
Yuan 2.0-M32: A MoE model with Localized Filtering-based Attention and
Attention Router

Anonymous ACL submission

Abstract001

In this work, we develop and release Yuan002
2.0-M32, a language model uses a mixture-of-003
experts architecture with 32 experts of which004
2 experts are active. The Localized Filtering-005
Based Attention (LFA) is introduced to the base006
architecture, to incorporate prior knowledge007
of local dependencies of natural language into008
attention. A new router network, Attention009
Router, is adopted for a more efficient selec-010
tion of experts, which improves the accuracy011
compared to the model with classical router012
network. A distributed training method with013
nonuniform pipeline parallel, data parallel, and014
optimizer parallel is proposed, which greatly015
reduces the bandwidth requirements of intran-016
ode communication, and achieves good perfor-017
mance in large-scale distributed training. Yuan018
2.0-M32 is trained with 2000B tokens from019
scratch, and the training computation consump-020
tion is only 9.25% of a dense model at the same021
parameter scale.022

1 Introduction023

Given a fixed amount of computation for each to-024

ken, a model with Mixture of Experts (MoE) struc-025

ture can be easily built on a much larger scale than026

a dense model by increasing the number of experts,027

and thus achieves a higher accuracy performance.028

In reality, it is common to train a model with limited029

computational resource, and the MoE is considered030

as a good candidate to reduce the substantial cost031

associated with the extreme large scale of model,032

datasets and limited computing power. In recent033

years, with the ever-increasing model size, the role034

of routing strategy has attracted more attention for035

efficient allocation of computation resources.036

The experts routing network is the core in a MoE037

structure. This structure selects candidate experts038

to participate in the computation by calculating039

the probability of token allocation to each expert.040

Currently, in most popular MoE structures, it is041

common to adopt a classical routing algorithm that 042

performs a dot product between the token and the 043

feature vector representing each expert, and then se- 044

lects the experts with the largest dot product value 045

(Shazeer et al., 2017; Fedus et al., 2022; Zhou et al., 046

2022). The feature vectors of the experts in this 047

transformation are independent, ignoring the corre- 048

lation between experts. However, the MoE struc- 049

ture usually select more than one expert each time, 050

and multiple experts often participate in calculation 051

collaboratively, which means there should be an 052

inherent correlation between experts. It will un- 053

doubtedly improve the accuracy of the model, if 054

the relationship between experts is considered in 055

the process of selecting experts. 056

Attention, as a basic block in LLMs, has shown 057

great successes across NLP tasks (Vaswani et al., 058

2017; Raffel et al., 2020). The vanilla attention 059

mechanism treats all tokens equally regardless of 060

the distance. However, in natural language, the 061

dependencies of words in the neighborhood are 062

often stronger than those far away. The intercon- 063

nection learned by vanilla Attention is global with- 064

out any prior knowledge of local dependencies. 065

EMA, widely used in modeling time-series data, 066

captures local dependencies that decay exponen- 067

tially over time. MEGA introduced inductive bias 068

into the attention mechanism with the classical 069

EMA method (Ma et al., 2022). In MEGA, the 070

EMA computes over the entire range of input se- 071

quence length (or chunk size lengths if chunking is 072

applied) to achieve a strong inductive bias between 073

tokens. Unlike the EMA in MEGA, Yuan 2.0-M32 074

introduces hierarchical 1-dimensional convolutions 075

into Attention, which brings higher accuracy and 076

computing performance than MEGA. 077

The major contribution of our work are summa- 078

rized as follows: 079

• Propose the Attention Router that considers 080

the correlation between experts, resulting in a 081

1

higher accuracy compared with the classical082

router structure.083

• Introduce the Localized Filtering-based Atten-084

tion into the base architecture of model.085

• Design a parallel paradigm with non-uniform086

pipeline parallelism, data parallelism, and087

optimizer parallelism. The new parallel088

paradigm significantly reduces the require-089

ments for communication bandwidth com-090

pared to the classical 3D parallel paradigm.091

• Release the Yuan 2.0-M32 model with 40B to-092

tal parameters and 3.7B active ones. There are093

32 experts in total and 2 experts activated for094

each token. The computational consumption095

for training is only 1/16 of that for a dense096

model at a similar parameter scale, and the097

cost for inference is similar to a dense model098

with 3.7B parameters.099

2 Related Work100

Gshard (Lepikhin et al., 2021), a giant model with101

over 600 billion parameters, introduces the MoE102

method into Transformer Encoder for the first time,103

and provides an efficient distributed parallel com-104

puting architecture with routing across accelerators.105

Switch Transformer (Fedus et al., 2022) simpli-106

fies the MoE routing algorithm with sparse routing.107

Zhou et al. (2022) has proposed a new MoE rout-108

ing algorithm called Expert Choice (EC) routing109

algorithm to achieve the optimal load balancing in110

the MoE system. Mistral 8x7B model surpasses111

model with 10 times larger parameters in several112

human benchmarks with classical routing network113

(Jiang et al., 2024). DBRX uses a fine-grained114

MoE architecture and chooses 4 experts among 16115

(Mosaic Research Team, 2024). DeepSeekMoE im-116

proves the expert specialization with fine-grained117

expert segmentation as well as shared expert isola-118

tion (Dai et al., 2024). The shared experts activate119

tokens for all inputs and are not affected by the rout-120

ing module, which may help other experts focus121

more on their unique domains of knowledge.The122

above-mentioned works make effort on optimiz-123

ing the routing strategy of experts, while the router124

network is still the classical one that ignores the125

correlation between experts.126

Figure 1: Base model of Yuan 2.0-M32 and the Local-
ized Filtering-based Attention (LFA)

3 Model Architecture 127

3.1 Localized Filtering-based Attention (LFA) 128

In the self-attention mechanism of Transformer, 129

contextual information is captured from the entire 130

sequence by modeling interactions pairwise among 131

input tokens. Instead of assuming a prior knowl- 132

edge of the inter-dependencies between tokens (e.g. 133

positional inductive bias), the self-attention mech- 134

anism learns to predict attention weights pairwise 135

from the data, short of neighboring local associ- 136

ations of tokens. In natural language, local de- 137

pendencies of input tokens are often stronger than 138

those far from each other. This work presents the 139

Localized Filtering-based Attention to favor local 140

dependencies. The LFA introduces inductive bias 141

into the self-attention pairwise weights computa- 142

tion with two consecutive 1-dimensional convolu- 143

tions (Figure 1). The convolutions in the LFA have 144

one-sided one-dimensional kernel to prevent infor- 145

mation in the future tokens from leaking into the 146

current one. The details of convolutions in the LFA 147

are shown in Figure 2. In each LFA block, a token 148

establishes a relationship with two previous tokens. 149

We place an RMSNorm module as the pre-norm 150

before the output embedding that shares the same 151

parameters with the input embedding. SwiGLU 152

(Touvron et al., 2023) plays as the non-linear feed- 153

forward layer in the base model. 154

We perform an ablation study on the LFA archi- 155

tecture. Table 1 lists the accuracy of models with 156

different architectures of Attention on an internal 157

code dataset. The basic attention has the same ar- 158

chitecture with LLaMA. We first add an EMA layer 159

before the calculation of the query and key arrays 160

2

Figure 2: Illustration of convolutions in LFA.

Figure 3: Illustration of Yuan 2.0-M32. Figure on the
left showcases the scaling of Yuan 2.0 architecture with
MoE layers. The MoE layer takes the place of the feed
forward layer in Yuan 2.0. Figure on the right showcases
the MoE layer structure. In our model, each input token
will be assigned to 2 experts of the total 32, while in the
figure we display 4 experts as an example. The output
of the MoE is the weighted summation of the selected
experts. N is the number of layers.

in self-Attention. The test loss improves by 1.6%,161

while the running time increases by 29%. Such162

large overhead is unacceptable in a large model163

training. In the LFA, one-sided 1-dimensional164

convolution kernels with different kernel sizes are165

tested. The best accuracy is obtained with a ker-166

nel size of 7. The test loss is improved by 3.3%167

compared to the basic model, with the parameters168

increased by 15%. In order to lower the memory169

consumption during LLM training, we reduce the170

kernel size of the two convolution kernels to 2, and171

the accuracy is close to the kernel size of 7. Then,172

we add the RMSNorm after two convolutions, and173

the accuracy is further improved. The LFA with174

two convolutions and an RMSNorm is applied in175

the base model of Yuan 2.0-M32, and the test loss176

improvement is 3.5% compared to the baseline.177

(a) Classical router

(b) Attention router

Figure 4: The overview of the attention router structure.

3.2 Attention router 178

When the base model is adopted in a sparse archi- 179

tecture, the dense feed-forward network (FFN) of 180

every layer is replaced with a MoE component. 181

Figure 3 displays the architecture of MoE layer 182

applied in our model. Taking four FFNs as an 183

example (32 experts in fact), each MoE layer is 184

composed of a group of individual FFNs as experts. 185

The Router network ahead of experts dispatches 186

the input token to the relevant expert(s). The clas- 187

sic Router network essentially establishes a feature 188

vector for each expert, and computes the dot prod- 189

uct between input token and the feature vector of 190

each expert to obtain the specific likelihoods be- 191

tween token and experts. The experts with the 192

strongest likelihood are selected for activation and 193

participate in subsequent calculations. 194

Figure 4a presents the structure of classical 195

router network. The feature vectors of each expert 196

are independent from each other, and the correla- 197

tion between experts is ignored when calculating 198

the probability. In fact, in most MoE models (Lep- 199

ikhin et al., 2021; Fedus et al., 2022; Zhou et al., 200

2022), two or more experts are usually selected to 201

participate in the subsequent calculations, which 202

naturally brings a strong correlation between ex- 203

perts. The consideration of correlation between 204

experts will undoubtedly contribute to the improve- 205

ment of accuracy. 206

Figure 4b presents the architecture of the Atten- 207

tion Router, a novel router network proposed in 208

this work, incorporate correlation between experts 209

by taking Attention mechanism. A coefficient ma- 210

trix representing the correlation between experts is 211

built, and then applied on the computation for the 212

3

Model Params/M Time per iter/ms Test Loss

Attention (basic) 160.3 577 1.251
Attention with EMA 160.6 745 1.2309

LFA

Conv kernel size[1,1,h,h] 163.9 596 1.2444
Conv kernel size[2,1,h,h] 167.4 602 1.2194
Conv kernel size[3,1,h,h] 171.0 605 1.2171
Conv kernel size[7,1,h,h] 185.1 621 1.2093

Two Conv kernels,
size[2,1,h,h/2],[2,1,h/2,h]

167.4 618 1.2122

+RMSNorm 167.4 631 1.2069

Table 1: Test losses on different attention architecture. All the models have the same number of layers and hidden
dimensions. Attention with EMA refers to an EMA layer (Ma et al., 2022) inserted into Attention in a similar way
as the convolutions in the LFA.

final probability value. In specific, given N experts213

for a token vector (I ∈ Rd), the expert routing214

process is as follows:215 
Q = WI, W ∈ RN×d

K = W
′
I, W

′ ∈ RN×d

V = W
′′
I, W

′′ ∈ RN×d

P = Softmax(QKT)V, P ∈ RN

(1)216

Then, the M experts are chosen by selecting217

top M values of P . In this paper, we set M = 2,218

N = 32, d = 2048.219

Our model is tested on 8 trainable experts with220

the Attention Router. The classical router model221

has 8 trainable experts to ensure a similar parameter222

scale, and the router structure is the same with that223

applied in Mixtral 8x7B (Jiang et al., 2024), which224

is a Softmax over a linear layer. The Shared Expert225

router takes the strategy of Shared Expert Isolation226

with classical router architecture (Dai et al., 2024).227

There are 2 fixed experts to capture the common228

knowledge and top-2 of 14 optional experts as the229

specialized ones. The output of MoE is the combi-230

nation of the fixed and the ones selected by router.231

All the three models are trained with 30B tokens232

and tested with another 10B tokens. Considering233

the results between classical router and Shared Ex-234

pert router, we find that the latter one gets exactly235

the same test loss with 7.35% more training time.236

The computational efficiency of the Shared Expert237

is relatively low, and it does not bring better train-238

ing accuracy over the classical MOE strategy. Thus239

in our model, we take the classical routing strategy240

without any shared experts.241

We test the scalability of the model by increas-242

ing number of experts and fixing the per-expert243

parameter size. The increase in the number of train-244

able experts only changes the model capacity, but245

not the actual activated model parameters. All the246

Model Test loss
8 experts 1.820
16 experts 1.787
32 experts 1.754

Table 2: Results of the scaling experiments.

models are trained with 50B tokens and tested with 247

another 10B tokens. We set the activated experts 248

as 2, and the hyper-parameters for training are the 249

same for the three models. The expert scaling ef- 250

fects is measured by the test loss after trained with 251

50B tokens (Table 2). Compared to the model with 252

8 trainable experts, model with 16 experts displays 253

2% lower loss, and model with 32 experts displays 254

3.6% lower loss. We choose 32 experts for Yuan 255

2.0-M32 considering its accuracy. 256

4 Training 257

4.1 Pre-training 258

Distributed training of large models often involves 259

tensor parallelism, pipeline parallelism, and data 260

parallelism (named Method 1). Tensor parallel 261

requires multiple global collective communica- 262

tions (e.g. AllReduce) during each forward and 263

backward propagation. Communication greatly in- 264

creases the bandwidth requirements between AI 265

chips and would be a performance bottleneck for 266

LLM training. For models with similar architec- 267

ture with GPT-3 or LLaMA, we build a model to 268

calculate the time consumption of a single iteration 269

with the 3D parallel method (tensor parallelism, 270

pipeline parallelism and data parallelism) with the 271

following equation: 272

4

TM1 =
96ABLSH2

(
1 + S

6H

)
P s ∗ T s ∗ F︸ ︷︷ ︸

T0

+
96ABLSH2

(
1 + S

6H

)
P s ∗ T s ∗ F

∗
(Ps − 1)

A︸ ︷︷ ︸
T1

+
8ABSH

nnet ∗ BWnet︸ ︷︷ ︸
T2

+48 ∗
L ∗ (Ts − 1)

Ps ∗ Ts ∗ BWlink
ABSH︸ ︷︷ ︸

T3

+12LH
2

(
1 +

13

12H
+

V

12LH

)
∗

8 ∗ (Ds − 1) /Ds

Ps ∗ nnet ∗ BWnet︸ ︷︷ ︸
T4

(2)273

while for Yuan 2.0-M32 with LFA, the time con-274

sumption of a single iteration can be obtained with275

the following equation:276

TM1 =
144ABLSH2

(
1 + S

8H

)
P s ∗ T s ∗ F︸ ︷︷ ︸

T0

+
144ABLSH2

(
1 + S

8H

)
P s ∗ T s ∗ F

∗
(Ps − 1)

A︸ ︷︷ ︸
T1

+
8ABSH

nnet ∗ BWnet︸ ︷︷ ︸
T2

+48 ∗
L ∗ (Ts − 1)

Ps ∗ Ts ∗ BWlink
ABSH︸ ︷︷ ︸

T3

+16LH
2

(
1 +

1

8
+

7

32H
+

V

16LH

)
∗

8 ∗ (Ds − 1) /Ds

Ps ∗ nnet ∗ BWnet︸ ︷︷ ︸
T4

(3)277

The differences between Eq. (2) and Eq. (3)278

come mainly from the LFA. The details of each part279

in Eq. (2) are listed in Table A. The Yuan 1.0-245B280

with the similar architecture as GPT-3 is trained281

on a GPU cluster (2128 GPUs) with computing282

efficiency of 45%. The time predicted by Eq.(2)283

is 44.33s per time step of Yuan 1.0 training, and284

the average measured time is 46.20s. If we want to285

achieve the same performance for dense Yuan with286

LFA at a similar scale, the bidirectional bandwidth287

of the tensor parallelism would be 730 GB/s, which288

is much greater than the theoretical bandwidth of289

pipeline or data parallelism, which is 43 GB/s.290

In order to reduce the communication bandwidth291

and achieve high performance on low-bandwidth292

intra- and interconnection, we propose a distributed293

training method that trains LLMs with pipeline294

parallelism, data parallelism, and optimizer paral-295

lelism (named Method 2).296

In pipeline parallelism, uniform partitioning is297

often applied, which refers to even divisions of the298

Transformer layers onto each computing device.299

In order to hide communication, it is often neces-300

sary to allocate a larger memory at the beginning301

of the pipeline to store temporary variables, and302

the required memory will exceed the GPU mem-303

ory limit.Taking a 24-layer transformer model with304

Figure 5: Illustration of non-uniform parallelism and
optimizer parallelism.

hidden_size=6144 as an example, the model is di- 305

vided into 8 pipeline stages. If we follow the tra- 306

ditional pipeline parallelism, the 24 layers will be 307

uniformly divided, and each pipeline stage is as- 308

signed with 3 layers. When using checkpoint acti- 309

vation, the first pipeline stage will cache 24 activa- 310

tions for backpropagation, while in the last pipeline 311

stage, only 3 activations will be cached for back- 312

propagation. The maximum memory consumption 313

is about 78GB (Figure5), which is quite close to 314

GPU memory limit. If we further increase the num- 315

ber of layers, we have to increase the number of 316

pipeline stages, which requires more computation 317

devices and leads to lower performance. In order 318

to address this issue, this work proposes a non- 319

uniform pipelining parallel method, which splits 320

the layers non-uniformly to break the memory bot- 321

tleneck. In this way, we can split the 24 layer 322

transformer into 8 pipeline stages of [2, 2, 3, 3, 4, 323

4, 4, 2] layers, and the memory usage of the first 324

pipeline stage drops to 56GB. About 28.2% mem- 325

ory saves compared to the original pipeline paral- 326

lelism. In order to further reduce the memory con- 327

sumption, we propose a block-wise cross-entropy 328

computation method that reduces the peak mem- 329

ory consumption of cross-entropy calculations with 330

a large vocab size in the last pipeline stage. With 331

this method, the logits ∈ RS×H are split into 332

logitsblock ∈ Rblocksize×H , and the loss of each 333

block is calculated individually, then concatenated 334

together. This approach enables us to meet the 335

memory needs of the last pipeline stage without 336

additional computing or communication. The time 337

consumption for the blockwise cross-entropy com- 338

putation method is calculated with Eq. (4), 339

5

TM2 =
96ABLSH2

(
1 + S

6H

)
P s ∗ F︸ ︷︷ ︸

T0

+
96ABLSH2

(
1 + S

6H

)
P s ∗ F

(Ps − 1)

A︸ ︷︷ ︸
T1

+
8ABSH

BWlink︸ ︷︷ ︸
T2

+12LH
2

(
1 +

13

12H
+

V

12LH

)
∗

8 ∗ (Ds − 1) /Ds

Ps ∗ nnet ∗ BWnet︸ ︷︷ ︸
T4

(4)340

And for Yuan with LFA, the time consumption341

is calculated as,342

TM2 =
144ABLSH2

(
1 + S

8H

)
P s ∗ F︸ ︷︷ ︸

T0

+
144ABLSH2

(
1 + S

8H

)
P s ∗ F

(Ps − 1)

A︸ ︷︷ ︸
T1

+
8ABSH

BWlink︸ ︷︷ ︸
T2

+16LH
2

(
1 +

1

8
+

7

32H
+

V

16LH

)
∗

8 (Ds − 1) /Ds

Ps ∗ nnet ∗ BWnet︸ ︷︷ ︸
T4

(5)343

Yuan 2.0-M32 is trained with Method 2. We344

benchmark the performance on a GPU cluster. The345

prediction made by Eq(5) is quite close to the real346

measurement with an error of 1.5%, and the the347

final training loss is 1.22.348

Table 3 presents the performance predicted with349

Eq(5) for the model on a cluster of 96 and 256 AI350

chips. Considering almost all the P2P bandwidths,351

the performance of Method 2 is better than that of352

Method 1. The performance drops up to 37.20%353

for Method 1 when the P2P BW drops from 400354

GB/s to 100 GB/s, while the performance almost355

keeps the same, only drops 0.23%, for Method 2.356

4.2 Fine-tuning357

During fine-tuning, we extend the sequence length358

to 16,384. Following the work of CodeLLama359

(Rozière et al., 2023), we reset the base value360

of Rotary Position Embedding (RoPE) frequen-361

cies to avoid the decay in attention scores with362

longer sequences. Instead of simply increasing363

the base value from 1000 to a much larger value364

(e.g. 1,000,000), we calculate the new base with365

the NTK-aware (bloc97, 2023), i.e.366

b
′
= b · s

|D|
|D|−2 (6)367

Where b is the original base value (b = 10000).368

s is the number of extended times from the original369

context length to the extended context length. As370

we extend the context length from 4,096 to 16,384,371

s equals 4. |D| is 128 in our setup. Therefore, the372

new base b
′

is calculated to be 40,890.373

We also compare the performance of the pre- 374

trained Yuan 2.0-M32 model with the NTK-aware 375

styled new base, and with other base values from 376

40,000 to 10,240,000) in the needle-retrieval task 377

with sequence lengths up to 16K (Gkamradt, 2023). 378

We find that the NTK-aware styled new base, 379

40,890, performed better. Thus 40,890 is applied 380

during fine-tuning. 381

4.3 Dataset 382

Yuan 2.0-M32 is pre-trained with a bilingual 383

dataset of 2000B tokens from scratch, then fine- 384

tuned with labeled data across different domains. 385

The original data for pre-training contains more 386

than 3400B tokens, and the weight for each cate- 387

gory is adjusted according to the data quality and 388

quantity. 389

The comprehensive pre-training corpus is com- 390

posed of: 391

• 44 constituent sub datasets covering web 392

crawled data, wiki, academic thesis, books, 393

codes, math and formula, and domain-specific 394

expertise. Some of them are open source 395

datasets and the others created by Yuan model. 396

• Most of the pre-training data in our previous 397

works are also reutilized. 398

Detailed information about the construction and 399

source of pre-training dataset is available in Ap- 400

pendixC. 401

The fine-tuning dataset is expanded based on our 402

previous dataset and please refer to the details in 403

AppendixD. 404

5 Results 405

We evaluate Yuan 2.0-M32 on Humaneval (Chen 406

et al., 2021) for code generation, GSM8K (Cobbe 407

et al., 2021) and the MATH (Hendrycks et al., 408

2021b) for mathematical problem solving, ARC 409

(Clark et al., 2018) for scientific knowledge and 410

inference, and MMLU (Hendrycks et al., 2021a) as 411

an integrated benchmark. 412

5.1 Code generation 413

The capability of code generation is evaluated with 414

the HumanEval Benchmark. The English prompted 415

is constructed as Appendix E. 416

The model is expected to complete the function 417

after <sep>. And the generated function will be 418

evaluated with unit tests. The results from zero- 419

shot of Yuan 2.0-M32 and the comparison with 420

6

P2P BW GB/s 96 Chips 256 Chips
Method 1/s Method 2/s Method 1/s Method 2/s

100 369.85 246.18 145.82 103.77
200 303.00 246.08 120.75 103.63
400 269.57 246.00 108.21 103.53

Table 3: Predicted time consumption with different P2P bandwidth between AI chips. The inter-connection between
nodes is 200 Gb/s.

Model
Params Active HumanEval

(B) Params (B) (zero-shot)
Llama 3-70B 70 70 81.7
Llama 3-8B 8 8 62.2
Phi-3-medium 14 14 62.2
Phi-3-small 7 7 61
Phi-3-mini 3.8 3.8 58.5
Qwen1.5-72B 72 72 68.9
DeepseekV2 236 21 81.1
Mixtral-8×22B 141 39 45.1
Mixtral-8×7B 47 12.9 40.2
Yuan 2.0-M32 40 3.7 74.4
Yuan 2.0-M32 40 3.7 78.1 (14 shots)

Table 4: Comparison of Yuan 2.0-M32 and other models
on Hu-manEval pass@1.

other models are dis-played in Table 4. The result421

of Yuan 2.0-M32 are second only to DeepseekV2422

(DeepSeek-AI et al., 2024) and Llama3-70B (Meta423

AI, 2024), and far exceed the other models, even424

when its active parameters and computational con-425

sumptions are much lower than those from others.426

Compared with DeepseekV2, our model uses less427

than a quarter of the active parameters and less428

than a fifth of the computational effort per token,429

while reaching more than 90% of its accuracy level.430

And compared with llama3-70B, the gap between431

model parameters and computation is even greater,432

and we still reach 91% of its level. Yuan 2.0-M32433

demonstrated reliable programming capability with434

three quarters of the questions passed. Yuan 2.0-435

M32 are good at few shot leaning. The accuracy of436

Humaneval is improved to 78.0 by taking 14 shots.437

5.2 Math438

The math capability of Yuan 2.0-M32 is evaluated439

with GSM8K and MATH benchmark. A GSM-8K440

problem has a final numerical solution, and it is run441

it with 8 shots (Table 5).442

MATH is a dataset with 12,500 challenging443

Mathematical Competition QA problems. Yuan444

2.0-M32 produces the final answer with chain of445

thought (CoT) method with 4 shots. The answers446

Model
Params Active

GSM8KMATH
(B) Params (B)

Llama 3-70B 70 70 93.0 50.4
Llama 3-8B 8 8 79.6 30
Phi-3-medium 14 14 91.0 -
Phi-3-small 7 7 89.6 -
Phi-3-mini 3.8 3.8 82.5 -
Qwen1.5-72B 72 72 81.9 40.6
DeepseekV2 236 21 92.2 53.9
Mixtral-8×22B 141 39 78.6 41.8
Mixtral-8×7B 47 12.9 58.4 28.4
Yuan 2.0-M32 40 3.7 92.7 55.9

Table 5: Comparison of Yuan 2.0-M32 and other models
on GSM8K and MATH.

will be extracted from analysis and transformed 447

into a unified format. For numerical results, math- 448

ematically equivalent output in all formats are ac- 449

cepted. The answer of \frac{1}{2}, 1/2, 0.5, 0.50 450

are all converted into 0.5 and accepted as the same 451

result. For mathematical expressions, we remove 452

the tab and space symbol, and unified the regular 453

expression of arithmetic operation. For instance, 454

y = ((2x+1))/5, y = (2x+1)/5, y = 2x/5+1/5, 455

y = 0.4x + 0.2, etc. are all accepted as the same 456

answers. The processed final results are compared 457

with the ground truth answer, and evaluated with 458

EM (exact match) scores. 459

From the results shown in Table 5, we can see 460

that Yuan 2.0-M32 scores the highest on MATH 461

benchmark. Compared to Mixtral-8×7B, which has 462

3.48 times larger active parameters than Yuan 2.0- 463

M32, the score of Yuan is even nearly twice as high. 464

On GSM8K, Yuan 2.0-M32 also achieves a score 465

very close to that of Llama 3-70B, and outperforms 466

other models. 467

5.3 MMLU 468

The input data for Yuan 2.0-M32 is organized as 469

Appendix E. The text before <sep> is sent to the 470

model, and all answer related to the correct an- 471

swer or the option label is adopted as true. The 472

results on MMLU demonstrate the capabilities of 473

7

Model
Params Active

MMLU
(B) Params (B)

Llama 3-70B 70 70 80.3
Llama 3-8B 8 8 68.4
Phi-3-medium 14 14 78.0
Phi-3-small 7 7 75.7
Phi-3-mini 3.8 3.8 68.8
Qwen1.5-72B 72 72 76.2
DeepseekV2 236 21 77.8
Mixtral-8×22B 141 39 77.8
Mixtral-8×7B 47 12.9 70.6
Yuan 2.0-M32 40 3.7 72.2

Table 6: Comparison of Yuan 2.0-M32 and other models
on MMLU.

Model
Params Active

ARC-C
(B) Params (B)

Llama 3-70B 70 70 93.3
Llama 3-8B 8 8 78.6
Phi-3-medium 14 14 91.6
Phi-3-small 7 7 90.7
Phi-3-mini 3.8 3.8 84.9
Qwen1.5-72B 72 72 91.7
DeepseekV2 236 21 92.3
Mixtral-8×22B 141 39 91.3
Mixtral-8×7B 47 12.9 85.9
Yuan 2.0-M32 40 3.7 95.8

Table 7: Comparison of Yuan 2.0-M32 and other models
on ARC-Challenge.

our model in different domains. The final accuracy474

is measured with MC1 (Table 6). Yuan 2.0-M32475

outperforms Mixtral-8×7B, Phi-3-mini, and Llama476

3-8B in terms of performance.477

5.4 ARC478

We test our model on the Challenge parts of ARC.479

The question and options are concatenated directly480

and separated with <n>, which is prompted as in481

Appendix E (similar to the pattern of MMLU). The482

text before <sep> is sent to model, and the model483

is expected to generate a label or corresponding484

answer. The generated answer is compared with485

the ground truth, and the results are calculated with486

MC1 target.487

The results ARC-C are displayed in Table 7, and488

it shows that Yuan 2.0-M32 excels in solving com-489

plex scientific problems—it surpasses Llama3-70B490

in this benchmark.491

From 5.1 to 5.4, we compare our performance to492

three MoE model (Mixtral family, Deepseek) and 493

six dense models (Qwen (Bai et al., 2023), Llama 494

family and Phi-3 family (Abdin et al., 2024)), to 495

evaluate Yuan 2.0-M32’s performance on differ- 496

ent domains. Table 7 presents the comparison of 497

Yuan 2.0-M32 with other models on accuracy vs 498

computation. Yuan 2.0-M32 uses only 3.7B ac- 499

tive parameters and 22.2 GFlops per token for fine- 500

tuning, which is the most economical, to obtain 501

comparable results or even surpass other models 502

listed in the tables. Table 8 implies the outstanding 503

computational efficiency and performance during 504

inference of our model. The average accuracy of 505

Yuan 2.0-M32 is 79.15 that is competitive with 506

Llama3-70B. And the value of average accuracy / 507

Glops per token is 10.69, which is 18.9 times larger 508

than Llama3-70B. 509

6 Conclusion 510

In this work, we introduce Yuan 2.0-M32, a bilin- 511

gual MoE language model. The architecture of 512

Yuan 2.0-M32 is designed by incorporating Atten- 513

tion with localized filtering and converting classical 514

router to Attention Router, which brings a better 515

accuracy with less computation resources. The pro- 516

posed distributed training method with nonuniform 517

pipeline parallel, data parallel, and optimizer paral- 518

lel greatly reduces the bandwidth requirements of 519

intra-node communication, and leads to good per- 520

formance in large-scale distributed training. Yuan 521

2.0-M32 uses only 3.7B active parameters and 522

7.4 GFlops of inference per token, both of which 523

are about 1/19 of Llama3-70B. In ARC-C bench- 524

mark, our model excels Llama 3-70B by 2.5 pts 525

with only 5% active parameters. For the MATH 526

benchmark, Yuan 2.0-M32 also achieves the high- 527

est score (55.9), surpassing Llama 3-70B by 10% 528

with 5% computation cost. The results imply that 529

our model has outstanding computational efficiency 530

and performance during inference. We release our 531

Yuan 2.0-M32 models at Github for public acces- 532

sibility, as what we did before, and hope the open 533

source model can benefit the development of LLMs 534

and AI industry ecology. 535

Limitations 536

Despite Yuan 2.0-M32’s outstanding performance 537

in multiple benchmark tests and significant 538

progress in computational efficiency and perfor- 539

mance, we acknowledge that the model still has sev- 540

eral limitations. First, while Yuan 2.0-M32 excels 541

8

Model
Params

(B)
Active Params

(B)

GFlops
per token

(Inference)

GFlops
per token

(Fine-tune)
Average Accuracy

Average Accuracy
/GFlops per token

(Inference)
Llama 3-70B 70 70 140 420 79.25 0.57
Llama 3-8B 8 8 16 48 64.15 4.00
Qwen1.5-72B 72 72 144 432 72.6 0.50
DeepseekV2 236 21 42 126 79.05‘ 1.88
Mixtral-8×22B 141 39 78 234 72.38 0.93
Mixtral-8×7B 47 12.9 25.8 77.4 60.83 2.36
Yuan 2.0-M32 40 3.7 7.4 22.2 79.15 10.69

Table 8: Comparison of Yuan 2.0-M32 and other models on quality vs size. The mean accuracy is averaged on the
scores of GSM-8K, Math, Humaneval, MMLU, and ARC-C.

on benchmarks like MATH and ARC-Challenge,542

we recognize that its performance may still lag be-543

hind some models specifically optimized for these544

fields in tasks that require complex common-sense545

reasoning or cross-domain knowledge integration.546

Second, the training of our model relies heavily547

on a large-scale bilingual dataset, which may limit548

its performance in low-resource languages or do-549

mains. This is an area where we plan to focus550

more attention in future work. Finally, although551

the model demonstrates high computational effi-552

ciency, we understand that further optimization of553

inference speed and memory usage is still needed554

to meet the demands of real-time interaction and555

large-scale deployment. Future work will focus556

on addressing these limitations to further enhance557

the model’s performance and applicability. We are558

committed to continuous improvement and innova-559

tion to overcome these challenges.560

References561

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,562
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,563
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-564
rat S. Behl, Alon Benhaim, Misha Bilenko, Jo-565
han Bjorck, Sébastien Bubeck, Martin Cai, Caio566
César Teodoro Mendes, Weizhu Chen, Vishrav567
Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo568
de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter,569
Amit Garg, Abhishek Goswami, Suriya Gunasekar,570
Emman Haider, Junheng Hao, Russell J. Hewett,571
Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauff-572
mann, Nikos Karampatziakis, Dongwoo Kim, Ma-573
houd Khademi, Lev Kurilenko, James R. Lee, Yin Tat574
Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric575
Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik576
Modi, Anh Nguyen, Brandon Norick, Barun Patra,577
Daniel Perez-Becker, Thomas Portet, Reid Pryzant,578
Heyang Qin, Marko Radmilac, Corby Rosset, Sam-579
budha Roy, Olatunji Ruwase, Olli Saarikivi, Amin580

Saied, Adil Salim, Michael Santacroce, Shital Shah, 581
Ning Shang, Hiteshi Sharma, Xia Song, Masahiro 582
Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, 583
Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu, 584
Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, 585
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang, 586
Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, 587
and Xiren Zhou. 2024. Phi-3 technical report: A 588
highly capable language model locally on your phone. 589
CoRR, abs/2404.14219. 590

Zhangir Azerbayev, Edward Ayers, and Bartosz Pi- 591
otrowski. 2022. proof-pile. https://github.com/ 592
zhangir-azerbayev/proof-pile. 593

b-mc2. 2023. SQL-Create-Context Dataset. 594
https://huggingface.co/datasets/b-mc2/ 595
sql-create-context. 596

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 597
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 598
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, 599
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, 600
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, 601
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong 602
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang 603
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian 604
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi 605
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, 606
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin- 607
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. 608
Qwen technical report. CoRR, abs/2309.16609. 609

bloc97. 2023. NTK-Aware Scaled RoPE allows LLaMA 610
models to have extended (8k+) context size with- 611
out any fine-tuning and minimal perplexity degrada- 612
tion. https://www.reddit.com/r/LocalLLaMA/ 613
comments/14lz7j5/ntkaware. 614

Byroneverson. 2024. shell-cmd-instruct. https: 615
//huggingface.co/datasets/byroneverson/ 616
shell-cmd-instruct. 617

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 618
Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka- 619
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 620
Greg Brockman, Alex Ray, Raul Puri, Gretchen 621

9

https://github.com/zhangir-azerbayev/proof-pile
https://github.com/zhangir-azerbayev/proof-pile
https://github.com/zhangir-azerbayev/proof-pile
https://huggingface.co/datasets/b-mc2/sql-create-context
https://huggingface.co/datasets/b-mc2/sql-create-context
https://huggingface.co/datasets/b-mc2/sql-create-context
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware
https://huggingface.co/datasets/byroneverson/shell-cmd-instruct
https://huggingface.co/datasets/byroneverson/shell-cmd-instruct
https://huggingface.co/datasets/byroneverson/shell-cmd-instruct
https://huggingface.co/datasets/byroneverson/shell-cmd-instruct
https://huggingface.co/datasets/byroneverson/shell-cmd-instruct

Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-622
try, Pamela Mishkin, Brooke Chan, Scott Gray,623
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz624
Kaiser, Mohammad Bavarian, Clemens Winter,625
Philippe Tillet, Felipe Petroski Such, Dave Cum-626
mings, Matthias Plappert, Fotios Chantzis, Eliza-627
beth Barnes, Ariel Herbert-Voss, William Hebgen628
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie629
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,630
William Saunders, Christopher Hesse, Andrew N.631
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan632
Morikawa, Alec Radford, Matthew Knight, Miles633
Brundage, Mira Murati, Katie Mayer, Peter Welinder,634
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya635
Sutskever, and Wojciech Zaremba. 2021. Evaluat-636
ing large language models trained on code. CoRR,637
abs/2107.03374.638

Wenhu Chen, Xueguang Ma, Xinyi Wang, and639
William W. Cohen. 2023. Program of thoughts640
prompting: Disentangling computation from reason-641
ing for numerical reasoning tasks. Trans. Mach.642
Learn. Res., 2023.643

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,644
Ashish Sabharwal, Carissa Schoenick, and Oyvind645
Tafjord. 2018. Think you have solved question an-646
swering? try arc, the AI2 reasoning challenge. CoRR,647
abs/1803.05457.648

Clinton. 2023. Text-to-sql-v1. https://huggingface.649
co/datasets/Clinton/Text-to-sql-v1.650

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,651
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias652
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro653
Nakano, Christopher Hesse, and John Schulman.654
2021. Training verifiers to solve math word prob-655
lems. CoRR, abs/2110.14168.656

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu,657
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,658
Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan659
Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wen-660
feng Liang. 2024. Deepseekmoe: Towards ultimate661
expert specialization in mixture-of-experts language662
models. In Proceedings of the 62nd Annual Meeting663
of the Association for Computational Linguistics (Vol-664
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,665
August 11-16, 2024, pages 1280–1297.666

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingx-667
uan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng,668
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,669
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli670
Luo, Guangbo Hao, Guanting Chen, Guowei Li,671
Hao Zhang, Hanwei Xu, Hao Yang, Haowei Zhang,672
Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li,673
Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Ji-674
aqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie675
Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang676
Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia,677
Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang,678
Mingchuan Zhang, Minghua Zhang, Minghui Tang,679
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,680

Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, 681
R. J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin 682
Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan 683
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng 684
Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuip- 685
ing Yu, Shunfeng Zhou, Size Zheng, Tao Wang, Tian 686
Pei, Tian Yuan, Tianyu Sun, W. L. Xiao, Wangding 687
Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun 688
Gao, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xi- 689
anzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, 690
Xiaojin Shen, Xiaokang Chen, Xiaosha Chen, Xiao- 691
tao Nie, and Xiaowen Sun. 2024. Deepseek-v2: A 692
strong, economical, and efficient mixture-of-experts 693
language model. CoRR, abs/2405.04434. 694

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 695
Switch transformers: Scaling to trillion parameter 696
models with simple and efficient sparsity. J. Mach. 697
Learn. Res., 23:120:1–120:39. 698

Gayathrimanoj. 2023. dataset_shell. https: 699
//huggingface.co/datasets/gayathrimanoj/ 700
dataset_shell. 701

Gkamradt. 2023. Needle in a haystack - pressure testing 702
llms. https://github.com/gkamradt/LLMTest_ 703
NeedleInAHaystack/tree/main. 704

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 705
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 706
2021a. Measuring massive multitask language under- 707
standing. In ICLR. 708

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 709
Arora, Steven Basart, Eric Tang, Dawn Song, and 710
Jacob Steinhardt. 2021b. Measuring mathematical 711
problem solving with the MATH dataset. In NeurIPS. 712

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi 713
Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun, Yizhou 714
Wang, and Yaodong Yang. 2023. Beavertails: To- 715
wards improved safety alignment of LLM via a 716
human-preference dataset. In NeurIPS. 717

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 718
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 719
ford, Devendra Singh Chaplot, Diego de Las Casas, 720
Emma Bou Hanna, Florian Bressand, Gianna 721
Lengyel, Guillaume Bour, Guillaume Lample, 722
Lélio Renard Lavaud, Lucile Saulnier, Marie- 723
Anne Lachaux, Pierre Stock, Sandeep Subramanian, 724
Sophia Yang, Szymon Antoniak, Teven Le Scao, 725
Théophile Gervet, Thibaut Lavril, Thomas Wang, 726
Timothée Lacroix, and William El Sayed. 2024. Mix- 727
tral of experts. CoRR, abs/2401.04088. 728

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, 729
Dehao Chen, Orhan Firat, Yanping Huang, Maxim 730
Krikun, Noam Shazeer, and Zhifeng Chen. 2021. 731
Gshard: Scaling giant models with conditional com- 732
putation and automatic sharding. In ICLR. 733

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 734
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 735
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 736
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur 737

10

https://huggingface.co/datasets/Clinton/Text-to-sql-v1
https://huggingface.co/datasets/Clinton/Text-to-sql-v1
https://huggingface.co/datasets/Clinton/Text-to-sql-v1
https://huggingface.co/datasets/gayathrimanoj/dataset_shell
https://huggingface.co/datasets/gayathrimanoj/dataset_shell
https://huggingface.co/datasets/gayathrimanoj/dataset_shell
https://huggingface.co/datasets/gayathrimanoj/dataset_shell
https://huggingface.co/datasets/gayathrimanoj/dataset_shell
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main

Zucker, Younes Belkada, Zijian Wang, Qian Liu,738
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-739
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue740
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,741
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,742
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,743
Niklas Muennighoff, Xiangru Tang, Muhtasham744
Oblokulov, Christopher Akiki, Marc Marone, Cheng-745
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,746
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Pa-747
try, Canwen Xu, Julian J. McAuley, Han Hu, Torsten748
Scholak, Sébastien Paquet, Jennifer Robinson, Car-749
olyn Jane Anderson, Nicolas Chapados, and et al.750
2024. Starcoder 2 and the stack v2: The next genera-751
tion. CoRR, abs/2402.19173.752

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian753
He, Liangke Gui, Graham Neubig, Jonathan May,754
and Luke Zettlemoyer. 2022. Mega: moving av-755
erage equipped gated attention. arXiv preprint756
arXiv:2209.10655.757

Meta AI. 2024. Introducing meta llama 3: The most758
capable openly available llm to date. https://ai.759
meta.com/blog/meta-llama-3/. Accessed: 2024-760
04-20.761

Mosaic Research Team. 2024. Introduc-762
ing DBRX: A new state-of-the-art open763
LLM. https://www.databricks.com/blog/764
introducing-dbrx-new-state-art-open-llm.765
Accessed: 2024-03-27.766

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev,767
and Jimmy Ba. 2024. Openwebmath: An open768
dataset of high-quality mathematical web text. In769
ICLR.770

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine771
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,772
Wei Li, and Peter J Liu. 2020. Exploring the lim-773
its of transfer learning with a unified text-to-text774
transformer. Journal of machine learning research,775
21(140):1–67.776

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten777
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,778
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom779
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-780
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,781
Wenhan Xiong, Alexandre Défossez, Jade Copet,782
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-783
las Usunier, Thomas Scialom, and Gabriel Synnaeve.784
2023. Code llama: Open foundation models for code.785
CoRR, abs/2308.12950.786

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,787
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and788
Jeff Dean. 2017. Outrageously large neural net-789
works: The sparsely-gated mixture-of-experts layer.790
In ICLR.791

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier792
Martinet, Marie-Anne Lachaux, Timothée Lacroix,793
Baptiste Rozière, Naman Goyal, Eric Hambro,794

Faisal Azhar, et al. 2023. Llama: Open and effi- 795
cient foundation language models. arXiv preprint 796
arXiv:2302.13971. 797

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 798
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 799
Kaiser, and Illia Polosukhin. 2017. Attention is all 800
you need. Advances in neural information processing 801
systems, 30. 802

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 803
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 804
Hajishirzi. 2023a. Self-instruct: Aligning language 805
models with self-generated instructions. In ACL, 806
pages 13484–13508. 807

Zengzhi Wang, Rui Xia, and Pengfei Liu. 2023b. Gen- 808
erative AI for math: Part I - mathpile: A billion- 809
token-scale pretraining corpus for math. CoRR, 810
abs/2312.17120. 811

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 812
Lingming Zhang. 2024. Magicoder: Empowering 813
code generation with oss-instruct. In ICML. 814

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 815
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei 816
Lin, and Daxin Jiang. 2024. Wizardlm: Empow- 817
ering large pre-trained language models to follow 818
complex instructions. In The Twelfth International 819
Conference on Learning Representations, ICLR 2024, 820
Vienna, Austria, May 7-11, 2024. 821

Yifan Zhang. 2024. StackMathQA: A Curated Col- 822
lection of 2 Million Mathematical Questions and 823
Answers Sourced from Stack Exchange. https:// 824
github.com/yifanzhang-pro/StackMathQA. Ac- 825
cessed: 2024-03-26. 826

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, 827
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang 828
Yue. 2024. Opencodeinterpreter: Integrating code 829
generation with execution and refinement. In ACL, 830
pages 12834–12859. 831

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yan- 832
ping Huang, Vincent Y. Zhao, Andrew M. Dai, 833
Zhifeng Chen, Quoc V. Le, and James Laudon. 2022. 834
Mixture-of-experts with expert choice routing. In 835
Advances in Neural Information Processing Systems 836
35. 837

11

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://github.com/yifanzhang-pro/StackMathQA
https://github.com/yifanzhang-pro/StackMathQA
https://github.com/yifanzhang-pro/StackMathQA

A Symbol in equations838

Symbol Explaination

A Accumulate Time
Ts Tensor Parallel Size
S Sequence Length
Ds Data Parallel Size
V Vocab Size

BWlink Bi-directional internal link BW
L Layer Number

BWnet Net bandwidth
Ps Pipeline Parallel Size
nnet Num net connector

B Micro Batch Size
H Hidden Size
T0/s Forward and backward compute time
T1/s Pipeline bubble
T2/s Pipeline parallel communication time
T3/s Tensor parallel communication time
T4/s Data parallel communication time

F/TFlops Floating-point performance of a model with
the same architecture but smaller size on a

GPU

Table 9: Symbol in equations.

B Details for Training839

Parameter Pre-train Fine-tune
Learning rate (LR) 1.0e-5∼1.0e-4 8.0e-5
LR decay style cosine constant
Sequence length 4096 16384
Global Batch size 1536 1152

Table 10: Training hyper-parameters.

C Details for Pre-training data840

Web (25.2%). Website crawling data is a collection841

from open source datasets and the common crawl842

data processed in our previous works (Yuan 1.0).843

Please refer to Yuan 1.0 for more details about the844

Massive Data Filtering System (MDFS) that extract845

contents in higher quality from web contexts.846

Encyclopedia (1.2%), thesis (0.84%), book847

(6.4%) and translation (1.1%) data are inherited848

from Yuan 1.0 and Yuan 2.0 datasets.849

Code (47.5%). The code dataset is greatly ex-850

panded compared with Yuan 2.0. We adopt code851

from the Stack v2 (Lozhkov et al., 2024). The com-852

ments in Stack v2 are translated into Chinese. Code853

synthesized data created with the similar method854

as in Yuan 2.0.855

Math (6.36%). All math data from Yuan 2.0856

is reused. The data are predominantly from open857

source datasets, including proof-pile v1 (Azerbayev858

et al., 2022) and v2 (Paster et al., 2024), AMPS 859

(Hendrycks et al., 2021b), Math-Pile (Wang et al., 860

2023b) and StackMathQA (Zhang, 2024). A syn- 861

thetic dataset for numerical calculation is created 862

with Python to benefit for four arithmetic opera- 863

tions. 864

Specific-domain (1.93%) is a dataset with 865

knowledge from different background. 866

D Details for Fine-tuning data 867

Code Instruction dataset. All the coding data 868

with Chinese instruction and parts with English 869

comments is generated with LLMs. About 30% of 870

the code instruction data is in English, and the rest 871

is in Chinese. The synthetic data are fabricated in 872

a way that imitates the Python code with Chinese 873

comments in terms of prompt generation and data 874

cleaning strategy. 875

• Python code with English comments is col- 876

lected from Magicoder-Evol-Instruct-110K 877

(Wei et al., 2024) and CodeFeedback-Filtered- 878

Instruction (Zheng et al., 2024). The instruc- 879

tion data with language tag such as “python” 880

is extracted from the dataset, and organized 881

into the format as shown in Appendix E. The 882

dataset is also expanded with the Evol-instruct 883

(Xu et al., 2024) and Self-instruct (Wang et al., 884

2023a) method applied in the construction of 885

Chinese Python code. 886

• Other codes such as 887

C/C++/Go/Java/SQL/Shell etc., with 888

English comments from open source dataset 889

(Wei et al., 2024; Zheng et al., 2024; b-mc2, 890

2023; Clinton, 2023; Gayathrimanoj, 2023; 891

Byroneverson, 2024) are processed in a 892

similar way with Python code. The cleaning 893

strategies are similar to the method in Yuan 894

2.0. A sandbox is designed to extract com- 895

pilable and executable lines in the generated 896

codes, and keep the lines that pass at least one 897

unit test. 898

Math Instruction dataset. The math instruc- 899

tion dataset are all inherited from the fine-tuning 900

dataset in Yuan 2.0. To improve the ability of 901

model to solve mathematical problems with pro- 902

grammatic methods, we construct a Program of 903

Thoughts (PoT) prompting math data (Chen et al., 904

2023). PoT converts the mathematic problem into 905

a code generation task that do calculations with 906

Python. 907

12

Safety Instruction dataset. In addition to the908

chat dataset of Yuan 2.0, we construct a bilingual909

safe alignment dataset based on an open source safe910

alignment dataset (Ji et al., 2023). We only take911

the questions from the public dataset, and increase912

the variety of questions and regenerate Chinese and913

English answers with large language models.914

E Prompt Examples for Downstream915

Tasks916

Code generation917

Instruction: Given two positive integers a and
b, return the even digits between a and b, in
ascending order.
For example:
generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []
Response:
<sep>

```python

def generate_integers(a, b):

MMLU918

Glucose is transported into the muscle cell:<n>
A. via protein transporters called GLUT4. <n>
B. only in the presence of insulin. <n> C.
via hexokinase. <n>D. via monocarbylic acid
transporters. <sep> A.

ARC-C919

few-shot examples<n> question<n> op-
tionA<n> optionB<n> optionC<n> op-
tionD<sep> answer

13


	Introduction
	Related Work
	Model Architecture
	Localized Filtering-based Attention (LFA)
	Attention router

	Training
	Pre-training
	Fine-tuning
	Dataset

	Results
	Code generation
	Math
	MMLU
	ARC

	Conclusion
	Symbol in equations
	Details for Training
	Details for Pre-training data
	Details for Fine-tuning data
	Prompt Examples for Downstream Tasks

