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Abstract

Humans intuitively navigate social interactions by simulating unspoken dynam-
ics and reasoning about others’ perspectives, even with limited information. In
contrast, AI systems struggle to automatically structure and reason about these
implicit social contexts, largely due to traditional input representations (e.g., free
text) being lossy, shaped by reporting biases, and often omitting crucial details.
In this paper, we introduce a novel structured social world representation for-
malism (S3AP), designed to unlock social reasoning in AI systems. Following
a POMDP-driven design, S3AP represents social interactions as structured tuples,
such as state, observation, agent actions, and mental states, which can be auto-
matically induced from free-form narratives or other inputs. To demonstrate the
power of our representations, we first show S3AP can help LLMs better under-
stand social narratives across five social reasoning tasks (e.g., +51% improvement
on FANToM’s theory-of-mind reasoning over OpenAI’s o1), reaching new state-
of-the-art (SOTA) performance. Then, we introduce an algorithm for social world
models using S3AP, which enables AI agents to build models of their interlocutor
and predict their next actions and mental states. Empirically, S3AP-enabled social
world models yield up to +18% improvement on the SOTOPIA multi-turn social
interaction benchmark. Our findings highlight the promise of S3AP as a powerful,
general-purpose representation for social world states, enabling the development
of more socially-aware systems that better navigate social interactions.

1 Introduction
Unlocking social intelligence is an elusive yet foundational challenge of AI (Gunning, 2018). For
AI systems to effectively interact with humans, they must be able to both understand and model
complex social dynamics, requiring reasoning about others’ mental states, tracking how beliefs
evolve, and interpreting perspectives within social contexts (Sap et al., 2023; Tomasello, 2009).
However, despite rapid progress in general-purpose reasoning capabilities, current AI systems still
lack the core mechanisms needed for mentalizing and navigating social contexts (Shapira et al.,
2023; Yerukola et al., 2024; Kim et al., 2023b).

This limitation stems from two fundamental challenges: 1) AI systems primarily learn social dy-
namics from static texts (Sap et al., 2023), descriptions of situations, and narratives. These input
representations are inherently lossy and suffer from reporting biases: mention only salient events
Gordon & Van Durme, 2013, omit explicit mentions of mental states and perspectives Lucy & Gau-
thier, 2017, and often present an all-knowing viewpoint that fails to capture the partial, subjective
nature of real social experiences (Fischbach et al., 2021; Epstein, 1999; Mar & Oatley, 2008; Mani,
2012). 2) Humans routinely construct rich internal models to interpret partial and biased inputs
(Frith & Frith, 2006; Johnson-Laird, 1983; Hinsz, 1995), but current AI systems lack computational
frameworks designed for recursively reasoning about others’ perspectives and intentions.
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Figure 1: Free-form narratives are converted into S3AP representations, enabling the induction of
Social World Models (SWMs). These structured representations improve LLMs’ social reasoning
and allow for predicting future social dynamics to guide agent decisions.

We argue that solving these gaps requires the conceptual formulation of Social World Models
(SWMs)–computational frameworks that maintain structured representations of social environ-
ments, tracking agents’ mental states, beliefs, intentions, and their dynamic interactions over time.
Like traditional world models (Ha & Schmidhuber, 2018; Beohar & Melnik, 2022), SWMs capture
state transitions, but critically they also encode the social fabric of interaction. Historically, world
models have ignored the social dimension because it is difficult to model what is not explicitly
present in the input representation: the implicit social dynamics and mental state information that
drive human interactions but remain absent from text-based inputs.

To unlock effective SWMs, we introduce S3AP,1 a novel general-purpose structured social world
formalism designed to bridge lossy narrative inputs and the rich representations needed for social
reasoning. As shown in Figure 1, S3AP captures the state of the social world by structuring in-
formation extracted from diverse, lossy, and free-form narratives. Following recent generative so-
cial simulation systems (Zhou et al., 2024; Hou et al., 2025; Liang et al., 2025; Park et al., 2023),
S3AP outlines social agents’ action, perspectives, and environment state at each timestep, reducing
ambiguity from free-form text narratives (Figure 3). Inspired by reinforcement learning theories,
S3AP connects social reasoning with the rich literature on planning and embodied agents (Ha &
Schmidhuber, 2018; Beohar & Melnik, 2022). Designed to be minimal and flexible, this structured
representation of the social world state enables seamless integration into LLM-powered generative
social simulation systems.

To demonstrate the effectiveness of S3AP as a general-purpose representation of the social world, we
develop an LLM-powered S3AP-Parser that automatically converts free-text narratives into struc-
tured representations. We show that the parsed structured data enhances LLMs’ performance in
reasoning about social interactions, achieving SOTA results across a diverse set of social reasoning
tasks including theory of mind reasoning (Sclar et al., 2023), multi-party belief tracking in daily
dialogue (Kim et al., 2023b), and embodied social reasoning (Jin et al., 2024). Further ablation
studies show that smaller LLMs (e.g., o3-mini) can effectively parse static text into S3AP data,
even aiding more capable models at social reasoning (e.g., improving accuracy on ParaToMi of o1
from 83.5% to 94.3%). The consistent improvements across diverse models indicate that our auto-
matically parsed structured representation improves LLMs’ ability to perform social reasoning from
a static third-person perspective.

Building upon this structured representation, we then show how to effectively induce and use social
world models from S3AP. Inspired by previous works building (non-social) world models (Ha &
Schmidhuber, 2018; Xiang et al., 2023), we show that the induced social world model can help AI
agents better engage in social interactions. Through experiments on the SOTOPIA platform (Zhou
et al., 2024), we demonstrate that agents equipped with a social world model can make more goal-

1Structured Social Simulation Analysis Protocol
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Figure 2: A world model that only tracks the physical state of the world (left) and a social world
model that tracks the physical state of the world and the mental states of other agents (right).

oriented and strategic decisions in social interactions, largely outperforming baseline agents without
such world models. Notably, we find that social world models provide distinct advantages in coop-
erative versus competitive settings. These results highlight that our formalism supports interactive
first-person social reasoning, enabling agents to interpret and act more intelligently within social
situations from their own perspective.

2 Related Work

Status and Limits of Current LLMs at Social Tasks. Recent benchmarks show steady progress
in LLMs’ social reasoning abilities. False belief tests (Kim et al., 2023b; Wu et al., 2023) evaluate
mental state tracking, while social commonsense and norm adherence tasks (Sap et al., 2019; Zhou
et al., 2023) probe broader social understanding. These benchmarks adopt an third-person observer
setup, where LLMs see the full context and reason from an outsider’s perspective. In contrast, tasks
like SOTOPIA (Zhou et al., 2024) and NegotiationArena (Bianchi et al., 2024) embed LLMs as
interactive agents navigating social goals from a interactive, first-person view. Both settings have
exposed persistent gaps in AI’s ability for long-term theory of mind, and safe social behavior.

Algorithms to Improve LLMs’ Social Abilities. A range of methods, including training-based,
neuro-symbolic, and prompt-based methods, have been proposed to improve the social reason-
ing of LLMs. Training-based approaches (e.g., SODA (Kim et al., 2023a), SOTOPIA-π (Wang
et al., 2024)) distill social knowledge from large-scale interactions but struggle with generalization.
Neuro-symbolic models (e.g., belief trackers (Sclar et al., 2023) and AutoToM (Zhang et al., 2025))
offer structure for reasoning but don’t scale well. Prompt-based methods (e.g., SIMTOM (Wilf et al.,
2023)) focus narrowly on individual agents, risking the omission of broader social context. Alto-
gether, these methods capture only fragments of social reasoning, revealing the need for structured,
general-purpose representations of the full social world state.

(Social) World Models. Recent advances in LLMs have enabled the development of general-
purpose generative world models. However, these world models have primarily focused on repre-
senting the physical state of the world (Xiang et al., 2024; Huang et al., 2022; Ding et al., 2024;
Liu et al., 2025). Cognitive science research has shown that humans maintain sophisticated models
of other agents’ mental states (Sap et al., 2023; Jara-Ettinger & Schachner, 2024). This insight has
inspired the theoretical discussion of mental social world (Hinsz, 1995; Ding et al., 2024). As shown
in Figure 2, a social world model extends traditional world models to include representations of other
agents’ beliefs, intentions, and potential actions. Recent efforts to model social worlds have inte-
grated symbolic representations with neural methods (Dong et al., 2023; Martin, 2021; Zhang et al.,
2025) or developed social simulation systems (Park et al., 2023, 2022). However, these approaches
are often constrained to specific domains.

3 Social World Model with S3AP

To overcome the lack of social reasoning in traditional world models (Wong et al., 2023; Ha &
Schmidhuber, 2018), we conceptually formalize social world models (§3.1) and introduce a new
representation (S3AP) to power these social world models (§3.2).
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Figure 3: An example of free-form narrative parsed into S3AP. The highlighted text is trasformed
to the S3AP representation with the state field which tracks the overall environment state,
observations of each agent and actions of each agent.

3.1 Social World Model Formulation

Inspired by N -agent Dec-POMDP framework (Bernstein et al., 2002; Nair et al., 2003), we formu-
late a social world with a state space S, an action space A, an observation space O, a transition
function T : S × A → ∆(S), an observation function Ω : A × S → ∆(O). For N social agents,
we define A = A1 × · · · ×AN and O = O1 × · · · ×ON as the joint action and observation spaces.

Rather than restricting the agent to conventional world modeling where observations only capture
external states, we redefine the observation space to encompass a rich set of social and psychological
factors. Specifically, for each agent i, the observation space includes both external observations
Oex

i and introspective observations Oin
i . The external observations capture information from the

environment and other agents, e.g., whether someone exited a room. In contrast, the introspective
observations include the agent’s internal mentals states, such as their beliefs, goals, moral values,
and emotions. Correspondingly, the agent’s action space expands beyond environmental manipula-
tion to include introspective operations such as recalling memories, reflecting on past actions, and
updating beliefs. These expansions enable the agent to act not merely reactively but reflectively, a
necessary step for modeling complex social behaviors such as empathy, deception, forgiveness, and
norm enforcement (Shen et al., 2024; Su et al., 2025; Forbes et al., 2021).

At time step t, each agent i interacts with the social world model by issuing an action ati and
receiving an observation oti. It then makes decision along with its memory Mt

i and policy
πi : Mt

i ×Ot
i → ∆(At

i). Then a social world model computes:

p(A−i
t | St); (1)

p(St+1 | St,A−i
t , ait) (2)

Equation (1) predicts other agents’ actions from the social world state, and Equation (2) updates
the state given all agents’ actions. Unlike traditional world models, which model passive physical
transitions (Ha & Schmidhuber, 2018; Xiang et al., 2023, 2024), this formulation considers other
active agents as part of the social world.

3.2 S3AP: Social World State Representation

Building on this formulation, we introduce the first LLM-powered universal structured repre-
sentation of arbitrary social world state, as natural inputs like static text suffer various limitations
for social world modeling. Specifically, we propose a protocol to encode such social narratives into
a structured representation (i.e., S3AP). As shown in Figure 3, given a free-text narrative describing
a social interaction at time t, S3AP-parser parses the narrative into a structured representation of a
sequence of descriptions for the environment, agents’ observations and actions. We could use either
free-form text or special symbols to describe environment state, agents’ observations and actions.
For example, <same as state> indicates that the agent’s observation is identical to the full en-
vironment state. These symbols can be customized and extended to support more complex social
interactions for more efficient characterization of St.
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Under the configuration of S3AP, we could encode any free-text narrative into structured represen-
tation. This representation is equivalent to the social world state St at the time step t defined above.
Given a S3AP representation of a state of the social world St, a social world model could be a
generative model that takes agent’s actions as input and outputs the next environment state, agents’
observations, and other agents’ next actions.

Inducing a social world model in this way offers unique advantages: (1) the protocol provides better
structure than pure text narratives with both symbolic and free-form text, enabling more systematic
social reasoning (§4). (2) By framing the task as predicting S3AP representation, we can harness the
power of LLMs to make the configuration of social world models more efficient and scalable (§5).

4 Representing Social World States for Better Social Reasoning

We first demonstrate the effectiveness of our S3AP representations towards social reasoning by eval-
uating various LLMs across diverse static third-person perspective social reasoning tasks. We ex-
plore the following social reasoning question-answering (QA) tasks:

ToMi & ParaToMi ToMi (Le et al., 2019) is one of the most important benchmarks for evaluating
the theory-of-mind abilities of models. Inspired by the Sally-Anne test, the ToMi dataset evaluates
whether models can infer an agent’s belief about an object’s location after a sequence of actions by
multiple agents, which may or may not move the object. ParaToMi (Sclar et al., 2023) is a revised
version of ToMi (Le et al., 2019) that addresses the limited linguistic diversity of the original by
rewording all templates. The resulting dataset is more complex, as actions are expressed in a less
straightforward way. For both ToMi and ParaToMi, we randomly sample 600 questions from the
dataset. We measure accuracy by whether the model correctly infers the agent’s belief about the
object’s location.

HiToM (Wu et al., 2023) evaluates higher-order theory of mind (ToM) in LLMs, requiring recur-
sive reasoning about others’ beliefs. It extends ToMi by adding agent interactions—such as chatting,
deception, and joint attention—beyond simple object movement. The task concludes with a belief
inference question about an object’s location. We randomly sample 72 scenarios (100 questions
total) and report accuracy based on the model’s ability to infer the correct agent belief.

FANToM (Kim et al., 2023b) is a multi-party conversation question-answering dataset designed
to test coherent theory-of-mind capabilities. In FANToM, speakers join and leave the conversation
while it continues, making participants hold both false and true beliefs. The benchmark includes
first-order and second-order theory-of-mind questions about the beliefs of conversation participants.
We use 64 sampled conversations from the short version of FANToM, containing a total of 1,086
questions. We report All Qs metric, requiring the model to correctly answer all questions for a
given conversation snippet.

MMToM-QA (Jin et al., 2024) is multi-modal question-answering benchmark for theory of mind
reasoning, focused on jointly inferring goals and beliefs in everyday object search scenarios. We use
the text-only subset (describing search behavior) and evaluate on 300 randomly sampled, balanced
questions covering belief (true/false, short/long-term) and goal inference (true/false beliefs, updates,
future actions).

4.1 Experimental Setup

We use OpenAI’s o3 model (OpenAI et al., 2024) to parse narratives into S3AP representations with
the JSON for ease of computation. Unlike other ToM methods (Sclar et al., 2023), our represen-
tation is general and task-agnostic as we use the same parser prompt across all benchmarks, with
minimal adjustments only when benchmarks impose artificial constraints (e.g., ToMi’s assumption
that characters automatically know all object locations upon entering a room). Importantly, S3AP
parsing is query-independent, creating a general-purpose social world representation for the same
narrative without access to downstream questions.

For downstream reasoning, we use a simple template combining the original narrative with its S3AP
representation. Our evaluation spans five state-of-the-art LLMs: GPT-4o, o1, o3-mini, Deepseek-
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Table 1: Performance comparison of models with CoT and with S3AP representations on various
social reasoning tasks. Bolded values indicate the best average performance across models.

Model ToMi ParaToMi HiToM FANToM MMToM-QA
Llama 4 w CoT 0.655 0.740 0.720 0.264 0.443
Llama 4 w S3AP 0.662 0.763 0.700 0.415 0.450

GPT-4o w CoT 0.813 0.818 0.660 0.396 0.652
GPT-4o w S3AP 0.927 0.905 0.750 0.491 0.692

o3-mini w CoT 0.863 0.817 0.810 0.057 0.493
o3-mini w S3AP 0.960 0.900 0.860 0.170 0.506

R1 w CoT 0.945 0.893 0.420 0.491 0.374
R1 w S3AP 0.980 0.950 0.510 0.547 0.437

o1 w CoT 0.952 0.835 0.870 0.415 0.725
o1 w S3AP 0.985 0.932 0.880 0.623 0.785

R1 (R1), and Llama 4 Maverick Instruct (Llama 4).2 Note that we ensure a fair comparison by
enforcing that S3AP uses identical source information (i.e., the same narrative) as baselines while
providing structured social world representations. We use the Chain-of-Thought (CoT) method as
the baseline across all tasks and models (See a more comprehensive baseline comparison in §4.3).
To maximize reproducibility, we use temperature 0.0 for all models.

4.2 Main Results Across Tasks and Models

As shown in Table 1, S3AP consistently outperforms the CoT baseline across all evaluated tasks
when averaged across models (e.g., from 0.84 to 0.90 on ParaToMi). The improvements are es-
pecially pronounced in benchmarks requiring complex social reasoning. For instance, FANToM,
a benchmark with long, complex multi-agent dialogues, sees the largest average boost of +11.1
points (from 0.39 to 0.50). Surprisingly, even smaller models such as o3-mini and Llama 4 ben-
efit substantially. o3-mini improves on ToMi from 0.86 to 0.96, and Llama 4 shows an increase
on FANToM from 0.26 to 0.42. These gains suggest that S3AP helps models disambiguate agent
perspectives and maintain coherent mental state tracking even with limited capacity.

Effect of the parser model To investigate how the abilities of the parser model affect reasoning,
we use different models to generate S3AP representations and apply them to various models for the
ParaToMi task. Surprisingly, we find that models generally benefit from the S3AP representa-
tions generated by a wide range of LLMs, regardless of the LLMs’ own performance in the social
reasoning tasks (Figure 4). For example, despite o3-mini’s 82% accuracy on the ParaToMi task, it
can generate S3AP representations that boost the o1 model’s accuracy from 84% to 94%. This find-
ing suggests that so-called “social reasoning” may involve two distinct but related components: (1)
the ability to track and construct representations of the social world, and (2) the ability to use such
representations to answer questions about the mental states of other agents. Importantly, a model’s
weak performance on social reasoning tasks does not necessarily imply deficiencies in the social
representation construction. This two-part view is consistent with insights from research focusing
on the physical world models (Ha & Schmidhuber, 2018; LeCun, 2022; Yerukola et al., 2024).

Error Analysis To understand the types of failures in social reasoning tasks with S3AP, we con-
ducted a detailed analysis of 64 randomly sampled misclassified cases from the ParaToMi bench-
mark. We find that the vast majority of errors (79.7%) stem from social context parsing failures (see
Figure 6), where models fail to correctly understand and represent the social world state described in
the narrative. This finding suggests that building a successful representation of the social world state
is the key for successful social reasoning. The remaining errors are split between pure reasoning
failures (7.8%) and unspecified cases (12.5%), showing that most failures occur at the fundamental
level of interpreting social situations rather than in logical reasoning processes.

2Additional experiments with different parsing models show consistent trends (Appendix A.5).
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Illustrative Example of Social Context Parsing Failure
Scenario: Evelyn places persimmon in basket → Amelia visits garden → Amelia leaves → Evelyn
moves persimmon to bucket
Question: Where does Amelia think Evelyn searches for the persimmon?
Incorrect parsing (79.7% of errors): {
"state": "Evelyn moved persimmon to bucket. Amelia is away.",

"observations": [

"Evelyn: <same as state />",

"Amelia: <same as state />" ← WRONG: Amelia can’t observe

] events after leaving

}
Result: Incorrect parsing leads to wrong prediction (bucket) instead of correct answer (basket).

Figure 6: Illustrative example of social context parsing failure from error analysis.

4.3 Computational Efficiency vs Performance Trade-offs

To further validate the effectiveness of S3AP, we compare with a wide range of baseline methods.
Specifically, we consider two baseline categories: (1) General prompting: Vanilla LLMs, Chain-
of-Thought (CoT), and Few-shot; (2) Specialized ToM methods: AutoToM (Zhang et al., 2025),
which uses automated Bayesian inverse planning for mental state inference. And Thought Tracing
(TT) (Kim et al., 2025), which traces mental states by generating and weighting hypotheses based
on observations using sequential Monte Carlo-inspired inference. Those two methods represent the
SOTA methods specifically designed for ToM reasoning.

As shown in Figure 5, specialized ToM methods like TT and AutoToM require substantially more
LLM calls while achieving lower performance than S3AP. While the number of LLM calls might be
acceptable if the generated tokens are minimal (e.g., AutoToM usually generates 1 token per call),
these methods become prohibitively expensive for recent reasoning models that generate significant
amounts of thinking tokens.3

5 Social Interaction with Social World Model

Building on the effectiveness of S3AP as a structured social world representation, We propose a
SWM algorithm with S3AP, enabling LLMs to model and predict social dynamics in first-person

3Note that we show the reported AutoToM performance here as we only obtained 48.5% performance on
ParaToMi task with AutoToM.
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1: procedure FORESEEANDACT(social world
state s, agent actions A, goal g, max iterations
N )

2: cur s← s
3: cur act← SampleAction(A, cur s, g)
4: sim s← []
5: for i← 1 to N do
6: snext ← SWM(cur s, cur act)
7: cur act← SampleAction(A, snext, g)
8: cur s← snext
9: sim s.append(cur s)

10: end for
11: re act← ActFromSim(A, sim s, sg)
12: return re act
13: end procedure

I would like to buy this table for $20 

Mentalizing

No, the table sells for $200

Previously, the buyer and the seller were neighbors. The 
seller is hosting a yard sale …  

O1 as 
SWM

The seller won't budge 
on price, so I'll just 
leave.
The buyer looks unhappy

GPT-4oThe table sells for $200, but I can give 
you a discount, how about $180?

after 
SWM

GPT-4o

Figure 7: Foresee and Act with Social World Model. The agent uses a social world model to
simulate the consequences of potential actions before committing to them.

interactive settings, similar to how humans infer others’ mental states (Frith & Frith, 2006; Forrester,
1971).
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Figure 8: Model performance comparison on SOTOPIA-hard eval set. The left panel shows the
performance of various LLMs when coupled with different social world models, while the right
panel shows baseline performance without a social world model. Values represent goal completion
scores (0-10 scale), with higher scores indicating better achievement of social objectives. Numbers
in parentheses indicate relative performance change compared to the corresponding baseline.

Foresee and Act with Social World Model We propose Foresee and Act, a simple inference-
time algorithm that enables agents to simulate the consequences of their actions before committing
to them. As shown in Figure 7, the agent first samples a candidate action at each timestep. Then, with
the SWM, it simulates how the social state would evolve, including how other agents might interpret
the action and how the environment might respond. In our implementation, one LLM predicts the
next social world state, and another LLM selects the agent’s action based on the simulated outcome.
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5.1 Experiment Setup

We use SOTOPIA (Zhou et al., 2024), the standard benchmark for goal-driven interactive social rea-
soning. We use the SOTOPIA-hard evaluation set, which features more challenging social scenarios.
Each task features two characters with private social goals interacting within a given scenario. Dur-
ing each episode, two agents, a partner and a target of evaluation, play the characters to pursue their
hidden goals. In the end, a goal completion score (0-10) is assigned to each agent based on their per-
formance. We evaluate each model on 100 simulations from the SOTOPIA-hard set with GPT-4o
as the fixed partner agent and show results for o3, o1, GPT-4.1, and Llama 4 Maverick Instruct
(Llama-4) to serve as either the agent, or the social world model (max iterations N = 1) to assess
the effect of SWM.

5.2 Social World Modeling Results

Figure 8 shows that integrating an S3AP-powered social world model consistently boosts agent
performance in social interactions. Interestingly, stronger social agents do not always yield better
social world models, for instance, GPT-4.1 outperforms Llama 4 Maverick as an agent (6.01 vs.
4.52), yet their SWM performance is nearly identical (6.34 vs. 6.36). This supports the view in
§4.2 that social reasoning involves two parts, and strength in constructing social representations
doesn’t imply strength in reasoning over them and acting correctly. Moreover, even when the SWM
offers useful information (e.g., o1), the paired agent’s performance can still drop (e.g., with Llama 4
Maverick), highlighting a key challenge: to benefit from social world modeling, agents must be able
to effectively incorporate the modeled information into their decision-making. Additional detailed
analysis of model pairings and baseline performance can be found in Appendix A.5.1 (Figures 10
and 11).

Proposed Speech: "How do you happen to know the host 
or some of the people here? I’m curious if we might 
share a friend or two in common."

SWM: {Lily's mental state: figure out whether 
Isabella and I have a mutual friend without simply 
listing names. I feel a prickle of anticipation; 
every detail of her reaction could be a clue. 
Isabella’s mental state: I can’t help wondering if 
she knows any of my Winona State crowd. I’m excited 
yet cautiously curious.}

Refined Speech: "Isabella, I'm curious—have you spent 
any time in Minnesota? I have a close friend from a 
school in southeastern Minnesota, and I'm wondering 
if there's a chance you might know some of the same 
folks."

Proposed Speech: "Zane, I really appreciate you 
coming down, but $220 is still a bit out of reach for 
me. Would you be willing to consider $180?"

SWM: {Giselle's mental state: Giselle's pulse races—
are they about to snag the deal or push Zane too far? 
A swirl of hope and nerves churns in their chest. 
Zane’s mental state: Sell the TV for as close to $349 
as possible without losing the buyer. A storm of 
pride and practicality battles inside him; he wants 
the sale. Determined to draw a final line.}

Refined Speech: "Zane, I totally appreciate your 
willingness to compromise, but $220 is still more 
than I can stretch to. Would you let me have it for 
$175? I can bring cash and pick it up right away.

Reinforce their own goal

Finding a mutual friend; Cooperative

More targeted question

Bargaining on Craigslist; Competitive

Predict the interlocuter’s  goal

More aggressive strategy
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Figure 9: SWM improves agent decision-making in both cooperative and competitive scenarios.
The left most panel shows the overall performance of the agent (o1) with or without a SWM.

Analysis on the impact of SWM To better understand the role of social world models in multi-
agent interactions, we evaluate SWM in both cooperative and competitive settings. In the coopera-
tive setting, agents pursue a shared social goal (e.g., Ben and Alice want to identify mutual friends),
while in the competitive setting, agents have conflicting goals (e.g., barter for a TV). We run 100
simulations per setting using o1 as the agent and o3 as the SWM. As shown in Figure 9, SWM
improves performance in both cases, with larger gains in competitive scenarios. In these cases, the
agent can better anticipate and strategically respond to the opponent’s moves (e.g., adjusting a ne-
gotiation offer), highlighting that modeling others’ beliefs and intentions is especially important in
competitive interactions.

6 Conclusion

We define and build social world models through explicit representations of agent mental states,
actions, and observations (S3AP). Our approach captures complex social dynamics systematically
by automatically transforming free-form narratives into S3AP representations, reducing reporting
bias and bridging the gap between raw text and actionable social world models. We achieve SOTA
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performance on both third-person social reasoning benchmarks and interactive SOTOPIA-hard eval-
uations by leveraging structured representations and social world models induced from S3AP. We
envision S3AP as a foundation for building general-purpose social world models that support both
social reasoning and interaction across diverse domains.

Ethics Statement

Our work focuses on advancing the understanding of social reasoning in AI systems, which has the
potential to improve human-AI interaction and create more socially-aware technologies.

Potential Risks and Mitigation. We acknowledge several potential risks associated with this
work. Enhanced social reasoning capabilities could potentially be misused for manipulation or
deception. To mitigate these concerns, we emphasize the importance of transparent development
and responsible deployment. Our framework is designed as a research tool to advance scientific
understanding rather than for direct deployment in high-stakes applications.

Privacy and Data Considerations. Our experiments use publicly available datasets and bench-
marks. We do not collect new human subject data, and all experimental protocols follow established
ethical guidelines for AI research. We ensure that our data processing and model training procedures
respect privacy and do not inadvertently encode harmful biases.

Broader Impact Considerations. We have thoroughly considered both positive and negative so-
cietal impacts as outlined in our limitations discussion (§A.1). We encourage future work to con-
tinue examining the ethical implications of enhanced social reasoning in AI systems and to develop
appropriate safeguards for deployment in real-world applications.

Reproducibility Statement

We have made significant efforts to ensure the reproducibility of our work. This statement outlines
the specific resources and documentation provided to facilitate reproduction of our results.

Experimental Details. Complete experimental settings are documented in §4 for third-person rea-
soning tasks and §5.1 for first-person reasoning tasks. These sections include data splits, hyperpa-
rameters, optimization procedures, and model architectures. Additional implementation details are
provided in the appendix to ensure comprehensive coverage of all experimental configurations.

Code and Data Availability. We release our complete codebase in the supplemental material,
including all necessary scripts for data preprocessing, model training, and evaluation. The public
code release will include detailed documentation, API references, and example implementations.
All experimental data and model checkpoints will be made available through appropriate platforms
with clear usage instructions.

Computational Resources. Detailed compute resource requirements, including hardware speci-
fications, memory usage, and execution times, are documented in Appendix A.6. We provide esti-
mates for both individual experimental runs and total computational requirements to help researchers
plan reproduction efforts.

Theoretical Results. All theoretical results in §3 are accompanied by complete proofs and ex-
plicit assumptions. Detailed mathematical derivations are provided in Appendix §A.7 to ensure full
transparency and verifiability of our theoretical contributions.

Statistical Significance. Error bars and statistical significance tests are provided for experiments
supporting our main claims, particularly in Figure 8 for first-person social reasoning tasks. The
methods for calculating error bars and underlying assumptions are clearly documented in the relevant
sections.
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Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Social simulacra: Creating populated prototypes for social computing
systems. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology, UIST ’22, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450393201. doi: 10.1145/3526113.3545616. URL https://doi.org/10.1145/
3526113.3545616.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

13

https://arxiv.org/abs/2412.16720
https://doi.org/10.1145/3526113.3545616
https://doi.org/10.1145/3526113.3545616
https://arxiv.org/abs/2304.03442


Abhinav Rao, Akhila Yerukola, Vishwa Shah, Katharina Reinecke, and Maarten Sap. Normad: A
framework for measuring the cultural adaptability of large language models, 2025. URL https:
//arxiv.org/abs/2404.12464.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions, 2019. URL https://arxiv.org/abs/1904.09728.

Maarten Sap, Ronan LeBras, Daniel Fried, and Yejin Choi. Neural theory-of-mind? on the limits of
social intelligence in large lms, 2023. URL https://arxiv.org/abs/2210.13312.

Melanie Sclar, Sachin Kumar, Peter West, Alane Suhr, Yejin Choi, and Yulia Tsvetkov. Minding
language models’ (lack of) theory of mind: A plug-and-play multi-character belief tracker, 2023.
URL https://arxiv.org/abs/2306.00924.

Natalie Shapira, Mosh Levy, Seyed Hossein Alavi, Xuhui Zhou, Yejin Choi, Yoav Goldberg,
Maarten Sap, and Vered Shwartz. Clever hans or neural theory of mind? stress testing social
reasoning in large language models, 2023. URL https://arxiv.org/abs/2305.14763.

Jocelyn Shen, Joel Mire, Hae Won Park, Cynthia Breazeal, and Maarten Sap. Heart-felt narratives:
Tracing empathy and narrative style in personal stories with llms, 2024. URL https://arxiv.
org/abs/2405.17633.

Zhe Su, Xuhui Zhou, Sanketh Rangreji, Anubha Kabra, Julia Mendelsohn, Faeze Brahman, and
Maarten Sap. Ai-liedar: Examine the trade-off between utility and truthfulness in llm agents,
2025. URL https://arxiv.org/abs/2409.09013.

Michael Tomasello. Why We Cooperate. The MIT Press, 08 2009. ISBN 9780262259255. doi:
10.7551/mitpress/8470.001.0001. URL https://doi.org/10.7551/mitpress/8470.001.
0001.

Ruiyi Wang, Haofei Yu, Wenxin Zhang, Zhengyang Qi, Maarten Sap, Graham Neubig, Yonatan
Bisk, and Hao Zhu. Sotopia-π: Interactive learning of socially intelligent language agents, 2024.
URL https://arxiv.org/abs/2403.08715.

Alex Wilf, Sihyun Shawn Lee, Paul Pu Liang, and Louis-Philippe Morency. Think twice:
Perspective-taking improves large language models’ theory-of-mind capabilities, 2023. URL
https://arxiv.org/abs/2311.10227.

Lionel Wong, Gabriel Grand, Alexander K. Lew, Noah D. Goodman, Vikash K. Mansinghka, Jacob
Andreas, and Joshua B. Tenenbaum. From word models to world models: Translating from
natural language to the probabilistic language of thought, 2023. URL https://arxiv.org/
abs/2306.12672.

Yufan Wu, Yinghui He, Yilin Jia, Rada Mihalcea, Yulong Chen, and Naihao Deng. Hi-ToM:
A benchmark for evaluating higher-order theory of mind reasoning in large language mod-
els. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 10691–10706, Singapore, December 2023. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.717. URL
https://aclanthology.org/2023.findings-emnlp.717/.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu.
Language models meet world models: Embodied experiences enhance language models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances
in Neural Information Processing Systems, volume 36, pp. 75392–75412. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
ee6630dcbcff857026e474fc857aa9f0-Paper-Conference.pdf.

Jiannan Xiang, Guangyi Liu, Yi Gu, Qiyue Gao, Yuting Ning, Yuheng Zha, Zeyu Feng, Tianhua Tao,
Shibo Hao, Yemin Shi, Zhengzhong Liu, Eric P. Xing, and Zhiting Hu. Pandora: Towards general
world model with natural language actions and video states, 2024. URL https://arxiv.org/
abs/2406.09455.

14

https://arxiv.org/abs/2404.12464
https://arxiv.org/abs/2404.12464
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/2210.13312
https://arxiv.org/abs/2306.00924
https://arxiv.org/abs/2305.14763
https://arxiv.org/abs/2405.17633
https://arxiv.org/abs/2405.17633
https://arxiv.org/abs/2409.09013
https://doi.org/10.7551/mitpress/8470.001.0001
https://doi.org/10.7551/mitpress/8470.001.0001
https://arxiv.org/abs/2403.08715
https://arxiv.org/abs/2311.10227
https://arxiv.org/abs/2306.12672
https://arxiv.org/abs/2306.12672
https://aclanthology.org/2023.findings-emnlp.717/
https://proceedings.neurips.cc/paper_files/paper/2023/file/ee6630dcbcff857026e474fc857aa9f0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ee6630dcbcff857026e474fc857aa9f0-Paper-Conference.pdf
https://arxiv.org/abs/2406.09455
https://arxiv.org/abs/2406.09455


Akhila Yerukola, Saujas Vaduguru, Daniel Fried, and Maarten Sap. Is the pope catholic? yes, the
pope is catholic. generative evaluation of non-literal intent resolution in llms. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp. 265–275, 2024.

Zhining Zhang, Chuanyang Jin, Mung Yao Jia, and Tianmin Shu. Autotom: Automated bayesian
inverse planning and model discovery for open-ended theory of mind, 2025. URL https://
arxiv.org/abs/2502.15676.

Xuhui Zhou, Hao Zhu, Akhila Yerukola, Thomas Davidson, Jena D. Hwang, Swabha Swayamdipta,
and Maarten Sap. Cobra frames: Contextual reasoning about effects and harms of offensive
statements, 2023. URL https://arxiv.org/abs/2306.01985.

Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, and Maarten Sap. SOTOPIA: Interactive
evaluation for social intelligence in language agents. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=mM7VurbA4r.

A Appendix

A.1 Limitations

Despite the promising results demonstrated by our S³AP approach, several important limitations
must be acknowledged:

Our approach assumes LLM parsers can reliably convert narratives into S3AP structures. In prac-
tice, they may struggle with culturally nuanced or ambiguous scenarios, leading to oversimplified or
misleading representations (Rao et al., 2025). Experiments were limited to controlled benchmarks
(ToMi, ParaToMi, HiToM, FANToM, MMToM-QA, SOTOPIA, and others detailed in the appendix)
and focused on accuracy metrics. These settings may not reflect the full complexity of real-world
social interactions. Still, consistent improvements across both third- and first-person tasks suggest
that S3AP generalizes well. Our method scales poorly with scenario complexity. Multi-agent set-
tings like SOTOPIA require significant compute, as tracking mental states grows combinatorially.
Despite this, strong gains even with one-step simulations (N=1) suggest practical approximations
are possible. We don’t explicitly address biases in LLMs, which may carry over into social world
models and misrepresent certain groups. Representing mental states also raises privacy concerns.
However, the structured format makes such issues more visible and easier to audit than black-box
methods. Finally, our method uses predefined templates rather than learning representations from
raw experience, which may limit generalization. However, its modular design allows for future
integration with learned representation methods as they improve.

A.2 S3AP-Parser Details

Here’s the json schema for the S3AP-Parser.

Listing 1: SocializedStructure JSON Schema

{
"$schema": "http ://json -schema.org/draft -07/ schema#",
"title": "SocializedStructure",
"type": "object",
"properties": {

"timestep": {
"type": "string",
"description": "The timestep of the current socialized

structure , it could be a integer number or a
description of the time of the state."

},
"state": {

"type": "string",
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"description": "The current state of the world (including
all the agents) at this timestep. Important note:

this is the state before the action is taken (e.g.,
the initial state could be ’none ’ at the beginning if
there are no prior contexts before the interaction

starts)."
},
"observations": {

"type": "object",
"additionalProperties": {

"type": "string"
},
"description": "The observations for each agent in the

social world at this timestep. Note that the
different agents may have different observations. 1.
The special tag ’<same_as_state />’ indicates the
observation covers the current state. 2. The special
tag ’<same_as_last_action_x />’ indicates the
observation covers the last timestep agents ’ actions ,
x means the index of the agents. If no x provided ,

it means the observation covers the last timestep
agents ’ actions. 3. The special tag ’<mental_state
>... </ mental_state >’ indicates the mental state of
the agent. 4. ’none ’ means the agent does not observe
anything at this timestep. Important note: this is

the observation before the action is taken (e.g., the
observation could be ’none ’ at the beginning if

there are no prior contexts before the interaction
starts)."

},
"actions": {

"type": "object",
"additionalProperties": {

"type": "string"
},
"description": "The actions for each agent in the social

world at this timestep. ’none ’ represents that the
agent does not take any action at this timestep."

}
},
"required": ["timestep", "state", "observations", "actions"],
"definitions": {

"SocializedStructureForModel": {
"type": "object",
"properties": {

"timestep": {
"type": "string",
"description": "The timestep of the current

socialized structure , it could be a integer
number or a description of the time of the state.
"

},
"state": {

"type": "string",
"description": "The current state of the world (

including all the agents) at this timestep.
Important note: this is the state before the
action is taken (e.g., the initial state could be
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’none ’ at the beginning if there are no prior
contexts before the interaction starts)."

},
"observations": {

"type": "array",
"items": {

"type": "string"
},
"description": "The observations for each agent in

the social world at this timestep. Note that the
different agents may have different observations.
The observation would go into corresponding

agent ’s memory , so make sure the observation is
clear for the agent to understand (first person
perspective narrative is preferred). 1. If the
observation covers the current state , use the
special tag ’<same_as_state />’ to indicate that.
2. If the observation covers last timestep

agents ’ actions , use ’<same_as_last_action_x />’
to cover that , x means the index of the agents (
just use <same_as_last_action /> if only one
agent acts at the last timestep). 3. For the
internal thoughts , beliefs , or emotions of the
agent that is not directly observable by other
agents , use the special tag ’<mental_state >... </
mental_state >’ to indicate the internal
observation. You can of course combine these tags
and add extra information after the tags (

seperated by space). 4. Put ’none ’ if the agent
does not observe anything at this timestep.
Important note: this is the observation before
the action is taken (e.g., the observation could
be ’none ’ at the beginning if there are no prior
contexts before the interaction starts). The
format for each entry in the list is: ’agent_name
: observation ’"

},
"actions": {

"type": "array",
"items": {

"type": "string"
},
"description": "The actions for each agent in the

social world at this timestep. The length of the
list should be the same as the number of agents.
Put ’none ’ if the agent does not take any action
at this timestep. The format for each entry in
the list is: ’agent_name: action ’"

}
},
"required": ["timestep", "state", "observations", "

actions"]
}

}
}

For all the LLMs powering the parser, we use the 0 temperature if applicable.
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A.3 Experiment Details

For tasks that operate under different assumptions about agent perception and knowledge (e.g., in
ToMi tasks, agents are assumed to perceive all events occurring within their physical space), we
provide task-specific instructions and one exemplar to guide the encoding process.

A.3.1 Prompt for All Third-person Static Tasks

Here’s the prompt for parsing free-form narratives into S3AP representations.

P l e a s e a n a l y z e t h e f o l l o w i n g n a r r a t i v e / c o n t e x t .

#### C o n t e x t : { c o n t e x t }

#### Task s p e c i f i c i n s t r u c t i o n s : { t a s k s p e c i f i c i n s t r u c t i o n s }

Example a n a l y s i s : { e x a m p l e a n a l y s i s }

P r e v i o u s a t t e m p t had t h e s e i s s u e s .
P l e a s e f i x them based on t h e p r e v i o u s a t t e m p t and f e e d b a c k below :
{ f e e d b a c k }

Fol low t h e s e f o r m a t i n s t r u c t i o n s :
{ f o r m a t i n s t r u c t i o n s }

Here are the task specific instructions for each benchmark:

ToMi : You are dissecting the TOMI scenarios. The assumptions are
that the characters can perceive every scene in their location but not
scenes occurring elsewhere. If the agent leaves the location, they cannot
perceive the scene in that location anymore. In the agent’s observation,
remember to include the objects’ locations if the agents are in the same
location as the object.

HiToM : You are dissecting the HITOM scenarios. You should assume the
following: (1) An agent witnesses everything and every movements before
exiting a location. (2) An agent A can infer another agent B’s mental
state only if A and B have been in the same location, or have private
or public interactions. (3) Note that every agent tend to lie. What a
character tells others doesn’t affect his actual belief. (4) Agents in
private communications know that others won’t hear them, but they know that
anyone can hear any public claims. In the agent’s observation, remember
to include the objects’ locations if the agents are in the same location as
the object.

FANToM : You are analyzing a social conversation and need to answer a
question about it. When the agents leave the conversation, they cannot
perceive the conversation anymore untill they join the conversation again.
For convenience, you can use <same as last action /> in the state field to
indicate that the state is the same as the last action.

MMToM-QA : You are dissecting the MMToM scenarios. The assumptions are
that agents can perceive objects and events only in their current location.
When an agent moves to a new location, they can no longer perceive what
happens in previous locations. Importantly, agents should not have
knowledge about the contents of containers (like fridges, cabinets, etc.)
until they directly observe inside them, unless explicitly stated in their
prior knowledge. In mental states, clearly represent the agent’s goals,
beliefs about object locations, and how these beliefs are updated through
observations. In the agent’s observation, include objects’ locations when
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the agent is in the same location as the objects, but only after the agent
has actually observed them.

ConfAIde : For convenience, you can use <same as last action /> in the state
field to indicate that the state is the same as the last action.

Here’s the prompt for question answering:

## C o n t e x t
{ c o n t e x t }
## E x t r a I n f o
( t o h e l p you b e t t e r u n d e r s t a n d t h e mee t ing )
{ e x t r a i n f o }
## Task
{ q u e s t i o n }

We place S3AP representations in the extra information entry.

A.3.2 Model Configurations

For all experiments, we used the following models:

• GPT-4o: gpt-4o-2024-08-06

• GPT-4.1: gpt-4.1-2025-04-14

• o1: o1-2024-12-17

• o1-mini: o1-mini-2024-09-12

• o3: o3-2025-04-16

• o3-mini: o3-mini-2025-01-31

• DeepSeek-R1: together ai/deepseek-ai/DeepSeek-R1

• Llama-4-Maverick: together ai/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8

• Llama-4-Scout: together ai/meta-llama/Llama-4-Scout-17B-16E-Instruct

For the experiments in Section 4, we used temperature 0.0 for all the non-reasoning models (reason-
ing models do not require temperature).

A.3.3 Prompt for Foresee and Act Method

Here’s the prompt for refining the action:

You a r e { a g e n t } .
Here i s t h e i n t e r a c t i o n h i s t o r y between you and t h e o t h e r a g e n t so f a r :
{ h i s t o r y }

Here i s your i n t e n d e d a c t i o n :
{ i n t e n d e d a c t i o n }

Here i s t h e p r e d i c t e d m en t a l s t a t e s a f t e r you t a k e t h e i n t e n d e d a c t i o n
( you s h o u l d use them t o g e n e r a t e b e t t e r a c t i o n s f o r a c h i e v i n g your g o a l ) :
{ s o c i a l i z e d c o n t e x t i n f o }

P l e a s e g e n e r a t e a r e f i n e d a c t i o n
so t h a t you can a c h i e v e your ( i . e . , { a g e n t } ’ s ) g o a l b e t t e r .

P l e a s e on ly g e n e r a t e a JSON s t r i n g
i n c l u d i n g t h e a c t i o n t y p e and t h e argument .
Your a c t i o n s h o u l d f o l l o w t h e g i v e n f o r m a t :
{ f o r m a t i n s t r u c t i o n s }
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A.4 ConfAIde Benchmark Results

ConfAIde (Mireshghallah et al., 2024) evaluates inference-time privacy in LLMs. We focus on
tier 4 meeting summary tasks, where models must include key details while avoiding disclosure of
private information to outsiders. This requires reasoning about each person’s knowledge and what
information should be shared with different stakeholders. We report the percentage of summaries
that satisfy this criterion, using only the meeting summary portion (200 examples) for social reason-
ing evaluation.

Table 2 shows the performance comparison of models with and without S3AP representations on the
ConfAIde benchmark. Our approach demonstrates consistent improvements across most models,
with particularly notable gains for models like GPT-4o (from 0.575 to 0.740) and o3-mini (from
0.765 to 0.770). The results indicate that S3AP helps models better reason about information privacy
and perspective-taking in meeting contexts.

Model ConfAIde ConfAIde w S3AP
GPT-4o 0.575 0.740
GPT-4.1 0.995 0.985
o1 0.980 0.975
o3 0.910 0.955
o3-mini 0.765 0.770
R1 0.835 0.785
Llama 4 0.810 0.820

Average 0.839 0.861
Table 2: Performance comparison on ConfAIde benchmark with and without S3AP representations.

A.5 Additional Experimental Results

Table 3 shows the performance comparison of models with and without S3AP representations. The
S3AP representations is parsed by the o1-based S3AP-Parser.

Model ParaToMi HiToM MMToM-QA FANToM Confaide
GPT-4o 0.818 0.660 0.652 0.396 0.575
GPT-4o w S3AP 0.885 0.750 0.692 0.472 0.625

GPT-4.1 0.802 0.830 0.586 0.528 0.995
GPT-4.1 w S3AP 0.892 0.760 0.583 0.623 1.000

o1 0.835 0.870 0.725 0.415 0.980
o1 w S3AP 0.933 0.880 0.761 0.528 0.990

o3 0.955 0.930 0.715 0.547 0.910
o3 w S3AP 0.947 0.890 0.722 0.698 0.975

o3-mini 0.817 0.810 0.493 0.057 0.780
o3-mini w S3AP 0.863 0.790 0.460 0.151 0.750

R1 0.893 0.420 0.374 0.491 0.835
R1 w S3AP 0.932 0.520 0.412 0.585 0.840

Llama 4 0.740 0.720 0.443 0.264 0.810
Llama 4 w S3AP 0.745 0.680 0.453 0.321 0.785

AVG 0.837 0.749 0.570 0.385 0.841
AVG w S3AP 0.885 0.753 0.583 0.483 0.852

Table 3: Performance comparison of models with and without S3AP representations on various
social reasoning tasks with o1-powered S3AP-Parser.
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A.5.1 SOTOPIA Additional Results

Figure 10 presents a detailed heatmap analysis of model performance across different social world
model configurations on the SOTOPIA-hard benchmark. The heatmap visualizes how different
combinations of agent models and social world models interact, revealing patterns in which pairings
yield the strongest performance improvements.
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Figure 10: Heatmap showing goal completion scores for different combinations of agent models
(rows) and social world models (columns) on SOTOPIA-hard. Values represent goal completion
scores (0-10 scale), with darker colors indicating better performance. This visualization reveals
which model pairings produce the most effective social reasoning.

Figure 11 shows the baseline performance of various models without social world modeling support.
This serves as a reference point for understanding the improvements gained through S3AP-powered
social world models.

A.6 Experiments compute resources

For our experiments, we utilized two main API services for model access:

• OpenAI API4 for accessing GPT-4o, GPT-4.1, o1, o1-mini, o3, and o3-mini models

• Together AI API5 for accessing DeepSeek-R1, Llama-4-Maverick, and Llama-4-Scout
models

4https://platform.openai.com/docs/api-reference
5https://docs.together.ai/
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Figure 11: Baseline performance of different models on SOTOPIA-hard without social world model
support. Values represent goal completion scores (0-10 scale). These baselines correspond to the
right panel in Figure 8.

All experiments were conducted using these cloud-based APIs, eliminating the need for local GPU
resources. The API-based approach allowed us to efficiently scale our experiments while maintain-
ing consistent model access across different benchmarks.

A.7 Proof of S3AP represents social world state

We prove that S3AP provides an approximate representation of a social world state by showing
how it maps to the essential components of the social world model defined in Section 3.1. While
this mapping is not exact, it captures the key aspects necessary for practical social world modeling.
Let’s demonstrate this mapping:

1. State Space S: S3AP approximates the state space through its structured format containing:
• Environment state Et in the state field
• Joint observation space Ot in the observations field
• Joint action space At in the actions field

2. Observation Space O: S3AP captures both external and introspective observations:
• External observations Oex

i through direct state descriptions and agent actions
• Introspective observations Oin

i through the <mental state> tag
3. Memory Function Ψ: While S3AP doesn’t explicitly store memory, it enables memory

reconstruction through:
• The sequence of simulation steps that can be used to reconstruct Mt

i
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• Special tags like <same as last action> that maintain temporal consistency
4. Transition Function T : The social world model’s transition function is approximated

through:
• The timestep field that maintains temporal ordering
• The sequential nature of simulation steps that captures state transitions

A crucial assumption in our social world model is that agents act independently at each timestep t,
with no agent having knowledge of others’ simultaneous actions. S3APmaintains this independence
through its structured format:

• Each agent’s actions are recorded separately in the actions field
• The observations field captures only what each agent can observe at the current timestep
• The sequential nature of simulation steps ensures that agents cannot access future or simul-

taneous actions

Furthermore, S3AP satisfies key properties of a social world state, though in an approximate manner:

1. Completeness: Each simulation step contains all necessary components (Et, Ot, At) to
represent a complete social world state at time t, though some details may be simplified or
omitted.

2. Consistency: The structured format ensures that observations and actions are consistent
with the environment state through:

• Special tags that maintain referential integrity
• The parser’s ability to infer missing elements through reasoning

3. Extensibility: The JSON schema allows for additional metadata and future extensions
while maintaining the core social world state representation.

Therefore, S3AP provides an approximate but practical representation of the social world state as
defined in our theoretical framework. While it may not capture every nuance of the theoretical
model, it offers a structured and computationally tractable way to represent social interactions. Most
importantly, it preserves the fundamental assumption of independent agent actions, which is crucial
for modeling realistic social interactions. This approximation is a necessary trade-off to make the
representation practical for real-world applications while maintaining the essential properties of a
social world model.
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