is the best combination for keeping the resolution of
Fo equals to F0 whereas {g0 = 2,P = 1} is best for reducing the resolution. See Table 5.

3.3 CONFIGURING CRED FOR DETRS

We mainly test two important configurations. In all the configurations, OSMA feeds the encoder,
whereas CRAM feeds the decoder. OSMA is always fed with {F3,F4,F5} output of backbone
(Figure 1). Each configuration has different settings for OSMA and input sources for CRAM.

Default. OSMA operates at {g0 = 1,P = 1} i.e. its output resolution is same as F5. Whereas CRAM
is fed with F4. In other words, the encoder runs at half the resolution of the decoder.

Configuration: ‘DC×0.25’. OSMA operates at {g0 = 2,P = 1}, producing feature map of half the
resolution of F5 or quarter of F4 or quarter of DC. Whereas CRAM is fed with F4. This configuration
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evaluates the capability of our Cross-Resolution Encoding-Decoding when the encoder is fed with a
very low-resolution map. For comparison, the encoder in baselines is fed with F5 downsampled to
half of its resolution. Since this resolution is 1/4 of DC resolution, it is named as DC×0.25.

Additional Configuration: ‘OO’ This is similar to the default configuration except the input
source to CRAM. We use two instances of OSMA: OSMAe and OSMAc. The former operates at
{g0 = 1,P = 1}, feeding the encoder, while the latter operates at {g0 = 1,P = 4}, i.e. in upsampling
mode, feeding CRAM with a resolution equivalent to F4. This configuration tests the capability of
OSMA to fuse multiscale information while increasing the output resolution.

Based on the computational budget, F3 can also be fed to CRAM in the above configurations.
However, due to the large feature resolution, decoder computations also come into play, given high-
resolution images in the MS-COCO benchmark (Lin et al., 2014). Hence, although we have analyzed
its effect (See supplement), we do not use this configuration.

4 EXPERIMENTS

Dataset and Evaluation Metric. Following (Carion et al., 2020; Liu et al., 2022; Li et al., 2022), we
use MS-COCO 2017 benchmark (Lin et al., 2014) for evaluation, having 117k training images and
5k validation images. We use MS-COCO’s standard evaluation metric of Average Precision (AP) at
different thresholds and different object scales.

Implementation Details. We plug the proposed CRED into state-of-the-art DN-DETR (Li et al.,
2022) for all our experimental evaluations, including ablations. However, to showcase generality, we
also adapt CRED into other prominent DETR methods, e.g., Conditional DETR (Meng et al., 2021),
DAB-DETR (Liu et al., 2022) etc.

We perform experiments in the 50-epoch setting, widely used for DETRs (Liu et al., 2022; Li et al.,
2022; Zhang et al., 2023a). We also show results for the 12-epoch or 1× (Li et al., 2022) setting
to demonstrate accelerated convergence due to the improved DETR design in this paper. The base
learning for the backbone is set to 1×10−5 while for the transformer, it is set to 1×10−4. For the
12-epoch schedule, the learning rate is dropped by 0.1 at 11th epoch, whereas it is dropped at 40th

epoch for the 50-epoch schedule. We use 8× NVIDIA A40 with a batch size of 16 (2 per-GPU) for
training. All the ablations are performed at the 1× setting.

4.1 MAIN RESULTS

CRED in DETR: 50-Epoch Setting. We plug CRED into representative DETR frameworks. Table 1
shows that CRED boosts the AP in each DETR pipeline. Compared with the baseline without DC,
CRED introduces a slight overhead of 9G FLOPs with only 1−2FPS drop. Compared with recent
IMFA (Zhang et al., 2023a), the overhead is ∼ 36% less with an improvement of +4FPS. Our CRED
also performs better regarding runtime than the recent sparse sampling-based method (Zhang et al.,
2023a).

Further, when plugged in Conditional-DETR (Meng et al., 2021), CRED delivers the same accuracy at
50% more FPS than the advanced high-resolution DAB-DETR-DC5-R50 (Li et al., 2022). Similarly,
with DN-DETR, CRED delivers the same accuracy at 76% more FPS and 50% fewer FLOPs.

CRED in DETR: 12-Epoch Setting. Evaluations in this setting show that CRED speeds up
convergence with slight overhead. From Table 1, CRED with DAB-DETR (Liu et al., 2022) is
better than vanilla DAB-DETR by 3.3AP with only a drop of 2FPS. Compared with high-resolution
DAB-DETR-DC5, CRED is accurate by 0.4AP at 50% fewer FLOPs and 76% more FPS.

With DN-DETR (Li et al., 2022), CRED achieves beyond 41AP in just 103G FLOPs, implying
that CRED improves the convergence speed (See Figure 5), i.e. DN-DETR via CRED achieves the
performance of its DC counterpart in just 12 epochs at 50% fewer FLOPs and 76% higher FPS. From
the table, CRED can improve the performance of smaller backbones like ResNet18 while delivering
real-time performance (> 30FPS). This indicates the utility of CRED where smaller backbones are
used due to resource constraints. Hence, by using CRED, detection performance can be boosted

CRED in DETR: DC×0.25 Setting. This setting is crucial to show the utility of CRED in DETRs
for real-time performance. From Table 1, when encoder resolution is dropped to half (DC×0.25)
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Table 1: Comprehensive evaluation of CRED when applied in prominent DETR models under different settings,
i.e., training duration, encoder resolution. Our CRED performs better and faster than DETRs operating at high
resolution (DC). ‘R50: ResNet50 and ‘R18: ResNet18 He et al. (2016). Refer to Sec.3.3 for DC×0.25.

Method #Epochs #Params #FLOPs #FPS AP AP50 AP75 APS APM APL

• Conditional DETR-R50 Meng et al. (2021) 50 44M 90G 26 40.9 61.8 43.3 20.8 44.6 59.2
• Conditional DETR-DC5-R50 Meng et al. (2021) 50 44M 195G 15 43.8 64.4 46.7 24.0 47.6 60.7
• Conditional DETR-R50 Meng et al. (2021) + CRED 50 45M 100G 25 44.4 64.6 47.8 25.2 46.9 60.7

• DAB DETR-R50 Liu et al. (2022) 50 44M 94G 25 42.2 63.1 44.7 21.5 45.7 60.3
• DAB DETR-DC-R50 Liu et al. (2022) 50 45M 202G 13 44.5 65.1 47.7 25.3 48.2 62.3
• DAB DETR-R50 Liu et al. (2022) + IMFA Zhang et al. (2023a) 50 53M 108G 18 45.5 65.0 49.3 27.3 48.3 61.6
• DAB DETR-R50 Liu et al. (2022) + CRED 50 45M 103G 23 45.4 64.9 49.4 27.0 48.5 62.2

• DN-DETR-R50 Li et al. (2022) 50 44M 94G 25 44.1 64.4 46.7 22.9 48.0 63.4
• DN-DETR-DC5-R50 Liu et al. (2022) 50 44M 202G 13 46.3 66.4 49.7 26.7 50.0 64.3
• DN-DETR-R50 Li et al. (2022) + CRED 50 45M 103G 23 46.2 65.8 49.8 26.8 50.0 63.5

12 Epoch Schedule

• Conditional DETR-R50 Meng et al. (2021) 12 44M 90G 26 32.4 52.1 33.9 14.2 35.2 48.4
• Conditional DETR-R50 + CRED 12 45M 100G 25 36.6 56.2 38.7 18.8 39.5 52.6

• DAB DETR-R50 Liu et al. (2022) 12 44M 94G 25 35.1 55.5 36.7 16.2 38.1 52.5
• DAB DETR-R50-DC5 Liu et al. (2022) 12 44M 202G 13 38.0 60.3 39.8 19.2 40.9 55.4
• DAB DETR-R50 Liu et al. (2022) + IMFA Zhang et al. (2023a) 12 53M 108G 18 37.3 57.9 39.9 20.8 40.7 52.3
• DAB DETR-R50 Liu et al. (2022) + CRED 12 45M 103G 23 38.4 58.4 41.0 20.0 41.8 53.9

• DN-DETR-R50 Li et al. (2022) 12 44M 94G 25 38.6 59.1 41.0 17.3 42.4 57.7
• DN-DETR-DC5-R50 Li et al. (2022) 12 44M 202G 13 41.7 61.4 44.1 21.2 45.0 60.2
• DN-DETR-R50 Li et al. (2022) + CRED 12 45M 103G 23 41.1 60.6 44.0 22.2 44.1 58.9

• DAB DETR-R18 Liu et al. (2022) 12 31M 49G 38 29.8 49.0 30.5 10.9 32.5 46.9
• DAB DETR-R18 Liu et al. (2022) + IMFA Zhang et al. (2023a) 12 40M 61G 23 31.2 51.5 32.3 13.0 33.2 49.1
• DAB-DETR-R18 Liu et al. (2022) + CRED 12 32M 60G 31 33.5 52.0 35.2 16.7 36.0 46.2

• DN-DETR-R18 Li et al. (2022) 12 31M 49G 38 32.5 51.6 33.7 13.5 35.1 49.4
• DN-DETR-R18 Li et al. (2022) + CRED 12 32M 60G 31 35.0 54.0 36.9 16.3 37.0 51.4

DC×0.25 Configuration

• DAB DETR-R50 Liu et al. (2022) 12 44M 94G 25 35.1 55.5 36.7 16.2 38.1 52.5
• DAB DETR-R50 Liu et al. (2022) DC×0.25 12 44M 80G 26 28.4 48.9 30.0 9.8 31.5 47.0
• DAB DETR-R50 Liu et al. (2022) + IMFA Zhang et al. (2023a) DC×0.25 12 44M 96G 18 33.0 54.2 34.5 16.1 35.3 46.5
• DAB-DETR-R50 Liu et al. (2022) + CRED DC×0.25 12 45M 94G 24 37.5 57.9 40.1 18.8 40.7 53.0

• DN-DETR-R50 Li et al. (2022) 12 44M 94G 25 38.6 59.1 41.0 17.3 42.4 57.7
• DN-DETR-R50 Li et al. (2022) DC×0.25 12 44M 80G 26 31.5 52.7 31.5 10.8 33.7 52.0
• DN-DETR-R50 Li et al. (2022) + CRED DC×0.25 12 45M 94G 24 40.0 59.4 42.8 20.7 43.1 56.4

• DN-DETR-R50 Li et al. (2022) 50 44M 94G 25 44.1 64.4 46.7 22.9 48.0 63.4
• DN-DETR-R50 Li et al. (2022) DC×0.25 50 44M 80G 26 39.9 60.1 41.9 19.2 43.5 59.7
• DN-DETR-R50 Li et al. (2022) + CRED DC×0.25 50 45M 94G 24 45.8 64.9 49.1 25.9 49.1 62.8

• DAB DETR-R18 Liu et al. (2022) 12 31M 49G 38 29.8 49.0 30.5 10.9 32.5 46.9
• DAB DETR-R18 Liu et al. (2022) DC×0.25 12 31M 40G 39 24.0 43.8 25.2 4.7 27.9 42.0
• DAB DETR-R18 Liu et al. (2022) + IMFA Zhang et al. (2023a) DC×0.25 12 40M 50G 25 27.8 46.9 28.8 14.1 29.5 29.5
• DAB-DETR-R18 Liu et al. (2022) + CRED DC×0.25 12 32M 51G 34 32.2 50.9 34.1 15.9 35.2 44.9

• DN-DETR-R18 Li et al. (2022) 12 31M 49G 38 32.5 51.6 33.7 13.5 35.1 49.4
• DN-DETR-R18 Li et al. (2022) DC×0.25 12 31M 40G 39 27.0 46.4 26.9 8.3 28.0 45.6
• DN-DETR-R18 Li et al. (2022) + CRED DC×0.25 12 32M 51G 34 34.2 53.0 36.2 16.0 36.1 50.0
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Figure 5: Convergence plots over MS-COCO validation set. (a) It can be seen that despite having 50% fewer
FLOPs and 76% higher FPS, CRED converges similarly to the baseline. (b) DETR with smaller backbone and
their DC×0.25 variants in 12 epoch setting. Notice that even in the smaller backbone, CRED-enabled model
with and without DC×0.25 have similar accuracy, but this gap is noticeable in the baselines with and without
DC×0.25. This strengthens the utility of CRED that encoder input resolution can be aggressively dropped to
save computations while having better accuracy.

of any vanilla DETR pipeline, it degrades the performance while also reducing FLOP requirement.
However, the degradation in the performance supersedes the reduced FLOPs.

Whereas CRED in this configuration delivers performance better than the vanilla variant. For example,
for vanilla DAB-DETR-R50, the AP drops from 35.1 to 28.4 with DC×0.25; however, by using
CRED in DC×0.25 configuration, we achieve +2.4AP than the vanilla DAB-DETR-R50 in same
FLOPs and same FPS. A similar case applies to DN-DETR variants with different backbones.
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Table 2: Comparison with state-of-the-art object detectors on COCO val 2017. ‘MS’: Multiscale, ‘SM’: Sparse
Multiscale Sampling, and ‘DC’: Dilated Convolution. FPS is reported at (800×1280)

Method MS SM DC #Epochs #Params #FLOPs #FPS AP AP50 AP75 APS APM APL

• YOLOS-DeiT-S Fang et al. (2021) 150 28M 172G − 37.6 57.6 39.2 15.9 40.2 57.3
• Faster-RCNN-FPN-R50 Ren et al. (2015); Lin et al. (2017) ✓ 108 42M 180G − 42.0 62.1 45.5 26.6 45.5 53.4
• TSP-FCOS-FPN-R50 Sun et al. (2021b) ✓ 36 52M 189G − 43.1 62.3 47.0 26.6 46.8 55.9
• TSP-RCNN-FPN-R50 Sun et al. (2021b) ✓ 36 64M 188G − 43.8 63.3 48.3 28.6 46.9 55.7
• Faster RCNN-FPN-R101 Ren et al. (2015); Lin et al. (2017) ✓ 108 60M 246G − 44.0 63.9 47.8 27.2 48.1 56.0
• Sparse-RCNN-FPN-R50 Sun et al. (2021a) ✓ 36 106M 166G − 45.0 64.1 48.9 28.0 47.6 59.5

• DETR-DC5-R50 Carion et al. (2020) ✓ 500 41M 187G 16 43.3 63.1 45.9 22.5 47.3 61.1
• SAM-DETR-DC5-R50 Zhang et al. (2022) ✓ 50 58M 210G − 43.3 64.4 46.2 25.1 46.9 61.0
• SMCA-DETR-R50 Gao et al. (2021a) ✓ 50 40M 152G − 43.7 63.6 47.2 24.2 47.0 60.4
• Deformable-DETR-R50 Zhu et al. (2021) ✓ 50 40M 173G 13 43.8 62.6 47.7 26.4 47.1 58.0
• Conditional-DETR-DC5-R50 Meng et al. (2021) ✓ 50 44M 195G 15 43.8 64.4 46.7 24.0 47.6 60.7
• Anchor-DETR-DC5-R50 Wang et al. (2021) ✓ 50 37M 172G − 44.2 64.7 47.5 24.7 48.2 60.6
• Efficient-DETR-R50 Yao et al. (2021) ✓ 36 32M 159G − 44.2 62.2 48.0 28.4 47.5 56.6
• DAB-DETR-DC5-R50 Liu et al. (2022) ✓ 50 44M 202G 13 44.5 65.1 47.7 25.3 48.2 62.3
• SAM-DETR-DC5-R50 Zhang et al. (2022) w/ SMCA ✓ 50 58M 210G − 45.0 65.4 47.9 26.2 49.0 63.3
• Conditional DETR-DC5-R101 Meng et al. (2021) ✓ 50 63M 262G 10 45.0 65.5 48.4 26.1 48.9 62.8
• DN-DETR-R101 Li et al. (2022) ✓ 50 63M 174G − 45.2 65.5 48.3 24.1 49.1 65.1
• Deformable-DAB-DETR-R50 Zhu et al. (2021) ✓ ✓ 50 41M 173G 12 45.4 64.7 49.0 26.8 48.3 61.7
• IMFA-DAB-DETR-R50 Zhang et al. (2023a) ✓ 50 53M 108G 18 45.5 65.0 49.3 27.3 48.3 61.6
• DAB DETR-DC5-R101 Liu et al. (2022) ✓ 50 63M 282G 10 45.8 65.9 49.3 27.0 49.8 63.3
• SAP-DETR-DC5-R50 Liu et al. (2023) 50 47M 197G 12 46.0 65.5 48.9 26.4 50.2 62.6
• DN-DETR-DC5-R50 Li et al. (2022) ✓ 50 44M 202G 13 46.3 66.4 49.7 26.7 50.0 64.3
• Siamese-DETR-R50 Chen et al. (2023) ✓ ✓ 50 41M 173G − 46.3 64.6 50.5 28.1 50.1 61.5
• Lite-DETR-R50 Li et al. (2023) ✓ ✓ 50 41M 123G 15 46.7 66.1 50.6 29.1 49.7 62.2
• SAP-DETR-DC5-R101 Liu et al. (2023) 50 67M 266G 11 46.9 66.7 50.5 27.9 51.3 64.3

• DAB DETR-R50 Liu et al. (2022) + CRED 50 45M 103G 23 45.4 64.9 49.4 27.0 48.5 62.2
• DN-DETR-R50 Li et al. (2022) + CRED DC×0.25 50 45M 94G 24 45.8 64.9 49.1 25.9 49.1 62.8
• DN-DETR-R50 Li et al. (2022) + CRED 50 45M 103G 23 46.2 65.8 49.8 26.8 50.0 63.5
• DN-DETR-R50 Li et al. (2022) + CRED-OO 50 45M 105G 23 46.8 66.8 50.5 27.4 50.7 64.0

12 Epoch Schedule

• DETR-R50 Carion et al. (2020) 12 41M 86G 27 15.5 29.4 14.5 4.3 15.1 26.7
• Deformable DETR-R50 Zhu et al. (2021) ✓ 12 40M 173G 12 37.2 55.5 40.5 21.1 40.7 50.5
• DAB DETR-R50 Liu et al. (2022) + IMFA Zhang et al. (2023a) ✓ 12 53M 108G 18 37.3 57.9 39.9 20.8 40.7 52.3
• DAB DETR-DC-R101 Carion et al. (2020) ✓ 12 63M 282G 10 40.3 62.6 42.7 22.2 44.0 57.3

• DN-DETR-R18 Li et al. (2022) + CRED DC×0.25 12 32M 51G 34 34.2 53.0 36.2 16.0 36.1 50.0
• DN-DETR-R18 Li et al. (2022) + CRED 12 32M 60G 31 35.0 54.0 36.9 16.3 37.0 51.4
• DAB-DETR-R50 Liu et al. (2022) + CRED DC×0.25 12 45M 94G 24 37.5 57.9 40.1 18.8 40.7 53.0
• DAB DETR-R50 Liu et al. (2022) + CRED 12 45M 103G 23 38.4 58.4 41.0 20.0 41.8 53.9
• DN-DETR-R50 Li et al. (2022) + CRED DC×0.25 12 45M 94G 24 40.0 59.4 42.8 20.7 43.1 56.4
• DN-DETR-R50 Li et al. (2022) + CRED 12 45M 103G 23 41.1 60.6 44.0 22.2 44.1 58.9

CRED vs State-of-the-art. We also compare our CRED with state-of-the-art object detection
pipelines with multiscale, high-resolution, and sparse sampling approaches. Table 2 shows the results.
From the table, it can be seen that CRED-DETR models are better by a large margin (> 50%) in
FLOPs and FPS while delivering accuracy comparable with state-of-the-art methods. Even ResNet-18
based models with CRED show competitive performance with Deformable-DETR (Zhu et al., 2021),
DAB-DETR (Liu et al., 2022), IMFA (Zhang et al., 2023a) with a stronger backbone ResNet-101.

CRED w/ ResNet-50 performs better than heavy models, even in DC×0.25 configuration and 12-
epoch setting. For example, DN-DETR-R50 + CRED DC×0.25 is better than multiscale Deformable-
DETR-R50 (Zhu et al., 2021) by 2.8AP, 45% fewer FLOPs and 50% higher FPS. Similarly, DN-
DETR-R50 + CRED is better than DAB-DETR-DC5-R101 by 0.8AP, 63% fewer FLOPs, and 130%
higher FPS. Then DN-DETR-R50 + CRED-OO has 60% fewer FLOPs than (Liu et al., 2023) with the
same accuracy. Furthermore, the accuracy can be improved using the latest DETR-training techniques
of (Zhao et al., 2024a; Hou et al., 2024), which we leave for future work.

Figure 6 further strengthens our results, that CRED, while delivering comparable performance to the
state-of-the-art, have far fewer FLOPs and higher FPS. Also, the results indicate that by utilizing the
DC×0.25 configuration in CRED, DETRs of real-time speed and high accuracy can be constructed,
indicating the huge potential of Cross-Resolution Encoding-Decoding in state-of-the-art DETRs.

4.2 ABLATIONS

We conduct a comprehensive ablation study on CRED design by using the state-of-the-art DN-DETR
(Li et al., 2022) framework and provide insight on the design motivations.

Effect of CRAM and OSMA. We analyze the effect of OSMA (Sec. 3.2) and CRAM (Sec. 3.1).
Table 3 shows the analysis. It can be seen that by using any of OSMA or CRAM into the baseline,
the accuracy improves. By using OSMA alone, AP increases by 1.2, indicating that OSMA produces
better input features or tokens for the encoder. While by using only CRAM, AP improves by 1.8AP.
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Figure 6: The proposed CRED vs representative DETRs Liu et al. (2022); Li et al. (2022); Zhu et al. (2021); Liu
et al. (2023); Li et al. (2023) etc. (a,b) 50-Epochs, and (c,d) 12-epochs. ‘ and ‘ refers to CRED and existing
models respectively. The size of the circle is proportional to the parameter count.

Table 3: Effect of OSMA and CRAM in CRED.

OSMA CRAM #Params #FLOPs AP AP50 AP75 APS APM APL

44M 94G 38.6 59.1 41.0 17.3 42.4 57.7
✓ 45M 97G 39.8 59.7 42.5 19.1 43.2 58.1

✓ 45M 100G 40.4 60.1 43.1 21.2 43.6 58.3
✓ ✓ 45M 103G 41.1 60.6 44.0 22.2 44.1 58.9

Table 4: Computation complexity analysis of CRED.

Method Backbone Encoder Decoder CRAM OSMA Total FPS AP50

• DN-DETR-R50 Li et al. (2022) 74G 12G 8G − − 94G 25 44.1
• DN-DETR-DC5-R50 Li et al. (2022) 112G 80G 10G − − 202G 13 46.3
• DN-DETR-R50 Li et al. (2022) + CRED 74G 12G 10G 3G 2G 103G 23 46.2

Using both the modules, we get an overall improvement of 2.5AP at a reduction of only 2FPS and
negligible parameter overhead. Interestingly, AP for small objects increases by ∼ 5AP. If we compare
this with the DC variant of the baseline, we perform on par in roughly 99G fewer FLOPs, which is
inspirational. This accuracy gap is reduced in the 50 epoch setting.

Hence, we conjecture that feeding multiscale information to the encoder via OSMA while transferring
the low-resolution encoded information to high-resolution feature via CRAM proves to be highly
effective in DETRs from both accuracy and runtime perspective.

Computational Complexity. Table 4 shows the effect of using CRAM and OSMA in DN-DETR.
It can be seen that the overhead of these modules is ∼ 5G FLOPs. However, overall computations
slightly increase due to the increased resolution of the decoder when fed by CRAM.

Ablation of OSMA Hyperparameters. OSMA mainly has intermediate projection dimension d and
grid size g as hyperparameters. Another ablation exists within the OSMA design, i.e., the number of
input multiscale features. We study them individually in Table 5.

The first two rows show the effect of input multiscale features. As we include more high-resolution
features, overall AP increases along with the AP of small objects. This indicates OSMA’s one-step
attention mechanism effectively produces feature maps infused with multiscale information.

We also change grid size g. Increasing the grid size g0 = 2 reduces the FLOPs by 2G because T
(Figure 3) increases and Ng decreases. However, we observed a reduction in the AP. We hypothesize
that this happens because the stage-5 (F5) feature is the smallest resolution. When more than two
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Table 5: Ablation of OSMA design.

ablation F5 F4 F3 g0 P d #Params #FLOPs AP AP50 AP75 APS APM APL

✓ ✓ 1 1 21 45M 101G 40.2 59.5 43.2 21.3 43.2 57.9changing
#scales ✓ ✓ ✓ 1 1 21 45M 103G 41.1 60.6 44.0 22.2 44.1 58.9

✓ ✓ ✓ 2 2 21 45M 101G 39.7 59.5 42.3 21.0 42.7 56.8Vary ‘{g0,P}’
Same res. ✓ ✓ ✓ 1 1 21 45M 103G 41.1 60.6 44.0 22.2 44.1 58.9

✓ ✓ ✓ 2 1 21 45M 94G 40.0 59.4 42.8 20.7 43.1 56.4Vary ‘{g0,P}’
DC×0.25. ✓ ✓ ✓ 4 4 21 45M 92G 39.4 59.0 42.1 19.8 42.7 56.0

Vary ‘d’ ✓ ✓ ✓ 1 1 40 45M 114G 41.5 61.1 44.2 22.4 44.8 59.6

features using g0 = 2 are fused with high-res features, the individual feature at low-resolution loses
its chance to interact with the high-resolution features individually because these features already
have relatively large receptive fields and carry more information.

Although we are interested in keeping the values of d equal to T , we analyze its effect. We observe
that it increases the FLOPs while slightly improving the AP. Hence, based on the computational
budget requirements, one can change d to achieve the desired performance and runtime.

Table 6: Effect of LayerNorm Ba et al. (2016) and activations in CRED.

LayerNorm Activation #Params #FLOPs AP AP50 AP75 APS APM APL

✓ ReLU 45M 103G 40.6 60.4 43.6 21.6 43.6 57.9
✓ SiLU 45M 103G 41.1 60.6 44.0 22.2 44.1 58.9
✗ SiLU 45M 103G 39.3 59.1 41.9 20.8 42.5 56.6

Table 7: Ablation of CRAM design.

Input #Params #FLOPs AP AP50 AP75 APS APM APL

F4 45M 103G 41.1 60.6 44.0 22.2 44.1 58.9
F3 45M 147G 42.1 61.4 44.9 23.3 44.8 59.4

CRED Design. Within the CRED design, we study the effect of different activations and the specified
use of layer normalization (Ba et al., 2016). Table 6 shows that using ReLU or removing LayerNorm
from CRED decreases accuracy. This justifies the configuration described in the paper.

Ablation of CRAM. CRAM is studied by changing its input resolution and source. Table 7 shows
that despite feeding the encoder with low resolution, CRAM can effectively transfer the encoder
knowledge to the high-resolution feature. By default, we feed resolution equal to F4 to CRAM. When
we feed CRAM with F3, the computations in the decoder increase mainly in the cross-attention.
Although it improves AP, the rise in FLOPs is notable. Hence, we restrict ourselves to feeding CRAM
with resolution up to F4.

5 CONCLUSION

In this work, we present a novel Cross-Resolution Encoding-Decoding (CRED) mechanism to
improve the accuracy and runtime of DETR methods. CRED is based on its two novel modules
Cross Resolution Attention Module (CRAM) and One Step Multiscale Attention (OSMA). CRAM
transfers the knowledge of low-resolution encoder output to a high-resolution feature. While OSMA
is designed to fuse multiscale features in a single step and produce a feature map of a desired
resolution. With the application of CRED into state-of-the-art DETR methods, FLOPs get reduced by
50%, and FPS increases by 76% than the high-resolution DETR at equivalent detection performance.

Future Scope & Limitations: CRED with its promising results shows huge potential in real-time and
affordable DETRs with high accuracy and high-resolution image processing. There is greater scope
for improvements, e.g., fusing CRAM and OSMA for even higher performance or adapting CRED
to sparse sampling-based DETRs because the current design can not fuse high-resolution features
with sparsely sampled encoder embeddings. In addition, CRED has huge scope in Transformer-
based semantic or instance segmentation by leveraging its attention transfer to improve runtime for
processing high-resolution images because semantic segmentation produces high-resolution outputs.
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DETECTION VISUALIZATIONS ON MS-COCO VALIDATION SET

A QUALITATIVE COMPARISON WITH DN-DETR-R50 (LI ET AL., 2022) AND
DN-DETR-DC5-R50 LI ET AL. (2022)

To put the qualitative results in context, we have compared CRED-DETR with baseline DN-DETR
with low resolution and DC5 setting. Please refer to Figure 7.

CRED-DETR
(AP = 46.8, FLOPs = 105G, FPS = 23)

DN-DETR (Li et al., 2022)
(AP = 44.4, FLOPs = 100G, FPS = 25)

DN-DETR-DC5 (Li et al., 2022)
(AP = 46.3, FLOPs = 202G, FPS = 13)

Figure 7: It can be seen that the proposed CRED-DETR can detect objects with high accuracy. Top: CRED-
DETR detects almost all of the persons standing in the top (4th row) in the image, including the tie. In contrast,
baselines struggle to achieve the same as indicated in rows 1-3 in the top image. Middle: CRED-DETR can
detect the instances of person visible with very small field of view. However, the DC5 variant of the baseline can
not be detected. bottom: CRED-DETR detects more number of persons. The baseline DN-DETR misclassifies
the front region of the train as a suitcase, while CRED-DETR does not. The same is verified with empirical
results provided in the paper.
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B QUALITATIVE ANALYSIS

Below we have visualized detection results from CRED-DETR from MS-COCO 2017 validation set.
The images covers wide range of object from tiny, small to large. It can be seen that CRED-DETR,
despite running at low resolution in the encoder, is able to detect all categories of object.
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