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ABSTRACT

Recent work has achieved remarkable zero-shot performance with multi-task
prompted pretraining, but little has been understood. For the first time, we show
that training on a small number of key tasks beats using all the training tasks,
while removing these key tasks substantially hurts performance. We also find that
these key tasks are mostly question answering (QA) tasks. These novel findings
combined deepen our understanding about zero-shot generalization—training on
certain tasks such as QA encodes general knowledge transferable to a wide range
of tasks. In addition, to automate this procedure, we devise a method that (1) iden-
tifies key training tasks without observing the test tasks by examining the pairwise
generalization results and (2) resamples training tasks for better data distribution.
Empirically, our approach achieves improved results across various model scales
and tasks. 1

1 INTRODUCTION

Recent work (Brown et al., 2020; Artetxe et al., 2022; Rae et al., 2021) has demonstrated the potential
of leveraging pretrained language models (PLMs) to perform zero-shot generalization. Zero-shot
generalization enables PLMs to adapt to a variety of natural language processing (NLP) tasks without
relying on any annotated data, which opens the possibility towards generic systems.

Pretrained models, such as GPT-3 (Brown et al., 2020), BERT (Devlin et al., 2019) and T5 (Raffel
et al., 2020), can perform zero-shot inference on unseen test tasks by leveraging natural language
prompts and formulating NLP tasks into language modeling tasks. More recent advances (Wei et al.,
2022; Sanh et al., 2022) performed multi-task prompted training on PLMs and further enhanced the
zero-shot performance to a large extent. Despite the substantial progress, few works have studied how
multi-task prompted training boosts the zero-shot performance. The lack of understanding hinders
further improvement of the field.

To this end, we take a further step to understand multi-task training for zero-shot generalization (1)
by selecting only a small number of key training tasks and performing multi-task training and (2) by
studying the characteristics of tasks with general transfer ability. The results reveal several interesting
findings — First of all, only a small number of training tasks dominate the performance of zero-shot
generalization. In other words, using only these key training tasks to perform multi-task training leads
to good results, while removing these key tasks would drastically hurt the zero-shot performance.
Secondly, not all tasks are born equal, and some tasks show general transfer ability by providing
widely useful knowledge. Moreover, key tasks with general transfer ability can be automatically
detected using pairwise generalization results.

In addition, based on the findings, we propose an improved method, task resampling, which improves
multi-task training for zero-shot generalization to a large extent. Task resampling first automatically
identifies a set of key training tasks based on pairwise training and evaluation without peeking forward

∗Corresponding Authors.
1Our code is released at https://github.com/zhouj8553/Improving-T0.
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any test tasks, and then performs resampling by upsampling key tasks or downsampling non-critical
tasks, as shown in Figure 3. In this way, we build a better mixture of multi-task training sets to
highlight those key tasks with better general transfer ability. Experiments show that task resampling
consistently outperforms the previous approach T0 (Sanh et al., 2022) across three different model
scales and on test tasks of various types.

To sum up, our contributions are as follows.

1. We conduct experiments to understand and reveal how multi-task training for zero-shot general-
ization works—(1) Only a small number of training tasks dominate zero-shot generalization; (2)
Some key tasks provide general transfer ability and can be detected using pairwise generalization
results.

2. We devise a novel method, task resampling, to improve zero-shot generalization by (1) first
automatically identifying key training tasks based on pairwise training and evaluation without
observing any test tasks, and (2) resampling training tasks using upsampling and downsampling
strategies.

3. Experiments show that our approach achieves new state-of-the-art results across various model
scales and tasks.

2 RELATED WORK

2.1 ZERO-SHOT LEARNING IN NLP

Zero-Shot Learning denotes the setting when no data correlated with the test set is available during
the training stage. The early definition of zero-shot learning referred to predicting samples with
unseen classes, so traditional methods require prior information such as semantic knowledge (Zhang
et al., 2019a) or knowledge graph (Chen et al., 2021) for an unseen class so that model can predict
that class without training data. Meta-learning (Zhang et al., 2022) and reinforcement learning (Ye
et al., 2020) methods are also used for zero-shot learning.

Recently, more work focuses on the setting of predicting samples with unseen tasks, supported by the
development and prevalence of pre-trained language models (PLMs), as well as multi-task training.
McCann et al. (2018) unifies NLP tasks into QA-format to perform multi-task learning. Liu et al.
(2019) designs a multi-task deep neural network for natural language understanding tasks. Aghajanyan
et al. (2021) designs an intermediate training stage between pretraining and finetuning using around
50 tasks. Most recently, with the combination of the above two approaches, T0 and FLAN (Sanh
et al., 2022; Wei et al., 2022) have shown that explicit multi-task prompted training where all tasks
are unified by the natural language prompts can vastly promote zero-shot task generalization. We
build upon previous work within this new paradigm and devote ourselves to improving the recipe of
multi-task prompted training by revealing the mechanism of generalization in Section 3 and further
enhancing its performance in Section 4.

2.2 THE INTERPRETATION OF PROMPTED LEARNING

Recent work has shown an increased interest in how the prompts help the model generalize to unseen
tasks. Some researchers (Wei et al., 2022; Schick & Schütze, 2021; Mishra et al., 2022) suggest that
the model learns to understand what they are doing through prompts. While some work (Webson &
Pavlick, 2022; Logan IV et al., 2022) challenges this assumption, revealing that sometimes we could
get comparable performance without prompts or even with wrong prompts.

T0 (Sanh et al., 2022) claims that they only empirically witness the transfer phenomenon, but it is
unclear why it happens. We provide new insights into the reason for generalization. We challenge the
idea that the model learns the task through instructions, based on the observation that deleting a small
but important set of tasks will lead to transfer failure. We suggest that most generalization ability
comes from key tasks, which could be divided into specific and general transfer abilities. We hope
our discovery could promote the development of this field.
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2.3 TRANSFER RELATIONSHIPS IN MULTI-TASK LEARNING

Based on the observation that transfer ability comes from key tasks, we would like to further improve
the zero-shot performance by exploring the transfer relationships in multi-task learning. Some
previous works learn transfer relationships in supervised multi-task training. Taskonomy (Zamir et al.,
2018) builds a transfer structure of a series of computer vision tasks by training task-specific encoders
on each dataset and retraining the decoders on target datasets. Dwivedi & Roig (2019) and Song et al.
(2019) obtain the transfer relationship based on the assumption that transferable task-specific models
have similar representations or embeddings on the same data. Vu et al. (2020) learns the embedding
of each NLP task and tries to predict the transfer relationship between different datasets. ExT5
(Aribandi et al., 2022) learns the transferability by co-training the source task and target task and
evaluate on the target task. UnifiedQA (Khashabi et al., 2020) explores the transferability between
different QA tasks. The major challenge lies in that we could not get access to the test task at the
training stage, thus it is hard to figure out in advance which training tasks can be more useful for
unseen tasks. To address this challenge, we propose a reweighting method based on the transfer
performance of pairwise training tasks, which will be discussed in Section 4.

2.4 DATA AUGMENTATION IN NLP

Data Augmentation is widely used in NLP to strengthen the robustness and diversity of the data
distribution and promote the model performance. However, most of the approaches are conducted in
word-level (Zhang et al., 2015; Wang & Yang, 2015; Wei & Zou, 2019) and sentence-level (Kafle
et al., 2017; Hou et al., 2018; Khashabi et al., 2018; Zhang et al., 2018), or in other words, instance-
level. In our paper, to naturally cater for the multi-task setting, we adopt a new perspective and design
a cross-domain data augmentation which intersects each domain data with different kinds of tasks
and significantly improves the diversity of data distribution.

3 UNDERSTANDING ZERO-SHOT TASK GENERALIZATION

This section explores how multi-task training contributes to zero-shot generalization. By revealing
the mechanism of task transfer, we provide some insights for improving zero-shot performance.

3.1 DATA

We followed the setting of T0 (Sanh et al., 2022) and adopted the tasks therein. There are 38 training
tasks across 8 task types, and 11 test tasks ranging from natural language inference (RTE (Candela
et al., 2006), CB (De Marneffe et al., 2019), ANLI/R1-R3 (Nie et al., 2020)), coreference reso-
lution (WSC (Levesque et al., 2012), Winogrande (Sakaguchi et al., 2020)), sentence completion
(COPA (Roemmele et al., 2011), StoryCloze (Mostafazadeh et al., 2017), Hellaswag (Zellers et al.,
2019)), to word disambiguation (WiC (Pilehvar & Camacho-Collados, 2019)). Both training and test
sets are disjoint in task types, thus guaranteeing the zero-shot setting. We report the mean and median
accuracy over multiple prompts for each test task.

3.2 A SMALL NUMBER OF KEY TASKS DOMINATE PERFORMANCE

Since there has been little agreement on where the excellent zero-shot generalization performance
comes from, we would like to conduct experiments to explore its mechanism. Some researchers
believe that the model understands the prompts through multi-task training (Wei et al., 2022; Schick
& Schütze, 2021; Mishra et al., 2022), while we take an orthogonal perspective and hypothesize that
there might be a few key tasks that are crucial for the zero-shot generalization performance. For a
straightforward verification of the above hypothesis, we conduct two experiments.

Single Task Shows Zero-Shot Transfer Ability We set up an experiment to study the pairwise
transfer results between all pairs of tasks. Specifically, for any pair of tasks in the T0 collection, we
train on one task and evaluate on the other. We expect to decouple the effects of multi-task learning
and observe the transfer ability of single tasks. Results are shown in Figure 1. On the held-out test
tasks, the performance gap between multi-task training and single-task training is less than 5 points
on average. We also conduct experiments by training on top-3 tasks for each test dataset. The detailed
results are presented in Appendix D.1.
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Para-
phrase

Open 
QA Extractive QA Multiple Choice QA Sentiment S2T Summary Domain 

CLS NLI Sent 
Comp

Co-
ref.

MRPC 89 58 47 4 80 1 0 0 0 0 0 0 24 26 33 49 25 51 53 43 3 19 54 11 67 65 25 3 6 2 8 1 1 3 37 13 27 54 37 33 33 33 55 26 50 52 62 51
QQP 75 92 48 2 76 0 0 0 0 0 0 0 18 23 30 26 20 57 51 40 2 12 51 9 63 56 24 0 0 0 0 0 0 0 25 15 13 61 46 31 32 32 58 26 47 51 54 50 Paraphrase

PAWS 50 63 95 0 73 0 0 0 0 2 0 0 22 29 35 45 32 52 56 42 3 0 69 10 71 72 24 1 2 3 6 3 1 2 35 10 14 74 61 36 35 35 57 27 55 51 62 51
Hotpot QA 46 56 53 20 44 19 17 14 9 5 43 15 31 33 43 61 37 53 67 44 5 20 70 37 68 71 30 7 3 3 5 1 4 5 54 14 35 57 22 35 35 34 59 24 59 53 58 51

Open QAWiki QA 33 61 55 0 96 1 0 0 0 2 0 1 26 30 37 55 27 50 53 43 4 0 72 9 82 74 27 3 4 2 5 2 0 4 41 26 24 61 52 31 33 33 53 27 58 51 63 50
Adv./DBidaf 33 57 54 8 82 61 52 45 31 17 54 58 43 32 38 74 35 53 62 47 5 9 54 38 80 77 30 5 3 6 11 3 4 6 43 12 37 49 47 33 34 33 56 26 53 52 56 50

Extractive
QA

Adv./DBERT 32 62 54 9 78 56 51 45 30 16 57 60 38 32 43 71 37 54 67 47 5 9 56 38 70 68 30 5 4 7 12 2 4 6 49 23 30 49 38 33 33 33 61 26 55 52 55 50
Adv./DRoberTa 32 62 54 8 78 57 49 43 28 16 58 57 42 32 43 72 36 54 68 47 5 7 51 39 77 74 32 5 2 6 12 2 4 6 49 31 42 48 40 33 33 33 62 27 56 53 55 50

DuoRC/Self. 61 46 51 6 57 28 22 19 39 20 36 43 34 32 46 69 41 54 63 42 6 2 65 13 78 66 34 7 7 8 7 3 7 7 46 22 34 57 43 33 33 34 56 27 46 52 44 50
DuoRC/Para. 58 42 47 7 32 34 25 20 36 29 39 54 34 32 51 58 39 52 57 38 5 2 76 13 84 75 31 7 7 6 6 2 6 6 49 17 35 54 39 34 34 34 54 27 48 53 38 50

ROPES 33 52 50 5 19 25 22 20 21 11 64 38 34 29 48 54 34 54 84 40 3 9 69 37 82 80 27 4 2 1 5 0 4 1 46 7 29 54 42 34 35 36 69 26 51 58 40 50
Quoref 35 54 54 9 87 50 37 32 31 18 43 77 29 29 44 66 35 50 58 43 5 3 63 29 79 74 35 6 3 3 9 1 3 4 37 12 20 47 34 34 35 33 51 26 51 54 61 50
Cos_E 38 54 49 2 19 5 4 3 2 2 3 2 78 41 57 63 52 45 59 49 7 23 58 31 70 63 30 8 5 5 10 2 5 5 56 31 35 52 38 34 33 34 67 28 51 54 39 51

Multiple
Choice
QA

Cosmos QA 46 45 52 6 35 7 6 6 8 6 25 15 67 66 81 78 68 52 63 57 6 23 76 39 87 81 26 8 7 5 5 2 6 7 56 64 30 55 55 35 33 34 85 33 95 54 47 52
DREAM 32 54 51 2 46 4 4 4 3 2 5 3 42 40 85 66 47 52 58 46 5 16 65 13 71 67 30 4 6 7 7 6 2 7 51 37 39 52 38 34 33 34 76 29 80 53 47 50

QASC 61 42 46 3 18 25 19 15 10 6 14 24 43 28 61 96 45 52 67 49 6 9 73 13 72 72 33 3 1 2 7 1 2 2 54 39 37 56 37 35 35 35 64 27 76 55 39 51
QuAIL 62 42 45 7 11 15 12 9 12 7 26 26 67 54 81 74 71 52 67 52 7 40 70 15 87 80 29 5 3 4 9 2 5 5 51 59 38 54 49 35 34 34 79 29 90 54 37 50

QuaRel 35 56 51 7 39 11 10 9 7 6 32 17 25 28 36 58 29 68 55 39 5 6 60 34 74 66 23 5 4 3 9 1 2 3 44 9 24 52 31 33 33 33 61 28 50 50 43 48
QuaRTz 32 59 50 6 13 9 9 10 4 3 58 4 30 27 41 45 28 53 94 39 4 13 78 37 81 77 28 4 1 1 5 0 3 3 38 28 31 57 64 32 33 34 68 25 54 57 44 49

Social IQA 33 61 54 4 72 8 6 5 4 3 8 4 63 50 59 78 54 51 66 69 6 19 78 13 82 83 30 7 5 5 7 2 3 5 55 32 37 68 52 37 36 38 72 29 81 55 54 51
Wiki Hop 40 44 46 2 7 14 10 9 3 2 8 2 38 27 52 57 27 46 52 39 41 13 62 15 58 59 28 7 4 1 11 0 2 3 53 24 31 52 30 33 34 34 56 26 57 52 37 50

WiQA 61 42 47 8 9 8 6 6 5 3 11 8 25 30 34 35 26 52 58 37 4 82 63 37 65 61 30 6 1 3 7 1 5 5 48 17 37 54 43 35 35 36 56 23 45 53 37 51
Amazom 48 47 52 0 43 0 0 0 0 2 0 0 23 23 30 32 24 56 56 36 2 0 98 13 77 78 29 0 0 0 0 0 0 0 35 28 19 52 47 34 34 35 56 25 47 50 53 50

Sentiment 
Analysis

App Reviews 39 44 47 1 31 3 2 2 1 7 7 2 25 28 44 35 25 50 59 38 3 0 82 45 83 85 53 1 1 2 3 2 0 2 40 25 26 54 31 33 34 33 58 24 57 50 47 52
IMDB 59 52 53 0 58 0 0 0 0 0 0 0 22 26 33 32 21 56 52 39 2 0 68 14 97 84 31 0 0 0 0 0 0 0 39 9 33 56 52 34 34 34 52 26 49 51 48 49

Rotten Tomatoes 67 39 45 0 7 1 1 0 1 1 0 0 23 25 34 24 25 54 54 37 2 0 75 14 83 92 36 0 0 0 0 0 0 0 45 23 30 54 51 33 33 34 52 27 50 51 39 51
Yelp 68 38 46 0 5 0 0 0 0 0 0 0 20 22 33 17 20 55 52 33 2 0 53 14 64 55 71 0 0 0 0 0 0 0 38 33 31 53 33 33 34 33 53 26 47 50 37 50

Common Gen 33 60 54 1 81 3 3 3 2 2 1 1 22 30 36 49 24 54 52 44 4 3 52 33 66 62 31 15 8 6 10 3 7 8 26 15 31 48 37 33 34 33 51 26 51 50 59 50
S2TWiki Bio 52 47 54 1 78 6 5 4 3 2 1 2 26 30 40 54 28 48 53 44 6 2 63 13 81 74 29 8 20 2 7 2 2 3 50 29 38 48 34 33 34 33 55 23 47 52 57 50

CNN Dailymail 32 61 54 1 80 4 4 4 1 1 1 2 24 26 46 47 30 52 53 42 3 0 65 9 78 71 27 5 11 18 7 8 8 9 48 53 23 49 42 33 34 33 51 28 54 50 58 50

Summary
Gigaword 32 57 46 1 6 3 3 3 1 1 0 1 28 25 39 43 22 50 56 38 7 4 66 15 80 74 33 10 7 4 23 2 4 6 49 45 27 53 32 33 34 34 60 23 47 51 37 50

MultiNews 39 60 52 1 27 1 1 1 1 1 1 1 24 26 42 37 28 53 52 41 5 1 63 12 66 64 27 6 9 12 3 18 6 6 45 38 34 49 41 33 33 33 53 24 49 51 52 51
SamSum 39 57 51 3 31 4 4 4 2 1 3 2 23 26 39 33 28 52 53 42 4 2 53 12 79 71 37 8 9 14 8 8 22 9 40 24 33 47 33 32 33 32 53 24 52 51 50 52

XSum 50 58 54 2 72 3 2 2 1 1 0 2 26 27 40 56 29 50 54 44 5 2 62 11 76 64 30 9 9 8 7 5 5 19 47 59 28 47 43 33 34 33 52 20 48 50 59 50
AG News 42 54 48 0 43 1 1 1 1 0 0 0 22 21 31 33 20 55 51 35 2 0 51 12 53 56 23 1 0 0 0 0 2 0 95 7 23 52 48 33 33 33 59 26 47 50 42 50

Domain
CLSDBPedia 68 39 51 0 30 0 0 0 0 0 0 0 23 22 29 26 20 58 51 34 2 2 50 10 62 62 21 0 0 0 0 0 0 0 45 99 35 53 18 33 34 33 62 25 47 51 46 51

TREC 68 41 45 0 11 0 0 0 0 0 3 0 34 23 44 32 31 57 53 35 3 2 63 36 65 56 25 2 0 0 1 0 2 0 47 18 96 53 39 33 33 33 62 27 51 50 37 50
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Figure 1: Pairwise transfer relationships on T5-XL. The entry at row i and column j denotes the
average performance when the model is trained on task i and evaluated on task j. For each entry,
the value is the average score of different prompts. (Accuracy if only Accuracy is calculated, and
otherwise the mean of Accuracy and F1.) Only those prompts related to the original tasks are included
for evaluation. We highlight those entries with high scores for each task (Red is the Top-1). The
horizontal and vertical lines denote the boundary of task-type groups.

A Small Set of Tasks Dominates Performance on the Test Tasks We manually select the top-8
tasks out of all training tasks of T0. These selected tasks empirically demonstrate good generalization
to the test tasks according to preliminary experiments. Specifically, we first select the top-3 key tasks
for each test task. Then, we select the tasks which appear at least twice in the top-3 support tasks. As a
result, the number of selected key tasks is exactly 8. The top-8 selected tasks are CosmosQA (Huang
et al., 2019), Social IQA (Sap et al., 2019), PAWS (Zhang et al., 2019b), QuAIL (Rogers et al.,
2020), Wiki QA (Yang et al., 2015), QuaRTz (Tafjord et al., 2019), QASC (Khot et al., 2020), and
ROPES (Lin et al., 2019).

For comparison, we experimented with three different variants by training a T5-Large model using
only top-8 tasks (“Top-8 Only”) and all but the top-8 tasks (“T0 Tasks w/o Top-8”), respectively. We
also experimented using backbones with different scales (XL) or architectures (decoder-only model),
and results are presented in Appendix C.

Results on T5-Large are shown in Table 1. We observe that training with only the top-8 tasks
outperforms training with all tasks when tested on 11 test tasks, while training with all but the top-8
tasks drastically decreases performance. It proves that a few key tasks contribute to zero-shot task
generalization. Training with key tasks selected by post-hoc results achieves much better zero-shot
performance than training with all tasks. It is generally agreed that training with more tasks should
lead to better learning of prompts, but our experiments show that this is not the key reason for the
performance improvement. The information contained in the key tasks plays a significant role in
improving the few-shot generalization. This result raises a further question whether the model learns
to read, understand and react to instructions broadly from all tasks, or just benefits from several key
tasks which have strong general transferability.
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Train Tasks Met.
Natural Language Inference Sentence Completion Co-Reference WSD.

Avg.RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

All T0 Tasks
Mean 72.53 50.60 30.93 31.96 32.23 82.20 27.16 92.05 62.21 52.00 50.14 53.09
Med. 74.01 57.14 30.40 31.60 31.75 83.00 27.60 91.77 62.98 52.33 50.00 54.87

Top-8 Only
Mean 73.10 66.55 33.55 32.46 36.34 84.62 30.93 94.51 64.04 53.02 50.52 56.33
Med. 74.91 71.42 33.10 32.10 36.42 84.50 30.96 94.76 65.38 52.96 50.16 56.97

T0 Tasks w/o Top-8
Mean 60.47 44.17 30.68 32.81 32.87 67.07 26.46 68.81 51.83 51.29 50.92 47.03
Med. 60.29 44.64 30.80 33.00 33.33 66.83 26.65 72.53 47.12 51.54 50.71 47.04

Table 1: Zero-shot performance of training with/without top-8 tasks (out of 38) on T5-Large. The
top-8 tasks are CosmosQA, Social IQA, PAWS, QuAIL, Wiki QA, QuaRTz, QASC, and ROPES.
“Top-8 Only” means using only the top-8 tasks. “T0 Tasks w/o Top-8” means using the T0 tasks with
top-8 tasks removed. Results that are comparable to or outperform the T0 baseline are denoted in
bold.

3.3 GENERAL TRANSFER AND SPECIFIC TRANSFER

First of all, we divide the transfer ability into specific transfer ability and general transfer ability
according to the scope of target tasks.

Specific transfer ability means that the task can only provide special knowledge for a small set of
tasks with certain kinds of patterns. A typical example is the sentiment analysis task, which helps the
sentiment analysis tasks of different domains a lot, but has little effect on other complex NLU tasks.
The specific transfer ability is relatively stronger among the tasks at the diagonal blocks in Figure 1.

General transfer ability means that the task can provide knowledge that is required by most
downstream tasks. The more it provides beyond the knowledge captured by the pretrained model,
the better it will contribute to the overall transfer ability of the model. For example, adding question
answering (QA) tasks will improve the performance on most of the downstream tasks, which could
be because they provide valuable commonsense knowledge and reasoning skills.

After introducing the division of transfer ability, we raise two questions based on the experimental
results in Section 3.2. (1) Do the key tasks embrace the ability of general transfer or specific transfer?
(2) Can we reveal the common patterns shared by the tasks with general transfer ability?

3.4 NOT ALL TASKS ARE BORN EQUAL

Some QA Tasks Show General Transfer Ability For the first question, from Figure 1, most of the
tasks selected in post-hoc experiments bring improvements on a wide range of tasks, and thus have a
certain degree of general transfer ability. In addition, most of the tasks that show general transfer
ability are QA tasks.

Two notable concepts are QA format and QA tasks. QA tasks indeed take the QA format. However,
QA-formatted data are not necessarily QA tasks (e.g., prompted sentiment analysis data taking the
QA format is not a QA task.). Here, QA tasks refer to those tasks that require reasoning skills,
such as reading comprehension. We conduct an experiment by formatting the sentiment analysis
task into a multiple-choice QA task. Specifically, we convert the format of a sentiment analysis
task: Yelp Review Full into the multiple choice QA format (see Figure 2). We compare the zero-
shot performance on 11 unseen tasks between training on raw Yelp Review Full and training on
QA-formatted Yelp Review Full, which is displayed in Table 2. Results show that simply using
QA-formatted non-QA-tasks does not benefit zero-shot performance, proving that it is not simply the
QA format that results in the zero-shot ability.

Task Met.
Natural Language Inference Sentence Completion Co-Reference WSD

Avg.RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

Yelp
Mean 52.71 32.50 33.38 33.59 33.38 53.30 25.65 46.69 36.54 49.93 49.97 40.69
Med. 52.71 39.29 33.40 33.40 33.50 54.00 25.82 46.77 36.54 50.08 50.00 41.41

Yelp2QA
Mean 52.78 37.02 33.27 33.49 33.57 57.37 24.93 50.24 36.54 50.09 49.86 41.74
Med. 52.71 41.07 33.40 33.40 33.50 58.00 24.96 50.45 36.54 50.28 50.00 42.21

Table 2: Zero-shot performance of T0-XL trained on Yelp Review Full and QA-formatted
Yelp Review Full respectively.

Considering that QA tasks account for a large portion of the T0 benchmark, which might affect our
conclusion, we also validated it in another setting (i.e., QA tasks only account for 7/43 of all training
tasks) and presented the results in Appendix C.3. The results verify the effectiveness of QA tasks.
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Input template

Target template

Answer Choices

{{answer_choices[label]}}

Read the following context and choose the best option to answer the 
question \n Context: {{text}} \n Question: {{question}} \n Options: 

{{answer_choices | join(“\\n-”)}} \n

1 star ||| 2 stars ||| 3 stars ||| 4 stars ||| 5 stars

(a) Predict the full choice.

Input template

Target template

Answer Choices

{{answer_choices[label]}}

Read the following context and choose the best option to answer the 
question \n Context: {{text}} \n Question: {{question}} \n Options: 

\nA. 1 star \nB. 2 stars \nC. 3 stars \nD. 4 stars \nE.5 stars \n

A ||| B ||| C ||| D ||| E

(b) Predict the option label.

Figure 2: An illustration of multiple-choice QA formatted sentiment analysis prompts.

Why QA Tasks Show General Transfer Ability? Experiments show that some QA tasks demon-
strate general transfer ability, and we would like to explore the underlying reasons. We suspect some
QA tasks provide some knowledge that is not captured in the pretraining process. From the examples
in Table 3, we can see that both CosmosQA and Social IQA require some simple reasoning ability in
the general domain, which is required for a wide range of NLP tasks. More importantly, it is difficult
to learn this knowledge in the pretraining stage, so an additional supplement is necessary to make the
model have good cognitive ability. As a result, those tasks show better general transfer ability. There
may be some quantitative methods to evaluate the knowledge provided by these tasks. A possible
solution is to design some probe tasks, as is done in Pruksachatkun et al. (2020), and we leave this
for future work.

CosmosQA

Context: So , last day in Seattle , and my flight was at 1:30 . I got to chit chat with my
old manager ( more like a mentor ) , and left Seattle feeling really good and inspired . .
Question: Why did I chit chat with my old manager ?
Answer: Because I enjoy talking to him .

Social IQA
Context: Cameron decided to have a barbecue and gathered her friends together.
Question: How would Others feel as a result?
Answer: like attending

WikiHop Question: participant of juan rossell
Answer: 1996 summer olympics

WiQA

Paragraph Step Context: [ “Plants and animals long ago died”, “They are buried under
layers of soil”, “Pressure builds over time”, “The remains liquefy”, “The carbon atoms
rearrange to become a new substance.”]
Question: suppose a smaller satellites is determined happens, how will it affect less
remains liquefy.
Answer: no effect

Table 3: Examples of part of the QA tasks. CosmosQA and Social IQA both show excellect general
transfer ability, while WikiHop QA and WiQA don’t. The biggest difference between them is the
knowledge domain.

Which Kinds of QA Tasks Work? Another important observation is that not all QA tasks show
general transfer ability. Specifically, CosmosQA, Social IQA, and QuAIL show outstanding transfer
ability, while some tasks such as WikiHop, and WiQA do not. Through a careful examination of the
datasets (see Table 3 for reference), we conjecture that there are two reasons. First of all, the domain
type matters a lot. Taking an extreme case as an example, training on datasets full of math problems is
not likely to provide general transfer ability to other tasks. All of CosmosQA, Social IQA, and QuAIL
require commonsense knowledge that is useful in the general domain. However, the WikiHop dataset
urges the model to remember specific knowledge that is mainly required for knowledge contests.
Another possible factor is the text format. In detail, the expressions of WikiHop/WiQA seem much
more artificially-constructed than Social IQA/CosmosQA, thus showcase limited transfer ability.

So far, we have analyzed phenomena about the zero-shot task generalization ability. At the same
time, three problems remain unsolved: (1) The test set cannot be seen in advance. (2) We need to
further distinguish which QA tasks are useful when a large number of QA tasks are provided. (3)
When the training set provided is changed, we need to distinguish new tasks with general transfer
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Figure 3: The pipeline of the improved multi-task prompted training recipe. We detect key tasks by
examining the pairwise generalization results between training tasks. These key tasks are upsampled,
or non-key tasks are downsampled to form an optimized mixture of datasets.

ability. For the above three reasons, we propose a general data-driven approach to identify tasks with
general transfer capability.

4 AN IMPROVED METHOD: TASK RESAMPLING

4.1 METHOD

We have arrived at several findings in Section 3, revealing that (1) only a small number of training tasks
dominate the performance of zero-shot generalization and (2) some key tasks with general transfer
ability can be detected through pairwise generalization. Following the findings, we hypothesize that
one of the key aspects of improving zero-shot performance is to appropriately adjust the weight
of different training tasks, such that the model is trained with an optimized mixture of multi-task
datasets. To this end, we devise a novel method, task resampling, that first automatically identifies a
set of key training tasks based on pairwise training and evaluation without observing any test tasks,
and then adjusts the training data distribution through upsampling or downsampling. Figure 3 shows
an overview of our method.

Formally, we are given a set of training tasks T = {ti}i where ti is a task, and a pretrained model
M. Each task is formulated as ti = {xi,j , yi,j}j , consisting of a prompted input xi,j and a prompted
target yi,j . Our goal is to assign appropriate weights {wi}i for each training task, and use the
optimized mixture of training tasks to train the model M in a multi-task manner such that it performs
well on unseen test tasks.

Generally, our method consists of three major steps.

1. Pre-detection of key tasks. Identify key training tasks based on pairwise training and evaluation
without relying on any test tasks. This can be viewed as a prior approximation to the post-hoc
method in Section 3.2.

2. Task resampling. Resample different training tasks by upsampling key tasks or downsampling
non-key tasks.

3. Multi-task training. Train a model using the resampled mixture of multi-task datasets.

Pre-detection of Key Tasks Without observing the test tasks, the main idea of our approach is to
use pairwise training and evaluation within the training tasks. To identify the key tasks, we first train
a model on each training task and evaluate it on all the training tasks. This results in an N ×N (N is
the number of training tasks) table, which is part of the results in Figure 1. Then we design a method
to select key training tasks based on this N ×N table. For each task pair A and B, let f(A,B) be the
performance of training on A and evaluating on B. We let g(A,B) = 1 if the following conditions
are satisfied (and otherwise g(A,B) = 0):

1. A and B are of different task types.

2. The performance f(A,B) is high enough:

f(A,B) ≥ max
A′ ̸=B

f(A′, B)− TH1 and f(A,B) ≥ meanA′ ̸=Bf(A
′, B) + TH2.
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Here TH1 and TH2 are two constants which control the tolerant distance between f(A, B) and
maximum performance and average performance respectively. The value g(A,B) indicates whether
A is a high-performing training task for B. We constrain that A and B are of different types because
we eventually target cross task generalization. We then aggregate g(A) =

∑
B g(A,B) to represent

how many times A is a high-performing training task for another task, and use the tasks with the
largest g(A) values as the key tasks. In our implementation, we apply thresholding on g(A) to obtain
the set of key tasks.

Task Resampling by Upsampling or Downsampling After detecting the key tasks using only
the training tasks, we propose a simple yet effective resampling approach to optimize the mixture
of multi-task data. We either perform upsampling or downsampling strategy. For upsampling, we
upsample the key tasks by Nu times. For downsampling, we cap the number of samples to be Nd for
each non-key task and use the original sample size for the key tasks. In our preliminary experiments,
we found task resampling more robust than using the key tasks only because it takes a softer approach
to highlight the importance of key tasks while maintaining knowledge from other tasks.

Data Augmentation In the above sections, we have discussed an important discovery that certain
tasks are crucial for zero-shot performance. However, some of these key tasks might be limited
in terms of labeled data. Thus, we further propose a data augmentation method to create as many
samples as possible for each task. Specifically, given tasks A and B, we apply the prompts of A to
the data of B to obtain additional augmented data. In other words, we have more data from task
B that are used to perform the task A. We use a trained T0 to predict the labels of the augmented
samples, which is similar to self-training. Note that data augmentation is optional and independent of
task resampling. We do ablation studies to investigate the effectiveness of this component.

Multi-task Training Our training procedure is the same as T0. The only difference is that we
employ an optimized mixture of datasets (and optionally with data augmentation).

4.2 EXPERIMENTAL SETUP

Following the same training and evaluation setting as T0 (Sanh et al., 2022), we finetune the T5-
LM-Adapt model on 38 training tasks, which has been discussed in detail in Section 3.1. For
data preprocessing, following T0, to balance the number of data for different tasks, we restrict the
maximum number of data examples for each training task to 500,000.

Based on our resampling strategy, we set the pre-detection parameters as TH1 = 5, TH2 = 10,
and then choose the datasets which are counted as the key tasks at least twice (i.e., all tasks A
with g(A) ≥ 2). Given each key task D with data size |D|, we duplicate D by 5 times (Nu = 5)
for the upsampling strategy and empirically start from 50,000 samples for each dataset. For the
downsampling strategy, we downsample each non-key task to Nd = min(50, 000, |D|) samples. We
provide detailed statistics about the datasets in Appendix B.1.

4.3 RESULTS

Post-hoc v.s. Prior Detection of Key Tasks One vital part of our approach is the detection of key
tasks, so we list the key tasks selected by post-hoc (i.e., observing the test tasks) and pre-detection
methods in Table 4. There are five common tasks shared by the two methods, indicating that our
approach can detect most of the key tasks. Moreover, even though the two sets of key tasks are not
exactly matched, our experiments demonstrate that this does not affect performance.

Method Key Tasks

Post-hoc Cosmos QA, Social IQA, PAWS, QuAIL, Wiki QA, QuaRTz, QASC, ROPES

Prior-detect Cosmos QA, Adv./DBiDAF, Adv./DRoBERTa, QuaRTz, Social IQA, Hotpot QA, Adv./DBERT, ROPES, QuAIL

Table 4: Key tasks selected by post-hoc and prior detection method. The underlined text represents
the key tasks shared by both approaches.

Main Results We experiment with three scales: Large, XL, and XXL. We compare our proposed
method with the original T0 reported in (Sanh et al., 2022) (T0 (†)) and our reproduced T0 (T0 (*)).
Also, we present the results of task-resampled T0, including T0 with upsampling key tasks (US-T0)
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and T0 with downsampling non-key tasks (DS-T0). Besides, we display the performance of the
task-resampled T0 with augmented data, dubbed as US+DA-T0 and DS+DA-T0, respectively. We
summarize the following key observations from Table 5.

Model Met.
Natural Language Inference Sentence Completion Co-Reference WSD.

Avg.RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

T5-Large-LM-Adapt (770M)

T0 (*)
Mean 72.53 50.60 30.93 31.96 32.23 82.20 27.16 92.05 62.21 52.00 50.14 53.09
Med. 74.01 57.14 30.40 31.60 31.75 83.00 27.60 91.77 62.98 52.33 50.00 54.87

DS-T0
Mean 74.22 60.95 35.65 32.57 35.88 87.64 28.29 94.12 63.75 54.89 51.60 56.33
Med. 75.45 66.07 36.00 32.40 36.50 87.50 28.38 94.01 64.42 55.33 51.41 57.04

DS+DA-T0
Mean 80.72 71.90 36.00 34.80 38.18 84.10 26.00 94.00 63.27 54.54 50.58 57.65
Med. 81.23 80.36 36.40 35.20 39.33 85.21 26.06 94.39 63.94 54.38 50.31 58.80

US-T0
Mean 78.30 61.55 36.05 34.06 36.50 87.79 28.05 94.97 62.40 55.52 51.46 56.97
Med. 79.00 69.60 36.10 33.90 36.75 89.00 28.14 94.92 64.42 56.43 50.39 58.06

US+DA-T0
Mean 80.69 70.95 37.38 34.20 39.43 87.97 26.73 93.71 63.27 55.58 51.47 58.31
Med. 80.69 80.35 38.00 34.20 40.33 89.29 26.98 93.91 64.42 55.72 51.25 59.56

T5-XL-LM-Adapt (3B)

T0 (†)
Mean 64.55 45.36 33.84 33.11 33.33 72.40 27.29 84.03 65.10 50.97 50.69 50.97
Med. 64.08 50.00 33.65 33.40 33.33 74.92 27.51 85.09 64.42 50.51 50.39 51.57

T0 (*)
Mean 80.72 67.62 41.09 37.79 40.38 91.92 32.03 97.27 65.96 57.84 50.14 60.37
Med. 80.14 75.00 42.80 39.20 41.75 92.00 32.29 97.22 68.27 58.41 50.00 61.62

DS-T0 Mean 83.21 73.33 44.38 38.84 43.72 94.17 31.21 97.72 64.42 62.67 52.01 62.34
Med. 82.67 82.14 45.40 39.70 45.58 94.50 32.03 97.70 64.42 63.38 51.33 63.53

DS+DA-T0 Mean 84.77 74.40 43.25 39.17 43.22 94.93 27.01 97.65 62.02 66.74 53.09 62.39
Med. 84.66 82.14 46.30 39.70 45.75 95.00 27.00 97.65 62.98 65.35 52.90 63.58

US-T0
Mean 82.41 69.38 43.20 38.40 40.72 93.55 30.30 97.25 61.41 60.56 53.66 60.99
Med. 82.34 82.81 45.41 39.94 42.60 93.75 30.38 97.34 63.67 62.27 52.66 63.02

US+DA-T0
Mean 83.29 75.83 44.80 39.09 43.68 94.81 26.29 96.94 61.73 66.03 53.28 62.34
Med. 84.48 82.14 47.90 39.90 47.25 94.50 26.17 97.06 64.90 65.11 52.98 63.85

T5-XXL-LM-Adapt (11B)

T0 (†)
Mean 80.83 70.12 43.56 38.68 41.26 90.02 33.58 92.40 61.45 59.94 56.58 60.77
Med. 81.23 78.57 44.70 39.40 42.42 90.79 33.65 94.71 64.42 60.46 57.21 62.51

T0 (*)
Mean 84.01 72.26 47.89 42.80 46.49 91.60 35.27 98.15 62.69 69.46 54.83 63.98
Med. 85.02 83.93 49.00 44.00 48.58 95.00 34.62 98.24 66.35 70.24 52.35 66.12

Our Best
Mean 85.56 72.50 48.28 43.81 47.62 95.18 27.91 97.46 67.02 71.41 56.29 64.82
Med. 85.74 82.14 51.60 46.40 51.25 95.00 27.71 97.54 66.35 71.19 58.46 66.67

Table 5: Zero-shot performance for our improved T0 and original T0 at three different scales. Results
with † are reported by Sanh et al., and results with ⋆ are reproduced in our experiments. US-T0
means T0 with upsampling key tasks, DS-T0 means T0 with downsampling non-key tasks, and
DS+DA-T0 / US+DA-T0 represents DS-T0 / US-T0 with augmented data. “Our Best” is achieved
with the US+DA-T0 setup.

1. Advantage of Task Resampling. Our task-resampled T0 with both upsampling and downsam-
pling strategies (US-T0 and DS-T0) boosts the performance of reproduced T0. Specifically,
DS-T0 outperforms T0 (*) by 3.2% at Large scale and 2.0% at XL scale, and US-T0 outperforms
T0 (*) by 3.9% at Large scale and 0.6% at XL scale.

2. Advantage of Data Augmentation. Task-resampled T0 achieves better performance with aug-
mented data. Specifically, downsampling T0 (DS-T0) increases by 1.3% with augmented data at
Large scale and upsampling T0 (US-T0) increases by 1.4% with augmented data at XL scale.
And T0 with both task resampling and augmented data achieves 0.8% gain with reproduced T0.
It indicates that data augmentation can further strengthen the mixture of multi-task data.

3. Advantage of Our Implementation Framework. Our reproduced T0 result is better than the
reported T0 (Sanh et al., 2022) by 9.4% at XL scale and 3.2% at XXL scale.

5 CONCLUSIONS

This work studies the principles of zero-shot generalization through pairwise experiments, and
reveals that a small number of training tasks dominate performance. We further divide the transfer
relationship into specific transfer and general transfer, and find that adding those tasks with general
transfer ability will contribute to the performance gain for most tasks. Moreover, those tasks with
general transfer ability can be identified by examining the pairwise generalization results. Based on
the findings, we propose the task resampling method to improve the zero-shot performance. Extensive
experiments demonstrate the effectiveness of our framework.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

Jian Li and Jing Zhou are supported in part by the National Natural Science Foundation of China Grant
62161146004, Turing AI Institute of Nanjing and Xi’an Institute for Interdisciplinary Information
Core Technology.

REFERENCES

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and Sonal
Gupta. Muppet: Massive multi-task representations with pre-finetuning. In EMNLP (1), pp.
5799–5811. Association for Computational Linguistics, 2021.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng, Sanket Vaibhav Mehta,
Honglei Zhuang, Vinh Q. Tran, Dara Bahri, Jianmo Ni, Jai Prakash Gupta, Kai Hui, Sebastian
Ruder, and Donald Metzler. Ext5: Towards extreme multi-task scaling for transfer learning. In
ICLR. OpenReview.net, 2022.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria
Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giridharan Anantharaman, Xian Li, Shuohui
Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian O’Horo,
Jeffrey Wang, Luke Zettlemoyer, Mona T. Diab, Zornitsa Kozareva, and Veselin Stoyanov. Efficient
large scale language modeling with mixtures of experts. In EMNLP, pp. 11699–11732. Association
for Computational Linguistics, 2022.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.
org/10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.
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A EXPERIMENTAL DETAILS

A.1 HYPER-PARAMETERS SELECTION

For all the experiments, we adopt the ADAM optimizer and use a learning rate of 1e-4. Considering
the amount of data, the batch size and training steps are different for different settings in our
experiments. We don’t search the training hyper-parameters anymore, because we find that the
performance is similar as long as we train for sufficient epochs in our preliminary experiments.
We use different batch sizes and training steps for different amounts of data for time-saving. The
hyper-parameters of our experiments are in Table 6.

Experiment Batch Size Steps

Single Task Transfer 512 1000
Top-3 Task Transfer 1024 2000
Top-8 Task Transfer 1024 10000
Full Dataset 1024 20000

Table 6: Training hyper-parameters for our experiments.

For other hyper-parameters we selected, we predefine them using some preliminary experiments on
T5-Large, and then apply them directly on larger models for the sake of time. We first select the
key tasks by searching TH1, TH2 using the upsampling strategy with Nu = 5, the whole search
space is TH1 = {5}, TH2 = {5, 10}. We choose G(A) ≥ 2 because if you draw the distribution of
G(A) values, you can clearly see that the tasks with G(A) ≤ 1 are the long-tailed part. When the key
tasks are selected, we then search the hyper-parameters for upsampling and downsampling using the
search space Nu = {2, 5}, Nd = {5, 10}, and choose the best one on T5-Large. We find that those
hyper-parameters don’t affect the results a lot, i.e., the gap among them is much smaller than the gap
between them and the baseline.

We only report the best result on T5-XXL, because we are unable to run all the experiments due to
the limitation of computing resources. Our best result is achieved using US+DA-T0.
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A.2 DATA AUGMENTATION DETAILS

We propose two algorithms for the domain-task intersection. The first one is based on a human-written
taxonomy tree, and another relies on universal fields. We combine the two techniques and achieve a
balance between quality and diversity.

Taxonomy Tree Based Domain-Task Intersection To build a general taxonomy tree to cover as
many prompts as possible, we take both task format and task content into consideration to develop
a series of guidelines similar to a Decision Tree. Then, at the end of each branch, we intersect the
source data lying in that branch with the related prompts belonging to that branch. In this way, we
might produce a reasonable combination of the source data and prompt. For example, classification
tasks like IMDB can also do tasks like title generation.

Universal Domain-Task Generation To further improve the diversity of the augmented data, we
get rid of the man-made restriction and propose universal domain-task generation. In detail, we define
the unified fields for data from all domains, which are utilized for various tasks. Obviously, each
original domain data lacks certain kinds of fields, e.g., AG NEWS data only have two fields: category
label and text. Therefore, we leverage the T0 to predict the missing fields in order to conduct different
kinds of tasks using the prompts having already been trained in T0. For some tasks, we also train a
specific model for prediction to get better performance. After that, we filter samples according to the
confidence score (i.e., the probability output by the model).

B MORE EXPLORATIONS ON THE TRANSFER ABILITY

B.1 STATISTICS OF THE CURRECT DATASETS

We report the size of the dataset in our experiments in Table 7. To explore more statistical features
of the original dataset, we further provide some statistical indicators. Specifically, we calculate the
average sequence length (SLEN) and the mean segmental TTR (MSTTR) of the prompted input of
training datasets. MSTTR is calculated with a window size of 50. We calculate those statistical values
using at most 10000 examples for each prompted task for the sake of time. Results are in Table 7.

An interesting phenomenon is that datasets with fewer training examples are more likely to show
general transfer ability. We speculate that it is because a lot of manual effort is needed to make up
those datasets with sufficient knowledge. It is too costly to make these datasets extremely large. It
seems that the statistics such as MSTTR or data length alone cannot be good indicators for transfer
ability. More explorations about the influence factors of transfer ability are left for future work.

C MORE RESULTS ON OTHER MODELS AND OTHER BASELINES

C.1 RESULTS ON LARGER MODEL

To verify whether the observation that a small number of key tasks dominate zero-shot performance
still holds true on larger models, we conduct the top-8 tasks experiments on T5-XL, similar to
Section 3.2. Results are in Table 8. From the results, we can see that the model trained on top-8 only
slightly outperforms the baseline, while greatly defeating the performance of the model trained on all
T0 tasks without the top-8 tasks.

C.2 RESULTS ON DECODER-ONLY ARCHITECTURE

To verify whether the results still hold true on more architectures, we experiment on more architectures.
Considering that the encoder-only model is not suitable for language modeling tasks, here we only
consider the decoder-only architecture. In specific, we conduct the top-8 experiments on GPT-Neo-
1.3B (Black et al., 2021). Results are in Table 9. From the results, we can see that, the observation
that a small number of key tasks dominate zero-shot performance mentioned in Section 3.2 still holds
true. We train with a prefix-LM loss.
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Task Name Orig Num T0 Num US Num DS Num MSTTR In Len Out Len

MRPC 3668 23288 23288 23288 0.74 53 1
QQP 363846 2183076 49998 50000 0.67 30 1
PAWS 49401 565240 565240 50000 0.64 47 1
Hotpot QA 88869 444345 250000 444345 0.75 18 2
Wiki QA 20360 108040 108040 50000 0.69 9 27
Adv./DBidaf 10000 50000 250000 50000 0.78 130 4
Adv./DBERT 10000 50000 250000 50000 0.78 146 4
Adv./DRoberTa 10000 50000 250000 50000 0.78 143 4
DuoRC/Self. 60721 545235 49995 50000 0.79 372 2
DuoRC/Para. 69524 604172 49995 50000 0.79 356 7
ROPES 10924 131088 655440 131088 0.76 211 1
Quoref 19399 213389 213389 50000 0.80 328 2
Cos E 9741 107151 107151 50000 0.74 30 1
Cosmos QA 25262 328406 1642030 328406 0.76 10 8
DREAM 6116 30580 30580 30580 0.73 141 4
QASC 8134 65072 65072 50000 0.66 63 2
QuAIL 10246 133198 665990 133198 0.80 372 5
QuaRel 1941 9705 9705 9705 0.72 57 2
QuaRTz 2696 21568 107840 21568 0.70 47 1
SciQ 11679 58395 58395 50000 0.73 89 2
Social IQA 33410 200460 1002300 200460 0.73 49 1
Wiki Hop 43738 393642 393642 50000 0.75 1248 2
WiQA 29808 238464 238464 50000 0.68 94 1
Amazon 3600000 499995 49995 50000 0.79 95 1
App Reviews 288065 1152260 50000 50000 0.56 33 1
IMDB 25000 275000 275000 50000 0.81 209 4
Rotten Tomatoes 8530 85300 85300 50000 0.73 29 1
Yelp 650000 499996 49994 50000 0.80 132 2
Common Gen 67389 606501 49995 50000 0.46 16 11
Wiki Bio 582659 500000 50000 50000 0.80 107 82
CNN Daily Mail 287113 2584017 49995 50000 0.83 66 338
Gigaword 3803957 499995 49995 50000 0.81 17 31
MultiNews 44972 269832 269832 50000 0.82 769 216
SamSum 14732 103124 103124 50000 0.78 98 20
XSum 204045 2040450 50000 50000 0.82 257 21
AG News 120000 840000 49994 50000 0.84 45 2
DBPedia 560000 500000 50000 50000 0.80 36 1
TREC 5452 47818 47818 47818 0.58 20 1

Table 7: Statistics of the training sets. “Orig Num” denotes the size of the original dataset. “T0 Num”
denotes the size of prompted data in the T0 baseline. “US Num” denotes the size of prompted data
we used in our upsampling experiments. “DS Num” denotes the size of prompted data we used in
our downsampling experiments. “MSTTR” denotes the mean segmental TTR, which is an indicator
to reflect lexical diversity. “In Len” denotes the average length of prompted input data. “Out Len”
denotes the average length of target prompted target data.

Train Tasks Met. Natural Language Inference Sentence Completion Co-Reference WSD
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC Avg.

Baseline T0 Mean 80.72 67.62 41.09 37.79 40.38 91.92 32.03 97.27 65.96 57.84 50.14 60.37
Med. 80.14 75.00 42.80 39.20 41.75 92.00 32.29 97.22 68.27 58.41 50.00 61.62

Top-8 Only Mean 81.37 75.36 41.66 37.40 42.26 93.22 33.95 96.93 59.64 64.81 54.01 61.87
Med. 81.59 73.21 41.70 37.50 43.50 93.00 33.36 96.90 60.06 65.87 54.94 61.97

T0 Tasks w/o Top-8 Mean 55.45 45.24 34.60 34.05 34.81 84.68 28.73 86.50 54.29 42.50 55.94 50.62
Med. 54.33 46.43 33.80 33.90 34.33 85.00 29.12 90.11 54.14 37.02 55.72 50.35

Table 8: Zero-shot performance of training with/without top-8 tasks (out of 38) on T5-XL. The top-8
tasks are CosmosQA, SocialIQA, PAWS, QuAIL, Wiki QA, QuaRTz, QASC, and ROPES. “Top-8
Only” means using only the top-8 tasks. “T0 Tasks w/o Top-8” means using the T0 tasks with top-8
tasks removed.
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Train Tasks Met. Natural Language Inference Sentence Completion Co-Reference WSD
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC Avg.

Baseline T0 Mean 49.28 42.74 32.95 33.25 32.98 60.59 25.93 66.05 62.31 49.76 50.24 46.01
Med. 47.83 50.00 33.20 33.30 33.00 60.02 26.07 68.36 63.46 49.49 50.16 46.81

Top-8 Only Mean 62.92 61.07 30.24 32.07 32.18 68.20 26.06 71.23 58.17 49.41 51.27 49.35
Med. 62.64 66.07 29.30 32.00 32.17 70.00 26.26 72.96 61.06 49.41 50.94 50.25

T0 Tasks w/o Top-8 Mean 56.46 43.93 32.93 33.26 33.40 57.92 25.72 52.04 53.85 48.97 50.74 44.47
Med. 55.78 50.00 32.90 33.30 33.17 57.50 25.70 52.70 57.69 48.86 50.63 45.29

Table 9: Zero-shot performance of training with/without top-8 tasks (out of 38) on GPT-Neo. The
top-8 tasks are CosmosQA, SocialIQA, PAWS, QuAIL, Wiki QA, QuaRTz, QASC, and ROPES.
“Top-8 Only” means using only the top-8 tasks. “T0 Tasks w/o Top-8” means using the T0 tasks with
top-8 tasks removed.

C.3 RESULTS ON OTHER BASELINES

Since most tasks in T0 are defined as QA tasks, the observation that QA tasks are important might
not be fair enough. Thus, we want to investigate whether the statement that “some general transfer
classes dominate the zero-shot performance” still holds with a totally different mixture of datasets.
Therefore, we consider conducting the experiment on the prompted datasets of FLAN (Wei et al.,
2022). Noted that reading comprehension is one of the task types used in FLAN, which can be
regarded as narrative QA (in this way, we classify QA tasks based on the content rather than the
format), so we hope to explore what will happen if we remove all reading comprehension tasks in the
mixture of datasets used in FLAN.

We use exactly the same datasets and prompts as FLAN (Wei et al., 2022), except that we include three
dialogue datasets in the same way as in FLAN-T5 (Chung et al., 2022), and exclude the translation
datasets. We leave the NLI and Commonsense Reasoning as the hold-out test set, which follows
FLAN.

We conduct the experiments as follows: 1. Training with all remaining tasks in FLAN. (43 tasks in
total); 2. Training with only the reading comprehension tasks in FLAN. (7 tasks in total); 3. Training
without the reading comprehension tasks in FLAN. (36 tasks in total)

As can be seen in Table 10, the model which is trained on reading comprehension tasks greatly
outperforms the model trained on FLAN tasks without reading comprehension tasks. Therefore, these
experiments serve as supplementary to our main experiment conducted on T0 datasets.

Met. Natural Language Inference Sentence Completion Co-Reference
RTE CB ANLI1 ANLI2 ANLI3 SNLI MNLI WNLI QNLI COPA Hella. PiQA Story. ARC/E. ARC/C. Avg.

Baseline Mean 73.24 78.57 42.08 40.08 43.17 58.33 61.04 52.54 74.58 82.88 41.42 67.38 90.61 58.39 40.58 60.33
Med. 77.26 82.14 42.30 40.00 43.67 58.55 61.03 52.82 76.97 83.00 41.46 67.66 90.30 58.60 40.80 61.10

RC. Only Mean 70.88 66.07 38.44 37.47 42.13 58.89 53.88 46.90 62.29 90.92 38.94 67.92 90.92 60.06 43.59 56.91
Med. 75.81 67.86 38.8 37.40 42.42 59.23 58.58 46.48 65.73 90.70 38.99 68.25 90.70 60.18 43.31 57.95

w/o RC. Mean 65.98 71.03 36.52 36.29 39.07 51.15 56.63 50.70 63.13 62.75 28.28 55.51 50.68 41.78 27.65 49.14
Med. 70.40 71.43 36.00 36.40 39.25 50.04 57.09 50.70 64.54 62.00 28.41 55.58 49.65 41.67 27.76 49.39

Table 10: Results of training on FLAN. We train a T5-Large model using the datasets of FLAN.
“RC” denotes Reading Comprehension. “ARC/E.” denotes “ARC/Easy”, and “ARC/C.” denotes
“ARC/Challenge”.

D FULL RESULTS

D.1 FULL RESULTS ON TOP-3 KEY DATASETS

The results when training on the top-3 key datasets for each test task are in Table 11 and Table 12. We
can see that the model trained on top-3 key datasets shows comparable results with the T0 baseline.

D.2 FULL RESULTS EVALUATED ON HELD-OUT TEST DATASETS

Full results evaluated on held-out test datasets are in Table 13 and Table 14.
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Tasks Met. Natural Language Inference Sentence Completion Co-Reference WSD
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

Baseline T0
Mean 71.94 56.46 32.81 32.29 34.24 84.77 27.09 93.45 64.30 54.33 50.45
Med. 71.88 60.94 32.32 31.64 34.05 85.54 26.92 93.23 65.23 54.38 50.31

RTE KEY Mean 72.42 54.17 32.08 31.87 34.22 69.41 28.37 82.43 64.52 51.78 50.67
Med. 73.47 66.07 31.90 31.60 34.00 68.03 28.03 84.34 63.46 51.93 50.55

CB KEY Mean 56.86 60.48 33.17 32.94 34.98 81.04 28.48 93.34 44.81 54.57 51.79
Med. 57.76 69.64 32.80 33.00 35.42 83.00 28.74 93.53 39.90 54.70 50.78

COPA KEY Mean 59.49 40.36 31.73 31.65 32.06 77.52 29.31 93.32 51.63 50.92 49.82
Med. 59.39 42.86 31.10 32.20 32.50 83.00 29.22 93.37 54.81 51.07 50.00

Hella. KEY Mean 63.10 49.05 32.93 34.03 35.48 81.61 30.15 94.43 47.79 51.55 49.88
Med. 63.72 50.00 33.30 33.90 36.25 82.35 29.91 94.60 45.19 51.38 49.92

Story. KEY Mean 59.49 40.36 31.73 31.65 32.06 77.52 29.31 93.32 51.63 50.92 49.82
Med. 59.39 42.86 31.10 32.20 32.50 83.00 29.22 93.37 54.81 51.07 50.00

WSC KEY Mean 55.09 42.62 31.65 32.30 32.39 50.45 23.92 48.77 63.75 50.88 50.99
Med. 54.33 46.43 31.70 32.50 32.33 49.50 23.97 48.69 63.46 50.75 50.78

Wino KEY Mean 62.45 59.76 31.67 33.76 34.84 64.57 26.11 66.65 48.75 55.79 51.68
Med. 63.36 76.79 31.60 33.70 34.75 65.69 26.09 71.94 47.12 55.80 51.18

Table 11: Zero-shot results when training with the top-3 key tasks for each test task. The experiments
are conducted on the T5-Large model. The entry at (row i, column j) denotes the model performance
on test task j after being trained with the top-3 key tasks of task-i. Mean denotes the mean perfor-
mance on all prompts, and Med. denotes the median performance on all prompts. Bold denotes the
best performance for each evaluation dataset.

Tasks Met. Natural Language Inference Sentence Completion Co-Reference WSD
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

Baseline T0 Mean 80.72 67.62 41.09 37.79 40.38 91.92 32.03 97.27 65.96 57.84 50.14
Med. 80.14 75.00 42.80 39.20 41.75 92.00 32.29 97.22 68.27 58.41 50.00

RTE KEY Mean 79.63 65.95 38.95 37.77 37.90 72.53 31.31 83.14 59.71 52.88 52.13
Med. 79.60 71.43 38.90 38.00 37.92 71.96 31.31 84.02 59.13 53.04 52.51

CB KEY Mean 77.22 63.93 41.25 38.86 40.62 87.50 35.43 95.28 61.44 56.02 51.77
Med. 76.53 69.64 41.80 39.80 42.25 87.00 36.09 95.24 62.98 55.56 52.12

ANLI1 KEY Mean 77.00 60.59 40.73 37.84 39.13 87.07 33.45 96.80 63.37 54.51 51.05
Med. 77.98 66.07 41.90 38.10 39.58 89.00 33.28 96.85 64.90 54.06 50.71

ANLI2 KEY Mean 77.11 64.17 38.67 37.63 38.28 71.95 29.35 90.06 63.37 55.82 51.97
Med. 77.26 67.86 39.10 37.90 37.92 71.38 29.23 92.41 62.50 56.43 52.19

ANLI3 KEY Mean 58.84 63.93 37.02 36.19 37.72 67.14 25.68 76.24 42.79 58.63 51.77
Med. 58.30 71.43 37.30 36.30 38.00 68.65 24.82 78.41 40.87 58.33 50.86

COPA KEY Mean 60.97 58.21 37.07 35.16 37.07 83.95 32.45 95.47 49.04 54.10 51.54
Med. 63.36 60.71 38.30 35.10 38.58 88.00 32.71 95.40 49.52 53.59 51.33

Hella KEY Mean 69.42 65.36 38.85 37.20 38.50 87.07 33.66 97.24 50.38 55.44 51.03
Med. 69.86 75.00 38.60 36.76 39.08 91.00 33.28 97.27 52.88 54.85 50.31

Story KEY Mean 69.42 65.36 38.85 37.20 38.50 87.07 33.66 97.24 50.38 55.44 51.03
Med. 69.86 75.00 38.60 36.76 39.08 91.00 33.28 97.27 52.88 54.85 50.31

WSC KEY Mean 60.36 52.38 33.73 33.97 33.31 53.50 26.39 51.43 63.75 51.70 52.02
Med. 59.93 51.79 33.50 34.00 33.33 54.00 26.28 51.36 63.46 51.62 51.96

Wino KEY Mean 66.21 69.88 34.95 35.17 27.73 75.27 25.37 67.48 50.58 61.50 50.20
Med. 66.61 75.00 35.30 35.50 38.75 76.50 25.17 69.21 50.48 61.88 50.00

WiC KEY Mean 56.03 52.86 34.64 34.07 33.98 87.20 31.23 95.28 47.31 53.91 50.83
Med. 56.68 57.14 34.70 34.10 33.75 91.50 31.41 95.40 47.60 52.49 50.24

Table 12: Zero-shot results when training with the top-3 key tasks for each test task. The experiments
are conducted on the T5-XL model. The entry at (row i, column j) denotes the model performance on
test task j after being trained with the top-3 key tasks of task-i. Mean denotes the mean performance
on all prompts, and Med. denotes the median performance on all prompts. Bold denotes the best
performance for each evaluation dataset.
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Task Names Met. Natural Language Inference Sentence Completion Co-Reference WSD
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

MRPC Mean 49.96 47.74 33.12 33.21 32.94 53.9 23.39 48.06 61.92 50.4 50.13
Med. 50.36 50.0 33.3 33.3 32.83 54.0 23.22 47.68 63.46 50.83 50.16

QQP Mean 58.66 45.0 30.01 31.63 31.19 57.2 26.42 45.78 54.52 50.02 50.27
Med. 59.03 48.21 28.4 31.3 30.17 56.0 26.77 45.54 63.46 50.12 50.16

PAWS Mean 69.1 42.74 31.97 31.92 33.53 48.78 24.46 51.42 63.46 50.09 51.39
Med. 70.4 44.64 32.1 32.0 33.42 48.0 24.34 51.9 62.5 50.12 51.33

Hotpot QA Mean 57.11 39.4 33.55 34.41 33.17 44.02 24.95 46.82 59.71 51.57 50.38
Med. 56.32 46.43 33.5 34.7 33.08 45.03 24.76 46.93 62.02 51.3 50.47

Wiki QA Mean 63.18 47.26 29.99 30.88 33.14 53.74 22.79 48.84 59.52 49.72 51.3
Med. 63.18 50.0 29.2 30.5 33.33 54.58 22.58 49.39 62.02 49.01 50.31

Adv./DBidaf Mean 48.12 35.12 32.69 33.15 33.46 58.62 27.26 52.37 54.71 50.13 50.11
Med. 47.29 42.86 33.2 33.3 33.5 58.0 27.91 51.52 61.54 50.04 50.0

Adv./DBERT Mean 47.94 35.24 33.27 33.67 33.09 55.14 26.73 52.65 55.0 50.28 50.13
Med. 47.29 50.0 33.3 33.3 33.0 55.5 27.37 51.58 62.5 50.2 50.08

Adv./DRoberTa Mean 47.87 34.88 33.29 33.48 33.19 56.23 26.52 53.3 55.19 50.83 50.06
Med. 47.29 50.0 33.3 33.3 33.0 56.01 26.54 52.75 63.46 50.91 50.0

DuoRC/Self. Mean 54.58 40.12 32.55 33.33 32.73 48.92 26.03 46.25 47.98 50.2 48.64
Med. 54.33 50.0 32.6 33.3 32.92 49.0 26.38 46.61 47.6 50.51 49.69

DuoRC/Para. Mean 53.21 40.95 32.25 33.13 32.72 46.89 25.4 46.44 46.44 50.31 49.97
Med. 52.89 46.43 32.9 33.2 32.67 46.58 25.73 46.66 44.23 50.2 50.0

ROPES Mean 52.49 31.43 33.67 34.61 34.94 58.08 25.84 46.61 42.02 53.2 50.19
Med. 52.71 32.14 33.9 35.0 34.67 56.62 25.95 46.34 36.54 53.43 50.0

Quoref Mean 51.05 26.79 33.85 33.91 33.16 51.77 25.46 51.1 58.37 51.25 51.76
Med. 50.36 26.79 33.6 33.7 33.33 53.0 25.47 50.13 62.5 51.22 50.78

Cos E Mean 50.14 38.93 32.68 33.54 33.34 66.54 27.2 63.55 50.19 51.81 52.23
Med. 50.72 41.07 33.0 33.3 33.42 67.0 27.17 62.27 51.44 52.41 52.66

Cosmos QA Mean 52.71 43.33 33.06 33.41 33.32 77.72 31.44 91.18 49.71 50.56 49.31
Med. 53.07 46.43 33.3 33.3 33.33 83.0 31.92 91.39 54.33 50.83 50.08

DREAM Mean 54.08 41.19 32.35 33.05 33.14 72.65 26.44 82.06 48.08 50.66 51.13
Med. 53.79 50.0 33.2 33.3 33.5 74.5 26.35 82.58 47.12 50.51 51.57

QASC Mean 54.91 43.69 31.71 33.25 33.64 53.8 26.5 65.9 43.37 52.53 50.42
Med. 53.07 41.07 32.8 33.3 33.42 56.0 26.34 68.52 37.98 51.93 50.24

QuAIL Mean 54.55 52.38 32.65 32.75 33.49 72.79 27.52 87.09 40.67 51.03 49.87
Med. 53.79 62.5 33.1 33.0 33.83 73.5 27.56 87.71 38.46 50.99 49.92

QuaRel Mean 47.58 29.05 33.33 34.59 33.51 58.04 25.0 50.8 44.9 49.69 50.56
Med. 46.75 35.71 33.4 34.6 33.42 58.5 25.13 51.04 44.23 49.72 50.55

QuaRTz Mean 54.98 51.9 31.28 32.64 33.93 65.2 25.94 58.57 36.25 55.99 52.15
Med. 54.87 55.36 31.1 32.2 34.08 66.33 25.9 57.24 36.06 56.04 51.72

SciQ Mean 52.96 20.36 33.15 32.97 33.28 50.8 24.63 45.09 45.19 51.25 48.71
Med. 52.71 8.93 33.3 33.3 33.5 50.0 24.62 45.06 37.02 51.3 48.98

Social IQA Mean 66.17 52.62 31.33 33.47 34.39 70.99 28.25 80.89 47.02 51.65 51.32
Med. 66.79 62.5 31.4 33.5 34.25 73.0 28.18 82.04 48.56 51.7 50.86

Wiki Hop Mean 52.96 34.76 33.53 33.53 33.29 52.58 25.82 48.79 39.52 50.07 50.03
Med. 52.71 41.07 33.4 33.4 33.42 53.0 25.96 49.01 36.54 50.04 50.0

WiQA Mean 52.64 37.98 32.93 33.46 33.56 48.96 21.52 40.5 37.98 49.6 51.22
Med. 52.71 41.07 33.3 33.4 33.58 49.5 20.61 39.34 36.54 49.64 50.94

Amazon Mean 53.65 49.05 32.47 32.89 33.38 55.48 24.36 48.61 41.25 49.72 51.3
Med. 53.43 50.0 32.5 33.2 33.5 55.0 24.19 49.12 37.02 49.49 50.71

App Reviews Mean 52.31 31.07 32.95 33.15 33.27 55.14 23.98 53.75 42.6 49.64 50.08
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Med. 52.71 41.07 33.3 33.3 33.33 54.5 23.86 54.25 36.54 49.64 50.0

IMDB Mean 55.23 42.86 32.82 33.47 33.11 56.81 24.15 48.78 38.85 49.68 50.99
Med. 54.51 41.07 32.8 33.4 33.33 56.0 24.18 49.01 36.54 49.41 50.47

Rotten Tomatoes Mean 54.26 43.45 32.71 33.17 33.09 59.19 23.63 50.58 40.29 50.31 53.06
Med. 53.79 48.21 32.8 33.4 33.0 60.21 23.21 52.81 41.35 50.2 53.13

Yelp Mean 52.71 34.52 33.25 33.31 33.54 51.5 22.67 45.68 37.4 50.42 49.83
Med. 52.71 41.07 33.4 33.4 33.58 52.5 22.01 45.7 36.54 50.43 49.92

Common Gen Mean 47.4 37.5 33.38 33.27 33.31 53.47 26.32 49.3 61.92 49.57 50.03
Med. 47.29 50.0 33.3 33.3 33.0 54.0 26.71 49.39 63.46 49.49 50.0

Wiki Bio Mean 47.83 42.98 32.93 33.65 33.06 50.6 23.08 44.76 55.58 49.5 49.84
Med. 47.29 46.43 33.3 33.3 33.08 50.5 22.57 45.0 62.02 49.57 50.0

CNN Daily Mail Mean 48.27 40.48 32.85 33.8 33.09 46.69 25.77 51.82 56.63 49.27 50.02
Med. 47.29 50.0 33.2 33.4 33.0 45.42 25.85 51.63 63.46 49.17 50.0

Gigaword Mean 53.03 26.31 33.34 34.19 33.46 57.45 23.28 44.5 49.81 49.98 49.4
Med. 53.61 25.0 33.6 34.2 33.58 57.5 23.0 44.9 46.15 50.28 49.61

MultiNews Mean 51.52 26.9 32.66 33.03 33.19 45.62 24.17 48.03 52.88 49.17 49.86
Med. 52.17 25.0 32.9 33.4 33.0 44.0 24.15 48.0 57.69 49.09 49.92

SamSum Mean 47.69 27.98 33.63 32.87 32.89 51.55 25.31 46.89 52.69 50.99 50.39
Med. 46.93 28.57 33.6 33.2 33.08 52.5 25.34 46.87 59.13 50.75 50.08

XSum Mean 48.81 42.62 33.43 33.05 33.08 57.86 22.35 45.51 57.31 49.72 52.45
Med. 48.19 50.0 33.3 33.2 33.17 58.0 22.13 45.7 60.58 49.57 52.35

AG News Mean 53.5 34.05 32.95 33.66 33.72 54.01 23.54 51.35 38.27 50.01 51.05
Med. 53.43 39.29 33.0 33.6 33.67 54.5 23.2 52.65 37.5 50.2 50.0

DBPedia Mean 52.78 35.12 33.24 33.33 33.67 54.86 26.45 52.9 38.46 51.18 51.29
Med. 53.43 41.07 33.1 33.4 33.67 53.5 26.17 52.86 36.54 51.14 51.1

TREC Mean 51.52 43.57 33.15 33.06 32.77 55.17 25.55 52.53 55.38 50.02 50.38
Med. 51.44 48.21 33.3 33.0 33.08 55.0 25.53 52.86 63.46 49.72 50.0

Table 13: Experiments on T5-Large. The entry at row i and column j denotes the average performance
when the model is trained on task i and evaluated on task j. Mean denotes the mean performance on
all prompts, and Med. denotes the median performance on all prompts.

Task Names Met. Natural Language Inference Sentence Completion Co-Reference WSD
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

MRPC Mean 54.44 36.79 33.43 32.87 33.38 55.02 25.83 49.77 61.92 51.68 51.35
Med. 53.97 37.5 33.6 32.3 33.17 56.0 25.62 49.92 62.5 51.78 50.47

QQP Mean 60.87 46.43 31.07 32.16 31.72 58.23 26.23 47.4 54.23 50.53 50.13
Med. 61.91 50.0 30.2 31.7 31.0 59.5 26.26 47.62 63.46 50.36 50.16

PAWS Mean 74.33 60.6 35.68 34.91 35.44 56.65 27.09 55.0 61.63 50.75 51.21
Med. 74.37 66.07 35.0 35.0 35.08 56.0 27.49 55.0 61.54 51.14 51.18

Hotpot QA Mean 57.22 21.9 34.55 34.56 34.48 58.82 24.45 58.98 58.37 52.58 50.53
Med. 55.6 10.71 34.3 35.0 34.25 60.71 24.2 58.69 59.62 52.17 50.24

Wiki QA Mean 61.05 52.26 31.49 32.96 32.69 52.81 26.74 58.4 62.69 51.1 50.02
Med. 60.83 51.79 31.0 32.7 32.58 52.5 26.89 58.47 63.46 51.14 50.0

Adv./DBidaf Mean 48.52 47.14 32.95 33.6 33.35 56.35 26.49 52.68 56.15 52.17 50.02
Med. 47.29 51.79 33.2 33.3 33.17 56.62 26.82 52.7 63.46 52.25 50.0

Adv./DBERT Mean 48.81 37.62 33.27 33.25 33.46 60.58 26.45 54.86 55.38 51.89 49.91
Med. 47.29 50.0 33.2 33.3 33.08 59.81 26.88 53.34 63.46 50.83 50.0

Adv./DRoBERTa Mean 47.91 39.64 33.26 33.49 33.34 62.01 26.94 55.5 55.38 53.32 50.0
Med. 47.29 50.0 33.3 33.3 33.0 62.75 27.39 54.36 63.46 53.59 50.0

DuoRC/Self. Mean 57.11 43.45 32.83 33.35 33.51 55.66 26.71 45.79 44.13 52.49 50.0
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Med. 56.86 48.21 33.4 33.5 33.33 55.38 26.75 46.18 39.42 52.25 50.0

DuoRC/Para. Mean 53.61 39.17 33.82 34.15 33.74 53.83 26.66 47.66 38.17 52.83 50.41
Med. 53.25 41.07 33.5 33.9 33.5 54.5 27.01 46.93 37.02 52.33 50.24

ROPES Mean 53.65 41.67 34.2 34.68 35.64 69.19 26.13 50.73 40.38 57.76 50.31
Med. 53.43 41.07 33.7 33.8 35.25 67.65 26.27 50.88 37.98 58.25 50.0

Quoref Mean 47.44 34.17 33.98 34.52 33.06 51.1 25.84 51.26 60.77 53.76 49.72
Med. 47.29 41.07 33.8 33.7 33.08 52.5 25.71 51.58 63.46 53.59 50.0

Cos E Mean 52.45 38.21 33.65 32.91 33.53 66.72 28.35 51.36 38.56 53.69 50.89
Med. 51.81 39.29 33.5 33.0 33.42 66.83 29.31 50.94 36.54 52.88 51.02

Cosmos QA Mean 55.34 54.64 35.29 33.2 33.51 84.57 33.33 95.06 47.4 53.92 51.77
Med. 56.68 53.57 35.4 33.3 33.75 85.5 33.34 95.03 44.71 53.75 52.27

DREAM Mean 52.38 37.74 33.53 32.94 33.66 76.12 28.57 80.2 47.4 52.94 50.2
Med. 52.17 41.07 33.6 32.5 33.5 77.5 28.23 80.22 48.08 53.67 50.0

QASC Mean 56.43 37.38 34.87 34.72 34.99 63.88 27.38 75.62 38.56 54.54 50.78
Med. 56.5 41.07 34.6 34.7 34.83 65.5 27.27 77.12 36.54 55.09 50.0

QuAIL Mean 54.12 49.17 35.12 34.41 34.32 79.41 29.28 89.83 37.12 54.44 50.13
Med. 53.61 46.43 33.8 34.1 34.08 83.0 29.31 89.85 36.54 55.64 49.76

QuaRel Mean 52.45 31.43 33.06 33.42 33.46 60.95 27.85 50.33 43.08 50.36 47.96
Med. 52.71 33.93 33.1 33.3 33.5 58.5 28.49 50.24 39.9 50.12 48.04

QuaRTz Mean 57.36 63.69 31.81 32.83 34.17 68.2 24.74 53.96 43.94 57.06 49.34
Med. 57.4 69.64 31.4 32.7 34.0 65.0 24.48 52.81 42.79 56.99 49.76

SciQ Mean 53.18 25.95 32.98 33.31 33.86 56.69 24.15 48.67 37.4 51.76 50.99
Med. 52.71 8.93 33.3 33.3 33.5 55.38 23.62 48.53 36.54 51.46 50.0

Social IQA Mean 67.69 51.55 36.76 35.63 37.85 72.28 28.83 80.99 54.33 54.52 50.91
Med. 70.94 58.93 36.8 36.0 37.92 72.96 29.3 83.48 58.65 54.93 51.33

Wiki Hop Mean 52.45 29.52 33.43 33.55 33.62 56.01 26.05 56.79 37.31 51.78 50.22
Med. 52.71 28.57 33.4 33.5 33.67 54.08 26.13 56.97 36.54 52.25 50.0

WiQA Mean 53.68 42.74 34.51 34.69 36.19 56.24 22.8 45.12 36.63 53.42 50.71
Med. 52.71 39.29 34.5 34.5 36.0 56.5 21.86 45.22 36.54 53.51 50.0

Amazon Mean 51.95 46.9 33.74 33.85 34.72 55.83 25.45 47.25 52.5 50.28 49.87
Med. 52.35 51.79 33.4 33.9 34.5 56.0 25.75 47.25 59.13 50.12 50.0

App Reviews Mean 54.37 31.43 32.94 33.82 33.09 58.23 23.74 56.73 46.92 49.58 51.88
Med. 54.87 35.71 33.2 33.4 33.0 58.17 23.17 56.97 41.83 49.41 50.86

IMDB Mean 55.7 51.9 34.07 34.11 34.04 51.85 26.4 48.66 48.27 51.25 48.97
Med. 56.14 58.93 33.4 33.5 33.75 52.0 26.79 49.01 49.04 51.46 48.75

Rotten Tomatoes Mean 54.3 50.95 33.3 33.39 33.72 51.62 26.98 49.93 39.33 50.66 51.08
Med. 54.33 51.79 33.3 33.4 33.58 52.04 27.24 50.08 39.42 50.83 50.39

Yelp Mean 52.71 32.5 33.38 33.59 33.38 53.3 25.65 46.69 36.54 49.93 49.97
Med. 52.71 39.29 33.4 33.4 33.5 54.0 25.82 46.77 36.54 50.28 50.0

Common Gen Mean 48.12 36.55 33.47 33.72 33.49 50.77 26.09 50.82 58.85 49.77 49.92
Med. 47.29 48.21 33.3 33.4 33.17 51.0 26.24 50.99 62.5 49.88 49.84

Wiki Bio Mean 48.38 34.17 32.73 33.69 33.08 55.03 22.72 46.79 56.83 51.78 50.2
Med. 48.01 37.5 32.9 33.5 33.42 54.5 22.36 47.73 61.54 51.46 50.16

CNN Daily Mail Mean 48.88 42.38 33.15 33.54 33.08 51.22 28.44 54.16 57.5 50.32 50.02
Med. 47.65 48.21 33.3 33.4 33.0 51.46 28.94 54.36 63.46 50.2 50.0

Gigaword Mean 53.1 32.38 33.37 33.84 34.18 59.66 23.41 47.15 37.4 50.67 49.86
Med. 52.71 35.71 33.4 33.6 34.33 60.0 22.95 47.3 36.54 50.36 49.84

MultiNews Mean 48.66 41.19 32.99 33.36 32.97 52.9 23.94 48.94 51.63 51.21 50.64
Med. 48.38 41.07 33.2 33.3 32.92 53.04 24.1 48.85 57.69 51.07 50.63

SamSum Mean 47.11 33.21 31.99 32.73 32.18 53.41 24.0 51.69 50.48 50.59 51.68
Med. 46.57 35.71 31.7 32.8 31.83 52.0 24.01 52.11 51.92 50.99 51.25
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XSum Mean 47.04 43.21 33.31 34.01 32.94 52.43 20.31 48.13 58.65 49.85 49.98
Med. 47.47 50.0 33.4 33.8 33.08 52.96 19.06 47.89 63.46 50.04 50.08

AG News Mean 52.24 47.98 33.41 33.07 33.38 59.38 25.64 47.4 41.92 50.32 50.2
Med. 52.35 53.57 33.4 33.3 33.5 59.31 25.68 47.35 43.27 50.51 50.24

DBPedia Mean 52.74 18.45 33.3 33.52 33.39 61.82 24.87 47.48 46.25 50.83 51.14
Med. 52.89 8.93 33.4 33.4 33.42 63.0 25.61 47.46 49.52 50.91 51.33

TREC Mean 53.1 38.69 33.37 33.35 33.42 61.73 27.12 51.46 36.83 49.69 50.06
Med. 52.71 41.07 33.4 33.4 33.5 64.5 27.68 51.31 36.54 49.57 50.0

Table 14: Experiments on T5-XL. The entry at row i and column j denotes the average performance
when the model is trained on task i and evaluated on task j. Mean denotes the mean performance on
all prompts, and Med. denotes the median performance on all prompts.
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