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ABSTRACT

We consider the problem of fine-tuning pre-trained language models with a small
amount of trusted data (high-fidelity) and a larger amount of data with noisy labels
(low-fidelity). We propose Multi-Fidelity Fine-Tuning (MFFT), a novel approach
which implicitly determines for new inputs when we can rely on information
from high-fidelity data and when instead we need to fall back on knowledge from
low-fidelity data. MFFT does not require any architecture changes to the base
model and simply provides its fine-tuned version that can be easily deployed for
inference. We extensively benchmark MFFT on various classification tasks against
several baselines, with both simulated label noise, and in realistic scenarios with
LLM generated data. MFFT consistently improves performance compared to using
trusted data alone and outperforms all baselines across experiments with macro
F1-score improvements of 2-4%. Finally, it provides substantial improvements in
uncertainty calibration with expected calibration error (ECE) reductions of 40-60%
compared to the best baselines.1

1 INTRODUCTION

Fine-tuning foundation models (Bommasani et al., 2021) using a small amount of clean data and
more abundant noisy data is ubiquitous to many deep learning settings, such as learning from expert
and non-expert annotated data (Shapiro et al., 2013; Su et al., 2012; Sylolypavan et al., 2023), training
end models with weak supervision (Zhang et al., 2022; Ratner et al., 2017; Rühling Cachay et al.,
2021) and learning from humans and large language models (LLMs) in combination (Thapa et al.,
2023; Ding et al., 2024; Meng et al., 2023; Zhang et al., 2024; Wang et al., 2023a; Li et al., 2021b).
However, combining data sources of varying quality for fine-tuning effectively is not trivial. As
shown in Figure 1, simply adding lower quality data to the training set is often detrimental to model
performance (Zhou et al., 2024; Wang et al., 2023a). While training neural networks by combining
noisy and clean data has been extensively studied (Song et al., 2022; Hendrycks et al., 2018; Patrini
et al., 2017; Veit et al., 2017), how to develop a strategy to fine-tune pre-trained language models
(Vaswani et al., 2017; Radford et al., 2019; Dubey et al., 2024) has yet to be explored.

We propose Multi-Fidelity Fine-Tuning (MFFT), a novel language model fine-tuning approach for
down-stream tasks which leverages small amounts of data with trusted labels in combination with
a larger data set with noisy labels. Our approach uses two fine-tuned versions of the base model to
infer pseudo-labels that are used to fine-tune a final model (Figure 2). We first fine-tune a low-fidelity
model using the abundant noisy data. Then, we fine-tune a high-fidelity model with the scarce clean
data. Based on the expected log likelihood, MFFT determines whether the low or high fidelity
model should be used for inference given a new input. This selective inference is run over the whole
low-fidelity data set to infer soft labels. The pseudo-labeled version of the original low-fidelity
data set is used together with the high-fidelity data to fine-tune the base model resulting into a final
model. This final fine-tuned model implicitly learns when it can infer using information gained from
high-fidelity data and when, conversely, it has to fall back on predictions learned from low-fidelity
data, which are less accurate, due to the noise in the labels, but more robust, due to the abundance of
examples.

In our extensive evaluation, we use MFFT to fine-tune different language models for a variety of
classification tasks with a small amount (50-100 examples) of trusted data and a larger noisy data

1Code will be made publicly available.
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Figure 1: Fine-tuning language models with mixed quality data. a) As reference, we can fine-tune
the model with the small amount of high-quality trusted data only. b) adding large amounts of lower
quality data, e.g., labeled or generated with an LLM, to the fine-tuning set can actually degrade
performance, instead of improving it. c) Our MFFT method incorporates lower quality data with
awareness of its lower reliability, resulting in fine-tuned models that consistently benefit from it.

set (∼ 5, 000 examples). We experiment by using simulated noisy low-fidelity data, as well as in
a more realistic setting where this data is obtained by generating or annotating examples with an
LLM. Models fine-tuned with MFFT consistently obtain competitive or better performance compared
to using trusted data only (example in Figure 1) across all experiments. MFFT also performs
competitively or better than all tested baselines across different models, noise properties and tasks,
with improvements in macro F1-score of 2-4% compared to the best baseline and reductions in
expected calibration error (ECE) of 40-60%, which indicates a large improvement in uncertainty
calibration.

2 BACKGROUND AND RELATED WORK

2.1 LEARNING WITH NOISY AND CLEAN LABELS

The problem of learning with noisy labels (LNL) has been extensively studied (Song et al., 2022)
for exploiting a small amount of data with clean labels in combination with larger amounts of data
with noisy labels. In the context of LNL, available clean data is often referred to as trusted data
or anchor points (Song et al., 2022; Patrini et al., 2017). Some methods propose to use the anchor
points to first learn a label correction model for inferring a clean label jointly from inputs and noisy
label (Xiao et al., 2015; Zheng et al., 2021; Veit et al., 2017). Other methods propose instead to use
the clean data to design and calibrate a noise-robust cost function (Hendrycks et al., 2018; Patrini
et al., 2017). While proven effective in deep learning, these methods are difficult to apply directly
to fine-tuning foundational models. Firstly, because of the data regime we target; As fine-tuning
pre-trained language models requires much less data than training neural networks from scratch
(Zhou et al., 2024; Qiu et al., 2020), we aim to push the boundaries of learning from mixed quality
data in terms of clean data requirements and use only up to tens of clean examples per class. This
causes label correction and cost calibration methods to over-fit. Secondly, many existing approaches
require specific model architectures (Song et al., 2022; Zheng et al., 2021), while we wish to maintain
our fine-tuning strategy applicable in a plug-and-play fashion to any foundation model.

2.2 MULTI-FIDELITY MODELS

Another significant research area related to learning with data of different quality, is that of Multi-
Fidelity models (MFMs)(Fernández-Godino, 2023; Peherstorfer et al., 2018). MFMs are models
designed to learn from several sets of training data having different levels of quality. These approaches
are typically used to learn from different granularity of numerical simulations and real measurements
in physical experiments (Christen & Fox, 2005; Meng et al., 2021; Tonolini et al., 2020), although
more common learning settings, such as classification have also been explored (Costabal et al., 2019;
Chen et al., 2022). MFMs often use uncertainty quantification in order to capture model confidence,
in particular for the higher fidelity data, which is often sparse (Meng et al., 2021; Peherstorfer et al.,
2018). We draw inspiration from this key feature of MFMs to build our fine-tuning strategy, which
learns from sparse clean data with a deep ensemble and capture model uncertainty.
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Figure 2: Multi-Fidelity Fine-Tuning in four stages. 1) Data with noisy labels DL = {xL,y
′
L}

is used to fine-tune a pre-trained language model pθ0(y|x), resulting in a Low-Fidelity classifier
pL(y|x). 2) This low-fidelity model is fine-tuned further with available clean data DH = {xH,yH}
to obtain the high-fidelity classifier pH(y|x). 3) For each input in the low-fidelity set xL,i ∈ xL, the
model expected to give the highest log likelihood between pL(y|x) and pH(y|x) is used to infer class
probabilities, obtaining the set of soft labels pM (y|xL,i). 4) The final multi-fidelity model pθ∗(y|x)
is fine-tuned from the pre-trained model pθ0(y|x) using all inputs [xL,xH] and combined soft labels
and high-fidelity hard labels as targets [pM (y|xL),yH].

2.3 FINE-TUNING LANGUAGE MODELS WITH MIXED QUALITY DATA

Fine-tuning pre-trained language models with data of mixed quality is ubiquitous to many settings,
including augmenting clean data with weakly supervised data (Li et al., 2021a; Lu & Radha, 2023;
Yu et al., 2020b), active learning in noisy labels settings (Zhang et al., 2024; Goel et al., 2022)
and fine-tuning with both human and LLM labeled or generated data (Wang et al., 2023a; Zhang
et al., 2024; Meng et al., 2023). In some settings, clean and noisy data are simply aggregated in the
fine-tuning set (Zhang et al., 2024). Other methods aggregate the two sets, but assigning a different
cost weight to clean data (Wang et al., 2023a), while some approaches learn the noise process in
different ways and incorporate it when training on noisy labels Jindal et al. (2019); Zhuang et al.
(2023). Kim et al. (2024) have recently proposed to exploit the robustness properties of parameter
efficient fine-tuning to learn from mixed quality data. Using LLMs to assist the noise cleaning
process has also been explored Wang et al. (2023b). An effective and relatively simple approach,
similar to task adaptive pre-training (Gururangan et al., 2020; Shi et al., 2023), domain adaptation
(Chronopoulou et al., 2019) and transfer learning (Chronopoulou et al., 2019; Hedderich et al., 2020),
first fine-tunes with the noisy data, and subsequently continues fine-tuning with the clean data (Li
et al., 2021b; Tamkin et al., 2020; Zhu et al., 2022; Li et al., 2022). We also adopt this strategy as part
of our approach, however, preventing over-fitting to clean data with our multi-fidelity strategy.

3 MULTIFIDELITY FINE-TUNING (MFFT)

3.1 PROBLEM DESCRIPTION

We consider the problem of fine-tuning a pre-trained language model for classification with two
sets of task specific training data; a low-fidelity set DL of N examples xL,i ∈ xL with noisy labels
y′L,i ∈ y′

L and a high-fidelity set DH of M examples xH,i ∈ xH with clean labels yH,i ∈ yH,
where typically M << N . We assume the noisy labels y′

L to be the result of a noise process
y′L,i = η(xL,i, yL,i) which depends on both inputs xL,i and hidden ground-truth labels yL,i. Given
the two sets DL and DH , we aim to fine-tune a language model with pre-trained weights θ0 to obtain
a language classifier pθ∗(y|x) which can perform the task of interest. Formally, our objective is to
maximize the log likelihood assigned by the model pθ(y|x) to clean data from the target distribution
p(x)p(y|x):

θ∗ = argmax
θ

Ep(x)p(y|x) log pθ(y|x). (1)

Here p(x) is the expected distribution of inputs at test time, which we assume our training inputs xH

and xL to belong to, and p(y|x) is the true input-labels mapping we aim to capture, which we do not
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have access to. The problem we address is how to optimally exploit the noisy and clean sets DL and
DH to fine-tune the language model pθ(y|x) from pre-trained and approximately maximize Eq. 1.

3.2 OVERVIEW

We start by fine-tuning the pre-trained model pθ0(y|x) in two stages. First, we fine-tune the model
on low-fidelity data DL. Second, we continue fine-tuning with high-fidelity data DH to obtain a
high-fidelity model pH(y|x). This sequential fine-tuning approach is common in transfer learning
and semi-supervised learning with pre-trained language models (Yu et al., 2020a; Qin et al., 2022;
Gururangan et al., 2020; Zhu et al., 2022; Shi et al., 2023). We find that it is as effective in our multi-
fidelity scenario, providing a competitive baseline itself. However, with scarce high-fidelity data DH ,
pH(y|x) still over-fits, losing information gained during the first fine-tuning stage; a phenomenon
sometimes referred to as catastrophic forgetting (Chen et al., 2020; Kotha et al., 2023). This results
in pH(y|x) to be accurate for some inputs x that are somewhat similar to high-fidelity examples xH,
but inaccurate, and especially poorly calibrated, for others.

To address the aforementioned problem, we introduce a second version of the model by freezing the
weights after the first fine-tuning stage. The resulting model is fine-tuned on low-fidelity data DL

only and we name it accordingly the low-fidelity model pL(y|x). This model does not over-fit, as it
is fine-tuned on abundant examples, but its accuracy is limited by the data noise in DL. Our strategy
is to use pL(y|x) as a fall-back for pH(y|x) for those inputs where the latter is expected to be less
accurate than the former. Because we do not want to load and run both models at inference time, we
also distill the resulting system into a single final fine-tuned language classifier pθ∗(y|x). Our MFFT
approach is summarized in four stages, schematically illustrated in Figure 2:

1. Fine-tune the pre-trained model pθ0(y|x) with low-fidelity data DL to obtain pL(y|x).
2. Continue fine-tuning pL(y|x) with high-fidelity data DH to obtain pH(y|x).
3. For each input in the low-fidelity set xL,i ∈ xL, estimate the expected log likelihoods of

both pH(y|xL,i) and pL(y|xL,i) and infer soft labels pM (y|xL,i), using the model expected
to perform best.

4. Fine-tune the pre-trained model pθ0(y|x) with all inputs [xL,xH] and combined inferred
soft labels and high-fidelity hard labels as targets [pM (y|xL),yH], obtaining the final model
pθ∗(y|x).

3.3 LOW- AND HIGH-FIDELITY MODEL FINE-TUNING

A key consideration in fine-tuning high and low fidelity models for our strategy is that we need
to estimate their accuracy for new inputs to choose which one to use. As pL(y|x) is trained with
abundant noisy data DL, its accuracy predominantly depends on data noise and, while it is not
possible to estimate this from model output alone, we can approximately estimate it using clean
examples in DH as evaluation points (Hendrycks et al., 2018; Patrini et al., 2017). Contrarily, the
accuracy of pH(y|x) depends predominantly on model mis-specification, or lack of knowledge, as
it was fine-tuned on clean, but scarce data DH . This means that, to detect for which inputs x the
high-fidelity model is expected to be inaccurate, we need to construct pH(y|x) to obtain accurate
uncertainty estimation with respect to its reducible error, i.e., due to lack of data.

Fine-Tune Ensemble: To obtain models that give accurate uncertainty estimation, we adopt a deep
ensemble approach. We repeat the two-stages fine-tuning with different random seeds, obtaining K
fine-tuned models p(y|x, θL,k) and K fine-tuned models p(y|x, θH,k). At inference time, the high
and low fidelity label probabilities are obtained by aggregating their outputs:

pL(y|x) =
1

K

K∑
k

p(y|x, θL,k), pH(y|x) = 1

K

K∑
k

p(y|x, θH,k). (2)

Deep ensembles offer an effective way to capture uncertainty with respect to reducible error (Laksh-
minarayanan et al., 2017; Abdar et al., 2021; Rahaman et al., 2021). However, obtaining effective
deep ensembles from pre-trained models is challenging, as the starting weights are fixed and cannot
be randomly initialized for each model, leading to poor diversification and inaccurate uncertainty
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estimation (Mustafa et al., 2020; Matthews & Lillis, 2022). To address this problem in our multi-
fidelity setting, we exploit the abundance of low-fidelity data. We split the low-fidelity data into K
subsets DL,k and use each one separately to perform the first stage of sequential fine-tuning. In the
second stage, all models are then fine tuned on the entire high fidelity set DH . We found this strategy
to greatly improve diversification of the ensembles, and hence model uncertainty quantification of
pH(y|x), while not significantly impacting individual predictive performance of either low or high
fidelity models.

3.4 SOFT LABEL INFERENCE

Having trained the low-fidelity and high-fidelity models pL(y|x) and pH(y|x), we need to choose
which one to use during inference given a new input x. This requires to estimate which model will
maximize our objective of Equation 1, given a new input x:

α∗ = argmax
α

Ep(y|x) log pH(y|x)αpL(y|x)1−α, α ∈ [0, 1]. (3)

Here α is a binary parameter, modeling the choice of either high or low fidelity model. Making this
choice comes down to estimating the expected log likelihood for each model and selecting the one
with the highest result.

Estimate Log Likelihood of High-Fidelity Model: Assuming the inference by each individual
model p(y|x, θH,k) in the high-fidelity ensemble is an un-biased estimator of the true mapping p(y|x),
we can estimate the log likelihood of the high fidelity model as:

Ep(y|x) log pH(y|x) ≈ −H[pH(y|x)], (4)

Here H[pH(y|x)] is the entropy of the high-fidelity model. A full derivation is given in Appendix
A.1. This means that, if pH(y|x) is well calibrated with respect to its model error, we can use its
entropy to infer expected log likelihood for a new input x.

Estimate Log Likelihood of Low-Fidelity Model: Unlike for the high-fidelity ensemble, we cannot
assume that models p(y|x, θL,k) trained on the low fidelity data DL are unbiased estimators of the
true mapping p(y|x). This is because the training labels y′

L are affected by an unknown noise process,
e.g., LLM hallucinations, which may be bias. As a result, the entropy of pL(y|x) is not expected to
be a good estimator for the log likelihood of the low fidelity model. However, we can use the clean
data points in DH to estimate the average expected log likelihood over inputs x:

Ep(y|x) log pH(y|x) ≈ 1

M

M∑
i

log pL(yH,i|xH,i) = log pL(yH |xH). (5)

A full derivation is presented in Appendix A.2. This estimate approximates the log likelihood of the
low-fidelity model as the marginal over all inputs. Some works make more granular estimations of
this likelihood, e.g., by learning class probabilities mappings for each class (Hendrycks et al., 2018).
However, in the low clean data regimes we target (tens of examples in DH ), we choose to make
this coarser, but more robust approximation. The resulting average likelihood can then be used as a
threshold on the entropy of the high-fidelity model and choose whether to use the high or low fidelity
model for inference.

Compare Expected Log Likelihoods and Choose a Model: With the estimates of high and low
fidelity log likelihoods detailed above, we can choose which model to use to predict soft labels
pM (y|xL) over all the low fidelity inputs xL:

pM (y|xL,i) = pH(y|xL,i)
α∗
pL(y|xL,i)

1−α∗
≈

{
pH(y|xL,i), if −H[pH(y|x)] ≥ log pL(yH |xH)

pL(y|xL,i), if −H[pH(y|x)] < log pL(yH |xH).
(6)

A detailed derivation is provided in Appendix A.3. The choice of model is made by evaluating the
entropy of the high-fidelity model H[pH(y|x)] and using the constant log pL(yH |xH) as a threshold.

3.5 FINAL MODEL FINE-TUNING

To obtain the final multi-fidelity model, we fine-tune the pre-trained model pθ0(y|x) using all available
inputs aggregated [xL,xH]. As corresponding training labels, we use the available high-fidelity
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labels yH as targets for high-fidelity inputs xH and the multi-fidelity soft labels pM (y|xL) as targets
for the low-fidelity inputs xL. In particular, we maximize the following cross-entropy objective:

θ∗ = argmax
θ

1

N +M

[ M∑
i

log pθ(yH,i|xH,i) +

N∑
i

C∑
j

pM (yj |xL,i) log pθ(yj |xH,i)
]
. (7)

Here C is the number of classes for the task. The resulting fine-tuned model pθ∗(y|x) is identical in
structure to the pre-trained model pθ0(y|x) and can be deployed by simply loading the fine-tuned
weights θ∗.

4 EXPERIMENTS

We evaluate MFFT across several data sets, models and against different baselines. We perform
experiments in two different label noise scenarios:

• Simulated Noise: In Section 4.2, we fine-tune models with clean data, together with
artificially corrupted data. We find that MFFT gives competitive or better negative log
likelihood (NLL) in almost all experiments and, on average, outperforms the best baseline
by 4.6% in F1, while reducing expected calibration error (ECE) by 64%.

• LLM Generated: In Section 4.3, we fine-tune with clean data, together with LLM gen-
erated data. MFFT obtains competitive or better NLL in all experiments and, on average,
outperforms the best baselines by 1.8% in F1, while reducing ECE by 40%.

4.1 EXPERIMENTAL SETTINGS AND BASELINES

We test MFFT using six benchmark text classification data sets; AGNews (Zhang et al., 2015b),
DBPedia 14 (Zhang et al., 2015a), GLUE-SST2, GLUE-QQP (Wang et al., 2019), TREC (Li & Roth,
2002) and Yahoo Answers (Adamic et al., 2008). More details about these data sets and tasks are
given in Appendix B.1. In all our experiments, we take 5, 000 examples to construct the training set
and 1, 000 examples for testing. The training set is split into two sub-sets; a high-fidelity set DH , for
which the labels are directly extracted from the original source data, and a low-fidelity set DL, for
which the labels are either artificially corrupted, in the simulated noise experiments, or inferred using
an LLM, in the LLM experiments. In all experiments, we compare MFFT to six baseline approaches
used in similar settings in related work:

• High: We discard the low-fidelity data DL and fine-tune the pre-trained language model
solely with high-fidelity data DH .

• Together: High and Low fidelity data sets are simply aggregated into a single data set which
is used to fine-tune the pre-trained language model. This approach has been used for the
fine-tuning component of several works involving mixed quality data (Zhang et al., 2024; Li
et al., 2021a; Lu & Radha, 2023).

• Cost Adjustment: Similarly to the above, the model is trained on all available data together.
However, a higher weight is assigned to the cost from high-fidelity data following Wang
et al. (2023a).

• Low-High: A domain adaptation approach, where the model is initially fine-tuned on
low-fidelity data DL and then on DH . This approach is adopted in several multi-fidelity
learning works (Aydin et al., 2019; Li et al., 2021b; 2022) and can be considered a special
case of task adaptive pre-training (TAPT) (Gururangan et al., 2020; Shi et al., 2023).

• High-Low: The language model is first fine-tuned on high-fidelity data DH and then on
low-fidelity data DL, with label smoothing and temporal ensembling (Meng et al., 2023).

• Noise Correction: The high-fidelity points are used to learn a linear noise process from
clean to noisy labels. This mapping is applied to the cost function for low-fidelity examples,
which are then used together with high-fidelity ones to fine-tune the final model (Hendrycks
et al., 2018; Jindal et al., 2019).

More details about the implementation of these baselines are given in appendix B.2. We test MFFT
and all baselines with three pre-trained language models: BERT (Vaswani et al., 2017), RoBERTa
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High Together Cost Adj. Low-High High-Low Noise Cor. MFFT
BERT
AGNews 0.990 0.778 0.742 0.901 0.833 0.944 0.357
DBPedia 14 0.437 0.569 0.535 0.097 0.808 0.913 0.079
GLUE-SST2 1.666 0.390 0.457 0.921 0.470 0.450 0.303
GLUE-QQP 2.736 0.928 0.848 2.413 0.730 0.667 0.724
TREC 1.299 0.731 0.678 0.517 0.838 0.990 0.305
Yahoo 3.238 1.378 1.379 2.125 1.453 1.736 1.343
RoBERTa
AGNews 1.091 0.937 0.966 1.092 0.945 0.936 0.367
DBPedia 14 0.730 0.513 0.489 0.118 0.676 0.723 0.091
GLUE-SST2 1.616 0.830 0.736 1.883 0.634 0.623 0.364
GLUE-QQP 2.851 0.668 0.658 2.887 0.651 0.693 0.611
TREC 1.963 0.576 0.593 0.496 0.760 0.775 0.238
Yahoo 3.246 1.506 1.533 2.669 1.608 1.857 1.341
GPT-2-Medium
AGNews 1.300 0.741 0.741 1.553 0.807 0.856 0.391
DBPedia 14 2.051 1.178 0.835 1.085 1.044 1.132 0.256
GLUE-SST2 2.465 1.142 0.831 3.007 0.728 0.686 0.670
GLUE-QQP 2.826 0.756 0.714 3.756 0.701 0.694 0.931
TREC 2.309 1.343 1.387 3.288 1.361 1.453 0.705
Yahoo 4.560 1.938 1.718 4.595 1.706 1.942 1.479

Table 1: Negative log-likelihood (NLL) of different fine-tuning strategies with simulated label noise.
Numbers in bold indicate best performance, or within statistical significance (p-value<0.05) of best
performance across fine-tuning methods.

Together Cost Adj. Low-High High-Low Noise Cor. MFFT
NLL 86.1% 88.9% 63.9% 86.1% 83.3% 100.0%
F1-Score 19.5% 27.8% 75.0% 55.6% 52.8% 100.0%
ECE 69.4% 63.9% 77.8% 55.6% 52.8% 100.0%

Table 2: Percentage of experiments with simulated label noise (36 total) in which each fine-tuning
approach resulted in competitive or better performance compared to fine-tuning solely with the small
set of trusted data.

(Liu et al., 2019) and GPT-2-Medium (Radford et al., 2019). All experiments are repeated five times
for statistical significance.

4.2 SIMULATED NOISE

With each data set, we simulate noise in the training set by artificially corrupting labels. We follow
the simulation approach of Hendrycks et al. (2018) to generate noise through the specification of a
noise process (details in Appendix B.3). We report here results for simulation settings such that labels
in the noisy set have 0.3 probability of being incorrect. Results for different settings and ablations
over noise process parameters are reported in Appendix C. We keep 50 training examples with the
original clean labels to form the high-fidelity set DH . We then fine-tune models with all baselines
and MFFT. We measure negative log-likelihood as the main metric, as it captures both classification
performance and calibration and is the target in our formulation (Equation 1). Results are shown
in Table 1. We also record macro F1-score and expected calibration error (ECE) as independent
measures of classification performance and calibration. These are shown for three datasets in Figure
3. We report more experimental results with higher noise in Appendix C.2), as well as ablations over
different experimental conditions in Appendix C.3.

In Table 1, we observe that models fine-tuned with MFFT resulted in better or competitive NLL in
all but one experiment (GLUE-QQP with GPT-2-Medium) and statistically better than any other
in 66% of cases. The overall most competitive baseline is Low-High (transfer learning approach),

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

AGNews DBPedia 14 GLUE-SST2

F1
 S

co
re

 (↑
)

0.85

0.80

0.75

0.70

0.65

0.60
0.05 0.10 0.15 0.20 0.25 0.30 0.35

ECE (↓)

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.0 0.1 0.2 0.3 0.4
ECE (↓)

0.9

0.8

0.7

0.6

0.5

0.4

0.05 0.10 0.15 0.20 0.25 0.30 0.35
ECE (↓)

BERT
RoBERTa

GPT-2-Medium High
Together

Cost Adj.

Low-High
High-Low
Noise Cor.

MFFT (Ours)

Figure 3: Macro F1-Score vs. expected calibration error (ECE). Favorable performance is in the top
left corner of the graphs, where classification performance is high (high F1-score) and, simultaneously,
calibration error is low (low ECE).

which MFFT outperforms in both classification performance, with an average improvement in F1
of 0.034 (+4.6%), and especially calibration, with an average reduction in ECE of 0.146 (−64%).
We observed similar results with a higher level of simulated noise (Appendix C.2). We also note in
Table 2 that MFFT is competitive or better than fine-tuning with high-fidelity data only (High) across
all experiments and all considered metrics (36 total experiments). This means that, using MFFT,
fine-tuned models always benefit from additional data, despite their lower quality. This is not true for
any of the baselines.

4.3 REAL NOISE FROM LLM GENERATED DATA

We consider the setting where we have access to a small labeled data set DH and use a pre-trained
large language model (LLM) to generate more data to fine-tune a classifier. With the three data
sets AGNews, GLUE-SST2 and TREC, we explore two common types of LLM data generation: i)
labeling through prompting, where we assume access to an unsupervised data set xL and infer labels
y′
L with a pre-trained LLM, using examples from DH for in-context learning (Thapa et al., 2023;

Ding et al., 2024) (details in Appendix B.4). ii) Data augmentation, where we only have access to
the small data set DH and use the LLM to generate new inputs and outputs, using DH as instruction
examples (Ding et al., 2024; Meng et al., 2023; Wang et al., 2023a) (details in Appendix B.5). We use
100 labeled examples as the data set DH and generate 5, 000 more with the LLM with either method.
We use both Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) and Gemma-7b-it (Team et al., 2024) as
pre-trained LLMs. With both original data DH and generated data DL, we fine-tune RoBERTa using
MFFT and all baselines. We report NLL in table 3 and F1 vs. ECE in Figure 4.

AGNews GLUE-SST2
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MFFT (Ours)

TREC

0.90

0.85

0.80

0.75

0.70

0.65

ECE (↓)

0.60

0.05 0.10 0.15 0.20 0.25 0.30

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.050 0.075 0.125 0.175

Data Augmentation with Gemma-7B-Instruct

Figure 4: Macro F1-Score vs. expected calibration error (ECE) for RoBERTa fine-tuned on 100
clean examples and 5, 000 examples generated with LLMs. Favorable performance is in the top left
corner of the graphs, where classification performance is high (high F1-score) and, simultaneously,
calibration error is low (low ECE).
Table 3 shows the results for models fine-tuned with MFFT resulted in better or competitive NLL in
all experiments. In Figure 4, MFFT performs consistently well, with relatively high F1 and low ECE,
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Data Set High Together Cost Adj. Low-High High-Low Noise Cor. MFFT
Prompting with Mistral-7B-Instruct
AGNews 0.923 1.334 1.241 1.123 0.844 0.616 0.409
GLUE-SST2 1.406 0.373 0.391 1.097 0.381 0.339 0.294
TREC 0.917 1.189 1.146 1.155 1.226 0.755 0.338
Data Augmentation with Mistral-7B-Instruct
AGNews 0.948 0.406 0.390 0.915 0.463 0.416 0.359
GLUE-SST2 1.455 0.718 0.728 1.297 0.412 0.401 0.451
TREC 0.927 0.395 0.441 0.484 0.514 0.472 0.228
Prompting with Gemma-7B-Instruct
AGNews 0.933 1.386 1.355 1.022 0.913 0.663 0.426
GLUE-SST2 1.413 0.399 0.428 0.999 0.414 0.364 0.336
TREC 0.906 1.083 1.008 1.088 1.002 0.894 0.341
Data Augmentation with Gemma-7B-Instruct
AGNews 0.919 0.558 0.514 0.954 0.466 0.475 0.414
GLUE-SST2 1.426 0.602 0.567 1.817 0.518 0.624 0.565
TREC 0.988 0.486 0.482 0.701 0.525 0.558 0.340

Table 3: Negative log-likelihood (NLL) of different fine-tuning strategies to combine a large amount
(5, 000 examples) of LLM labeled or generated data and a small amount (100 examples) of trusted
clean data. Numbers in bold indicate best performance, or within statistical significance of best
performance across fine-tuning methods.

Together Cost Adj. Low-High High-Low Noise Cor. MFFT
NLL 75.0% 75.0% 58.3% 91.7% 95.8% 100.0%
F1-Score 62.5% 62.5% 83.3% 58.3% 62.5% 100.0%
ECE 70.8% 75.0% 66.7% 87.5% 87.5% 100.0%

Table 4: Percentage of experiments with LLM generated data (24 total) in which each fine-tuning
approach resulted in competitive or better performance compared to fine-tuning solely with the small
set of trusted data.

across different LLMs, tasks and training data generation modalities. Conversely, other baselines
often under-perform in either F1 or ECE. The most competing baseline in classification performance
(average F1-score) is Low-High, which MFFT outperforms by 0.016 in F1-score (+1.84%) and 0.078
in ECE (−57.5%). The most competing baseline in calibration (average ECE) is Noise Correction,
which MFFT outperforms by 0.081 in F1-score (+10.5%) and 0.039 in ECE (−40.4%). We also
conduct experiments with a smaller clean data set DH of 50 examples, in which we observe analogous
results, shown in Appendix C.4. As for the simulated noise experiments, we observe in Table 4 that
MFFT always matches or outperforms using trusted data only (24 total experiments), while this is not
the case for any baseline. This means that, with MFFT, we can always benefit from LLM generated
data when fine-tuning the end model.

5 CONCLUSION

We proposed Multi-Fidelity Fine-Tuning (MFFT), a novel method to fine-tune pre-trained language
models with a small amount of clean trusted data (high-fidelity) and a larger amount of noisy
data (low-fidelity). MFFT exploits knowledge derived from noisy data and knowledge derived
from trusted data differently, implicitly learning when the latter can be used to infer and when,
conversely, predicting from the former is expected to be more accurate. This leads to models fine-
tuned with MFFT to consistently benefit from additional noisy data, while other methods carry the
risk of degrading performance compared to using trusted data only. In our experiments, MFFT
consistently outperformed all baselines across experiments, especially in calibration, with macro
F1-score improvements of 2 − 4% and expected calibration error (ECE) reductions of 40 − 60%
compared to the best baselines.
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A PROOFS AND DERIVATIONS

A.1 DERIVATION OF EXPECTED HIGH-FIDELITY LOG LIKELIHOOD AS MODEL ENTROPY

Assuming the inference by each model pH(y|x, θk) in the high-fidelity ensemble are un-biased
estimators of the true mapping p(y|x):

Ep(y|x) log pH(y|x) ≈ 1

K

K∑
k

Ep(y|x,θk) log pH(y|x)

=
1

K

K∑
k

∫
p(y|x, θk) log pH(y|x)dy

=

∫
1

K

K∑
k

p(y|x, θk) log pH(y|x)dy

=

∫
pH(y|x) log pH(y|x)dy

= −H(pH(y|x))

(8)

A.2 DERIVATION OF EXPECTED LOW-FIDELITY LOG LIKELIHOOD

We coarsely approximate the log likelihood of the low fidelity model pL(y|x) as its marginal over all
inputs x, i.e., we expect the log likelihood of the low-fidelity model to be approximately constant
with respect to x:

Ep(y|x) log pL(y|x) ≈ Ep(x)Ep(y|x) log pL(y|x) (9)

Now we can use the available high-fidelity samples xH,i ∈ xH and yH,i ∈ yH as samples from the
true distributions xH,i, yH,i ∼ p(x)p(y|x):

Ep(x)Ep(y|x) log pL(y|x) ≈ Ex∈xH
Ey∈yH

log pL(y|x)

=
1

M

M∑
i

log pL(yH,i|xH,i)
(10)

A.3 DERIVATION OF MODEL CHOICE

Our objective is to approximately maximize the expected log likelihood of equation 3:

Ep(y|x) log pH(y|x)αpL(y|x)1−α

= αEp(y|x) log pH(y|x) + (1− α)Ep(y|x) log pL(y|x)
≈ −αH[pH(y|x)] + (1− α) log pL(yH |xH) from eq. 4 and 5

(11)

As the two terms are linearly added, maximizing equation 11 for the parameter α ∈ [0, 1] results in
choosing either α = 0 or α = 1, depending on which term is greater:

α∗ =

{
1, if −H[pH(y|x)] ≥ log pL(yH |xH)

0, if −H[pH(y|x)] < log pL(yH |xH).
(12)

Applying this choice to the combined soft labels pM (y|xL) we obtain:

pM (y|xL,i) = pH(y|xL,i)
α∗
pL(y|xL,i)

1−α∗
≈

{
pH(y|xL,i), if −H[pH(y|x)] ≥ log pL(yH |xH)

pL(y|xL,i), if −H[pH(y|x)] < log pL(yH |xH).
(13)
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B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DATASETS DETAILS

We evaluate MFFT and all baselines using 6 NLP tasks, spanning various number of classes and
types of tasks. These are:

• AGNews: Topic modeling of news extracts. The data set consists of extracts from news
passages to be classified into one of four classes: "World", "Sports", "Business" and "Science
and Technology".

• DBPedia 14: Topic modeling of extracts from Wikipedia articles to be classified into one
of 14 classes: "Company", "Educational Institution", "Artist", "Athlete", "Office Holder",
"Mean of Transport", "Building", "Natural Place", "Village", "Animal", "Plant", "Album",
"Film" and "Written Work".

• GLUE-SST2: Sentiment analysis of extracts from movie reviews to be classified as either
negative or positive.

• GLUE-QQP: Data set of pairs of questions to be classified as either duplicates of each other
or not duplicates.

• TREC: Topic modeling of questions. We use the coarse labels of the data set for our evalua-
tion. The data set contains questions to be classified into one of 6 classes: "Abbreviation",
"Entity", "Description", "Human Being", "Location", "Numeric Value".

• Yahoo Answers: Topic modeling of questions from Yahoo Answers. Data set contains
questions to be classified into one of 10 classes: "society", "science", "health", "education",
"computers", "sports", "business", "entertainment", "family" and "politics".

B.2 BASELINES AND MFFT IMPLEMENTATION DETAILS

We use a small validation set with original clean labels to perform early-stopping when fine-tuning
models. As we consider scenarios where clean labels are scarce, we set the number of validation
examples to 50. All fine-tuning steps are performed using the AdamW optimizer and an initial
learning rate of 5× 10−5. The macro f1 score is computed with the validation set every 100 iterations
and the model corresponding to the highest score is chosen (early stopping). All models are optimised
using the standard cross-entropy cost with hard labels, and using equation 7 with soft or mixed labels.
All validations of hyper-parameters were done using the TREC data set with simulated noisy labels
and 50 clean training examples. Candidate values for the hyper-parameters were simply tried and
the best performing on the validation set was chosen. Hyper-parameters were kept constant to these
values optimized with the TREC data set for all experiments.

High Only

The pre-trained model is fine-tuned using only clean data DH only. The model is fine-tuned with a
cross-entropy cost for a fixed number of 1, 000 iterations.

Together

Clean and noisy data DH and DL are aggregated into a single data set. The pre-trained language
model is then fine-tuned for one epoch on this data set.

Cost Adjustment

Analogously to the above, clean and noisy data is aggregated into a single data set and the model
is fine-tuned for one epoch. However, the cross-entropy cost for clean data is weighted by 2.0. We
defined this hyper-parameter by cross-validation as described above, validating performance for 1.5,
2.0, 3.0, 5.0 and 10.0.

Low then High

The pre-trained model is fine tuned for 1 epoch on the noisy data DL and subsequently fine-tuned
further for 100 iterations on the clean data DH .

High then Low
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The pre-trained model is fine-tuned on clean data first DH for 50 iterations (100 iterations resulted in
lower performance, we believe because of catastrophic forgetting). Second, the model is fine tuned
on noisy data DL, but introducing label smoothing and temporal averaging. Following Equation 5 in
(Meng et al., 2023), we cross-validated ϵ = 0.1, choosing from 0.01, 0.05, 0.1, and 0.2, λ = 0.05
choosing from 0.01, 0.05 and 0.1. Temporal averaging is done over 5 iterations.

Noise Correction

First the pre-trained model is fine-tuned with noisy data DL for 1 epoch. Next, a linear mapping
between true clean labels and inferences from this model is learned using the available clean data
DH . This results into a matrix C mapping vectors of clean labels probabilities to vectors of noisy
labels probabilities. The pre-trained model is now trained using all data, but applying the matrix C to
outputs of the model before computing cross-entropy with noisy labels (see (Hendrycks et al., 2018)
for details). This fine-tuning is performed for 2 epochs, as we found that fine-tuning to soft labels
takes longer to converge.

MFFT

In all experiments, we construct MFFT with ensembles of 5 fine-tuned models. First we divide at
random the clean data DL into 5 equally sized subsets. As in the experiments we always use 5, 000
clean examples, this results into 5 sub-sets of 1, 000 examples each. We use each sub-set to fine-tune
the model from pre-trained for 3 epochs and obtain the models p(y|x, θL,k). Each model is then
further fine-tuned with the entire clean set DH for 100 iterations. Soft labels over the low-fidelity set
pM (y|xL,i) are then computed as described in section 3.4. The final model is fine-tuned for 2 epochs
from pre-trained using the cross-entropy cost of equation 7.

B.3 DETAILS OF NOISE SIMULATION

For our simulated experiments, we introduce noise by altering labels in the source data set with a
stochastic process. In our simulation, we define two controllable parameters; noise level l ∈ [0, 1]
and noise bias b ∈ [0, 1]. Both of these are used in constructing a noise process matrix Mϵ which
maps clean labels to probabilities of noisy labels:

p(y′|y) = Mϵp(y
∗|y), (14)

where p(y′|y) is the probability of corrupted labels and p(y∗|y) is the probability form of the ground-
truth labels, i.e., a vector as long as the number of classes Nc, with one on the class corresponding
to the ground-truth label y and zeros everywhere else. The corrupted label y′ is then obtained by
sampling from this distribution y′ ∼ p(y′|y). The transition matrix Mϵ is computed with the noise
level parameter l and the bias pareameter b as follows:

Mϵ = (1− l)I(1 + bR) +
l

Nc − 1
(1− I)(1 + bR). (15)

Here I is the Nc ×Nc identity matrix, 1 is a Nc ×Nc matrix of ones and R is a Nc ×Nc matrix
where the elements are random uniform between zero and one. The matrix Mϵ is first capped so that
all elements are between zeor and one and secondly normalized so that the rows add up to one. With
b = 0 (no bias), the matrix results in labels corrupted through equation 14 to be changed to another
class with probability l and staying the same with probability 1− l. The higher the value of b, the
higher the randomness in the transition matrix, meaning that not all classes have equal probability to
change and a given label y has non-equal probability to change to each one of the other classes. This
introduces label bias proportionally to b. In the simulated experiments of section 4.2, we fix b = 0.3
and test with two noise levels; l = 0.3 (results in section 4.2) and l = 0.5 (results in section C.2).

B.4 DETAILS OF EXPERIMENTS WITH LLM PROMPTING

As for the simulated data experiments, we take 5, 000 examples to construct the low-fidelity set DL.
However, instead of artificially corrupting the labels provided with a noise process, we infer labels
using the LLM with an in-context learning approach. We first construct a prompt to solve the given
task, providing the input example, an instruction and a list of options. These prompts for each data-set
are as follows:

AGNews
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News E x t r a c t : <TEXT−INPUT>

Which one of t h e f o l l o w i n g t o p i c s does t h e above news e x t r a c t f a l l unde r ?
1 ) wor ld
2 ) s p o r t s
3 ) b u s i n e s s
4 ) s c i e n c e

<LABEL−OUTPUT>

GLUE-SST2

Q u e s t i o n : <TEXT−INPUT>

What i s t h e s e n t i m e n t o f t h e movie r ev i ew e x t r a c t above ?
1 ) n e g a t i v e
2 ) p o s i t i v e

<LABEL−OUTPUT>

TREC

Text E x t r a c t : <TEXT−INPUT>

What i s t h e t e x t e x t r a c t above a b o u t ? Choose from :
1 ) e n t i t y
2 ) d e s c r i p t i o n
3 ) p e r s o n
4) a b b r e v i a t i o n
5 ) l o c a t i o n
6 ) v a l u e

<LABEL−OUTPUT>

To form the in-context learning prompts, we use 5 labeled examples from the set small trusted set DH .
We repeat experiments 5 times, each time re-drawing these 5 examples at random and keeping them
fixed for inference over all unlabeled inputs xH. denoting the prompts detailed above for each data
set as prompt(<TEXT-INPUT>, <LABEL-OUTPUT>), the in-context learning prompt is constructed
as:

f i n a l _ p r o m p t = ’ ’
f o r t e x t _ i n , l a b e l in l a b e l l e d _ e x a m p l e s :

f i n a l _ p r o m p t = f i n a l _ p r o m p t + prompt ( t e x t _ i n , l a b e l )
f i n a l _ p r o m p t = f i n a l _ p r o m p t + prompt ( <TEST−INPUT> , ’ ’ )

In this way, the LLM is prompted to provide an answer to the task instructions, using the input text
<TEST-INPUT> as context and using 5 samples from the trusted labeled set as solved examples. To
perform prompting, we compare the LLM next word output logits assigned to each of the candidate
words for each class (numbered options in prompt format above) and pick the one with the highest. We
repeat this operation over all inputs in xL to obtain noisy labels y′

l, together forming the low-fidelity
set DL. We then fine-tune RoBERTa with DL and DH using MFFT and all baselines.

B.5 DETAILS OF EXPERIMENTS WITH LLM GENERATION

To generate examples and build the data set DL, we adopt an augmentation in-context learning
approach, where, for each class, we provide a list of 5 examples of inputs taken from DH in the
prompt and let the LLM generate a new example to continue the list. The format is as follows:

<CLASS−SPECIFIC−AUGMENTATION−INSTRUCTION>
1) <EXAMPLE−1>
2) <EXAMPLE−2>
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3) <EXAMPLE−3>
4) <EXAMPLE−4>
5) <EXAMPLE−5>
6)

Where the examples <EXAMPLE-i> are drawn at random from examples in xH with the same
associated label yh and <CLASS-SPECIFIC-AUGMENTATION-INSTRUCTION> varies depending
on the data set and class. For each data set used and each class, these are as follows:

AGNews

’Make more e x t r a c t s o f wor ld news examples l i k e t h e s e ones ’
’Make more e x t r a c t s o f s p o r t s news examples l i k e t h e s e ones ’
’Make more e x t r a c t s o f b u s i n e s s news examples l i k e t h e s e ones ’
’Make more e x t r a c t s o f s c i e n c e news examples l i k e t h e s e ones ’

GLUE-SST-2

’Make more e x t r a c t s o f n e g a t i v e movie r e v i e w s l i k e t h e s e ones ’
’Make more e x t r a c t s o f p o s i t i v e movie r e v i e w s l i k e t h e s e ones ’

TREC

’Make more e n c y c l o p e d i a e x t r a c t s examples a b o u t e n t i t i e s l i k e t h e s e ones ’
’Make more e n c y c l o p e d i a e x t r a c t s examples a b o u t d e s c r i p t i o n s l i k e t h e s e ones ’
’Make more e n c y c l o p e d i a e x t r a c t s examples a b o u t p e o p l e l i k e t h e s e ones ’
’Make more e n c y c l o p e d i a e x t r a c t s examples a b o u t a b b r e v i a t i o n s l i k e t h e s e ones ’
’Make more e n c y c l o p e d i a e x t r a c t s examples a b o u t l o c a t i o n s l i k e t h e s e ones ’
’Make more e n c y c l o p e d i a e x t r a c t s examples a b o u t v a l u e s l i k e t h e s e ones ’

The 5 examples provided in the prompt are re-drawn at random from xH for every generation of a
new example. We repeat this generation to obtain a fixed number of synthetic examples per class,
such that the final data set DL is balanced across classes and contains 5, 000 examples. We then
fine-tune pre-trained RoBERTa on DL and DH with all baselines and MFFT.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 SIMULATED NOISE F1 VS. ECE FOR ALL DATA SETS

We show in figure 5 the F1 vs. ECE plots of figure 3 for all data sets. The trends observed in
figure 3 are observed across all tested data-sets, with models fine-tuned using MFFT appearing
in the top-left corner of the plots and out-performing or matching baselines in most cases in both
classification performance (F1-score) and calibration (ECE). In cases where a competing baseline
shows marginally better performance in one of the two metrics, e.g., F1-score of Low-High on TREC,
MFFT appreciably out-performs in the other, meaning that it maintains a favorable balance between
classification performance and calibration.

C.2 BENCHMARK EXPERIMENTS AT HIGHER NOISE LEVEL

We repeat the experiments of section 4.2 with a higher setting of noise level l = 0.5, i.e., on average,
50% of labels are changed to a different class in the noise process. NLL results are shown in table 5
and F1-score vs. ECE plots are shown in figure 6.

Similarly to the results at moderate noise level of section 4.2, we observe appreciable improvement
when fine-tuning models with MFFT compared to the baselines. Referring to table 5, MFFT was
found to be the best or competitive in 72% of experiments, while the best baseline according to NLL
(noise correction) is competitive in only 22% of cases. While for the moderate noise experiments of
section 4.2 the best baseline was Low-High for all three metrics (NLL, F1 and ECE), with the higher
noise, noise correction is the most competing baseline for NLL and ECE (better calibration), while
Low-High remains the most competitive in terms of F1 score (classification performance). Compared
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AGNews DBPedia 14 GLUE-SST2

BERT
RoBERTa

GPT-2-Medium High
Together

Cost Adj.

Low-High
High-Low
Noise Cor.

MFFT (Ours)

GLUE-QQP TREC Yahoo

Figure 5: Macro F1-Score vs. expected calibration error (ECE) with moderate noise level = 0.3.
Favorable performance is in the top left corner of the graphs, where classification performance is
high (high F1-score) and, simultaneously, calibration error is low (low ECE).

High Together Cost Adj. Low-High High-Low Noise Cor. MFFT
BERT
AGNews 1.113 0.980 1.039 0.908 1.024 1.150 0.474
DBPedia 14 0.596 2.018 1.952 0.359 1.296 2.145 0.385
GLUE-SST2 2.440 0.701 0.711 2.054 0.668 0.657 0.597
GLUE-QQP 2.572 0.988 0.981 2.800 0.786 0.690 0.910
TREC 1.152 1.530 1.480 1.001 1.259 1.532 0.598
Yahoo 3.535 2.089 2.092 2.983 1.775 2.154 2.329
RoBERTa
AGNews 1.313 0.797 0.759 0.952 0.894 0.972 0.667
DBPedia 14 0.949 1.175 1.147 0.464 1.220 1.616 0.622
GLUE-SST2 1.848 0.826 0.874 1.740 0.692 0.638 0.542
GLUE-QQP 2.704 1.309 1.375 2.650 0.837 0.688 1.008
TREC 1.728 1.169 1.245 1.261 1.180 1.413 0.650
Yahoo 3.520 1.823 1.872 3.186 1.742 2.109 2.228
GPT-2-Medium
AGNews 1.491 1.171 1.126 2.340 1.121 1.190 0.523
DBPedia 14 1.200 1.436 1.158 1.034 1.534 1.657 0.252
GLUE-SST2 2.390 0.952 0.874 3.112 0.789 0.674 0.757
GLUE-QQP 3.104 0.892 0.912 3.449 0.802 0.690 0.949
TREC 4.430 1.611 1.644 4.275 1.507 1.579 0.947
Yahoo 5.028 2.221 2.145 5.351 2.249 2.223 1.565

Table 5: Negative log-likelihood (NLL) of different fine-tuning strategies with simulated label noise.
Noise is simulated using a high noise level setting l = 0.5.

to noise correction, MFFT presents an improvement in F1 score of 0.21 (+44%) and a reduction
in ECE of 0.121 (−48%). Compared to Low-High, MFFT presents an improvement in F1 score of
0.019 (+2.8%) and a reduction in ECE of 0.141 (−51%).
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AGNews DBPedia 14 GLUE-SST2

BERT
RoBERTa
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Cost Adj.
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MFFT (Ours)

GLUE-QQP TREC Yahoo

Figure 6: Macro F1-Score vs. expected calibration error (ECE) with high noise level l = 0.5.
Favorable performance is in the top left corner of the graphs, where classification performance is
high (high F1-score) and, simultaneously, calibration error is low (low ECE).

C.3 SIMULATED EXPERIMENTS ABLATIONS

Using the TREC data set and RoBERTa as pre-trained language model, we vary different experimental
settings to study performance at varying conditions. These include number of clean training examples
constituting DH , noise level l and noise bias b. Results are shown in figures 7, 8 and 9.

High Together Cost Adj. Low-HighHigh-Low Noise Cor. MFFT (Ours)

6 12 24 48 96 192 384 6 12 24 48 96 192 384 6 12 24 48 96 192 384

Figure 7: NLL, macro F1-score and ECE as a function of number of examples with clean labels
available. Noise level is fixed at l = 0.3 and noise bias is fixed at b = 0.3

In figure 7, we observe that particularly High, Low-High and MFFT appreciaby improve as more
clean data is made available for training. The extreme differences displayed by High are expected, as
this is the baselines that uses solely clean data. MFFT is competitive or better than the best baseline
(Low-High) for all metrics at all values of clean data size. F1-score is aligned with Low-High at
all clean data budgets, while NLL and ECE are consistently better. This indicate that classification
performance is generally comparable to Low-High (transfer learning approach), while providing
superior calibration, independently of the amount of available clean data.

The improvement provided by MFFT is even more evident across different noise properties. In figures
8 and 9 MFFT performs comparably or better than all baselines across all three metrics. MFFT
performance is also noticeably more robust to increasing noise level and bias, remaining stable as the
noise level and bias in noisy data are increased.
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High Together Cost Adj. Low-HighHigh-Low Noise Cor. MFFT (Ours)

Figure 8: NLL, macro F1-score and ECE as a function of noise level applied to the noisy labels in the
training set. Number of clean examples is fixed at 50 and noise bias is fixed at b = 0.3

High Together Cost Adj. Low-HighHigh-Low Noise Cor. MFFT (Ours)

Figure 9: NLL, macro F1-score and ECE as a function of noise bias in the noise process used to
simulate noisy labels in the training set. Number of clean examples is fixed at 50 and noise level is
fixed at l = 0.3

C.4 ADDITIONAL EXPERIMENTS WITH REAL NOISE FORM LLM GENERATED DATA

We perform experiments with real noise from LLM generated data analogous to those presented in
section 4.3, but with a smaller starting clean data set DL of 50 examples. We show NLL results in
table 6 and F1 vs. ECE in figure

Prompting with Mistral-7B-Instruct
Data Augmentation with Mistral-7B-Instruct

Prompting with Gemma-7B-Instruct High (No LLM 
Generated Data) Together

Cost Adj.

Low-High

High-Low
Noise Cor.
MFFT (Ours)

Data Augmentation with Gemma-7B-Instruct

AGNews GLUE-SST2 TREC

Figure 10: Macro F1-Score vs. expected calibration error (ECE) for RoBERTa fine-tuned on 50
clean examples and 5, 000 examples generated with LLMs. Favorable performance is in the top left
corner of the graphs, where classification performance is high (high F1-score) and, simultaneously,
calibration error is low (low ECE).

Similarly to the results of section 4.3, MFFT results in the lowest or within statistical significance of
the lowest NLL in all experiments and is better than any baseline in 58% of cases. The F1 vs. ECE
results of figure 10 also follow the trends observed in figure 4, with MFFT displaying consistently
competitive classification performance and calibration. Across experiments, the most competitive
baseline in classification performance (average F1) is Low-High, which MFFT outperforms by 0.013
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Data Set High Together Cost Adj. Low-High High-Low Noise Cor. MFFT
Prompting with Mistral-7B-Instruct
AGNews 1.084 1.483 1.501 1.252 0.845 0.608 0.509
GLUE-SST2 1.667 0.437 0.339 1.111 0.376 0.349 0.336
TREC 1.633 1.262 1.124 1.772 1.177 0.692 0.654
Data Augmentation with Mistral-7B-Instruct
AGNews 1.176 0.386 0.417 1.043 0.461 0.456 0.373
GLUE-SST2 1.745 0.691 0.664 1.387 0.431 0.397 0.459
TREC 1.676 0.551 0.466 0.561 0.567 0.503 0.287
Prompting with Gemma-7B-Instruct
AGNews 1.155 1.449 1.406 1.276 0.917 0.627 0.454
GLUE-SST2 1.766 0.386 0.446 1.395 0.416 0.368 0.362
TREC 1.622 1.207 1.141 1.614 1.015 0.881 0.652
Data Augmentation with Gemma-7B-Instruct
AGNews 1.154 0.567 0.591 0.961 0.498 0.501 0.373
GLUE-SST2 1.641 0.654 0.601 1.924 0.541 0.598 0.570
TREC 1.672 0.643 0.579 0.729 0.533 0.590 0.381

Table 6: NLL of RoBERTa fine-tuned with different approaches on 50 clean labeled examples together
with 5, 000 LLM generated examples. Values which are lowest or within statistical significance of
the lowest over 5 experiment repeats are shown in bold.

in F1 score (+1.55%) and 0.09 in ECE (−56.4%). The most competitive baseline in calibration
(average ECE) is Noise Correction, which MFFT outperforms by 0.038 in F1 score (+4.89%) and
0.029 in ECE (−29.2%).
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