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Abstract

Synthetic training data—commonly used to001
augment human-labeled examples in super-002
vised learning—are often noisy, but can be003
generated in very large quantities and diversity.004
This paper proposes to leverage these unique005
attributes in a targeted manner to maximize the006
utility of synthetic examples. Via two novel007
applications that utilize synthetic data for tar-008
geted pre-training and knowledge distillation,009
we demonstrate the feasibility of this idea for010
machine reading comprehension (MRC). Us-011
ing our proposed methods, we are able to train012
simultaneously smaller, faster and more accu-013
rate MRC models than existing synthetic aug-014
mentation methods. Our methods are generic015
in nature and can be applied to any task for016
which synthetic data can be generated.017

1 Introduction018

With the proliferation of large, data-hungry deep019

neural models, synthetic training data are an020

increasingly useful utility in machine learning021

(Nikolenko, 2019, 2021). In real-world NLP ap-022

plications like question answering (QA), synthetic023

data can augment training examples created by hu-024

man domain experts (Dong et al., 2019; Zhang and025

Bansal, 2019; Sultan et al., 2020) or even train use-026

ful models on their own in new domains (Reddy027

et al., 2021; Puri et al., 2020).028

The process of creating synthetic examples for029

tasks like QA often relies on sequence-to-sequence030

generation methods (Du et al., 2017; Zhang and031

Bansal, 2019; Shakeri et al., 2020), and has been032

greatly simplified by modern unified approaches to033

language generation (Radford et al., 2019; Lewis034

et al., 2020; Raffel et al., 2020). Figure 1 shows two035

question-answer pairs generated by BART (Lewis036

et al., 2020) when fine-tuned on labeled machine037

reading comprehension (MRC) data.038

Not much has been reported in the literature,039

however, on efforts to understand the data that are040

c: Atomic nuclei consist of protons and neutrons, which
attract each other through the nuclear force, while
protons repel each other via the electric force due to
their positive charge. These two forces compete, leading
to some combinations of neutrons and protons…

q: How do protons and neutrons attract each other?
a: through the nuclear force

q: What are protons involved in attracting?
a: protons and neutrons

Figure 1: Synthetic MRC examples generated by our
generator from a Wikipedia paragraph. The first exam-
ple is accurate, but the second one is not.

thus generated, their properties, and best utiliza- 041

tion. In supervised learning settings where human- 042

annotated ‘gold’ training instances are also avail- 043

able, synthetic data are most commonly used to 044

pre-train models, which are then fine-tuned with 045

the gold examples (Dong et al., 2019; Alberti et al., 046

2019; Sultan et al., 2020). This is a reasonable 047

approach, where noisy synthetic pre-training ef- 048

fectively provides gold fine-tuning with a strong 049

initialization of model parameters. We believe, 050

however, that a more careful consideration of the 051

unique set of properties synthetic data possess and 052

attempts to directly capitalize on those can further 053

increase their utility. 054

Consider for example the fact that synthetic ex- 055

amples can be generated in numbers that are orders 056

of magnitude larger than gold examples. This cre- 057

ates a large pool of novel test cases on which the 058

behavior of an existing model can be studied, po- 059

tentially informing the design of a better model. 060

Based on this general idea, we propose a novel 061

synthetic data augmentation method in this paper. 062

Termed targeted synthetic pre-training, our method 063

first identifies cycle-consistent examples (Alberti 064

et al., 2019) T in a large synthetic corpus S on 065

which an existing gold-trained model m exhibits 066

high prediction loss. Intuitively, T embodies the 067

weaknesses of m and should complement its gold 068

training well. On two public MRC benchmarks 069
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SQuAD2.0 (Rajpurkar et al., 2018) and NewsQA070

(Trischler et al., 2017), we empirically show that071

pre-training with a much smaller subset T of such072

“hard” synthetic examples indeed yields better mod-073

els than the original larger corpus S, also drastically074

reducing training time.075

Being able to elicit the detailed behavior of an ex-076

isting model can be key also for a second machine077

learning framework: knowledge distillation (KD).078

We posit that large amounts of diverse synthetic079

data—generated using top-p top-k sampling (Holtz-080

man et al., 2020; Sultan et al., 2020), for example—081

can reveal the knowledge of a teacher model in082

greater detail than typically limited amounts of083

gold data. By relying on the teacher’s soft predic-084

tions as the only targets for supervision, KD can085

also completely bypass the label noise typically086

present in synthetic data (see Figure 1). Our evalu-087

ation on SQuAD2.0 and NewsQA shows that large088

synthetic corpora can in fact distill better students089

than the original gold training sets. Impressively,090

distilling with both synthetic and gold examples091

yields students (BERT-Base, 110M parameters) that092

perform at least as well as their teachers (BERT-093

Large, 340M parameters) on both datasets.094

An advantage of our two proposed methods is095

that their combination is quite straightforward: tar-096

geted synthetic pre-training can be used to first097

train a strong teacher model, from which a student098

model can then be distilled using synthetic and099

gold examples. On SQuAD2.0 and NewsQA, this100

combination yields BERT-Base MRC models that101

outperform the best BERT-Large models we train102

using existing synthetic training methods by 0.6–103

1.4 points. These results represent a 68% reduc-104

tion in model size enabling 3x faster inference,105

along with significant improvements in accuracy106

on two separate benchmarks.107

The above findings have clear and major implica-108

tions for real-world applications of QA. Moreover,109

our proposed approaches are generic in nature, with110

broad applicability to other NLP tasks.111

2 Related Work112

From early rule-based approaches that relied on113

syntactic transformations or handcrafted seman-114

tic templates (Heilman and Smith, 2010; Lindberg115

et al., 2013; Mazidi and Nielsen, 2014), automatic116

question generation from text has gradually transi-117

tioned to using neural sequence-to-sequence meth-118

ods (Du et al., 2017; Harrison and Walker, 2018;119

Zhu et al., 2019; Gu et al., 2021). Most state-of- 120

the-art generators also benefit from large-scale lan- 121

guage model (LM) pre-training (Dong et al., 2019; 122

Scialom et al., 2019; Shakeri et al., 2020). 123

Synthetic training data have already been ap- 124

plied with great success to MRC (Duan et al., 2017; 125

Sachan and Xing, 2018; Shakeri et al., 2020; Pan 126

et al., 2021; Bartolo et al., 2021). Most prior work 127

has focused on improving the quality of generation, 128

measured by metrics such as generation accuracy 129

(Liu et al., 2020; Dong et al., 2019) and diversity 130

(Sultan et al., 2020; Yue et al., 2020). While a few 131

strategies including pre-training (Dhingra et al., 132

2018), cycle consistency filtering (Alberti et al., 133

2019) and mixing with gold examples in training 134

mini-batches (Zhang and Bansal, 2019) have been 135

proposed to deal with noise in synthetic training 136

data, little or no effort has been made to exploit 137

their unique strengths. Here we intend to explore 138

new training strategies that make better use of abun- 139

dant and diverse synthetic examples. 140

In active learning, a key procedural step is the 141

identification of informative unlabeled examples 142

that are used to query an oracle (Konyushkova 143

et al., 2017; Zhang and Chaudhuri, 2015; Lee et al., 144

2020). Among different existing query strategies, 145

uncertainty sampling (Lewis and Gale, 1994; Schef- 146

fer et al., 2001; Wang et al., 2017; Gal et al., 2017) 147

selects examples for which the model being trained 148

is the least certain about what the label should be. 149

In targeted synthetic pre-training, we share the goal 150

of identifying the most useful training examples, 151

but instead of querying an oracle based on model 152

uncertainty, we sample from a pool of synthetic 153

examples based on model error. 154

A second related approach to our work is core- 155

set selection, which attempts to find a represen- 156

tative subset of examples that adequately approxi- 157

mates a larger dataset (Har-Peled and Kushal, 2005; 158

Huggins et al., 2016; Coleman et al., 2020; Ju et al., 159

2021). While our goal is also to identify a useful 160

subset of examples, instead of approximating the 161

entire synthetic dataset, we intend to find a subset 162

that augments human-annotated examples well. 163

Lastly, knowledge distillation (KD) (Hinton et al., 164

2015) has proven to be an effective approach to 165

constructing small yet high-performance models 166

by training them to imitate larger teacher models 167

(Liu et al., 2019a; Sun et al., 2019; Yang et al., 168

2020; Boreshban et al., 2021). For pre-trained LMs, 169

previous work has shown that KD during LM pre- 170
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training (Sanh et al., 2019; Dong et al., 2021) or171

target task supervision (Turc et al., 2019; Li et al.,172

2021) or both (Jiao et al., 2020) can improve per-173

formance. Yang et al. (2020) propose a two-stage174

KD framework where large amounts of question-175

passage pairs are derived from a commercial web176

search engine to create a binary relevance judgment177

task. Student models are first distilled on this aux-178

iliary task and then with target task gold examples.179

Unlike all these approaches, in synthetic KD, we180

exploit synthetic target task (MRC) examples for181

improved distillation.182

3 Methods183

In this section, we first discuss fine-tuning of BERT184

for MRC (§3.1). Then we detail the generation of185

synthetic examples (§3.2) as well as our proposed186

methods of targeted synthetic pre-training (§3.3)187

and synthetic knowledge distillation (§3.4).188

3.1 MRC Training189

Following Devlin et al. (2019), we fine-tune a190

transformer-based pre-trained masked language191

model (MLM) for MRC. This section provides an192

overview of the procedure; we refer the reader to193

(Devlin et al., 2019) for further details.194

Let c be a context, q a question, and a its answer195

in c. Let astart and aend be the start and end offsets196

of a in c. The input to the MRC system is the197

concatenation of q and c, separated by a special198

separator token. The MRC network consists of two199

fully connected feed-forward networks atop shared200

MLM transformer layers, which learn to predict201

the start and end probabilities ps(astart|q, c) and202

pe(aend|q, c), respectively.203

Given a training dataset D, the parameters θ of204

the MRC model are learned using standard maxi-205

mum likelihood estimation:206

θ∗ = argmax
θ

|D|∑
i=1

log pθ(ai | qi, ci)207

= argmax
θ

|D|∑
i=1

{
log ps,θ(astart,i|qi, ci)208

+ log pe,θ(aend,i|qi, ci)
}

209

At inference time, the model outputs the answer210

span [j : k] such that:211

j = argmax
j′

ps,θ(j
′ | q, c)212

k = argmax
k′≥j

pe,θ(k
′ | q, c)213

3.2 Generating Synthetic Examples 214

We fine-tune an encoder-decoder language model 215

(Lewis et al., 2020) with examples of answerable 216

questions from existing MRC datasets. Let c be 217

a paragraph in a given document d, q a question, 218

and a its answer in c. Let s be the sentence in c 219

that contains a. Our generator is trained to out- 220

put the sequence s; a; q given c, where (i) special 221

tokens separate the three texts, and (ii) instead of 222

the full sentence s, only its first and last words are 223

generated for efficiency. In essence, this training 224

procedure teaches the generator to identify an ap- 225

propriate answer sentence s in c, find a candidate 226

answer phrase a in s, and generate a question q, all 227

in a single autoregressive episode. 228

Given a dataset D of answerable MRC examples, 229

the parameters φ of the generator are learned using 230

standard maximum likelihood estimation: 231

φ∗ = argmax
φ

|D|∑
i=1

log pφ(si, ai, qi | ci) 232

At inference time, given a paragraph c from a 233

document d, we first generate a triple (s, a, q) us- 234

ing top-p top-k sampling (Holtzman et al., 2020; 235

Sultan et al., 2020). An answerable example 236

(c, q, a) is then created from this output. To cre- 237

ate an unanswerable example for q, we simply 238

pair it up with a different paragraph c′ in d (Al- 239

berti et al., 2019), which results in the triple 240

(c′, q,“No Answer”). We show some generated 241

examples in Appendix A.1 of the supplementary 242

material. 243

3.3 Targeted Synthetic Pre-Training 244

Synthetic Pre-Training To remove noisy exam- 245

ples from the generated MRC dataset, we apply a 246

cycle consistency filter (Alberti et al., 2019) that 247

utilizes an existing MRC model trained on human 248

annotated examples. This filter removes any exam- 249

ple from the synthetic dataset for which the MRC 250

model predicts a different answer than the one in 251

the example. Let S be the set of cycle-consistent 252

synthetic examples and G be a given set of gold- 253

standard (i.e., human annotated) examples. Simi- 254

lar to prior work (Dong et al., 2019; Sultan et al., 255

2020), we follow a two-step process for the appli- 256

cation of S in conjunction with G: (1) pre-train an 257

MRC model on S, and (2) fine-tune on G. In the 258

rest of this section, we denote this model by θS→G 259
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and an identical network fine-tuned only on gold260

data by θG.261

Targeted Synthetic Pre-Training Given cycle-262

consistent synthetic training examples S, standard263

pre-training uses the entire set S to maximize the264

amount of supervision. In this section, we propose265

an alternative approach, where a subset S′ ⊆ S that266

explicitly encodes the weaknesses of θG is identi-267

fied, facilitating targeted supervision of a model268

θS′→G that is superior to θS→G.269

Concretely, we propose highest error synthetic270

pre-training (HE), where S′ consists of those exam-271

ples in S for which model θG has the highest pre-272

diction errors; we empirically show in §5 that this273

S′ provides more effective pre-training than S. To274

systematically study this effect, we first define an275

example difficulty function H:S → R≥0, which276

computes the conditional negative log-likelihood277

of example s = (c, q, a) ∈ S given θG:278

H(s) = − log pθG(a | q, c)279

Let St be the examples in S sorted in decreasing280

order of their H values:281

St = sort(S, key=H, order=decreasing)282

To examine the relationship between the difficulty283

of synthetic examples and their pre-training effec-284

tiveness, we partition St into consecutive bins of285

equal size b. Let n be the number of bins so that286

b = |St|
n . For i ∈ {1, 2, ..., n}, the i-th bin Bi287

consists of examples St[(i− 1)× b : i× b] in a ran-288

domized order. For each bin Bi ⊂ St, we train an289

MRC model θBi→G and evaluate the pre-training ef-290

fectiveness of subset Bi based on the performance291

of θBi→G on a test set.292

3.4 Synthetic Knowledge Distillation293

Synthetic data are prone to label noise, and any294

erroneous sample in a synthetic training corpus can295

be detrimental for standard MLE training (§3.1),296

especially if validation measures such as cycle con-297

sistency (CC) check are not taken. Knowledge298

distillation (KD) (Hinton et al., 2015), on the other299

hand, can ignore such noisy labels altogether, in-300

stead relying on the soft predictions (probability301

distributions over possible answers) of a stronger302

teacher model. In the context of synthetic training,303

KD can thus have a useful denoising effect without304

requiring measures such as CC.305

Here we further posit that KD can synergisti-306

cally benefit from the use of synthetic training data,307

which can be generated in large quantities and di- 308

versity when an appropriate decoding algorithm 309

such as top-p top-k sampling is used (Sultan et al., 310

2020). KD aims to uncover the knowledge of a 311

teacher model across a range of input scenarios; we 312

believe that large amounts of diverse synthetic ex- 313

amples, despite their noisy nature, can achieve this 314

objective more effectively than limited amounts of 315

human annotated data. 316

To test this hypothesis, we perform synthetic KD 317

as follows. Given a training example (c, q, a) in 318

synthetic dataset S, let L be the number of tokens 319

in the corresponding MRC input (q, c) (see §3.1 for 320

details). Let ztstart and ztend be the answer start and 321

end probability distributions over all L positions of 322

the input sequence, respectively, as predicted by the 323

teacher model. Similarly, let zstart and zend be the 324

distributions predicted by the student. We compute 325

a distillation loss Ldistill based on the Kullback- 326

Leibler divergence from z to zt as follows: 327

Ldistill,start =
|S|∑
i=1

DKL(z
t
start,i ‖ zstart,i) 328

Ldistill,end =
|S|∑
i=1

DKL(z
t
end,i ‖ zend,i) 329

Ldistill =
1

2
(Ldistill,start + Ldistill,end) 330

We train the student model by minimizing Ldistill: 331

θ∗ = argmin
θ
Ldistill 332

At inference time, prediction follows the same pro- 333

cedure as in §3.1. 334

4 Experimental Setup 335

Here we describe our general experimental setup. 336

Additional details specific to individual experi- 337

ments are provided in §5. 338

4.1 Datasets 339

We use two public MRC benchmark datasets: 340

SQuAD2.0 (Rajpurkar et al., 2018) and NewsQA 341

(Trischler et al., 2017). The documents in 342

SQuAD2.0 are Wikipedia pages, while NewsQA 343

contains CNN news articles. The official Test set 344

for SQuAD2.0 is not publicly available; thus, we 345

use the official Dev set as our Test set and a random 346

split of the original training set as Train and Dev. 347

For NewsQA, we use the official Train-Dev-Test 348

split. Selected key statistics for the two datasets are 349

provided in Table 1. 350
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Train Dev Test
SQuAD2.0
# of Documents 397 45 35
# of Paragraphs 17,081 1,954 1,204
# of Examples 117,159 13,160 11,873

NewsQA
# of Documents 11,469 638 637
# of Examples 107,669 5,988 5,971

Table 1: Dataset statistics. Examples are aligned to
paragraphs in SQuAD2.0, but not in NewsQA.

4.2 Models351

We fine-tune BART-Large (Lewis et al., 2020) for352

synthetic example generation. In our synthetic pre-353

training experiments, BERT-Large models (340M354

parameters) (Devlin et al., 2019) are fine-tuned for355

MRC. For knowledge distillation, we use BERT-356

Large teachers and BERT-Base (110M parameters)357

students. All model implementations are based on358

Hugging Face (Wolf et al., 2019).359

4.3 Synthetic Example Generation360

We train separate generators for SQuAD2.0 and361

NewsQA on the corresponding answerable training362

examples. For generation, we use top-p top-k sam-363

pling with p = 0.9 and k = 10. Given a generated364

answerable example (c, q, a), an unanswerable ex-365

ample is created by pairing up q with a randomly366

sampled context c′ 6= c from the same document367

(Alberti et al., 2019).368

We generate synthetic examples (§3.2) for369

both datasets from in-domain documents. For370

SQuAD2.0, these are Wikipedia pages taken from371

the Natural Questions dataset (Kwiatkowski et al.,372

2019). For NewsQA, we use two different sources:373

(1) CNN articles (Hermann et al., 2015) that are374

not in NewsQA, and (2) New York Times (NYT)375

articles in the Gigaword corpus (Graff et al., 2005).376

See Table 2 for detailed statistics.377

Many CNN and NYT paragraphs are relatively378

short; we merge such paragraphs to create contexts379

that are around 320 word pieces long. Longer para-380

Wikipedia CNN+NYT

# of Documents 307,373 1,333,316
# of Paragraphs 1,812,843 4,841,721

Table 2: Sizes of unlabeled corpora from which we
generate synthetic examples. Wikipedia pages are used
to generate examples for SQuAD2.0; CNN and New
York Times (NYT) articles are used for NewsQA.

SQuAD2.0 NewsQA

Total Answerable 7.6M 12.4M

Total Unanswerable 1.9M 3.1M

CC Answerable 5.0M 4.8M

CC Unanswerable 1.8M 3.0M

CC Answerable in SYN 4.0M 4.0M

CC Unanswerable in SYN 1.0M 1.0M

Table 3: Counts of synthetic examples. CC: cycle-
consistent; SYN: final set of synthetic pre-training ex-
amples used in our experiments.

graphs are used as is. For SQuAD2.0, individual 381

paragraphs are used as contexts. We generate five 382

examples per context for SQuAD2.0 and three per 383

context for NewsQA, and remove all duplicates. 384

We also create one-fourth as many unanswerable 385

examples as answerable ones for each dataset. 386

For cycle consistency check, instead of using 387

the MRC model we are trying to improve, we pro- 388

pose to utilize a different, more powerful model. 389

While other options exist, such as an ensemble of 390

different models, we simply train RoBERTa-Large 391

(Liu et al., 2019b) MRC models on the respective 392

gold datasets as our cycle consistency checkers. 393

For each dataset, we finally retain a random sam- 394

ple of 4M answerable and 1M unanswerable cycle- 395

consistent examples to use in our experiments. Ta- 396

ble 3 shows the statistics. 397

SQuAD2.0 NewsQA
Batch Size 12 24

LR
BERT-Base 3×10−5 3×10−5

BERT-Large 3×10−5 2×10−5

# of Epochs

GOLD HL 2 1
SYN→ GOLD HL 1→ 2 1→ 1

GOLD DT 6 4
SYN→ GOLD DT 3→ 6 3→ 2

Table 4: MRC training configurations. LR: learning
rate; HL: hard label training (§3.1 and §3.3); DT: soft
distillation training (§3.4).

4.4 MRC Training 398

Training configurations for both SQuAD2.0 and 399

NewsQA are shown in Table 4. These hyperpa- 400

rameter values were derived using a grid search; 401

we choose the set of values that yield the best Dev 402

results. 403

4.5 Knowledge Distillation 404

For each dataset, we select as our teacher model 405

the respective best performing BERT-Large model 406

from §3.3, trained using highest error synthetic 407

pre-training. 408

5



78

79

80

81
F1

SQuAD2.0

5M/16 5M/8 5M/4 5M/2 5M

Within each curve, difficulty (prediction error) increases from left to right
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NewsQA
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Figure 2: Dev set performance of synthetic pre-training
bins. Along the x-axis, each curve places all bins of
a specific size equidistantly and in increasing order of
difficulty. Bin sizes across curves range from 5M

16 to
5M
2 examples. The square represents all 5M examples.

Effectiveness of the bins (measured by F1 score) gener-
ally increase with their difficulty, and several high-error
bins outperform all 5M examples.

4.6 Evaluation409

Following Rajpurkar et al. (2018), we use macro-410

averaged F1 score as our evaluation metric, which411

measures the average lexical overlap between sys-412

tem predictions and ground truth answers. Each413

model is first evaluated on Dev; the answerability414

threshold that maximizes the model’s Dev F1 score415

is then used to obtain its Test predictions for the416

final evaluation on Test (Devlin et al., 2019).417

5 Results and Analysis418

All results reported in this section are average419

scores over three random seeds.420

5.1 Targeted Synthetic Pre-Training421

Following the procedure of §3.3, we first partition422

the 4M cycle-consistent answerable examples of423

Table 3 into difficulty bins of 2M (2 bins), 1M (4424

bins), 500K (8 bins) and 250K (16 bins) examples.425

The 1M unanswerable examples are also hierar-426

chically partitioned into the same number of bins.427

Answerable and unanswerable bins of the same428

rank (e.g., 2nd of 8) are then merged to construct429

our final pre-training bins. For each binB, we train430

a BERT-Large MRC model θB→G (§3.3).431

Figure 2 illustrates how these models perform on432

the the SQuAD2.0 and NewsQA Dev sets. For bin433

sizes between 5M
8 and 5M

2 examples (inclusive), per-434

formance consistently improves from easier bins435

(examples with smaller prediction losses) to harder436

SQuAD2.0 NewsQA
Dev Test Dev Test

GOLD 79.2 80.9 64.3 63.2
SYN 5M → GOLD 80.2 82.4 66.1 65.1
SYN HE → GOLD 81.1 83.3 66.7 65.2

Table 5: Performance (F1 scores) of BERT-Large using
gold-only training, pre-training with all 5M synthetic
examples, and with subsets of highest-error synthetic
examples (HE) that have the best Dev results.

bins (examples with larger losses). The trend is sim- 437

ilar for the smallest 5M
16 -example bins, but slightly 438

weaker. Crucially, several high-error bins of dif- 439

ferent sizes outperform all 5M examples. These 440

results provide empirical evidence that harder syn- 441

thetic examples generally yield better pre-training 442

than easier examples. 443

In addition to the difficulty of the pre-training 444

bins, a second key independent variable in the 445

above experiment is their size. The best-performing 446

bins for SQuAD2.0 and NewsQA contain 5M
4 and 447

5M
2 examples, respectively, which implies that even 448

though the hardest examples are the most use- 449

ful, enough of them must still be included in pre- 450

training for sufficient sample diversity. 451

Table 5 compares the two best Dev models with 452

baselines on the respective Test sets. While syn- 453

thetic pre-training with all cycle-consistent exam- 454

ples does improve results over gold-only training, 455

targeted synthetic pre-training with only a high- 456

error subset yields the best results across the board. 457

In a one-tailed Wilcoxon signed-rank test of the 458

difference between the two pre-training methods, 459

we observe P<.05 for SQuAD2.0 (Dev and Test) 460

and P<.1 for NewsQA Dev. On NewsQA Test, tar- 461

geted pre-training outscores standard all-example 462

pre-training in each of the three independently ran- 463

domized runs, even though we observe P>.1 in 464

the significance test. 465

We also compare with a curriculum learning 466

(CL) baseline (Bengio et al., 2009), which trains 467

models in an easy-to-hard order so that the hard- 468

est examples are used at the end. CL is similar 469

to our proposal in that it also aims to exploit dif- 470

ferences in the difficulty of examples, but unlike 471

our method, it uses all available training examples. 472

Additionally, we randomize the order of examples 473

within our individual difficulty bins before training 474

(§3.3)—a decision that was made based on our ini- 475

tial experimental results on the Dev sets—which is 476

not a feature of CL. 477
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SQuAD2.0 NewsQA
Dev Test Dev Test

Plain CL 78.2 80.0 65.7 64.6
CL with 5% Switch 78.8 80.8 65.8 64.4
Random Training Order 80.2 82.4 66.1 65.1
SYN HE → GOLD 81.1 83.3 66.7 65.2

Table 6: Performance (F1 score) of the curriculum
learning (CL) baseline is worse than both a random
training order and our targeted pre-training method.

Table 6 summarizes the CL results. First, we478

observe that CL actually underperforms a random479

difficulty order of the training examples, which is480

our primary baseline in Table 5 (row 2). According481

to some prior studies, introducing some harder ex-482

amples early in CL can be useful (Platanios et al.,483

2019; Penha and Hauff, 2019); hence we also ex-484

amine a variation of CL where positions of 5% of485

the examples are randomly switched. This model486

performs slightly better than plain CL overall, but487

is still considerably worse than the random order488

baseline. One possible interpretation of these re-489

sults is that in CL, training with only easy examples490

in the beginning might lead the models’ weights to491

a region in the parameter space that subsequently492

makes their generalization hard.493

5.2 Synthetic Knowledge Distillation494

In our knowledge distillation (KD) experiments,495

we use the best BERT-Large models of §5.1 as496

the teachers: SYN 5M
4 HE→ GOLD for SQuAD2.0497

and SYN 5M
2 HE→ GOLD for NewsQA (see Ta-498

ble 5). All students are BERT-Base models.499

Given a training dataset D, KD can generally use500

a combination of a distillation loss such as Ldistill501

from §3.4 and a standard negative log-likelihood502

loss based on the labels from D:503

Llabels = −
|D|∑
i=1

log pθ(ai | qi, ci)504

To find out the best combination for our models,505

we first train students on the gold training data for506

λ ∈ {0, .3, .5, .7, .9, 1} in the following joint loss:507

L = λLdistill + (1− λ)Llabels508

SQuAD2.0 models are trained for six epochs and509

NewsQA models for four epochs (tuned on Dev).510

The best F1 scores on Dev are achieved with511

λ = 1 (SQuAD2.0: 77.4, NewsQA: 66.0), where512

training discards the dataset labels entirely, re-513

lying only on the teacher’s predictions. On the514

SQuAD2.0 NewsQA
Dev Test Dev Test

Teacher 81.1 83.3 66.7 65.2
λ = 1 77.4 78.7 66.0 64.8
λ = 0 74.7 75.8 62.2 60.6

Table 7: F1 scores from gold-only distillation base-
lines. Pure distillation (λ = 1) is clearly better than
MLE on the the dataset labels (λ = 0), but none of the
students are as good as their teachers.

other hand, MLE training on the dataset labels 515

(λ = 0) has the lowest F1 scores (SQuAD2.0: 74.7, 516

NewsQA: 62.2), indicating that any amount of 517

KD is useful. Based on these results, we use only 518

Ldistill in all later experiments. 519

To establish a gold-only distillation baseline, we 520

further evaluate the best Dev students (λ = 1) on 521

the respective Test sets. The results are shown in Ta- 522

ble 7. There is a clear performance gap between the 523

teachers and their students in these results, which 524

can either mean that the students have reached their 525

full capacity and cannot perform any better, or that 526

a limited amount of gold data cannot expose the 527

teachers’ knowledge in enough detail to train better 528

students. 529

# of Examples SQuAD2.0 NewsQA
1.25M 79.0 65.0
2.5M 80.0 65.7
5M 80.8 66.1

7.5M 81.1 66.1

Table 8: Synthetic distillation F1 score on Dev consis-
tently improves with number of training examples.

To find out which of these two explanations is 530

correct, next we distill students with synthetic ex- 531

amples, which, unlike human annotations, can be 532

produced in very large numbers. We randomly 533

sample subsets of 1.25M, 2.5M, 5M and 7.5M syn- 534

thetic examples and distill a separate student with 535

each for one epoch. Table 8 shows the evaluation 536

results on Dev, where we observe a clear improve- 537

ment in performance as the number of training 538

examples increases. Crucially, the 5M synthetic 539

distillation results are already better after a single 540

epoch of training than the gold distillation results 541

of Table 7. These results support the hypothesis 542

that larger training datasets yield better KD due to 543

increased sample diversity. 544

Our best student models on Dev are obtained 545

by distilling with 7.5M synthetic examples for 546

two more epochs and then with gold examples 547

(SQuAD2.0: six epochs, NewsQA: two epochs). 548
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SQuAD2.0 NewsQA
Dev Test Dev Test

Teacher 81.1 83.3 66.7 65.2
DST∗G 77.4 78.7 66.0 64.8
DST∗S 81.5 83.0 66.5 65.5
DST∗S→G 81.7 83.8 66.7 65.7

Table 9: Final synthetic distillation F1 scores. DST∗G:
top student with gold-only distillation; DST∗S : top stu-
dent with synthetic-only distillation; DST∗S→G: top
student with synthetic followed by gold distillation.
DST∗S→G students (BERT-Base, 110M parameters) per-
form at least as well as their teachers (BERT-Large,
340M parameters) on both datasets.

Table 9 summarizes the performance of these mod-549

els on both Dev and Test. DST∗S , the student model550

distilled only with synthetic examples, already551

matches the teacher’s performance on SQuAD2.0552

Dev and NewsQA Test. With further gold distil-553

lation, DST∗S→G actually outscores the teacher in554

all four test conditions (P<.05 for SQuAD2.0 Dev555

and Test, P<.1 for NewsQA Test). This small556

but nevertheless interesting outperformance of the557

teacher models by their students could be a result558

of lower student model variances, but further exper-559

iments are necessary to validate this hypothesis. In560

Appendix A.2 of the supplementary material, we561

demonstrate the effectiveness of synthetic distilla-562

tion with an even smaller DistilBERT (Sanh et al.,563

2019) student.564

5.3 Better and Faster MRC565

The experimental results presented in this section566

thus far demonstrate the individual utilities of our567

two proposed methods. This concluding subsection568

addresses the overarching question of this paper:569

Do our methods train better and faster MRC models570

than existing synthetic training methods?571

To answer the question, we take a closer look572

at the Test set performance of two systems. The573

first system is the BERT-Large SYN 5M→ GOLD574

model (340M parameters) of §5.1, which is a state-575

of-the-art (SOTA) synthetic training baseline that576

first pre-trains an MRC model with all 5M cycle-577

consistent synthetic examples and then fine-tunes it578

with gold examples. The second system is the best579

student model DST∗S→G of §5.2, a 110M-parameter580

BERT-Base model that is trained by applying our581

two proposed methods in succession: targeted syn-582

thetic pre-training to first train the teacher, followed583

by both synthetic and gold distillation to train the584

student.585

Method # Params SQuAD2.0 NewsQA

SYN 5M→ GOLD 340M
F1 = 82.4 F1 = 65.1
(46.2 QPS) (44.0 QPS)

DST∗S→G 110M
F1 = 83.8 F1 = 65.7
(145.3 QPS) (139.2 QPS)

Table 10: End-to-end Test set results. The proposed
synthetic training methods, when combined, yield bet-
ter and faster MRC models (bottom) than synthetic
pre-training with all cycle-consistent examples (top).
QPS stands for questions answered per second (on an
NVIDIA Tesla V100 GPU with a batch size of 128).

We report both the accuracy and the inference 586

speed of the two systems in Table 10. These results 587

clearly show that when applied together, our pro- 588

posed methods train better (significant at P<.05 589

for SQuAD2.0, P<.1 for NewsQA) and simulta- 590

neously 3x faster MRC models than the existing 591

SOTA approach for synthetic training. 592

It should be noted here that both the teacher and 593

the baseline model above are pre-trained only on 594

cycle-consistent (CC) samples, as examples that 595

are not CC are known to be detrimental for syn- 596

thetic pre-training (Alberti et al., 2019). Synthetic 597

distillation, on the other hand, can still use the 598

filtered out samples, since the training objective 599

Ldistill (§3.4 and §5.2) only looks at the teacher’s 600

soft predictions, and not at the noisy synthetic la- 601

bels. Given a pool of synthetic data, a larger subset 602

can thus be used in practice for distillation (7.5M 603

in our experiments) than for pre-training (5M). 604

6 Conclusion 605

This paper poses and explores the question of how 606

synthetic data attributes such as abundance and di- 607

versity can be better exploited to improve model 608

supervision. Empirical results with our two pro- 609

posed applications, namely targeted synthetic pre- 610

training and synthetic knowledge distillation, show 611

that these attributes can indeed be leveraged in 612

new and more targeted ways to: (i) greatly reduce 613

the memory footprint of large transformer-based 614

reading comprehension models, (ii) enabling faster 615

inference, while (iii) also improving their accuracy. 616

Future work will test the limits of the proposed 617

methods, e.g., with ensembles of large models as 618

teachers for distillation. A second important direc- 619

tion is the application of the proposed ideas to other 620

NLP tasks, as they are generic in nature and appli- 621

cable in principle to any scenario where synthetic 622

training data are available. 623
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A Appendix938

A.1 Synthetic MRC Training Examples939

In Tables 11 and 12, we show some answerable and940

unanswerable synthetic MRC examples generated941

by our SQuAD-trained generator.942

Auggie and Me is not a sequel but a companion book to
Wonder ( although “ The Julian Chapter ” serves as one ).
It contains three stories, each telling the events of Wonder
from different perspectives. The first story, called “ The
Julian Chapter ”, is from the point of view of school bully
Julian where he explains why he mistreats Auggie and if
he will change. The second – called Pluto – focuses on
August Pullman’s life before Beecher Prep and is set in
the point of view of Christopher, Auggie’s oldest friend.
The third...
How many stories does the book contain?
What is the name of the second story in the book?

Table 11: Two synthetic answerable questions gener-
ated by our SQuAD-trained generator. Answers are
highlighted in the context.

Within higher - income families that are sending more
children to universities and colleges, women make up
a greater percentage ( 15 % compared to 7 % ) of this
growth. While the largest gap of educational attainment
between men and women is seen in the highest income
group, women are attaining higher levels of education
than men in every income group. This observation poses a
unique and confusing problem : if educational attainment
has a positive correlation to familial income, why are more
women entering and completing college than men? Bailey
and Dynarski proposed that the observed educational gap
by gender may be due to differing incentives to accumulate
human capital. Men and women may participate in what
they term “ segregated labor markets ” and “ asymmetric
marriage markets, ” and perhaps, to make up for those
perceived market differences, females are more motivated
to obtain higher levels of education.
What percent did the number of Latinos in K-12 expand
between 1999 and 2016?

Table 12: A synthetic unanswerable question used in
SQuAD pre-training.

A.2 Experiments with a DistilBERT Student943

DistilBERT (Sanh et al., 2019) is a 66M-parameter944

masked language model (MLM) distilled from945

BERT, which has shown strong performance rel-946

ative to its size. To test the effectiveness of our947

proposed two-stage synthetic training on a smaller948

student model, we distill a DistilBERT MRC model949

from the BERT-Large teacher of §5.2 using syn-950

thetic and gold MRC examples.951

As shown in Table 13, the accuracy of this stu-952

dent is comparable to the BERT-Large model of953

§5.1, trained using the existing synthetic training954

Method # Params SQuAD2.0 NewsQA

SYN 5M→ GOLD 340M
F1 = 82.4 F1 = 65.1
(46.2 QPS) (44.0 QPS)

DST∗S→G 66M
F1 = 82.8 F1 = 65.0
(270.7 QPS) (274.9 QPS)

Table 13: Test set performance of our DistilBERT mod-
els compared to the best synthetically pre-trained BERT-
Large baselines. The accuracies of the two models
are comparable even though the DistilBERT models are
about 5x smaller and 6x faster. QPS stands for ques-
tions answered per second (on an NVIDIA Tesla V100
GPU with a batch size of 128).

method of pre-training with cycle-consistent ex- 955

amples (SYN 5M → GOLD). Crucially, however, 956

the DistilBERT model is about five times smaller, 957

providing a 6x speedup in inference over the BERT- 958

Large model. 959

The F1 scores in Table 13 are average scores 960

over three random seeds. For synthetic → gold 961

distillation of the DistilBERT student, we train for 962

4 → 2 and 3 → 4 epochs for SQuAD2.0 and 963

NewsQA, respectively. These values were tuned 964

on the respective Dev sets. Batch size and learning 965

rate are the same as in Table 4. 966
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