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Abstract

Synthetic training data—commonly used to
augment human-labeled examples in super-
vised learning—are often noisy, but can be
generated in very large quantities and diversity.
This paper proposes to leverage these unique
attributes in a targeted manner to maximize the
utility of synthetic examples. Via two novel
applications that utilize synthetic data for tar-
geted pre-training and knowledge distillation,
we demonstrate the feasibility of this idea for
machine reading comprehension (MRC). Us-
ing our proposed methods, we are able to train
simultaneously smaller, faster and more accu-
rate MRC models than existing synthetic aug-
mentation methods. Our methods are generic
in nature and can be applied to any task for
which synthetic data can be generated.

1 Introduction

With the proliferation of large, data-hungry deep
neural models, synthetic training data are an
increasingly useful utility in machine learning
(Nikolenko, 2019, 2021). In real-world NLP ap-
plications like question answering (QA), synthetic
data can augment training examples created by hu-
man domain experts (Dong et al., 2019; Zhang and
Bansal, 2019; Sultan et al., 2020) or even train use-
ful models on their own in new domains (Reddy
et al., 2021; Puri et al., 2020).

The process of creating synthetic examples for
tasks like QA often relies on sequence-to-sequence
generation methods (Du et al., 2017; Zhang and
Bansal, 2019; Shakeri et al., 2020), and has been
greatly simplified by modern unified approaches to
language generation (Radford et al., 2019; Lewis
etal., 2020; Raffel et al., 2020). Figure 1 shows two
question-answer pairs generated by BART (Lewis
et al., 2020) when fine-tuned on labeled machine
reading comprehension (MRC) data.

Not much has been reported in the literature,
howeyver, on efforts to understand the data that are

¢: Atomic nuclei consist of profons and neutrons, which
attract each other fthrough the nuclear force, while
protons repel each other via the electric force due to
their positive charge. These two forces compete, leading
to some combinations of neutrons and protons...

q: How do profons and neufrons attract each other?
a: through the nuclear force

q: What are profons involved in attracting?
a: profons and neutrons

Figure 1: Synthetic MRC examples generated by our
generator from a Wikipedia paragraph. The first exam-
ple is accurate, but the second one is not.

thus generated, their properties, and best utiliza-
tion. In supervised learning settings where human-
annotated ‘gold’ training instances are also avail-
able, synthetic data are most commonly used to
pre-train models, which are then fine-tuned with
the gold examples (Dong et al., 2019; Alberti et al.,
2019; Sultan et al., 2020). This is a reasonable
approach, where noisy synthetic pre-training ef-
fectively provides gold fine-tuning with a strong
initialization of model parameters. We believe,
however, that a more careful consideration of the
unique set of properties synthetic data possess and
attempts to directly capitalize on those can further
increase their utility.

Consider for example the fact that synthetic ex-
amples can be generated in numbers that are orders
of magnitude larger than gold examples. This cre-
ates a large pool of novel test cases on which the
behavior of an existing model can be studied, po-
tentially informing the design of a better model.
Based on this general idea, we propose a novel
synthetic data augmentation method in this paper.
Termed targeted synthetic pre-training, our method
first identifies cycle-consistent examples (Alberti
et al., 2019) T' in a large synthetic corpus S on
which an existing gold-trained model m exhibits
high prediction loss. Intuitively, 7" embodies the
weaknesses of m and should complement its gold
training well. On two public MRC benchmarks



SQuAaD2.0 (Rajpurkar et al., 2018) and NewsQA
(Trischler et al., 2017), we empirically show that
pre-training with a much smaller subset 7" of such
“hard” synthetic examples indeed yields better mod-
els than the original larger corpus S, also drastically
reducing training time.

Being able to elicit the detailed behavior of an ex-
isting model can be key also for a second machine
learning framework: knowledge distillation (KD).
We posit that large amounts of diverse synthetic
data—generated using top-p top-k sampling (Holtz-
man et al., 2020; Sultan et al., 2020), for example—
can reveal the knowledge of a teacher model in
greater detail than typically limited amounts of
gold data. By relying on the teacher’s soft predic-
tions as the only targets for supervision, KD can
also completely bypass the label noise typically
present in synthetic data (see Figure 1). Our evalu-
ation on SQuAD2.0 and NewsQA shows that large
synthetic corpora can in fact distill better students
than the original gold training sets. Impressively,
distilling with both synthetic and gold examples
yields students (BERT-Base, 110M parameters) that
perform at least as well as their teachers (BERT-
Large, 340M parameters) on both datasets.

An advantage of our two proposed methods is
that their combination is quite straightforward: tar-
geted synthetic pre-training can be used to first
train a strong teacher model, from which a student
model can then be distilled using synthetic and
gold examples. On SQuAD2.0 and NewsQA, this
combination yields BERT-Base MRC models that
outperform the best BERT-Large models we train
using existing synthetic training methods by 0.6—
1.4 points. These results represent a 68 % reduc-
tion in model size enabling 3x faster inference,
along with significant improvements in accuracy
on two separate benchmarks.

The above findings have clear and major implica-
tions for real-world applications of QA. Moreover,
our proposed approaches are generic in nature, with
broad applicability to other NLP tasks.

2 Related Work

From early rule-based approaches that relied on
syntactic transformations or handcrafted seman-
tic templates (Heilman and Smith, 2010; Lindberg
et al., 2013; Mazidi and Nielsen, 2014), automatic
question generation from text has gradually transi-
tioned to using neural sequence-to-sequence meth-
ods (Du et al., 2017; Harrison and Walker, 2018;

Zhu et al., 2019; Gu et al., 2021). Most state-of-
the-art generators also benefit from large-scale lan-
guage model (LM) pre-training (Dong et al., 2019;
Scialom et al., 2019; Shakeri et al., 2020).

Synthetic training data have already been ap-
plied with great success to MRC (Duan et al., 2017;
Sachan and Xing, 2018; Shakeri et al., 2020; Pan
et al., 2021; Bartolo et al., 2021). Most prior work
has focused on improving the quality of generation,
measured by metrics such as generation accuracy
(Liu et al., 2020; Dong et al., 2019) and diversity
(Sultan et al., 2020; Yue et al., 2020). While a few
strategies including pre-training (Dhingra et al.,
2018), cycle consistency filtering (Alberti et al.,
2019) and mixing with gold examples in training
mini-batches (Zhang and Bansal, 2019) have been
proposed to deal with noise in synthetic training
data, little or no effort has been made to exploit
their unique strengths. Here we intend to explore
new training strategies that make better use of abun-
dant and diverse synthetic examples.

In active learning, a key procedural step is the
identification of informative unlabeled examples
that are used to query an oracle (Konyushkova
et al., 2017; Zhang and Chaudhuri, 2015; Lee et al.,
2020). Among different existing query strategies,
uncertainty sampling (Lewis and Gale, 1994; Schef-
fer et al., 2001; Wang et al., 2017; Gal et al., 2017)
selects examples for which the model being trained
is the least certain about what the label should be.
In targeted synthetic pre-training, we share the goal
of identifying the most useful training examples,
but instead of querying an oracle based on model
uncertainty, we sample from a pool of synthetic
examples based on model error.

A second related approach to our work is core-
set selection, which attempts to find a represen-
tative subset of examples that adequately approxi-
mates a larger dataset (Har-Peled and Kushal, 2005;
Huggins et al., 2016; Coleman et al., 2020; Ju et al.,
2021). While our goal is also to identify a useful
subset of examples, instead of approximating the
entire synthetic dataset, we intend to find a subset
that augments human-annotated examples well.

Lastly, knowledge distillation (KD) (Hinton et al.,
2015) has proven to be an effective approach to
constructing small yet high-performance models
by training them to imitate larger teacher models
(Liu et al., 2019a; Sun et al., 2019; Yang et al.,
2020; Boreshban et al., 2021). For pre-trained LMs,
previous work has shown that KD during LM pre-



training (Sanh et al., 2019; Dong et al., 2021) or
target task supervision (Turc et al., 2019; Li et al.,
2021) or both (Jiao et al., 2020) can improve per-
formance. Yang et al. (2020) propose a two-stage
KD framework where large amounts of question-
passage pairs are derived from a commercial web
search engine to create a binary relevance judgment
task. Student models are first distilled on this aux-
iliary task and then with target task gold examples.
Unlike all these approaches, in synthetic KD, we
exploit synthetic target task (MRC) examples for
improved distillation.

3 Methods

In this section, we first discuss fine-tuning of BERT
for MRC (§3.1). Then we detail the generation of
synthetic examples (§3.2) as well as our proposed
methods of targeted synthetic pre-training (§3.3)
and synthetic knowledge distillation (§3.4).

3.1 MRC Training

Following Devlin et al. (2019), we fine-tune a
transformer-based pre-trained masked language
model (MLM) for MRC. This section provides an
overview of the procedure; we refer the reader to
(Devlin et al., 2019) for further details.

Let c be a context, ¢ a question, and a its answer
in c. Let agiqr+ and aepg be the start and end offsets
of a in ¢. The input to the MRC system is the
concatenation of ¢ and ¢, separated by a special
separator token. The MRC network consists of two
fully connected feed-forward networks atop shared
MLM transformer layers, which learn to predict
the start and end probabilities ps(astqart|q, ¢) and
Pe(@endlq, ¢), respectively.

Given a training dataset D, the parameters 6 of
the MRC model are learned using standard maxi-
mum likelihood estimation:

1D
0" = arg maxz log po(a; | gi,ci)
o =
1D
= argmax Z { log Ds.0 (astart,i|Qi7 Ci)
o =1
+ 108 pe g (end,ilgi, ci) }

At inference time, the model outputs the answer
span [j : k| such that:
j = argmaxps(j’ | ¢,c)
]/

k = argmax peo(k' | g,c)
k'>j

3.2 Generating Synthetic Examples

We fine-tune an encoder-decoder language model
(Lewis et al., 2020) with examples of answerable
questions from existing MRC datasets. Let c be
a paragraph in a given document d, g a question,
and q its answer in c. Let s be the sentence in ¢
that contains a. Our generator is trained to out-
put the sequence s; a; q given ¢, where (i) special
tokens separate the three texts, and (ii) instead of
the full sentence s, only its first and last words are
generated for efficiency. In essence, this training
procedure teaches the generator to identify an ap-
propriate answer sentence s in ¢, find a candidate
answer phrase a in s, and generate a question g, all
in a single autoregressive episode.

Given a dataset D of answerable MRC examples,
the parameters ¢ of the generator are learned using
standard maximum likelihood estimation:

D]

¢F = arg maleogp¢(8¢7ai»Qi | ¢)
i=1

At inference time, given a paragraph c from a
document d, we first generate a triple (s, a, q) us-
ing top-p top-k sampling (Holtzman et al., 2020;
Sultan et al., 2020). An answerable example
(c,q,a) is then created from this output. To cre-
ate an unanswerable example for ¢, we simply
pair it up with a different paragraph ¢’ in d (Al-
berti et al., 2019), which results in the triple
(c',q, “No Answer”). We show some generated
examples in Appendix A.1 of the supplementary
material.

3.3 Targeted Synthetic Pre-Training

Synthetic Pre-Training To remove noisy exam-
ples from the generated MRC dataset, we apply a
cycle consistency filter (Alberti et al., 2019) that
utilizes an existing MRC model trained on human
annotated examples. This filter removes any exam-
ple from the synthetic dataset for which the MRC
model predicts a different answer than the one in
the example. Let S be the set of cycle-consistent
synthetic examples and GG be a given set of gold-
standard (i.e., human annotated) examples. Simi-
lar to prior work (Dong et al., 2019; Sultan et al.,
2020), we follow a two-step process for the appli-
cation of S in conjunction with G: (1) pre-train an
MRC model on S, and (2) fine-tune on G. In the
rest of this section, we denote this model by s,



and an identical network fine-tuned only on gold
data by 0¢.

Targeted Synthetic Pre-Training Given cycle-
consistent synthetic training examples .S, standard
pre-training uses the entire set S' to maximize the
amount of supervision. In this section, we propose
an alternative approach, where a subset S’ C S that
explicitly encodes the weaknesses of 6 is identi-
fied, facilitating targeted supervision of a model
0ss_, ¢ that is superior to 0g_,q.

Concretely, we propose highest error synthetic
pre-training (HE), where S’ consists of those exam-
ples in S for which model ¢ has the highest pre-
diction errors; we empirically show in §5 that this
S’ provides more effective pre-training than S. To
systematically study this effect, we first define an
example difficulty function H: S — R>(, which
computes the conditional negative log-likelihood
of example s = (¢, q,a) € S given 0:

H(s) = —logpy,(a|q,c)

Let S; be the examples in S sorted in decreasing
order of their H values:

Sy = sort(S, key=H , order=decreasing)

To examine the relationship between the difficulty
of synthetic examples and their pre-training effec-
tiveness, we partition .S; into consecutive bins of
equal size b. Let n be the number of bins so that
b= 5 Fori e {1,2,..,n}, the i-th bin B;
consists of examples S¢[(¢ — 1) x b : ¢ x b] in aran-
domized order. For each bin B; C S}, we train an
MRC model 0p,_,¢ and evaluate the pre-training ef-
fectiveness of subset B; based on the performance

of 0p,_,c on a test set.

3.4 Synthetic Knowledge Distillation

Synthetic data are prone to label noise, and any
erroneous sample in a synthetic training corpus can
be detrimental for standard MLE training (§3.1),
especially if validation measures such as cycle con-
sistency (CC) check are not taken. Knowledge
distillation (KD) (Hinton et al., 2015), on the other
hand, can ignore such noisy labels altogether, in-
stead relying on the soft predictions (probability
distributions over possible answers) of a stronger
teacher model. In the context of synthetic training,
KD can thus have a useful denoising effect without
requiring measures such as CC.

Here we further posit that KD can synergisti-
cally benefit from the use of synthetic training data,

which can be generated in large quantities and di-
versity when an appropriate decoding algorithm
such as top-p top-k sampling is used (Sultan et al.,
2020). KD aims to uncover the knowledge of a
teacher model across a range of input scenarios; we
believe that large amounts of diverse synthetic ex-
amples, despite their noisy nature, can achieve this
objective more effectively than limited amounts of
human annotated data.

To test this hypothesis, we perform synthetic KD
as follows. Given a training example (c, g, a) in
synthetic dataset S, let L be the number of tokens
in the corresponding MRC input (g, ¢) (see §3.1 for
details). Let z%,,,, and 2! _, be the answer start and
end probability distributions over all L positions of
the input sequence, respectively, as predicted by the
teacher model. Similarly, let zsq,¢ and zeyq be the
distributions predicted by the student. We compute
a distillation loss Lg;s;; based on the Kullback-
Leibler divergence from z to z* as follows:

|S|

¢
Edistill,start = E DKL(zstart,i H zstart,i)

=1

S|
¢

L distill,end = E Drr(2enai || Zend.i)
=1
1
Laistin = §(£distill,start + Laistill end)

We train the student model by minimizing £ g;st;1:

0" = arg min Lgigi
0

At inference time, prediction follows the same pro-
cedure as in §3.1.

4 Experimental Setup

Here we describe our general experimental setup.
Additional details specific to individual experi-
ments are provided in §5.

4.1 Datasets

We use two public MRC benchmark datasets:
SQuAaD2.0 (Rajpurkar et al., 2018) and NewsQA
(Trischler et al., 2017). The documents in
SQuAD2.0 are Wikipedia pages, while NewsQA
contains CNN news articles. The official Test set
for SQuAD2.0 is not publicly available; thus, we
use the official Dev set as our Test set and a random
split of the original training set as Train and Dev.
For NewsQA, we use the official Train-Dev-Test
split. Selected key statistics for the two datasets are
provided in Table 1.



Train Dev Test SQuAD2.0  NewsQA
SQuAD2.0 Total Answerable 7.6M 12.4Mm
# of Documents 397 45 35 Total Unanswerable 1.9Mm 3.1Mm
# of Paragraphs 17,081 1,954 1,204 CC Answerable 5.0M 4.8M
# of Examples 117,159 13,160 11,873 CC Unanswerable 1.8M 3.0Mm
NewsQA CC Answerable in SYN 4.0M 4.0M
# of Documents 11,469 638 637 CC Unanswerable in SYN 1.0M 1.0M

# of Examples 107,669 5,988 5,971

Table 1: Dataset statistics. Examples are aligned to
paragraphs in SQuAD2.0, but not in NewsQA.

4.2 Models

We fine-tune BART-Large (Lewis et al., 2020) for
synthetic example generation. In our synthetic pre-
training experiments, BERT-Large models (340M
parameters) (Devlin et al., 2019) are fine-tuned for
MRC. For knowledge distillation, we use BERT-
Large teachers and BERT-Base (110M parameters)
students. All model implementations are based on
Hugging Face (Wolf et al., 2019).

4.3 Synthetic Example Generation

We train separate generators for SQuAD2.0 and
NewsQA on the corresponding answerable training
examples. For generation, we use top-p top-k sam-
pling with p = 0.9 and k£ = 10. Given a generated
answerable example (c, ¢, a), an unanswerable ex-
ample is created by pairing up ¢ with a randomly
sampled context ¢’ # ¢ from the same document
(Alberti et al., 2019).

We generate synthetic examples (§3.2) for
both datasets from in-domain documents. For
SQuAD2.0, these are Wikipedia pages taken from
the Natural Questions dataset (Kwiatkowski et al.,
2019). For NewsQA, we use two different sources:
(1) cNN articles (Hermann et al., 2015) that are
not in NewsQA, and (2) New York Times (NYT)
articles in the Gigaword corpus (Graff et al., 2005).
See Table 2 for detailed statistics.

Many CNN and NYT paragraphs are relatively
short; we merge such paragraphs to create contexts
that are around 320 word pieces long. Longer para-

Wikipedia CNN+NYT
# of Documents 307,373 1,333,316
# of Paragraphs 1,812,843 4,841,721

Table 2: Sizes of unlabeled corpora from which we
generate synthetic examples. Wikipedia pages are used
to generate examples for SQuAD2.0; CNN and New
York Times (NYT) articles are used for NewsQA.

Table 3: Counts of synthetic examples. CC: cycle-
consistent; SYN: final set of synthetic pre-training ex-
amples used in our experiments.

graphs are used as is. For SQuAD2.0, individual
paragraphs are used as contexts. We generate five
examples per context for SQuAD2.0 and three per
context for NewsQA, and remove all duplicates.
We also create one-fourth as many unanswerable
examples as answerable ones for each dataset.

For cycle consistency check, instead of using
the MRC model we are trying to improve, we pro-
pose to utilize a different, more powerful model.
While other options exist, such as an ensemble of
different models, we simply train RoBERTa-Large
(Liu et al., 2019b) MRC models on the respective
gold datasets as our cycle consistency checkers.
For each dataset, we finally retain a random sam-
ple of 4M answerable and 1M unanswerable cycle-
consistent examples to use in our experiments. Ta-
ble 3 shows the statistics.

SQuAD2.0  NewsQA
Batch Size 12 24
LR BERT-Base 3x10~%  3x10~°
BERT-Large 3x107%  2x107°
GoLD HL 2 1
SYN — GoLD HL 1—2 1—1
7 of Epochs GoLD DT 6 4
SYN — GoLD DT 356 352

Table 4: MRC training configurations. LR: learning
rate; HL: hard label training (§3.1 and §3.3); DT: soft
distillation training (§3.4).

4.4 MRC Training

Training configurations for both SQuAD2.0 and
NewsQA are shown in Table 4. These hyperpa-
rameter values were derived using a grid search;
we choose the set of values that yield the best Dev
results.

4.5 Knowledge Distillation

For each dataset, we select as our teacher model
the respective best performing BERT-Large model
from §3.3, trained using highest error synthetic
pre-training.
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Within each curve, difficulty (prediction error) increases from left to right

Figure 2: Dev set performance of synthetic pre-training
bins. Along the x-axis, each curve places all bins of
a specific size equidistantly and in increasing order of
difficulty. Bin sizes across curves range from S—M to

52M examples. The square represents all 5M examples

Effectiveness of the bins (measured by F} score) gener-
ally increase with their difficulty, and several high-error
bins outperform all 5M examples.

4.6 Evaluation

Following Rajpurkar et al. (2018), we use macro-
averaged F7j score as our evaluation metric, which
measures the average lexical overlap between sys-
tem predictions and ground truth answers. Each
model is first evaluated on Dev; the answerability
threshold that maximizes the model’s Dev F} score
is then used to obtain its Test predictions for the
final evaluation on Test (Devlin et al., 2019).

5 Results and Analysis

All results reported in this section are average
scores over three random seeds.

5.1 Targeted Synthetic Pre-Training

Following the procedure of §3.3, we first partition
the 4M cycle-consistent answerable examples of
Table 3 into difficulty bins of 2M (2 bins), 1M (4
bins), S00K (8 bins) and 250K (16 bins) examples.
The 1M unanswerable examples are also hierar-
chically partitioned into the same number of bins.
Answerable and unanswerable bins of the same
rank (e.g., 2nd of 8) are then merged to construct
our final pre-training bins. For each bin B, we train
a BERT-Large MRC model 0p_.c (§3.3).

Figure 2 illustrates how these models perform on
the the SQuAD2 0 and NewsQA Deyv sets. For bin
sizes between > = M and 2! 5M examples (inclusive), per-
formance cons1stent1y improves from easier bins
(examples with smaller prediction losses) to harder

SQuAD2.0 NewsQA
Dev Test Dev Test
GOLD 792 809 643 632

SYN5M — GoLD 80.2 824 66.1 65.1
SYNHE — GoLp 81.1 833 66.7 65.2

Table 5: Performance (F} scores) of BERT-Large using
gold-only training, pre-training with all S5M synthetic
examples, and with subsets of highest-error synthetic
examples (HE) that have the best Dev results.

bins (examples with larger losses). The trend is sim-
ilar for the smallest ——example bins, but slightly
weaker. Crucially, several high-error bins of dif-
ferent sizes outperform all 5SM examples. These
results provide empirical evidence that harder syn-
thetic examples generally yield better pre-training
than easier examples.

In addition to the difficulty of the pre-training
bins, a second key independent variable in the
above experiment is their size. The best- performing
bins for SQUAD2.0 and NewsQA contain 4 M and
55’1 examples, respectively, which implies that even
though the hardest examples are the most use-
ful, enough of them must still be included in pre-

training for sufficient sample diversity.

Table 5 compares the two best Dev models with
baselines on the respective Test sets. While syn-
thetic pre-training with all cycle-consistent exam-
ples does improve results over gold-only training,
targeted synthetic pre-training with only a high-
error subset yields the best results across the board.
In a one-tailed Wilcoxon signed-rank test of the
difference between the two pre-training methods,
we observe P<.05 for SQuAD2.0 (Dev and Test)
and P<.1 for NewsQA Dev. On NewsQA Test, tar-
geted pre-training outscores standard all-example
pre-training in each of the three independently ran-
domized runs, even though we observe P>.1 in
the significance test.

We also compare with a curriculum learning
(CL) baseline (Bengio et al., 2009), which trains
models in an easy-to-hard order so that the hard-
est examples are used at the end. CL is similar
to our proposal in that it also aims to exploit dif-
ferences in the difficulty of examples, but unlike
our method, it uses all available training examples.
Additionally, we randomize the order of examples
within our individual difficulty bins before training
(§3.3)—a decision that was made based on our ini-
tial experimental results on the Dev sets—which is
not a feature of CL.



SQuAD2.0 NewsQA
Dev Test Dev  Test

Plain CL 782 80.0 657 64.6
CL with 5% Switch 78.8 80.8 658 644
Random Training Order 80.2 824 66.1 65.1
SYN HE — GoLD 81.1 833 667 652

Table 6: Performance (F} score) of the curriculum
learning (CL) baseline is worse than both a random
training order and our targeted pre-training method.

Table 6 summarizes the CL results. First, we
observe that CL actually underperforms a random
difficulty order of the training examples, which is
our primary baseline in Table 5 (row 2). According
to some prior studies, introducing some harder ex-
amples early in CL can be useful (Platanios et al.,
2019; Penha and Hauff, 2019); hence we also ex-
amine a variation of CL where positions of 5% of
the examples are randomly switched. This model
performs slightly better than plain CL overall, but
is still considerably worse than the random order
baseline. One possible interpretation of these re-
sults is that in CL, training with only easy examples
in the beginning might lead the models’ weights to
a region in the parameter space that subsequently
makes their generalization hard.

5.2 Synthetic Knowledge Distillation

In our knowledge distillation (KD) experiments,
we use the best BERT-Large models of §5.1 as
the teachers: SYN STM HE — GoLD for SQuAD2.0
and SYN STM HE — GoLD for NewsQA (see Ta-
ble 5). All students are BERT-Base models.

Given a training dataset D, KD can generally use
a combination of a distillation loss such as £ g;
from §3.4 and a standard negative log-likelihood
loss based on the labels from D:

|D|
Liabets = — Y 1ogpo(a; | gi, i)
i=1
To find out the best combination for our models,

we first train students on the gold training data for
A €{0,.3,.5,.7,.9, 1} in the following joint loss:

L = Naistin + (1 — X) Ligpels

SQuAD2.0 models are trained for six epochs and
NewsQA models for four epochs (tuned on Dev).
The best F; scores on Dev are achieved with
A = 1(SQuAD2.0: 77.4, NewsQA: 66.0), where
training discards the dataset labels entirely, re-
lying only on the teacher’s predictions. On the

SQuAD2.0 NewsQA

Dev Test Dev Test
Teacher 81.1 833 66.7 65.2
A=1 774 787 66.0 64.8
A=0 747 758 622 60.6

Table 7: F} scores from gold-only distillation base-
lines. Pure distillation (A = 1) is clearly better than
MLE on the the dataset labels (A = 0), but none of the
students are as good as their teachers.

other hand, MLE training on the dataset labels
(A = 0) has the lowest F scores (SQuAD2.0: 74.7,
NewsQA: 62.2), indicating that any amount of
KD is useful. Based on these results, we use only
L gistsu1 in all later experiments.

To establish a gold-only distillation baseline, we
further evaluate the best Dev students (A = 1) on
the respective Test sets. The results are shown in Ta-
ble 7. There is a clear performance gap between the
teachers and their students in these results, which
can either mean that the students have reached their
full capacity and cannot perform any better, or that
a limited amount of gold data cannot expose the
teachers’ knowledge in enough detail to train better
students.

# of Examples SQuAD2.0 NewsQA
1.25m 79.0 65.0
2.5M 80.0 65.7

5M 80.8 66.1
7.5M 81.1 66.1

Table 8: Synthetic distillation F score on Dev consis-
tently improves with number of training examples.

To find out which of these two explanations is
correct, next we distill students with synthetic ex-
amples, which, unlike human annotations, can be
produced in very large numbers. We randomly
sample subsets of 1.25M, 2.5M, 5M and 7.5M syn-
thetic examples and distill a separate student with
each for one epoch. Table 8 shows the evaluation
results on Dev, where we observe a clear improve-
ment in performance as the number of training
examples increases. Crucially, the 5M synthetic
distillation results are already better after a single
epoch of training than the gold distillation results
of Table 7. These results support the hypothesis
that larger training datasets yield better KD due to
increased sample diversity.

Our best student models on Dev are obtained
by distilling with 7.5M synthetic examples for
two more epochs and then with gold examples
(SQuAD2.0: six epochs, NewsQA: two epochs).



SQuAD2.0 NewsQA

Dev Test Dev Test
Teacher 81.1 833 66.7 652
DSTg 774 787 66.0 64.8
DSTY 81.5 83.0 665 655
DsTs.,o 81.7 838 66.7 657

Table 9: Final synthetic distillation F; scores. DST,:
top student with gold-only distillation; DST: top stu-
dent with synthetic-only distillation; DSTE_,~: top
student with synthetic followed by gold distillation.
DSTg_, . students (BERT-Base, 110M parameters) per-
form at least as well as their teachers (BERT-Large,
340M parameters) on both datasets.

Table 9 summarizes the performance of these mod-
els on both Dev and Test. DSTY, the student model
distilled only with synthetic examples, already
matches the teacher’s performance on SQUAD2.0
Dev and NewsQA Test. With further gold distil-
lation, DSTg_, - actually outscores the teacher in
all four test conditions (P<.05 for SQuAD2.0 Dev
and Test, P<.1 for NewsQA Test). This small
but nevertheless interesting outperformance of the
teacher models by their students could be a result
of lower student model variances, but further exper-
iments are necessary to validate this hypothesis. In
Appendix A.2 of the supplementary material, we
demonstrate the effectiveness of synthetic distilla-
tion with an even smaller DistilBERT (Sanh et al.,
2019) student.

5.3 Better and Faster MRC

The experimental results presented in this section
thus far demonstrate the individual utilities of our
two proposed methods. This concluding subsection
addresses the overarching question of this paper:
Do our methods train better and faster MRC models
than existing synthetic training methods?

To answer the question, we take a closer look
at the Test set performance of two systems. The
first system is the BERT-Large SYN 5M — GOLD
model (340M parameters) of §5.1, which is a state-
of-the-art (SOTA) synthetic training baseline that
first pre-trains an MRC model with all 5M cycle-
consistent synthetic examples and then fine-tunes it
with gold examples. The second system is the best
student model DSTG_,  of §5.2, a 110M-parameter
BERT-Base model that is trained by applying our
two proposed methods in succession: targeted syn-
thetic pre-training to first train the teacher, followed
by both synthetic and gold distillation to train the
student.

Method # Params SQuAD2.0 NewsQA
=824 Fp = 65.1
SYN 5M — GOLD 340M
(46.2 QPS) (44.0 QpS)
F; = 83.8 Fy = 65.7
DSTE 110Mm
S—G (1453 Qps)  (139.2 QPs)

Table 10: End-to-end Test set results. The proposed
synthetic training methods, when combined, yield bet-
ter and faster MRC models (bottom) than synthetic
pre-training with all cycle-consistent examples (top).
QPS stands for questions answered per second (on an
NVIDIA Tesla V100 GPU with a batch size of 128).

We report both the accuracy and the inference
speed of the two systems in Table 10. These results
clearly show that when applied together, our pro-
posed methods train better (significant at P<.05
for SQuAD2.0, P<.1 for NewsQA) and simulta-
neously 3x faster MRC models than the existing
SOTA approach for synthetic training.

It should be noted here that both the teacher and
the baseline model above are pre-trained only on
cycle-consistent (CC) samples, as examples that
are not CC are known to be detrimental for syn-
thetic pre-training (Alberti et al., 2019). Synthetic
distillation, on the other hand, can still use the
filtered out samples, since the training objective
Laistin (§3.4 and §5.2) only looks at the teacher’s
soft predictions, and not at the noisy synthetic la-
bels. Given a pool of synthetic data, a larger subset
can thus be used in practice for distillation (7.5M
in our experiments) than for pre-training (5M).

6 Conclusion

This paper poses and explores the question of how
synthetic data attributes such as abundance and di-
versity can be better exploited to improve model
supervision. Empirical results with our two pro-
posed applications, namely targeted synthetic pre-
training and synthetic knowledge distillation, show
that these attributes can indeed be leveraged in
new and more targeted ways to: (i) greatly reduce
the memory footprint of large transformer-based
reading comprehension models, (ii) enabling faster
inference, while (iii) also improving their accuracy.
Future work will test the limits of the proposed
methods, e.g., with ensembles of large models as
teachers for distillation. A second important direc-
tion is the application of the proposed ideas to other
NLP tasks, as they are generic in nature and appli-
cable in principle to any scenario where synthetic
training data are available.
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A Appendix

A.1 Synthetic MRC Training Examples

In Tables 11 and 12, we show some answerable and
unanswerable synthetic MRC examples generated
by our SQuAD-trained generator.

Auggie and Me is not a sequel but a companion book to
Wonder ( although ““ The Julian Chapter ” serves as one ).
It contains three stories, each telling the events of Wonder
from different perspectives. The first story, called *“ The
Julian Chapter ”, is from the point of view of school bully
Julian where he explains why he mistreats Auggie and if
he will change. The second — called Pluto — focuses on
August Pullman’s life before Beecher Prep and is set in
the point of view of Christopher, Auggie’s oldest friend.
The third...

How many stories does the book contain?

What is the name of the second story in the book?

Table 11: Two synthetic answerable questions gener-
ated by our SQuAD-trained generator. Answers are
highlighted in the context.

Within higher - income families that are sending more
children to universities and colleges, women make up
a greater percentage ( 15 % compared to 7 % ) of this
growth. While the largest gap of educational attainment
between men and women is seen in the highest income
group, women are attaining higher levels of education
than men in every income group. This observation poses a
unique and confusing problem : if educational attainment
has a positive correlation to familial income, why are more
women entering and completing college than men? Bailey
and Dynarski proposed that the observed educational gap
by gender may be due to differing incentives to accumulate
human capital. Men and women may participate in what
they term “ segregated labor markets ~” and “ asymmetric
marriage markets, ” and perhaps, to make up for those
perceived market differences, females are more motivated
to obtain higher levels of education.

What percent did the number of Latinos in K-12 expand
between 1999 and 2016?

Table 12: A synthetic unanswerable question used in
SQuAD pre-training.

A.2 Experiments with a DistilBERT Student

DistilBERT (Sanh et al., 2019) is a 66M-parameter
masked language model (MLM) distilled from
BERT, which has shown strong performance rel-
ative to its size. To test the effectiveness of our
proposed two-stage synthetic training on a smaller
student model, we distill a DistilBERT MRC model
from the BERT-Large teacher of §5.2 using syn-
thetic and gold MRC examples.

As shown in Table 13, the accuracy of this stu-
dent is comparable to the BERT-Large model of
§5.1, trained using the existing synthetic training
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Method # Params SQuAD2.0 NewsQA
Fi =824 F; =65.1
SYN 5M — GOLD 340M
(46.2 QPS) (44.0 QpS)
F; = 82.8 Fi =65.0
D *
STs—a 66M (270.7Qps)  (274.9 QPs)

Table 13: Test set performance of our DistilBERT mod-
els compared to the best synthetically pre-trained BERT-
Large baselines. The accuracies of the two models
are comparable even though the DistilBERT models are
about 5x smaller and 6x faster. QPS stands for ques-
tions answered per second (on an NVIDIA Tesla V100
GPU with a batch size of 128).

method of pre-training with cycle-consistent ex-
amples (SYN 5M — GOLD). Crucially, however,
the DistilBERT model is about five times smaller,
providing a 6x speedup in inference over the BERT-
Large model.

The F) scores in Table 13 are average scores
over three random seeds. For synthetic — gold
distillation of the DistilBERT student, we train for
4 — 2 and 3 — 4 epochs for SQuAD2.0 and
NewsQA, respectively. These values were tuned
on the respective Dev sets. Batch size and learning
rate are the same as in Table 4.



