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Abstract

The well-known Kalman filters model dynamical systems by relying on state-space
representations with the next state updated, and its uncertainty controlled, by fresh
information associated with newly observed system outputs. This paper generalizes,
for the first time in the literature, Kalman and extended Kalman filters to discrete-
time settings where inputs, states, and outputs are represented as attributed graphs
whose topology and attributes can change with time. The setup allows us to adapt
the framework to cases where the output is a vector or a scalar too (node/graph level
tasks). Within the proposed theoretical framework, the unknown state transition
and readout are learned end-to-end along with the downstream prediction task.

1 Introduction

The Kalman Filter (KF) [17] is a state-space representation architecture for modeling dynamical
systems. Since its introduction more than 60 years ago, the KF has been standing out for its
performance in tracking and controlling applications as well as for its relative simplicity. The KF
operates on linear dynamical systems of the form{

ht = Fht−1 +Gxt−1 + ηt−1,

yt = Hht + νt,
(1)

by estimating the hidden system state vector ht ∈ Rdh at time t given input vector xt−1 ∈ Rdx and
output vector yt ∈ Rdy ; {ηt}t and {νt}t are Gaussian white-noise stochastic processes. At each time
step t, the system state and its uncertainty update by iteratively leveraging on previous estimates and
incorporating newly observed system outputs and inputs while accounting for uncertainties. Notably,
KF estimators are proven to be optimal, being unbiased and of minimum variance. Generalizations
and variants of the KF cover continuous-time reformulations of Equation 1, non-Gaussian noise
distributions, time-variant state-space setups, and nonlinear formulations that can be cast in the form{

ht = fST(ht−1,xt−1) + ηt−1,

yt = fRO(ht) + νt;
(2)

we refer the reader to [26] and Section 3 for a review. Nowadays graph-based models integrating
relational information among the sensors/components of multivariate systems have been demonstrated
to be extremely powerful and effective spatio-temporal predictors [18, 28, 12]. These include graph
neural networks [3, 4] and their extensions incorporating temporal information, usually referred
to as spatio-temporal graph neural networks (STGNNs) [24, 23, 10]. The literature on KF with
graph-structured data is however less mature, as discussed in Section 3.
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Contribution In this paper, for the first time in the literature, we provide Graph KF, a graph-based
formulation of the KF where inputs, outputs, and states are attributed graphs whose topology is
allowed to change over time. A deep neural implementation derives from a graph state space (GSS)
[29] modeling a discrete-time, time-invariant, stochastic data-generating process P{

ht = fST(ht−1,xt−1,ηt−1),

yt = fRO(ht,νt),
(3)

where inputs xt−1, states ht, and outputs yt are attributed graphs belonging to graph spaces X ,H,
and Y , respectively. Stochastic processes {ηt}t, {νt}t are white noise impacting on the node signals
and/or the topology of the graphs.

Challenges The GSS formulation in Equation 3 poses three main challenges that are addressed in
this paper: (a) State-transition and the readout functions fST and fRO are assumed to be unknown and,
differently from Equation 2, are nonlinear also with respect to the noise components. (b) Unknown
states are attributed graphs of unknown, and possibly time-varying, topology, hence it is requested
us to estimate both node features and graph topology. Note that the topology is a discrete entity; as
such, it is not amenable to standard gradient-based optimization. (c) The data dimensionality – say
the nodes and edges of the involved graphs – is not fixed and can be very large, yielding ill-posed
estimation, in general. We address the above challenges, by devising a spatio-temporal graph neural
network (STGNN) that approximates the state transition and the readout functions.

After reviewing the standard KF (Section 2), we introduce the considered GSS models (Section 4),
we derive the proposed Graph KF architecture (Section 5), and we empirically validate it (Section 6).

2 Kalman filters

Consider the discrete time-invariant system model (2) with random initial state h0 ∈ Rdh drawn from
a known finite-variance distribution, state transition fSC and readout fRO are differentiable with respect
to the states and affected by white-noise stochastic processes with covariance matrices Cov[ηt] = Qt
and Cov[νt] = Rt, for all t. Let h0,ηt and νt be mutually independent, for all t.

Assume to have observed xi−1,yi for all i < t and generated an estimate h+
t−1 of E[ht−1] with

error covariance matrix P+
t−1

.
= Cov[ht−1 − h+

t−1]. A single iteration of the KF algorithm aimed at
modeling Equation 2 is two-step: (i) Once input xt−1 is available, an a priori estimate h−

t of E[ht]
is produced along with error covariance matrix P−

t
.
= Cov[ht − h−

t ] and followed by a prediction
y−
t = fST(h

−
t ) of the system output yt; estimates denoted with superscript “−” are named “a priori”

as they are obtained before observing the system output yt. (ii) Once yt is observed, an a posteriori
estimate h+

t refines h−
t and the updated matrix P+

t
.
= Cov[ht − h+

t ] is derived from P−
t .

2.1 KF for linear systems

This section summarizes the KF procedure for discrete-time, time-variant, linear systems{
ht = Ft−1ht−1 +Gt−1xt−1 + ηt−1,

yt = Htht + νt,
(4)

a generalization of the time-invariant system (1) where matrices Ft−1, Gt−1 and Ht depends on t.
For a detailed derivation, we refer to [26], and point out that the literature shows different equivalent
rewritings to meet specific implementational requirements. Although we aim at developing a KF for
time-invariant GSS models like that in Equation 3, in order to deal with nonlinear state transition and
readout, it is suitable to rely on the following time-variant derivation.

A priori estimate Note that E[ht] = Ft−1E[ht−1] +Gt−1xt−1 + 0, so, if E[h+
t−1] = E[ht−1],

then the following is an unbiased estimator of E[ht]:
h−
t
.
= Ft−1h

+
t−1 +Gt−1xt−1; (5)

Thanks to the independence between ηt−1 and both ht−1 and h+
t−1, the covariance matrix of the a

priori estimation error can be expressed as a function of the P+
t−1, from the previous time step:

P−
t = Ft−1P

+
t−1F

⊤
t−1 +Qt−1. (6)
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Unbiased predictions can be made as y−
t = Hth

−
t .

A posteriori estimate The a posteriori estimate has the form

h+
t
.
= h−

t +Kt(yt − y−
t ) (7)

where matrix Kt is known as gain while residual yt − y−
t is called innovation. As h−

t is unbiased,
then E[yt − y−

t ] = 0, and we see that h+
t is unbiased as well, regardless of the choice of the gain.

Therefore, we can select Kt to minimize the total variance

Tr(P+
t ) = E[(ht − h+

t )
⊤(ht − h+

t )], (8)

i.e., the trace of the matrix P+
t . By exploiting the independence between h−

t and νt, the gain
minimizing Tr(P+

t ) is
Kt = P−

t H
⊤
t (HtP

−
t H

⊤
t +Rt)

−1. (9)

2.2 Extended KF for nonlinear systems

The Extended KF (EKF) [27] adapts the KF of Section 2.1 to the nonlinear case of Equation 2.
EKF operates by linearizing the state-transition and readout functions around the last available state
estimate. EKF requires the first-order Taylor approximation of function fST( · ,xt−1) around h+

t−1

fST(h,xt−1) ≈ fST

(
h+
t−1,xt−1

)
+∇hfST(h

+
t−1,xt−1)︸ ︷︷ ︸

Ft−1

(h− h+
t−1) (10)

Similarly, we expand with Taylor function fRO around estimate h−
t

fRO(h) ≈ fRO

(
h−
t

)
+
(
∇hfRO(h

−
t )︸ ︷︷ ︸

Ht

)
(h− h−

t ). (11)

By linearizing the time-invariant system (2) we obtain a linear time-variant system like (4), where
Ft−1, Gt−1, and Ht depend on the given input and current state estimates. The EKF is applicable to
more general system models, where the interaction with the noise processes is nonlinear. We expand
the discussion in Section 5, when deriving the KF for graphs.

3 Related work

The EKF [27] has been further generalized to account for orders beyond the first [2]. The unscented
KF employs particle filtering to address some of the drawbacks of EKF [16, 19]. The theory of
reproducing kernel Hilbert space is another viable solution to operate with nonlinear systems and
non-Gaussian noise [21, 5, 7]. Regarding graph data, the research focused on linear systems with
known topology [25, 14, 15]. With [22] introducing the analysis over a known, dynamic topology.

4 Graph state-space models

Figure 1: An example of a spatio-temporal data over a
set Vx of 5 nodes. Graph xt is given at each step t. xt is
defined over a node set V (xt) ⊆ Vx and has node signals
sv(xt) ∈ Rdx associated with each given node.

The input graph xt ∈ X at time t is
defined over node set V (xt), e.g., asso-
ciated with the sensors of a sensor net-
work, and edge set represented as adja-
cency matrix A(xt) that encodes the re-
lations existing among the nodes, such
as physical proximity, signal correlations,
or causal dependencies. The node sets
and the topologies observed at different
time steps t, t′ are generally different but,
typically, V (xt)∩V (xt′) ̸= ∅, implying
the existence of a partial node correspondence over time. We denote with Vx =

⋃
t V (xt) the

union set of all nodes, whose cardinality is assumed to be finite. Input graphs are attributed with
node features attached to them, like sensor readings, collected in graph signal s(xt) ∈ R|Vx|×dx . A
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Figure 2: Block diagram of the GSS stochastic model in Equation 13.

visual representation of the resulting graph-based spatio-temporal data sequence x1,x2, . . . ,xt, . . .
is provided in Figure 1.

Given sequence {xt}t of graphs defined over node set Vx, we aim at predicting output graphs yt ∈ Y
at each time step t. We model the data-generating process P as formulated in Equation 3, with system
model {

ht = fST(ht−1,xt−1,ηt−1),

yt = fRO(ht,νt),
(12)

involving representations of the system states as graphs ht ∈ H; with a consistent notation, V (ht) ∈
Vh,A(ht), and s(ht) (V (yt) ∈ Vy,A(yt), and s(yt)) denote the node set, the adjacency matrix
and the signal of state graph ht (output graph yt). Stochastic processes {ηt}t and {νt}t are white
noise impacting the edges and the node signals2 of the states and outputs, respectively. Functions
fST and fRO, as well as the noise distributions, are assumed unknown with finite second moments.
Finally, exogenous variables, like those referring to extra sensor information or functional relations,
can be included as well in the framework and encoded in xt to avoid overwhelming notation. The
general formulation of the GSS model in Equation 12 does not require any identification between the
nodes in sets Vx, Vh, and Vy, although this might be the case in some scenarios (see [29]).

We introduce a GSS family of stochastic predictive models [29]{
ht = fθ(ht−1, fϑ(xt−1),ηt−1)

yt = fψ(s(ht),νt)
(13)

where ht,yt,ηt−1 and νt are random variables. Parameters θ, ϑ, and ψ are learned from data,
i.e., from a realization of process P . Initial condition h0 is drawn from a given prior distribution
Ph0

. Function fϑ is the input encoder, mapping xt−1 to the nodes of graph space H, function fθ
models the state transition inferring both the graph topology of ht and the associated node signal,
whereas fψ is the readout. Graph functions fϑ, fθ, and fψ are parametrized in real vectors ϑ, θ, and
ψ, respectively, and learned directly from data; we assume them differentiable with respect to the
associated parameter vectors. A schematic view of GSS model (13) is given in Figure 2.

Importantly, and differently from what is most often done with state-space models, state representa-
tions are first predicted and then refined once the system output is observed, in line with traditional
vector KF. While training the model parameters is carried out with standard deep learning techniques,
the state estimate refinement follows the KF proposed here and is derived in the following section.

5 Graph Kalman filter

The proposed Graph KF follows the linearization of the EKF, taking care of differentiating with
respect to the noise components, too. Accordingly, we assume that both fθ and fψ are differentiable
with respect to the state and the noise terms, as better formalized in following Section 5.1. To facilitate
readability, we assume the following.
Assumption 1. The node sets of input, state, and output graphs coincide (Vy = Vh = Vx).

2For instance, ηt−1 can be a vector such that s(ht) = zt−1 + ηt−1, with zt−1
.
= s(f(ht−1,xt−1)), or

sv(ht) = g(zt−1,v,ηt−1,v) for generic function g applied to each node v ∈ V (ht). Differently, an example
of noise impacting the state’s topology is when ηt−1 is a matrix of entries in {−1, 0, 1} perturbing a constant
(binary) matrix A0 so that adjacency A(ht) is given as A0 + ηt−1.
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Assumption 2. The topology of the output graph is either that of the state (A(yt) = A(ht)) or the
input (A(yt) = A(xt−1)).

We stress that the above assumptions are either made to render the derivation more amenable or
ease the readability of the outcomes by providing a simplified notation. For instance, Assumption 1
ensures an immediate correspondence between nodes of the inputs, states, and outputs (without the
need for graph pooling and upscaling operators as in [29]), whereas predicting the output adjacency
matrix A(yt) – thus relaxing Assumption 2 – would only request additional components of fψ to
be linearized. It follows that weaker assumptions can be considered at the cost of more complex
mathematics that, however, will not change the spirit of what is derived.

5.1 State-transition and readout functions linearization

In the following, we derive the Graph KF assuming that νt is a |Vh|-dimensional vector whose
components perturb the output signal s(yt) and ηt−1 is a |Vh| × |Vh| matrix impacting the state
topology A(ht), thus showing both node-level and edge-level noise scenarios at once. For brevity,
we also denote signal s(ht) as st and encoded input fϑ(xt−1) as x̃t−1.

Following the EKF procedure, we expand the nonlinear system (13) with Taylor approximating
fθ(s

+
t−1, x̃t−1,ηt−1) and fψ(s−t ,νt). Accordingly, we requests fθ to be differentiable with respect

to st−1 and ηt−1; similarly, fψ to be differentiable with respect to st and νt. We get

fθ(s, x̃t−1,η) ≈ fθ
(
s+t−1, x̃t−1,0

)
+

(
∇sfθ(s

+
t−1, x̃t−1,0)

)
(s− s+t−1)

+
(
∇ηfθ(s

+
t−1, x̃t−1,0)

)
• η (14)

= fθ
(
s+t−1, x̃t−1,0

)
+ Ft−1(s− s+t−1) + Lt−1 • η (15)

= Ft−1s+ fθ
(
s+t−1, x̃t−1,0

)
− Ft−1s

+
t−1 + Lt−1 • η (16)

where B•C ∈ R|Vh| denotes the product [B•C]v =
∑|Vh|
i,j=1Bv,i,jCi,j for all B ∈ R|Vh|×|Vh|×|Vh|

and C ∈ R|Vh|×|Vh|. Similarly, we linearize the readout function:

fψ(s,ν) ≈ fψ(s−t ,0) + (∇sfψ(s
−
t ,0)︸ ︷︷ ︸

Ht

)(s− s−t ) + (∇νfψ(s
−
t ,0)︸ ︷︷ ︸

Mt

)ν (17)

= Hts+ fψ(s
−
t ,0)−Hts

−
t +Mtνt. (18)

We stress that, even though the role of the graph topology might not be immediately evident from the
notation above, graph-based processing is still carried out while computing, e.g., fθ

(
s+t−1, x̃t−1,0

)
.

Moreover, whenever the state transition and readout act component-wise on their inputs and share
parameters among nodes – as in many STGNNs – then part of the computation can be parallelized
and reused. Finally, note that with modern libraries, such as PyTorch [20] and TensorFlow [1] along
with their ecosystems [9, 6, 11], the linearizations can be computed automatically in a closed form,
thus allowing us to apply the proposed Graph KF to basically any deep learning architecture.

5.2 Graph KF iterations

Assume to have learned parameter vectors θ, ϑ, and ψ of GSS model (13) (see Section 5.3), then the
following iterations define the proposed Graph KF. Initialize

s+0 = Es∼Ps0
[s] ∈ R|Vh|, P+

0 = Covs∼Ps0
[s] ∈ R|Vh|×|Vh|, (19)

from a prior distribution Ps0 . Then, for t = 1, 2, 3, . . .

(i) Encode input graph: x̃t−1 = fϑ(xt−1);

(ii) Update the a priori state estimate: s−t = fθ(s
+
t−1, x̃t−1,0);

(iii) Make the prediction y−
t = fψ(s

−
t ,0).

Steps (i)–(iii) are standard practice in state-space modeling, where s−t−1 is considered as s+t−1. The
refinement s+t ← s−t of the a priori state estimate s−t is carried out as follows
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(iv) Compute the Jacobian associated with the state transition:

Ft−1 = ∇sfθ(s
+
t−1, x̃t−1,0) ∈ R|Vh|×|Vh|, (20)

Lt−1 = ∇ηfθ(s
+
t−1, x̃t−1,0) ∈ R|Vh|×|Vh|2 ; (21)

(v) Compute the Jacobian of the readout:

Ht = ∇sfψ(s
−
t ,0)) ∈ R|Vh|×|Vh|, Mt = ∇νfψ(s

−
t ,0)) ∈ R|Vh|×|Vh|; (22)

(vi) Update the a priori error covariance: P−
t = Ft−1P

+
t−1F

⊤
t−1 + Lt−1Qt−1L

⊤
t−1;

(vii) Compute the gain matrix: Kt = P−
t H

⊤
t (HtP

−
t H

⊤
t +MtRtM

⊤
t )

−1;

(viii) Update the a posteriori state estimate:

s+t = s−t +Kt(yt − y−
t ), (23)

P+
t = (I−KtHt)P

−
t (I−KtHt)

⊤ +KtMtRtM
⊤
t K

⊤
t . (24)

5.3 Model training and Kalman filtering

We train model parameters θ, ϑ, and ψ by gradient-based optimization minimizing the mean squared
error (MSE) between yt and y−

t , while the Kalman gain Kt and error covariance matrices P−
t and

P+
t are estimated during inference. Note that the computations in steps (ii) and (iv) do not involve

the noise term ηt−1; similarly, steps (iii) and (v) do not account for the noise term νt. However,
if the noise distributions have to be learned along with model parameters, the above iterations can
be modified to consider samples of ηt−1 and νt drawn from the probabilistic model learned so far,
and their probability distributions optimized, e.g., by relying on the reparameterization trick and
maximum likelihood criteria.

6 Empirical validation

As our contribution is theoretical and methodological, here we validate the correctness of the
procedures, methods, and outcomes, and showcase the potential of the proposed Graph KF. In
particular, we design a set of controlled experiments to analyze the main interplaying elements: the
training of a GSS model as in Equation 13, the predictions based on the learned model (steps (i)–(iii)),
and the Kalman-filter refinement (KFR) in steps (iv)–(viii). We leave real applications to future
research.

6.1 Datasets Table 1: Parameter configuration of
the GSS system models. “id” is the
identity function.

LinGSS NonLinGSS
λ0 λ1 20 5 20 5
θTM θSP 0.6 0.3 0.6 -0.3
ψ0 ψ1 -0.5 2.0 -2.0 5.0
ση σν 0.25 0.12 0.25 0.12
ρST ρRO id id tanh tanh

We generate two GSS system models like (12), LinGSS and
NonLinGSS, both characterized by the data-generating process
detailed in next paragraphs. The specific parameters of the
two GSS models are reported in Table 1, further details are
provided in the supplementary material; in particular, Figure 3
shows the input, state, and output signals of three sample
nodes.

Inputs For each node v ∈ Vx, input signal s(xt) is binary and random in time duration, generated
alternating between runs of 1’s and 0’s so that the associated run lengths are drawn from a Poisson(λ1)
and a Poisson(λ0), respectively. Inputs have no relational information (E(xt) = ∅).

States Recalling the notation st = s(ht) adopted in previous sections, states are updated according
to the state-transition function

st = fST(ht−1,xt−1,ηt−1)
.
= ρST

((
θTMI+ θSPĀθ

)
(st−1 + s(xt−1))

)
+ ηt−1 (25)

where ηt−1 is i.i.d. from a zero-mean Gaussian distribution with standard deviation ση, matrix
Āθ = D−1/2(I+Aθ)D

−1/2 is the adjacency Aθ normalized by diagonal matrix D of node degrees
(self-loops included), Vh = Vx, and ρST is a nonlinearity applied component-wise. Initial state
s0 = η0 is white noise.

6



Table 2: Performance of Replica and STGNN models with and without the KFR. The prediction error
is averaged over 10 runs whereas the RPI is estimated over the test mini-batches and the 10 runs.
Results are reported in the format “mean±std” The prediction error in the first three rows is a single
value as the model parameters are predefined.

LinGSS NonLinGSS
Pred. Err. (MSE) RPI Pred. Err. (MSE) RPI

Model w/o KFR w/ KFR (MSE%) w/o KFR w/ KFR (MSE%)
Replica 0.384 0.271 -98.6±1.2 0.483 0.359 -88.7±1.6
Replica Exp 0.267 0.267 -98.8±0.6 0.349 0.349 -85.6±2.2
Replica GT 0.014 0.014 -98.9±0.0 0.014 0.014 -62.3±4.5

Replica Retrained 0.384±0.000 0.271±0.000 -98.6±1.1 0.429±0.000 0.327±0.000 -94.0±0.8
STGNN 0.389±0.001 0.336±0.019 -34.2±15.9 0.434±0.001 0.407±0.010 -13.5±7.7

Outputs System output yt is obtained from the same readout applied to each node-level state st,v:
s(yt,v) = fRO(ht,v,νt,v)

.
= ρRO(ψ0 + ψ1st,v) + νt,v. (26)

Noise terms {νt,v} are i.i.d. Gaussian distributed with zero as mean and σν as standard deviation.
ρRO is a nonlinearity.

6.2 Approximating family of models

In the experiments below, we consider two types of approximating families of models (13).

Replica The first family of models is designed to contain the state transition (25) and readout (26)
of the data-generating process. In particular, the Replica model parameters are exactly the four
parameters θTM, θSP, ψ0, and ψ1.

STGNN The second family of models is a generic and relatively simple STGNN that does not
contain the state-transition and readout functions of the data-generating process. This family is
defined by the following architecture. Input encoder fϑ and the readout fψ are 2-layer dense networks
both applied node-wise. State-transition function fθ is composed of a message-passing layer

st = fθ(st−1, fϑ(xt−1),0)
.
= st−1 + fϑ(xt−1) + tanh

(
zW′

θ + ÃθzW
′′
θ

)
(27)

performed on z = γθ(st−1+fϑ(xt−1)); γθ is a 2-layer dense network, and matrix Ãθ is a normalized
version of the adjacency matrix Aθ where each row adds up to 1. All modules have 7 hidden neurons
per layer and the rectified linear unit as activation function.

The models are trained to predict the expected value E[yt]; accordingly, the MSE is considered as
loss function. Parameters ση, σν and the topology of the states are considered known here. Note
that considering a probabilistic or dynamic topology would not change the application of the KFR.
Therefore, we removed such elements from the empirical validation to focus on the KFR part of the
proposed Graph KF. Further experimental details are given in the supplementary material.

6.3 Positive effect of the Graph KF refinement

The first experiment studies the improvement brought by the KFR assuming to know the system
model, i.e., the Replica model with parameters identical to those in Table 1. We compare the
prediction error ∥y−

t − yt∥22 when y−
t = fRO(ĥt) is computed from the following different states ĥt:

(w/o KFR) ĥt = h−
t is the state estimate produced from the past states {hi : i < t} and inputs

{xi : i < t} by performing steps (i)–(iii) with fST as state transition.

(w/ KFR) ĥt = h+
t is the state estimate produced from the past states {hi : i < t} and inputs

{xi : i < t} by performing steps (i)–(viii) with fST as state transition, but applying also the KFR.

(Exp) ĥt = E[ht] is the expected value of the state computed from Equation 25.

(GT) ĥt = ht is the true system state in Equation 25 affected by noise, thus serving as ground truth.

Results are reported in the top part of Table 2.

7



Results w/o KFR On LinGSS dataset, Replica GT relies on the true state and its performance
matches the readout noise σ2

ν = (0.12)2 = 0.0144, whereas the Replica Exp performance is close
to the target value σ2

ν + (σηψ1)
2 = 0.2644. Note that although the state transition and readout are

exactly those that generated the data, the noise on the state transition has a negative impact on the
prediction performance. Therefore, and as expected, Replica model without the KFR performs worse
than both baselines Replica Exp and Replica GT.

Results w/ KFR Conversely, KFR allows Replica model to approach the baseline performance of
Replica Exp, while the performance of the reference model Replica GT cannot be achieved without
information about the random realization of ηt noise. Table 2 displays also the following relative
prediction improvement (RPI)

∥y+
t − yt∥22 − ∥y−

t − yt∥22
∥y−

t − yt∥22
(28)

to further compare a priori and a posteriori estimates. The RPI values in Table 2 show that the
prediction error is reduced to almost zero (equivalent to RPI of -100%), reassuring of the correct
functioning of the KFR procedure. We should note that y+

t here is receiving yt as feedback to update
the state estimate, however, we stress that for computing the prediction error in the first column of the
table, the target yt is not seen by the predictive model. For the same reason, observe also that despite
the RPI values, applying the KFR to Replica GT and Replica Exp does not bring further down the
MSE, as they are already optimal in their respective sense.

Results on NonLinGSS Similar results are observed for NonLinGSS dataset, too, where Replica
model with KFR improves over Replica model without KFR, and whose performance approaches
that of Replica Exp; we comment that in this nonlinear setting, the performance of Replica Ext is not
expressed as σ2

ν + (σηψ1)
2, as it depends on the nonlinearity ρRO, as well.

6.4 Graph KF refinement on trained models

The second set of experiments concerns performance improvements when using approximating
models. In this problem setup, we expect that the trained models fit well the data-generating process.
However, we do not expect them to identify (match exactly) the state transition and readout of the
system model. Bottom part of Table 2 shows that all considered models benefit from the KFR. In
particular, we observe that the Replica model trained on LinGSS matches the performance of Table 2,
where the model parameters were set equal to those that generated the data (Table 1). Moreover,
inspecting the learned parameters, we see they get close to the ground truth reported in Table 1.
Interestingly, the parameters learned by Replica on NonLinGSS differ from the ground truth (∼10%
off) and enable better predictions than those of Table 2. Finally, the STGNN models (whose family
does not contain the system model) do not performed as good as Replica ones, especially when
comparing the refined versions, as confirmed also by the RPI. In spite of that, we stress that STGNN
benefits from the KFR and, in fact, displays an RPI smaller than zero and achieves a better MSE than
all the other models without KFR.

7 Conclusions

This paper extends for the first time the Kalman filter to scenarios where inputs, states, and outputs
are attributed graphs of variable topology. The theoretical contribution of the paper addresses three
main challenges related to dealing with nonlinear systems, learning graph topologies, and operating
with a possibly large number of nodes. The correctness of the proposed Graph KF is empirically
validated and the potentially achievable increase in the prediction performance is demonstrated.
While hypotheses are made to facilitate the reading and derivation thanks to a lighter notational setup,
their relaxation is the subject of future research that, however, does not change the spirit of what is
here proposed.
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Figure 3: Inputs, states, and outputs of three nodes from LinGSS dataset (left) and NonLinGSS (right).
The graph considered for generating the data is at the bottom, with node 0, 1 and 2 highlighted.

A Hardware and software

The code for the empirical evaluation of the proposed method has been developed in Python relying on
the following open-source libraries: PyTorch [20], PyTorch Geometric [9], Torch Spatiotemporal [6],
PyTorch Lightning [8] and NumPy [13]. The experiments were run on machines equipped with AMD
EPYC 7513 processors and NVIDIA RTX A5000 GPUs.

B Model training

The models are trained to minimize the mean squared error (MSE) with Adam optimizer for 100
epochs and learning rate of 0.01. 70% of the data is used for training, 10% for validation, and 20%
for testing. The batch size is set to 32 and the predictions are made from a window size of 12 time
steps. Early stopping on the best validation MSE is applied with a 10-epoch patience. Training a
model typically takes less than 10 minutes for Replica models and about 20 minutes for the STGNNs.

C Dataset visualization

Figure 3 shows examples of node-level inputs, states, and outputs of three nodes in LinGSS and
NonLinGSS. The considered state graphs have 12 nodes connected as shown at the bottom of the
figure.
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