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Abstract

In this work, we develop and release Yuan
2.0-M32, a language model uses a mixture-of-
experts architecture with 32 experts of which
2 experts are active. The Localized Filtering-
Based Attention (LFA) is introduced to the base
architecture, to incorporate prior knowledge
of local dependencies of natural language into
attention. A new router network, Attention
Router, is adopted for a more efficient selec-
tion of experts, which improves the accuracy
compared to the model with classical router
network. A distributed training method with
nonuniform pipeline parallel, data parallel, and
optimizer parallel is proposed, which greatly
reduces the bandwidth requirements of intran-
ode communication, and achieves good perfor-
mance in large-scale distributed training. Yuan
2.0-M32 is trained with 2000B tokens from
scratch, and the training computation consump-
tion is only 9.25% of a dense model at the same
parameter scale.

1 Introduction

Given a fixed amount of computation for each to-
ken, a model with Mixture of Experts (MoE) struc-
ture can be easily built on a much larger scale than
a dense model by increasing the number of experts,
and thus achieves a higher accuracy performance.
In reality, it is common to train a model with limited
computational resource, and the MoE is considered
as a good candidate to reduce the substantial cost
associated with the extreme large scale of model,
datasets and limited computing power. In recent
years, with the ever-increasing model size, the role
of routing strategy has attracted more attention for
efficient allocation of computation resources.

The experts routing network is the core in a MoE
structure. This structure selects candidate experts
to participate in the computation by calculating
the probability of token allocation to each expert.
Currently, in most popular MoE structures, it is

common to adopt a classical routing algorithm that
performs a dot product between the token and the
feature vector representing each expert, and then se-
lects the experts with the largest dot product value
(Shazeer et al., 2017; Fedus et al., 2022; Zhou et al.,
2022). The feature vectors of the experts in this
transformation are independent, ignoring the corre-
lation between experts. However, the MoE struc-
ture usually select more than one expert each time,
and multiple experts often participate in calculation
collaboratively, which means there should be an
inherent correlation between experts. It will un-
doubtedly improve the accuracy of the model, if
the relationship between experts is considered in
the process of selecting experts.

Attention, as a basic block in LLMs, has shown
great successes across NLP tasks (Vaswani et al.,
2017; Raffel et al., 2020). The vanilla attention
mechanism treats all tokens equally regardless of
the distance. However, in natural language, the
dependencies of words in the neighborhood are
often stronger than those far away. The intercon-
nection learned by vanilla Attention is global with-
out any prior knowledge of local dependencies.
EMA, widely used in modeling time-series data,
captures local dependencies that decay exponen-
tially over time. MEGA introduced inductive bias
into the attention mechanism with the classical
EMA method (Ma et al., 2022). In MEGA, the
EMA computes over the entire range of input se-
quence length (or chunk size lengths if chunking is
applied) to achieve a strong inductive bias between
tokens. Unlike the EMA in MEGA, Yuan 2.0-M32
introduces hierarchical 1-dimensional convolutions
into Attention, which brings higher accuracy and
computing performance than MEGA.

The major contribution of our work are summa-
rized as follows:

* Propose the Attention Router that considers
the correlation between experts, resulting in a



higher accuracy compared with the classical
router structure.

* Introduce the Localized Filtering-based Atten-
tion into the base architecture of model.

* Design a parallel paradigm with non-uniform
pipeline parallelism, data parallelism, and
optimizer parallelism. The new parallel
paradigm significantly reduces the require-
ments for communication bandwidth com-
pared to the classical 3D parallel paradigm.

* Release the Yuan 2.0-M32 model with 40B to-
tal parameters and 3.7B active ones. There are
32 experts in total and 2 experts activated for
each token. The computational consumption
for training is only 1/16 of that for a dense
model at a similar parameter scale, and the
cost for inference is similar to a dense model
with 3.7B parameters.

2 Related Work

Gshard (Lepikhin et al., 2021), a giant model with
over 600 billion parameters, introduces the MoE
method into Transformer Encoder for the first time,
and provides an efficient distributed parallel com-
puting architecture with routing across accelerators.
Switch Transformer (Fedus et al., 2022) simpli-
fies the MoE routing algorithm with sparse routing.
Zhou et al. (2022) has proposed a new MoE rout-
ing algorithm called Expert Choice (EC) routing
algorithm to achieve the optimal load balancing in
the MoE system. Mistral 8x7B model surpasses
model with 10 times larger parameters in several
human benchmarks with classical routing network
(Jiang et al., 2024). DBRX uses a fine-grained
MOoE architecture and chooses 4 experts among 16
(Mosaic Research Team, 2024). DeepSeekMoE im-
proves the expert specialization with fine-grained
expert segmentation as well as shared expert isola-
tion (Dai et al., 2024). The shared experts activate
tokens for all inputs and are not affected by the rout-
ing module, which may help other experts focus
more on their unique domains of knowledge.The
above-mentioned works make effort on optimiz-
ing the routing strategy of experts, while the router
network is still the classical one that ignores the
correlation between experts.
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Figure 1: Base model of Yuan 2.0-M32 and the Local-
ized Filtering-based Attention (LFA)

3 Model Architecture
3.1 Localized Filtering-based Attention (LFA)

In the self-attention mechanism of Transformer,
contextual information is captured from the entire
sequence by modeling interactions pairwise among
input tokens. Instead of assuming a prior knowl-
edge of the inter-dependencies between tokens (e.g.
positional inductive bias), the self-attention mech-
anism learns to predict attention weights pairwise
from the data, short of neighboring local associ-
ations of tokens. In natural language, local de-
pendencies of input tokens are often stronger than
those far from each other. This work presents the
Localized Filtering-based Attention to favor local
dependencies. The LFA introduces inductive bias
into the self-attention pairwise weights computa-
tion with two consecutive 1-dimensional convolu-
tions (Figure 1). The convolutions in the LFA have
one-sided one-dimensional kernel to prevent infor-
mation in the future tokens from leaking into the
current one. The details of convolutions in the LFA
are shown in Figure 2. In each LFA block, a token
establishes a relationship with two previous tokens.
We place an RMSNorm module as the pre-norm
before the output embedding that shares the same
parameters with the input embedding. SwiGLU
(Touvron et al., 2023) plays as the non-linear feed-
forward layer in the base model.

We perform an ablation study on the LFA archi-
tecture. Table 1 lists the accuracy of models with
different architectures of Attention on an internal
code dataset. The basic attention has the same ar-
chitecture with LLaMA. We first add an EMA layer
before the calculation of the query and key arrays
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Figure 2: Illustration of convolutions in LFA.

Output yi | v2 | ¥s | va
Embedding

Expert 4 } :

FrEE 3[ Expert 1 } { Expert 2 }[ Expert 3 J[

XN 3 L /
Attention Router
A Al A Al .

Figure 3: Illustration of Yuan 2.0-M32. Figure on the
left showcases the scaling of Yuan 2.0 architecture with
MoE layers. The MoE layer takes the place of the feed
forward layer in Yuan 2.0. Figure on the right showcases
the MoE layer structure. In our model, each input token
will be assigned to 2 experts of the total 32, while in the
figure we display 4 experts as an example. The output
of the MoE is the weighted summation of the selected
experts. N is the number of layers.
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in self-Attention. The test loss improves by 1.6%,
while the running time increases by 29%. Such
large overhead is unacceptable in a large model
training. In the LFA, one-sided 1-dimensional
convolution kernels with different kernel sizes are
tested. The best accuracy is obtained with a ker-
nel size of 7. The test loss is improved by 3.3%
compared to the basic model, with the parameters
increased by 15%. In order to lower the memory
consumption during LLM training, we reduce the
kernel size of the two convolution kernels to 2, and
the accuracy is close to the kernel size of 7. Then,
we add the RMSNorm after two convolutions, and
the accuracy is further improved. The LFA with
two convolutions and an RMSNorm is applied in
the base model of Yuan 2.0-M32, and the test loss
improvement is 3.5% compared to the baseline.
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Figure 4: The overview of the attention router structure.

3.2 Attention router

When the base model is adopted in a sparse archi-
tecture, the dense feed-forward network (FFN) of
every layer is replaced with a MoE component.

Figure 3 displays the architecture of MoE layer
applied in our model. Taking four FFNs as an
example (32 experts in fact), each MoE layer is
composed of a group of individual FFNs as experts.
The Router network ahead of experts dispatches
the input token to the relevant expert(s). The clas-
sic Router network essentially establishes a feature
vector for each expert, and computes the dot prod-
uct between input token and the feature vector of
each expert to obtain the specific likelihoods be-
tween token and experts. The experts with the
strongest likelihood are selected for activation and
participate in subsequent calculations.

Figure 4a presents the structure of classical
router network. The feature vectors of each expert
are independent from each other, and the correla-
tion between experts is ignored when calculating
the probability. In fact, in most MoE models (Lep-
ikhin et al., 2021; Fedus et al., 2022; Zhou et al.,
2022), two or more experts are usually selected to
participate in the subsequent calculations, which
naturally brings a strong correlation between ex-
perts. The consideration of correlation between
experts will undoubtedly contribute to the improve-
ment of accuracy.

Figure 4b presents the architecture of the Atten-
tion Router, a novel router network proposed in
this work, incorporate correlation between experts
by taking Attention mechanism. A coefficient ma-
trix representing the correlation between experts is
built, and then applied on the computation for the



Model Params/M Time per iter/ms Test Loss
Attention (basic) 160.3 577 1.251
Attention with EMA 160.6 745 1.2309
Conv kernel size[1,1,h,h] 163.9 596 1.2444
Conv kernel size[2,1,h,h] 167.4 602 1.2194
LFA Conv kernel size[3,1,h,h] 171.0 605 1.2171
Conv kernel size[7,1,h,h] 185.1 621 1.2093
Two Conv kernels, 167.4 618 1.2122
size[2,1,h,h/2],[2,1,h/2,h]
+RMSNorm 167.4 631 1.2069

Table 1: Test losses on different attention architecture. All the models have the same number of layers and hidden
dimensions. Attention with EMA refers to an EMA layer (Ma et al., 2022) inserted into Attention in a similar way

as the convolutions in the LFA.

final probability value. In specific, given N experts
for a token vector (I € R?), the expert routing
process is as follows:

Q=WI, W e RVxd
K=W', W' e RNxd
V=w", w' ervxd D

P = Softmaz(QKT)V, Pec RN

Then, the M experts are chosen by selecting
top M values of P. In this paper, we set M = 2,
N = 32,d = 2048.

Our model is tested on 8 trainable experts with
the Attention Router. The classical router model
has 8 trainable experts to ensure a similar parameter
scale, and the router structure is the same with that
applied in Mixtral 8x7B (Jiang et al., 2024), which
is a Softmax over a linear layer. The Shared Expert
router takes the strategy of Shared Expert Isolation
with classical router architecture (Dai et al., 2024).
There are 2 fixed experts to capture the common
knowledge and top-2 of 14 optional experts as the
specialized ones. The output of MoE is the combi-
nation of the fixed and the ones selected by router.
All the three models are trained with 30B tokens
and tested with another 10B tokens. Considering
the results between classical router and Shared Ex-
pert router, we find that the latter one gets exactly
the same test loss with 7.35% more training time.
The computational efficiency of the Shared Expert
is relatively low, and it does not bring better train-
ing accuracy over the classical MOE strategy. Thus
in our model, we take the classical routing strategy
without any shared experts.

We test the scalability of the model by increas-
ing number of experts and fixing the per-expert
parameter size. The increase in the number of train-
able experts only changes the model capacity, but
not the actual activated model parameters. All the

Model Test loss
8 experts 1.820
16 experts 1.787
32 experts  1.754

Table 2: Results of the scaling experiments.

models are trained with S0B tokens and tested with
another 10B tokens. We set the activated experts
as 2, and the hyper-parameters for training are the
same for the three models. The expert scaling ef-
fects is measured by the test loss after trained with
50B tokens (Table 2). Compared to the model with
8 trainable experts, model with 16 experts displays
2% lower loss, and model with 32 experts displays
3.6% lower loss. We choose 32 experts for Yuan
2.0-M32 considering its accuracy.

4 Training

4.1 Pre-training

Distributed training of large models often involves
tensor parallelism, pipeline parallelism, and data
parallelism (named Method 1). Tensor parallel
requires multiple global collective communica-
tions (e.g. AllReduce) during each forward and
backward propagation. Communication greatly in-
creases the bandwidth requirements between Al
chips and would be a performance bottleneck for
LLM training. For models with similar architec-
ture with GPT-3 or LLaMA, we build a model to
calculate the time consumption of a single iteration
with the 3D parallel method (tensor parallelism,
pipeline parallelism and data parallelism) with the
following equation:
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while for Yuan 2.0-M32 with LFA, the time con-
sumption of a single iteration can be obtained with
the following equation:
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The differences between Eq. (2) and Eq. (3)
come mainly from the LFA. The details of each part
in Eq. (2) are listed in Table A. The Yuan 1.0-245B
with the similar architecture as GPT-3 is trained
on a GPU cluster (2128 GPUs) with computing
efficiency of 45%. The time predicted by Eq.(2)
is 44.33s per time step of Yuan 1.0 training, and
the average measured time is 46.20s. If we want to
achieve the same performance for dense Yuan with
LFA at a similar scale, the bidirectional bandwidth
of the tensor parallelism would be 730 GB/s, which
is much greater than the theoretical bandwidth of
pipeline or data parallelism, which is 43 GB/s.

In order to reduce the communication bandwidth
and achieve high performance on low-bandwidth
intra- and interconnection, we propose a distributed
training method that trains LLMs with pipeline
parallelism, data parallelism, and optimizer paral-
lelism (named Method 2).

In pipeline parallelism, uniform partitioning is
often applied, which refers to even divisions of the
Transformer layers onto each computing device.
In order to hide communication, it is often neces-
sary to allocate a larger memory at the beginning
of the pipeline to store temporary variables, and
the required memory will exceed the GPU mem-
ory limit.Taking a 24-layer transformer model with

a) Take non-uniform pipeline parallelism to reduce the memory bottleneck
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Figure 5: Illustration of non-uniform parallelism and
optimizer parallelism.

hidden_size=6144 as an example, the model is di-
vided into 8 pipeline stages. If we follow the tra-
ditional pipeline parallelism, the 24 layers will be
uniformly divided, and each pipeline stage is as-
signed with 3 layers. When using checkpoint acti-
vation, the first pipeline stage will cache 24 activa-
tions for backpropagation, while in the last pipeline
stage, only 3 activations will be cached for back-
propagation. The maximum memory consumption
is about 78GB (Figure5), which is quite close to
GPU memory limit. If we further increase the num-
ber of layers, we have to increase the number of
pipeline stages, which requires more computation
devices and leads to lower performance. In order
to address this issue, this work proposes a non-
uniform pipelining parallel method, which splits
the layers non-uniformly to break the memory bot-
tleneck. In this way, we can split the 24 layer
transformer into 8 pipeline stages of [2, 2, 3, 3, 4,
4, 4, 2] layers, and the memory usage of the first
pipeline stage drops to S6GB. About 28.2% mem-
ory saves compared to the original pipeline paral-
lelism. In order to further reduce the memory con-
sumption, we propose a block-wise cross-entropy
computation method that reduces the peak mem-
ory consumption of cross-entropy calculations with
a large vocab size in the last pipeline stage. With
this method, the logits € RS*H are split into
logitspoer € RUMOksizexH “and the loss of each
block is calculated individually, then concatenated
together. This approach enables us to meet the
memory needs of the last pipeline stage without
additional computing or communication. The time
consumption for the blockwise cross-entropy com-
putation method is calculated with Eq. (4),
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Yuan 2.0-M32 is trained with Method 2. We
benchmark the performance on a GPU cluster. The
prediction made by Eq(5) is quite close to the real
measurement with an error of 1.5%, and the the
final training loss is 1.22.

Table 3 presents the performance predicted with
Eq(5) for the model on a cluster of 96 and 256 Al
chips. Considering almost all the P2P bandwidths,
the performance of Method 2 is better than that of
Method 1. The performance drops up to 37.20%
for Method 1 when the P2P BW drops from 400
GB/s to 100 GB/s, while the performance almost
keeps the same, only drops 0.23%, for Method 2.

4.2 Fine-tuning

During fine-tuning, we extend the sequence length
to 16,384. Following the work of CodeLLama
(Roziere et al., 2023), we reset the base value
of Rotary Position Embedding (RoPE) frequen-
cies to avoid the decay in attention scores with
longer sequences. Instead of simply increasing
the base value from 1000 to a much larger value
(e.g. 1,000,000), we calculate the new base with
the NTK-aware (bloc97, 2023), i.e.

|D]

b =b-sPl2 (6)

Where b is the original base value (b = 10000).
s is the number of extended times from the original
context length to the extended context length. As
we extend the context length from 4,096 to 16,384,
s equals 4. |D| is 128 in our setup. Therefore, the
new base b’ is calculated to be 40,890.

We also compare the performance of the pre-
trained Yuan 2.0-M32 model with the NTK-aware
styled new base, and with other base values from
40,000 to 10,240,000) in the needle-retrieval task
with sequence lengths up to 16K (Gkamradt, 2023).
We find that the NTK-aware styled new base,
40,890, performed better. Thus 40,890 is applied
during fine-tuning.

4.3 Dataset

Yuan 2.0-M32 is pre-trained with a bilingual
dataset of 2000B tokens from scratch, then fine-
tuned with labeled data across different domains.
The original data for pre-training contains more
than 3400B tokens, and the weight for each cate-
gory is adjusted according to the data quality and
quantity.

The comprehensive pre-training corpus is com-
posed of:

* 44 constituent sub datasets covering web
crawled data, wiki, academic thesis, books,
codes, math and formula, and domain-specific
expertise. Some of them are open source
datasets and the others created by Yuan model.

* Most of the pre-training data in our previous
works are also reutilized.

Detailed information about the construction and
source of pre-training dataset is available in Ap-
pendixC.

The fine-tuning dataset is expanded based on our
previous dataset and please refer to the details in
AppendixD.

5 Results

We evaluate Yuan 2.0-M32 on Humaneval (Chen
et al., 2021) for code generation, GSM8K (Cobbe
et al.,, 2021) and the MATH (Hendrycks et al.,
2021b) for mathematical problem solving, ARC
(Clark et al., 2018) for scientific knowledge and
inference, and MMLU (Hendrycks et al., 2021a) as
an integrated benchmark.

5.1 Code generation

The capability of code generation is evaluated with
the HumanEval Benchmark. The English prompted
is constructed as Appendix E.

The model is expected to complete the function
after <sep>. And the generated function will be
evaluated with unit tests. The results from zero-
shot of Yuan 2.0-M32 and the comparison with



96 Chips 256 Chips
PZP BW GB/s Method 1/ Method 2/s Method 175 Method 275
100 369.85 746,18 14582 103.77
200 303.00 246,08 12075 103.63
400 269.57 24600 108.21 103.53

Table 3: Predicted time consumption with different P2P bandwidth between Al chips. The inter-connection between

nodes is 200 Gb/s.

Params Active HumanEval Params Active
Model (B) Params (B) (zero-shot) Model (B) Params (B)GSI\/BKMATI—I
Llama 3-70B 70 70 81.7 Llama 3-70B 70 70 93.0 504
Llama 3-8B 8 8 62.2 Llama 3-8B 8 8 79.6 30
Phi-3-medium 14 14 62.2 Phi-3-medium 14 14 91.0 -
Phi-3-small 7 7 61 Phi-3-small 7 7 89.6 -
Phi-3-mini 3.8 3.8 58.5 Phi-3-mini 3.8 3.8 82.5 -
Qwenl.5-72B 72 72 68.9 Qwenl.5-72B 72 72 819 40.6
DeepseekV2 236 21 81.1 DeepseekV2 236 21 922 539
Mixtral-8x22B 141 39 45.1 Mixtral-8x22B 141 39 78.6 418
Mixtral-8x7B 47 12.9 40.2 Mixtral-8x7B 47 12.9 584 284
Yuan 2.0-M32 40 3.7 74.4 Yuan 2.0-M32 40 3.7 927 559
Yuan 2.0-M32 40 3.7 78.1 (14 shots)

Table 4: Comparison of Yuan 2.0-M32 and other models
on Hu-manEval pass@1.

other models are dis-played in Table 4. The result
of Yuan 2.0-M32 are second only to DeepseekV2
(DeepSeek-Al et al., 2024) and Llama3-70B (Meta
Al, 2024), and far exceed the other models, even
when its active parameters and computational con-
sumptions are much lower than those from others.
Compared with DeepseekV2, our model uses less
than a quarter of the active parameters and less
than a fifth of the computational effort per token,
while reaching more than 90% of its accuracy level.
And compared with llama3-70B, the gap between
model parameters and computation is even greater,
and we still reach 91% of its level. Yuan 2.0-M32
demonstrated reliable programming capability with
three quarters of the questions passed. Yuan 2.0-
M32 are good at few shot leaning. The accuracy of
Humaneval is improved to 78.0 by taking 14 shots.

5.2 Math

The math capability of Yuan 2.0-M32 is evaluated
with GSM8K and MATH benchmark. A GSM-8K
problem has a final numerical solution, and it is run
it with 8 shots (Table 5).

MATH is a dataset with 12,500 challenging
Mathematical Competition QA problems. Yuan
2.0-M32 produces the final answer with chain of
thought (CoT) method with 4 shots. The answers

Table 5: Comparison of Yuan 2.0-M32 and other models
on GSMS8K and MATH.

will be extracted from analysis and transformed
into a unified format. For numerical results, math-
ematically equivalent output in all formats are ac-
cepted. The answer of \frac{1}{2}, 1/2, 0.5, 0.50
are all converted into 0.5 and accepted as the same
result. For mathematical expressions, we remove
the tab and space symbol, and unified the regular
expression of arithmetic operation. For instance,
y = ((2z+1))/5,y = (2z+1)/5,y = 2x/5+1/5,
y = 0.4z 4 0.2, etc. are all accepted as the same
answers. The processed final results are compared
with the ground truth answer, and evaluated with
EM (exact match) scores.

From the results shown in Table 5, we can see
that Yuan 2.0-M32 scores the highest on MATH
benchmark. Compared to Mixtral-8x7B, which has
3.48 times larger active parameters than Yuan 2.0-
M32, the score of Yuan is even nearly twice as high.
On GSMSK, Yuan 2.0-M32 also achieves a score
very close to that of Llama 3-70B, and outperforms
other models.

5.3 MMLU

The input data for Yuan 2.0-M32 is organized as
Appendix E. The text before <sep> is sent to the
model, and all answer related to the correct an-
swer or the option label is adopted as true. The
results on MMLU demonstrate the capabilities of



Params Active
Model (B)  Params (B) MMLU
Llama 3-70B 70 70 80.3
Llama 3-8B 8 8 68.4
Phi-3-medium 14 14 78.0
Phi-3-small 7 7 75.7
Phi-3-mini 3.8 3.8 68.8
Qwenl.5-72B 72 72 76.2
DeepseekV2 236 21 77.8
Mixtral-8x22B 141 39 77.8
Mixtral-8x7B 47 12.9 70.6
Yuan 2.0-M32 40 3.7 72.2

Table 6: Comparison of Yuan 2.0-M32 and other models
on MMLU.

Params  Active
Model (B) Params (B) ARC-C
Llama 3-70B 70 70 93.3
Llama 3-8B 8 8 78.6
Phi-3-medium 14 14 91.6
Phi-3-small 7 7 90.7
Phi-3-mini 3.8 3.8 84.9
Qwenl.5-72B 72 72 91.7
Deepseek V2 236 21 92.3
Mixtral-8x22B 141 39 91.3
Mixtral-8x7B 47 12.9 85.9
Yuan 2.0-M32 40 3.7 95.8

Table 7: Comparison of Yuan 2.0-M32 and other models
on ARC-Challenge.

our model in different domains. The final accuracy
is measured with MC1 (Table 6). Yuan 2.0-M32
outperforms Mixtral-8x7B, Phi-3-mini, and Llama
3-8B in terms of performance.

54 ARC

We test our model on the Challenge parts of ARC.
The question and options are concatenated directly
and separated with <n>, which is prompted as in
Appendix E (similar to the pattern of MMLU). The
text before <sep> is sent to model, and the model
is expected to generate a label or corresponding
answer. The generated answer is compared with
the ground truth, and the results are calculated with
MCI1 target.

The results ARC-C are displayed in Table 7, and
it shows that Yuan 2.0-M32 excels in solving com-
plex scientific problems—it surpasses Llama3-70B
in this benchmark.

From 5.1 to 5.4, we compare our performance to

three MoE model (Mixtral family, Deepseek) and
six dense models (Qwen (Bai et al., 2023), Llama
family and Phi-3 family (Abdin et al., 2024)), to
evaluate Yuan 2.0-M32’s performance on differ-
ent domains. Table 7 presents the comparison of
Yuan 2.0-M32 with other models on accuracy vs
computation. Yuan 2.0-M32 uses only 3.7B ac-
tive parameters and 22.2 GFlops per token for fine-
tuning, which is the most economical, to obtain
comparable results or even surpass other models
listed in the tables. Table 8 implies the outstanding
computational efficiency and performance during
inference of our model. The average accuracy of
Yuan 2.0-M32 is 79.15 that is competitive with
Llama3-70B. And the value of average accuracy /
Glops per token is 10.69, which is 18.9 times larger
than Llama3-70B.

6 Conclusion

In this work, we introduce Yuan 2.0-M32, a bilin-
gual MoE language model. The architecture of
Yuan 2.0-M32 is designed by incorporating Atten-
tion with localized filtering and converting classical
router to Attention Router, which brings a better
accuracy with less computation resources. The pro-
posed distributed training method with nonuniform
pipeline parallel, data parallel, and optimizer paral-
lel greatly reduces the bandwidth requirements of
intra-node communication, and leads to good per-
formance in large-scale distributed training. Yuan
2.0-M32 uses only 3.7B active parameters and
7.4 GFlops of inference per token, both of which
are about 1/19 of Llama3-70B. In ARC-C bench-
mark, our model excels Llama 3-70B by 2.5 pts
with only 5% active parameters. For the MATH
benchmark, Yuan 2.0-M32 also achieves the high-
est score (55.9), surpassing Llama 3-70B by 10%
with 5% computation cost. The results imply that
our model has outstanding computational efficiency
and performance during inference. We release our
Yuan 2.0-M32 models at Github for public acces-
sibility, as what we did before, and hope the open
source model can benefit the development of LLMs
and Al industry ecology.

Limitations

Despite Yuan 2.0-M32’s outstanding performance
in multiple benchmark tests and significant
progress in computational efficiency and perfor-
mance, we acknowledge that the model still has sev-
eral limitations. First, while Yuan 2.0-M32 excels



. GFlops
Model Params Active Params

GFlops Average Accuracy

per token per token Average Accuracy /GFlops per token

(B) (B) (Inference) (Fine-tune) (Inference)
Llama 3-70B 70 70 140 420 79.25 0.57
Llama 3-8B 8 8 16 48 64.15 4.00
Qwenl.5-72B 72 72 144 432 72.6 0.50
DeepseekV2 236 21 42 126 79.05¢ 1.88
Mixtral-8x22B 141 39 78 234 72.38 0.93
Mixtral-8x7B 47 12.9 25.8 77.4 60.83 2.36
Yuan 2.0-M32 40 3.7 7.4 22.2 79.15 10.69

Table 8: Comparison of Yuan 2.0-M32 and other models on quality vs size. The mean accuracy is averaged on the
scores of GSM-8K, Math, Humaneval, MMLU, and ARC-C.

on benchmarks like MATH and ARC-Challenge,
we recognize that its performance may still lag be-
hind some models specifically optimized for these
fields in tasks that require complex common-sense
reasoning or cross-domain knowledge integration.
Second, the training of our model relies heavily
on a large-scale bilingual dataset, which may limit
its performance in low-resource languages or do-
mains. This is an area where we plan to focus
more attention in future work. Finally, although
the model demonstrates high computational effi-
ciency, we understand that further optimization of
inference speed and memory usage is still needed
to meet the demands of real-time interaction and
large-scale deployment. Future work will focus
on addressing these limitations to further enhance
the model’s performance and applicability. We are
committed to continuous improvement and innova-
tion to overcome these challenges.
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A Symbol in equations

Symbol Explaination
A Accumulate Time
T Tensor Parallel Size
N Sequence Length
D, Data Parallel Size
% Vocab Size
BWiink Bi-directional internal link BW
L Layer Number
BWpet Net bandwidth
Py Pipeline Parallel Size
Nnet Num net connector
B Micro Batch Size
H Hidden Size
Tols Forward and backward compute time
Ti/s Pipeline bubble
Tuls Pipeline parallel communication time
Ts/s Tensor parallel communication time
Tuls Data parallel communication time
F/TFlops  Floating-point performance of a model with

the same architecture but smaller size on a
GPU

Table 9: Symbol in equations.

B Details for Training

Parameter Pre-train Fine-tune
Learning rate (LR) 1.0e-5~1.0e-4 8.0e-5
LR decay style cosine constant
Sequence length 4096 16384
Global Batch size 1536 1152

Table 10: Training hyper-parameters.

C Details for Pre-training data

Web (25.2%). Website crawling data is a collection
from open source datasets and the common crawl
data processed in our previous works (Yuan 1.0).
Please refer to Yuan 1.0 for more details about the
Massive Data Filtering System (MDFS) that extract
contents in higher quality from web contexts.

Encyclopedia (1.2%), thesis (0.84%), book
(6.4%) and translation (1.1%) data are inherited
from Yuan 1.0 and Yuan 2.0 datasets.

Code (47.5%). The code dataset is greatly ex-
panded compared with Yuan 2.0. We adopt code
from the Stack v2 (Lozhkov et al., 2024). The com-
ments in Stack v2 are translated into Chinese. Code
synthesized data created with the similar method
as in Yuan 2.0.

Math (6.36%). All math data from Yuan 2.0
is reused. The data are predominantly from open
source datasets, including proof-pile v1 (Azerbayev
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et al., 2022) and v2 (Paster et al., 2024), AMPS
(Hendrycks et al., 2021b), Math-Pile (Wang et al.,
2023b) and StackMathQA (Zhang, 2024). A syn-
thetic dataset for numerical calculation is created
with Python to benefit for four arithmetic opera-
tions.

Specific-domain (1.93%) is a dataset with
knowledge from different background.

D Details for Fine-tuning data

Code Instruction dataset. All the coding data
with Chinese instruction and parts with English
comments is generated with LLMs. About 30% of
the code instruction data is in English, and the rest
is in Chinese. The synthetic data are fabricated in
a way that imitates the Python code with Chinese
comments in terms of prompt generation and data
cleaning strategy.

* Python code with English comments is col-
lected from Magicoder-Evol-Instruct-110K
(Wei et al., 2024) and CodeFeedback-Filtered-
Instruction (Zheng et al., 2024). The instruc-
tion data with language tag such as “python”
is extracted from the dataset, and organized
into the format as shown in Appendix E. The
dataset is also expanded with the Evol-instruct
(Xu et al., 2024) and Self-instruct (Wang et al.,
2023a) method applied in the construction of

Chinese Python code.
* Other codes such as
C/C++/Go/Java/SQL/Shell  etc., with

English comments from open source dataset
(Wei et al., 2024; Zheng et al., 2024; b-mc2,
2023; Clinton, 2023; Gayathrimanoj, 2023;
Byroneverson, 2024) are processed in a
similar way with Python code. The cleaning
strategies are similar to the method in Yuan
2.0. A sandbox is designed to extract com-
pilable and executable lines in the generated
codes, and keep the lines that pass at least one
unit test.

Math Instruction dataset. The math instruc-
tion dataset are all inherited from the fine-tuning
dataset in Yuan 2.0. To improve the ability of
model to solve mathematical problems with pro-
grammatic methods, we construct a Program of
Thoughts (PoT) prompting math data (Chen et al.,
2023). PoT converts the mathematic problem into
a code generation task that do calculations with
Python.



Safety Instruction dataset. In addition to the
chat dataset of Yuan 2.0, we construct a bilingual
safe alignment dataset based on an open source safe
alignment dataset (Ji et al., 2023). We only take
the questions from the public dataset, and increase
the variety of questions and regenerate Chinese and
English answers with large language models.

E Prompt Examples for Downstream
Tasks

Code generation

Instruction: Given two positive integers a and
b, return the even digits between a and b, in
ascending order.

For example:

generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []

Response:

<sep>

“python

def generate_integers(a, b):

MMLU

Glucose is transported into the muscle cell:<n>
A. via protein transporters called GLUT4. <n>
B. only in the presence of insulin. <n> C.
via hexokinase. <n>D. via monocarbylic acid
transporters. <sep> A.

ARC-C

few-shot examples<n> question<n> op-
tionA<n> optionB<n> optionC<n> op-
tionD<sep> answer
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