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Abstract
Chemistry as a science is highly diverse in its
ways of representing molecules, and many of
these representations are highly abundant in the
literature and, as such, underutilized. There is also
a lack of frameworks that combine these different
representations into a common one. Thus, we in-
troduce the multimodal machine learning model
MoleculeBind. It was trained with the goal
of aligning five different modalities: SMILES,
SELFIES, graphs, fingerprints, and 3D structures
using contrastive learning. We investigate the re-
trieval metrics for the model and obtain high per-
formance across all the different modalities. We
also explore the potential of querying molecules
with similar properties using the same approach.
The retrieval of molecules with similar proper-
ties outperformed a random baseline significantly.
We expect such a model to have a great impact
on spectroscopy and improve the performance of
existing generative methods.

1. Introduction
Chemical data is very diverse and highly complex. This is
partly because different techniques are needed in different
subfields to analyze specific phenomena. Even for repre-
senting one single small molecule, one can choose from
plenty of options such as SELFIES (Krenn et al., 2020;
2022), SMILES (Weininger, 1988), IUPAC names, or InChI
identifiers (Heller et al., 2015). Besides those line represen-
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tations, molecules are often also reported as 3D structures
or used via molecular fingerprints (e.g., Morgan fingerprint
(Morgan, 1965)) or molecular graphs in computational mod-
eling. Experimental scientists more commonly deal with
molecules characterized via spectroscopic measurements
such as nuclear magnetic resonance (NMR) and infrared
(IR) spectroscopy. Thus, chemical data is highly fragmented
across multiple modalities. This leads to massive underuti-
lization of chemical data as, using current techniques, this
multimodal data cannot be synergistically and jointly uti-
lized. For instance, most machine learning models in the
chemical sciences can only accept one input modality. In
addition, most, if not all, research data management systems
do not provide effective search functionalities across modal-
ities, which would, however, lead to vast efficiency gains
in chemical research. In this work, we build on contrastive
embedding alignment techniques to bring chemical data into
a shared data space. We show that this alignment allows us
to perform effective cross-modal retrieval—even for pairs
of modalities on which the model has not explicitly been
trained.

Concretely, our main contributions are

• MoleculeBind: A model that aligns molecular graphs,
3D structures, molecular fingerprints, as well as
SMILES and SELFIES, reusing existing encoder mod-
els.

• Demonstration of emergent cross-modal retrieval in
chemical data: We demonstrate that our embeddings
are performant even for recall across modality pairs for
which the model has not been explicitly trained.

2. Related work
Binding embeddings through encoder alignment Out-
side the chemical domain, multimodal embedding alignment
models have been introduced (Ma et al., 2022; Mu et al.,
2022). Among these models, ImageBind (Girdhar et al.,
2023) stands out for incorporating more than two modali-
ties. The model was built from six existing encoders, and
the embeddings were aligned using a symmetric InfoNCE
loss (van den Oord et al., 2019) with respect to a central
“binding” modality (e.g., images). ImageBind also intro-
duced a term called emergent alignment, which represents
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the alignment of pairs of modalities on which the model
has not been explicitly trained. This represented an im-
portant departure from conventional alignment approaches,
in which pairs for each relevant modality are required. In
ImageBind, only data paired with the “binding” modality
is required. The resulting embeddings have been used in var-
ious downstream applications, for example, interfaced with
large language models (Han et al., 2023; Su et al., 2023).

Multimodal models in chemistry Multimodal models for
chemistry have been proposed in the literature. For exam-
ple, Han et al. (2024) introduced a framework for polymer
property prediction (graph and PSMILES); Kaufman et al.
(2024) built a bimodal encoder-decoder model based on
aligned text and 3D representations; Ock et al. (2024) intro-
duced a bimodal model for catalysis, where the use of graph
and language models into a single framework aided data
efficiency for energy predictions tasks. Seidl et al. (2023)
introduced CLAMP, a bimodal model based on text descrip-
tions of assays and molecules (i.e., string notations, graphs,
or fingerprints).

Cross-modal retrieval Cross-modal retrieval refers to re-
trieving semantically related data stored in one modality
(e.g., images) by querying with another modality (e.g., text).
Wang et al. (2016) provide an overview of cross-modal re-
trieval. Explicitly aligning chemical modalities was tried by
Sanchez-Fernandez et al. (2023). Their CLOOME retrieval
model includes microscopy images and text modalities. Liu
et al. (2023) use cross-modal retrieval for text descriptions
and small molecules for drug discovery. Xiao et al. (2024)
introduced MolBind to align four chemistry-related modal-
ities with the primary focus on proteins.

3. MoleculeBind Model
Architecure We built MoleculeBind using PyTorch
and PyTorchLightning based on the architecture pro-
posed by Girdhar et al. (2023). In contrast to their work, we
utilized a simple InfoNCE loss without symmetrization for
computational efficiency:

LR,M = − log
exp (qT

i ki/τ)

exp (qT
i ki/τ) +

∑
i ̸=j exp (qT

i kj/τ)
,

(1)

where R is the central representation (modality) to which
other modalities are aligned, and M is any other modality
M ̸= R.

We align five modalities: SELFIES (central modality),
SMILES, 3D structures, molecular graphs, and Morgan fin-
gerprints enhanced by 93 cheminformatics descriptors (e.g.,
QED, LogP) computed using RdKit. The model architec-

ture is shown in Figure 1, highlighting the direct alignments
(i.e., trained on) and a part of the emergent alignments (i.e.,
not trained on).

Figure 1. MoleculeBind architecture. Purple arrows indicate emer-
gent alignment, and black arrows indicate direct alignment (i.e.,
pairs of modalities on which the model is explicitly trained). For
illustration purposes, not all emergent links between modalities
are shown. The hidden state sizes for the models are as follows:
SELFIES, SELFIES, fingerprint - 768, graphs - 256, 3D structures
- 128. All the embeddings are projected into a 1024-dimensional
hidden state.

Encoders The model is built using five encoders avail-
able in the literature. For encoding the central modality
SELFIES, we use SELFormer (Yüksel et al., 2023). As
the structure encoder, we use Dimenet (Gasteiger et al.,
2020). We use ChemBERTa from (Chithrananda et al.,
2020) to encode SMILES strings, and MolCLR (Wang et al.,
2022) for graph encoding. To encode molecular fingerprints,
we trained a variational autoencoder (VAE) (Higgins et al.,
2017; Kingma & Welling, 2022). Besides the fingerprint-
VAE, all the model configurations are based on the origi-
nal implementation. All encoders except the SMILES and
SELFIES transformers were trained from scratch.

3.1. Data

The data that has been used in this work comes from multi-
ple sources.

3D Structures For the training of the structure encoder,
we sampled 100k molecules from the QMugs dataset (Isert
et al., 2022). The target property of choice was the HOMO-
LUMO gap computed with DFT single-point calculations
on structures optimized with the semi-empirical GFN2-xTB
method (Grimme et al., 2017; Bannwarth et al., 2019; 2021).
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Graph For the graph model, we used 100k molecules
that were presented as an example by Wang et al. (2022)
for training MolCLR. The full model has been trained on
≈10M molecules.

SELFIES and SMILES 200k SELFIES and SMILES
strings were sampled from the CHEMBL (v30) database
(Gaulton et al., 2017), 100k from the QMugs dataset (Is-
ert et al., 2022) and 100k from the ChemNLP IUPAC-
SMILES dataset (Jablonka, 2024). The total number of
unique molecules ended up at ca. 393k.

MoleculeBind dataset Starting from SELFIES or
SMILES, the dataset for MoleculeBind is prepared as
follows. We compute graphs based on SMILES at runtime.
For structures, we load 3D geometries from SDF files (one
per SMILES or SELFIES) as provided by Isert et al. (2022).
We precompute the Morgan fingerprints and descriptors
using the RdKit package (Landrum et al., 2013) and con-
catenate these to form a fingerprint of length 2141 (2048
bits, 93 descriptors).

4. Results
Retrieval metrics The top-1 and top-5 retrieval recall
have been assessed on a complete validation set (i.e., all
modality pairs are complete). These metrics are shown in
Table 1. Since the loss we used is not symmetric, differ-
ent results were obtained for the same pair of modalities
but with swapped query modalities. For example, when
building the vector database from SELFIES embeddings
and querying it with graph embeddings, the performance is
lower than vice versa.

We observe emergent alignment between the pairs of modal-
ities that the model was never trained on. For example, a
retrieval rate of more than 80% is obtained for the pairs 3D
structure - graph, graph - fingerprint, and fingerprint-3D
structures. This highlights the efficiency of this architecture
and how we can leverage data for which plenty of pairs are
available to perform effective retrieval across modality pairs
for which only little data is available.

Property space for queries Following Frey et al. (2023),
we showcase a few examples of how MoleculeBind can
assist in retrieving molecules with similar properties (see
Figure 2). The average distance between the properties of
the molecule used for queries and the queried molecules as
a distance in the 2D property space is calculated using

dprop =

√
(P1@20 − P1query)2

µP1

+
(P2@20 − P2query)2

µP2

,

where P1 and P2 are property 1 and property 2, respectively.
µP1 and µP2 are the means across the population for the
properties. P1@20 and P2@20 are the means of respective
properties P1 and P2 for the top-20 retrieved molecules
using a query molecule. On average, queries are within
0.30 distance (normalized) in the 2D property space of
QED and LogP compared to 0.53 in a random baseline.
A Kolmogorov-Smirnov test shows that the difference be-
tween the two distributions is significant (p− value = 0).

Figure 2. Property queries examples. The top-20 retrieved
molecules are displayed as a kernel density estimation (KDE).
The figure shows the retrieval between graph and SELFIES em-
beddings, for which the dataset sizes can be found in Table 1.

5. Conclusions
MoleculeBind is the first model to align five different
chemical modalities. We obtained high performance on
retrieval recall metrics on the validation set. Weobserved
an emergent alignment of the embeddings between pairs
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Table 1. Recall rates for different molecular representations and their combinations (≈ 10k molecules). The second modality in the pair
represents the query, while the embeddings of the first are used to create the vector database. Text colors correspond to either direct or
emergent alignment, as shown in Figure 1.

Modality Pair Recall@1 Recall@5 Random Recall @5
SELFIES - SMILES 0.941 0.997 0.000
SELFIES - Graph 0.807 0.956 0.001
SELFIES - Fingerprint 0.819 0.964 0.000
SELFIES - 3D structure 0.947 0.998 0.000

SMILES - SELFIES 0.947 0.998 0.000
SMILES - Graph 0.900 0.983 0.000
SMILES - Fingerprint 0.872 0.976 0.000
SMILES - 3D structure 0.943 0.997 0.000

Graph - SELFIES 0.846 0.977 0.000
Graph - SMILES 0.926 0.992 0.000
Graph - Fingerprint 0.845 0.969 0.000
Graph - 3D structure 0.885 0.987 0.000

Fingerprint - SELFIES 0.828 0.969 0.000
Fingerprint - SMILES 0.882 0.986 0.000
Fingerprint - Graph 0.817 0.960 0.000
Fingerprint - 3D structure 0.862 0.981 0.000

3D structure - SELFIES 0.955 0.999 0.000
3D structure - SMILES 0.944 0.998 0.000
3D structure - Graph 0.842 0.967 0.001
3D structure - Fingerprint 0.866 0.978 0.000

of modalities the model was never trained on. This has
implications for how we leverage data. For example, in our
study, we worked with a limited amount of structural data
compared to the other modalities. However, the retrieval
metrics for this modality were similar.

Moreover, we showcased how the embeddings
MoleculeBind generated can be used to query
molecules with similar properties and that we observed a
significant performance increase from a random baseline.

This illustrates that an architecture such as
MoleculeBind can be effective in bridging the
multitude and diversity of embeddings we find in chemical
data. Doing so will allow us to leverage the data collectively
and, ultimately, might also enable researchers to uncover
unknown links that have been recorded in different
modalities.

6. Future work
Since it is likely that the performance of our approach can
be improved by scaling models and datasets, we plan to
evaluate the scaling laws for the model beyond the 393k
dataset. Also, we aim to augment MoleculeBind with
new modalities (e.g., nuclear magnetic resonance (NMR), in-

frared (IR), and Ultraviolet-visible (UV-VIS) spectroscopy).
Importantly, our approach can be reused on modalities for
other classes of compounds besides small molecules (e.g.,
in materials science or biochemistry). Having a general
representation of molecules would be useful for the many
subfields and applications that chemistry has found its way
into.
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Appendix

Figure 3. Property distribution for the validation set of 9937
molecules shown in Table 1.

Retrieval methods

Before computing the retrieval metrics on the entire dataset,
we compute embeddings for each batch and then aggregate
them into one tensor per modality. The indexing for pairwise
retrieval calculations is acquired from the stored binarized
dataset. chromaDB is used as the vector database of choice
due to ease of use and sufficient performance.
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