
Angles Don’t Lie: Unlocking Training-Efficient RL
Through the Model’s Own Signals

Qinsi Wang1 Jinghan Ke2 Hancheng Ye1 Yueqian Lin1 Yuzhe Fu1 Jianyi Zhang1
Kurt Keutzer2 Chenfeng Xu2∗ Yiran Chen1∗

1Duke University 2University of California, Berkeley

Abstract

Current Reinforcement Fine-tuning (RFT) paradigms for Large Language Models
(LLMs) suffer from sample inefficiency due to the redundant exposure of identical
queries under uniform data sampling. While previous work has explored curriculum
learning via heuristic difficulty metrics, these strategies exhibit limitations by
neglecting the intrinsic learning signals generated by the model itself, thus leading
to suboptimal training regimes. In this paper, we identify a model-inherent signal
termed angle concentration that effectively reflects an LLM’s capacity to learn from
specific data. We theoretically and empirically demonstrate a correlation between
the angular distribution of token hidden state vectors and the resulting gradient,
revealing a learning preference for data exhibiting higher angle concentration.
Inspired by this finding, we propose GAIN-RL, a Gradient-driven Angle-Informed
Navigated RL framework. By leveraging the model’s intrinsic angle concentration
signal, GAIN-RL dynamically selects training data in each iteration, ensuring
consistently impactful gradient updates and thus significantly enhancing overall
training efficiency. Empirical evaluations show that GAIN-RL (GRPO) achieves
over a 2.5× acceleration in training efficiency across diverse mathematical and
coding tasks and varying model scales. Furthermore, GAIN-RL (GRPO)’s efficient
sampling yields data-efficient training, achieving better performance with half the
original data compared to vanilla GRPO with full training data. Code is realsed at
https://github.com/wangqinsi1/GAINRL/tree/main.

1 Introdction

Since the emergence of groundbreaking Reinforcement Learning Fine-tuning (RFT) techniques
exemplified by Deepseek-R1 [1] and OpenAI’s O1 [2], significant attention has converged on
leveraging these approaches to enhance performance, notably in mathematical reasoning [3, 4,
5] and code generation tasks [6, 7]. This interest has catalyzed the development of numerous
algorithmic optimization methods, including GRPO [8], ReMax [9], and Reinforce++ [10]. Despite
such remarkable progress, critical challenges persist: RFT remains hindered by persistent issues of
low sample efficiency and prohibitively high computational costs. For instance, the GRPO fine-tuning
phase on Qwen 2.5-7B (Ray + vLLM) still consumed roughly 240 GPU hours (16 × H100-80 GB
for 15h) to complete only 100 steps over 8k samples [11]. This low sample efficiency prompts the
question: Is it truly necessary to repeatedly expose every data point to the model hundreds of
times? Our answer is No. Humans adaptively learn by focusing on what they don’t yet understand,
rather than rote repetition of simple concepts. We extend this insight into reinforcement learning
fine-tuning for LLM reasoning models from the perspective of data manipulation.

Manipulating the data is crucial for accelerating data-driven LLM training. Existing data manipulation
techniques fall into two main categories: Sample selection methods, such as LIMO [12] and S1 [13],

∗Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/wangqinsi1/GAINRL/tree/main

2. Gaussian-based

DATA Sampling

Sorted DATA index

S
am

p
li

n
g

 P
ro

b
ab

il
it

y

𝜇𝑡+1𝜇𝑡
𝒩 𝜇, 𝜎2

MODEL
#Decoding

Weight

update

𝜇𝑡+1 = 𝜇𝑡 + ℱ acct + 𝒢 anglet

3. Dynamic Probability Update

System

Prompt

Token

Question

Token

DATA

#Pre-filling

MODEL

Layer index

1. Angle-based Data Reordering

Angle

Signal

intraC

interC
+

Sorted

DATA

Low

High

∝
Gradient

Figure 1: Overview of GAIN-RL. GAIN-RL consists of three steps: (1)Angle-based Data Reorder-
ing: Before training, the model pre-fills all data and ranks them by the combined angle concentration
signals: Cinter + Cintra. (2)Gaussian-based Data Sampling: During training, each iteration begins by
sampling reordered data using a Gaussian distribution. (3)Dynamic Probability Update: Epoch-wise
accuracy and angle concentration are collected to dynamically update µt+1. GAIN-RL guides the
model to focus on high-angle, high-loss data, promoting effective gradients and faster convergence.

have shown that training on a carefully curated subset of high-quality data can improve performance.
Separately, data ordering strategies, like ADARFT [14], have demonstrated that dynamically adjusting
data difficulty during training can accelerate convergence. However, existing approaches suffer from
two fundamental limitations that hinder their effectiveness in RFT. First and foremost, current
methods neglect the intrinsic characteristics of the models themselves. They rely on fixed,
model-agnostic criteria—such as difficulty or diversity—to evaluate data without accounting for
how the target model itself perceives the data. We point out that different models interpret the same
problem in markedly different ways. As shown in Fig. 2, different models produce diverging accuracy
distributions on the same set of data, indicating that one-size-fits-all difficulty measures can lead to
suboptimal training outcomes. Second, existing methods suffer from high data preprocessing
costs. For instance, S1 and LIMO necessitate running large-scale models (e.g., Qwen2.5-Math-7B)
across entire datasets to compute quality and difficulty scores. Similarly, curriculum learning often
relies on manual annotation or expert-defined difficulty labels. These resource-intensive preprocessing
steps significantly limit the scalability and practical responsiveness of these approaches.

We aim to attack the aforementioned challenges and propose a model-informed signal that (1) reflects
the learning capacity of a specific model on particular data, (2) incurs minimal computational costs,
and (3) maintains generalizability across diverse models and datasets. Achieving such requirements
is inherently challenging, as accurately capturing model-data interactions typically needs a resource-
intensive decoding stage. To overcome this challenge, we explore three key questions in this work:

1. Which signal should we focus on? By reformulating the gradient expressions, we find that
the cosine similarity between token hidden states during inference (hereafter referred to as
angle concentration) directly influences gradient norm, underscoring it as a critical signal.

2. What are the characteristics of the signal? By tracking the layer-wise evolution, we
observe a transition from inter-segment to intra-segment angle concentration, which jointly
facilitates information flow and constitutes the Layer-wise Angle Concentration Pattern.

3. How can these signals accelerate training? By monitoring angle concentration throughout
training, we observe continuous convergence of intra- and inter-segment angles over epochs,
revealing an Epoch-wise Angle Concentration Pattern. Moreover, the model preferentially
learns samples with higher angle concentration before those with lower concentration,
indicating a Data-wise Angle Concentration Pattern. These patterns highlight the model’s
data-learning preferences and can be leveraged to accelerate training.

Building upon these insights, we propose GAIN-RL, a Gradient-driven Angle-Informed Navigated
Reinforcement Learning Framework, illustrated in Fig. 1. GAIN-RL comprises three primary
components: Data Reordering, Data Sampling and Probability Update. Before training, we reorder
the training data based on model-informed angular concentration to enhance learning efficiency.
During training, a dynamic Gaussian probability sampling strategy progressively guides the model
towards data with lower angular concentration, with the pace adjusted according to real-time accuracy

2

0 20 40 60 80 100
Question Index

0.0

2.5

5.0

7.5

10.0

C
or

re
ct

 N
um

(M
ax

=
10

)

Qwen2.5-0.5B-Instruct Llama-3.2-1B-Instruct Chatgpt

Figure 2: Visualization of models’ responses. We evaluate the first 100 GSM8K questions by having
Qwen2.5-0.5B-Instruct and LLaMA3.2-1B-Instruct each generate 10 answers per question, recording
the number of correct responses. ChatGPT-4o rates question ease on a 0–10 scale (10 = easiest).

and angular signals. Notably, our data preprocessing involves only the inexpensive pre-filling stage,
requiring under 10 minutes for over 7,000 samples. Overall, GAIN-RL provides a plug-and-play,
broadly applicable, and data-efficient reinforcement learning solution. Experiments validate that
GAIN-RL accelerates training by over 2.5× and, remarkably, surpasses full-sample performance
using only half the data—demonstrating its powerful capability in driving data-efficient RFT.

In summary, our key contributions include:

• We propose that the angle concentration serves as a critical signal influencing gradient
norm during training, thus predicting the model’s ability to learn specific data samples.

• We demonstrate that angle concentration intrinsically reflects information propagation
during inference and learning dynamics during training, and explicitly reveals Layer-
wise, Epoch-wise, and Data-wise Angle Concentration Patterns.

• We introduce GAIN-RL, a framework that dynamically allocates training data per epoch
based on angle concentration signals. GAIN-RL is the first framework to utilize intrinsic
model signals for data scheduling, providing a novel paradigm for efficient RFT.

2 Model-Informed Data Evaluation Signals

With the goal of identifying signals that can effectively reflect a specific model’s learning capability
for data, in this section, we explore three key questions: (1) Which signal should we focus on? (2)
What are the characteristics of this signal? (3) How can this signal be leveraged to accelerate training?

2.1 Which Signals Should We Focus On?

As mentioned in Sect. 1, obtaining model feedback via decoding is computationally expensive. In
contrast, the pre-filling stage incurs significantly lower costs, as it requires only a single forward pass.
Intuitively, we hope to identify signals from the pre-filling stage that can inform the training process.

Model training is driven by incremental gradient updates. Hence, to investigate how forward signals
influence the backward process, we begin by examining and reformulating the gradient representation.
Given a weight matrix W ∈ Rd×h, the hidden states of input can be denoted as x ∈ Rm×d, where
x consists of m tokens, and the hidden state of the i-th token is represented as xi. The output
activation is denoted as a = xW , where a ∈ Rm×h. Assuming the loss function L has a gradient
∇aL ∈ Rm×h with respect to the activation a, the gradient of L with respect to W is given by

∇WL = x⊤∇aL =

m∑
i=1

xi

(
∇aL

)
i
, (1)

where (∇aL)i denotes the gradient of the loss L with respect to the i-th activation vector ai. To
more precisely quantify the magnitude of the gradients, we consider the Frobenius norm of∇WL.
Leveraging the linearity of the Frobenius inner product, ∥∇WL∥2F can be expanded as:

∥∇WL∥2F =

〈 m∑
i=1

xi

(
∇aL

)
i
,

m∑
j=1

xj

(
∇aL

)
j

〉
F

=

m∑
i=1

m∑
j=1

〈
xi

(
∇aL

)
i
, xj

(
∇aL

)
j

〉
F
. (2)

Next, to simplify Eq. 2, we utilize the compatibility between the Frobenius inner product and the
matrix outer product. In particular, for any u,w ∈ Rd and v, z ∈ Rh, the following identity holds:〈

uv⊤, wz⊤
〉
F
= tr

(
(uv⊤)⊤(wz⊤)

)
= (u⊤w) (v⊤z) , (3)

3

where tr denotes the matrix trace operator. Applying this identity term-wise in Eq. 2 gives

∥∇WL∥2F =

m∑
i=1

m∑
j=1

(
x⊤i xj

)(
(∇aL)i(∇aL)⊤j

)
=

m∑
i=1

m∑
j=1

∥xi∥∥xj∥ cos θi,j
(
(∇aL)i(∇aL)⊤j

)
, (4)

where cos θi,j denotes the cosine similarity of the angle between xi and xj . Eq. 4 explicitly reveals
that, during inference, both the magnitudes of token hidden states and the angles between them
directly influence the gradient values computed during backpropagation.

Since the magnitudes of token hidden states are normalized in each layer during inference, they cannot
effectively convey useful information. Consequently, in this paper, we specifically focus on exploring
the characteristics of relative angles of token hidden states. Furthermore, in the Appendix B.1, we
provide proofs demonstrating that the nonlinear transformations in LLM inference—including both
attention mechanisms and activation functions—are inherently angle-dependent and continuously
modify the angles among token hidden states. We can now answer the first question:

A1. We should focus on the relative angles between token hidden states during inference as
it fundamentally impacts the gradient Frobenius norm computed during backpropagation.
Specifically, the more concentrated the angles between tokens, the larger the gradient norm.

2.2 What Are the Characteristics of This Signal?

In the previous subsection, we show that angles between token hidden states directly influence the
gradients. To identify the characteristics we should focus on, we explore its layer-wise evolution.

Layer-wise Observation. We conducted experiments on the Qwen2.5-0.5b-Instruct model to observe
the evolution process across different layers. The experimental results, shown as Fig. 3, clearly
illustrate that in the initial layers of the model, no distinct pattern emerges, with the angles primarily
determined by the input embeddings. As the layer depth increases, the angles gradually exhibit a
segmented structure, whereby the hidden states of tokens within the same segment tend to cluster
more closely. Upon further examination, we found these segments correspond precisely to distinct
parts of the input sequence: the system prompt, few-shot examples, and the question. Eventually,
in the final layers, angles between tokens from different segments begin to converge, reaching the
highest degree of concentration. We give a more vivid demonstration in Fig. 1.

Based on the above observations, we introduce Layer-wise Angle Concentration Pattern: during
inference, the model first induces intra-segment angle concentration and subsequently promotes
inter-segment angle concentration. These two forms of clustering collaboratively facilitate informa-
tion propagation through the model. A detailed demonstration is provided in Appendix C.1.

Therefore, assume the length of the input tokens is m. The first n tokens constitute the system prompt
and the few-shot examples, which are the same across all data samples. The remaining m− n tokens
represent the specific question to be answered. The characteristics we should focus on are:

Cintra =
1

(m− n)2

m∑
i=n+1

m∑
j=n+1

cos θi,j , Cinter =
1

(m− n)n

m∑
i=n+1

n∑
j=1

cos θi,j , (5)

where Cintra measures angle concentration within the question and Cinter measures angle concentration
between question tokens and the system prompt and few-shot tokens. We measure both at the final
layer, where inter-segment clustering is maximal. Concentration within the system prompt and
few-shot tokens is omitted, as it is constant across different questions.

Attention-based Explanation. To better understand the observed pattern, we also provide an
analytical explanation from attention scores. In general, we find that tokens with higher angle
concentration correspond to higher attention scores. Specifically, Cintra represents the strength of
attention within the question itself, while Cinter indicates the model’s ability to follow instructions.
Furthermore, the presence of sink attention encourages intra-segment and inter-segment angle
concentration. Details can be found in Appendix B.2. Our answer to the second question is:

A2. The angles between token hidden states show both intra-segment and inter-segment
concentrations during inference. In particular, we should pay attention to the final layer as the
inter-segment clustering is most pronounced, resulting in the highest overall concentration.

4

Figure 3: Visualization of Layer-wise Concentration Pattern. Experiment is performed on the
Qwen2.5-0.5b-Instruct. In each subplot, the pixel at row i, column j represents the cosine similarity
of the angle between the i-th and j-th token hidden states of the layer output. Blue, yellow, and gray
arrows above the figure represent the tokens of the system prompt, few-shot examples and question,
respectively. To better highlight the pattern, values are clipped between the 3rd and 97th percentiles.

0 50 100 150 200 250
Training Iteration

0.37

0.38

0.39

0.40

in
tra

Qwen2.5-0.5B-Instr
Llama-3.2-1B-Instr

0.28

0.30

0.33

0.35

0.38

0 50 100 150 200 250
Training Iteration

0.20

0.21

0.21

0.21

0.22

0.23

in
te

r

Qwen2.5-0.5B-Instr
Llama-3.2-1B-Instr

0.12

0.14

0.16

0.18

0.20

0.22

0 50 100 150 200 250
Training Iteration

0.58

0.60

0.62

in
tra

+
in

te
r

Qwen2.5-0.5B-Instr
Llama-3.2-1B-Instr

0.40

0.45

0.50

0.55

0.60

Figure 4: Visualization of Epoch-wise Concentration Pattern. (Left) Cintra; (Mid) Cinter; (Right)
Cintra + Cinter. We train Qwen2.5-0.5B-Instruct and LLaMA3.2-1b-Instruct on GSM8K using GRPO
for 250 iterations. To accelerate observation, we use a training batch size of 16, generate 4 responses
per question, and set the learning rate to 1e-5. After each iteration, we perform pre-filling on the
entire dataset and record the angle concentration from the hidden states of the final layer output.

2.3 How Can This Signal Be Leveraged to Accelerate Training?

Having established that intra-segment and inter-segment angular concentrations at the final layer
are crucial characteristics, we now further examine their evolution during training to deepen our
understanding of how they reflect and influence the training progress.

Epoch-wise Observation. To track how angular concentrations evolve during training, we perform
inference on the same dataset on models of different epochs and monitor three signals: (1) Intra-
question concentration Cintra, (2) Inter-segment concentration Cinter, (3) Combined signal Cintra +
Cinter. As illustrated in Fig. 4, we can observe the Epoch-wise Angle Concentration Pattern:
during training, both inter-segment and intra-segment angle concentration increase progressively.
Additionally, we note that the intra-question concentration initially decreases before subsequently
increasing, which suggests the model prioritizes mastering instruction-following capabilities before
refining its focus internally on individual questions. These observations validate our hypotheses from
the previous subsections, reinforcing that angular concentration effectively mirrors training dynamics.

Data-wise Observation. Furthermore, to examine data-wise angle behavior during training, we track
the model’s responses to samples with varying angle concentrations over epochs. As depicted in
Fig. 5, surprisingly, the results revealed that during training, the model tends to prioritize learning
from higher-angle concentration data before addressing lower-angle concentration data, which we
introduce as Data-wise Angle Concentration Pattern. For instance, by iteration 100, questions with
maximal angular measurements were almost entirely answered correctly, whereas those with smaller
angles remained uncorrected. Note that the angle concentration distribution is measured on the
untrained model, indicating that despite its evolution during training, the initial angle concentration
of the data provides meaningful guidance for the training process.

To understand these patterns, we provide explanations from two perspectives: gradients and neurons.

Gradient-based Explanation. As shown in Eq. 4, gradients are influenced by both angle concentra-
tion and loss. Early in training, when losses are relatively uniform across samples, those with higher
angle concentration receive stronger gradients and are learned faster. As training continues, angle
concentration rises overall: high-angle samples, already mastered, see lower losses; while low-angle
samples gain concentration, inherit larger gradients, and are learned next. This creates a natural,
angle-driven learning progression. Unlike traditional curriculum learning based on task difficulty,
angle concentration offers a more intuitive, model-centric training signal.

Neuron-based Explanation. Consider a FFN block with weights Wu and Wd, and activation
function SiLU. Given the input denoted as x, the transformation process can be represented as:

5

0.50 0.55 0.60
intra + inter

0

50

100

N
um

be
r

of
 S

am
pl

e Epoch 0

0.50 0.55 0.60
intra + inter

Epoch 50

0.50 0.55 0.60
intra + inter

Epoch 100

0

2

4

6

8

10

Av
g.

 C
or

re
ct

(M
ax

=
10

)

Figure 5: Visualization of Data-wise Concentration Pattern. Experiments are conducted on
Qwen2.5-0.5b-Instruct. We first performed pre-filling on 1,000 samples of GSM8K using the
untrained model to collect Cintra + Cinter of samples, and plotted their statistical distributions (the
histogram in the figure). Then we monitored the model responses to these samples at various iterations
and recorded the average number of correct responses from samples in each angle concentration
interval (brighter colors indicate a higher number of correctly answered samples within the interval).

500 0 500
Principal Component 1

400

200

0

200

400

Pr
in

ci
pa

l C
om

po
ne

nt
 2 Epoch 0

500 0 500
Principal Component 1

Epoch 50

500 0 500
Principal Component 1

Epoch 300

0

2

4

6

8

10

Av
g.

 C
or

re
ct

(M
ax

=
10

)

Figure 6: Relationship between neuron activation patterns and accuracy over training. At
selected epochs, we collect both activation and answers for the first 1000 GSM8K samples. For each
question, we identify the most frequently activated 20% of neurons across all tokens in the final layer,
and use their indices to construct a binary core-neuron vector. We apply PCA to reduce these vectors
to 2D. Each dot represents a sample; brighter colors indicate higher answer accuracy for the sample.

z = xWu, A = SiLU(z), y = AWd, where z and A denote the pre-activation and activation
outputs, respectively, and y represents the output. The gradients of j-th neuron in Wu and Wd are

(∇WuL):,j =
m∑
i=1

xi

(
(∇AL)i,j SiLU′(zi,j)

)
, (∇Wd

L):,j =
m∑
i=1

Ai,j (∇yL)i, (6)

where SiLU′(zi,j) is the derivative of the SiLU activation with respect to zi,j . When zi,j < 0, we
have SiLU′(zi,j) ≈ 0 and SiLU(zi,j) ≈ 0. This indicates that the number of gradient components
received by a neuron is proportional to the frequency of its activation.

Further analysis shows that tokens with higher angle concentration activate similar neurons due to
shared value patterns (see Appendix B.3). These neurons receive stronger cumulative gradients,
making them more effectively trained. Fig. 6 further illustrates how neuron activations converge
during training, forming a distinct cluster correlated with higher accuracy. Samples activating
neurons far from this cluster are harder to learn. Following prior work on neuron specialization, we
hypothesize this cluster encodes domain-specific knowledge [15, 16, 17].

Synthesizing the above analyses, we provide an answer to the third question as follows:

A3. We should follow the model’s inherent learning dynamics — prioritizing higher-angle
concentration data in the early stages and gradually transitioning to lower-angle concentration
data. This progression ensures more effective gradient updates and improves training efficiency.

3 GAIN-RL Framework
Based on the conclusions from the Sect. 2, we introduce GAIN-RL, a Gradient-driven Angle-
Informed Navigated-data RL framework, a plug-and-play training acceleration framework compatible
with any model and dataset, incurring negligible costs. GAIN-RL consists of three components:

Data Reordering Based on Angular Concentration. Guided by our findings in Sect. 2.3—that
models preferentially learn from data with higher angular concentration—we order the training data
by angular concentration before training to improve efficiency. Given a model M and a dataset
D = {d1, d2, . . . , dN}, we first perform pre-filling on all data samples using M to collect angular
information. Subsequently, the data is sorted based on the combined signal at the final layer output,

CM (di) = CMintra(di) + CMinter(di), Ds = SortM (D; CM (di), descending) (7)

6

Table 1: Comparison of Pass@1 accuracy on Math benchmarks. We report the accuracy at epoch
200 and the number of epochs needed to match vanilla GRPO’s 200-epoch accuracy (Epo@Same Acc).
ADARFT(GRPO) and GAIN-RL(GRPO) denote GRPO combined with the respective optimization.

Experiments Setting Task Performance (200 Iteration) Hardware Efficiency

Model Method GSM8K
[3]

Math
[4]

AMC 23
[18]

AIME 24
[19]

Olympiad
Bench[20]

Minerva
Math[21] Avg Iter@

Same Acc
Speed

Up

Qwen 2.5
Math 1.5B

Instruct

GRPO 84.15 64.40 38.55 10.00 25.63 13.97 39.95 200 1×
ADARFT(GRPO) 85.52 66.00 40.96 13.33 26.07 14.71 41.09 150 1.33×

GAIN-RL(GRPO) 88.09 67.20 43.37 13.33 27.26 16.54 42.63 80 2.50×

LLaMA 3.2
3B Instruct

GRPO 74.60 40.20 19.28 6.67 11.70 8.46 26.8 200 1×
ADARFT(GRPO) 78.01 39.00 18.07 6.67 12.89 8.56 27.2 140 1.43×

GAIN-RL(GRPO) 76.04 42.00 21.69 6.67 14.22 10.29 28.5 80 2.50×
Qwen 2.5
Math 7B
Instruct

GRPO 91.96 68.40 40.96 10.00 25.78 20.22 42.89 200 1×
ADARFT(GRPO) 92.65 70.20 42.17 10.00 25.33 21.32 43.61 150 1.33×

GAIN-RL(GRPO) 93.71 72.80 45.78 13.33 26.81 23.53 46.33 70 2.86×

Table 2: Comparison of model performance on Code benchmarks. ADARFT is not compared
because DeepCoder lacks the difficulty coefficients required by ADARFT.

Experiments Setting Task Performance (200 Iteration) Hardware Efficiency

Model Method LCB [6] LCB Codeforces [22] Codeforces Humaneval+ [23] Avg Iter@ Speed
Pass@1 Pass@8 Pass@1 Pass@8 Pass@1 Same Acc Up

Qwen 2.5 Coder
3B Instruct

GRPO 10.8 21.5 5.15 17.8 78.3 26.7 200 1×
GAIN-RL(GRPO) 12.8 25.1 6.14 18.2 81.5 28.8 110 1.81×

the sorted dataset Ds is directly employed in subsequent training. Notably, this sorting process is
computationally efficient, as it only requires the pre-filling step, which can be efficiently batched.
For example, sorting approximately 7000 samples of GSM8K with the Qwen-2.5-0.5-instruct model
takes less than 10 minutes on a single NVIDIA A100 GPU. In contrast, previous approaches often
required manual annotation or generation via large models, typically consuming several days.

Data Sampling Guided by Gaussian Probability. During training, we consistently prioritize data
with higher angular concentration. At the tth training step, we assign sampling probabilities to
each data sample in the sorted dataset Ds = {ds1, ds2, . . . , dsN} based on a Gaussian distribution
parameterized by µt and σt. A subset d(t) of size n is then sampled according to,

Pt(d
s
i) =

1

Zt
exp

(
− (i− µt)

2

2σ2
t

)
, d(t) ∼ Sample(Ds;Pt, n), (8)

where Zt is a normalization constant ensuring that probabilities sum to unity. Employing probabilistic
sampling instead of strictly sequential sampling enhances the stability and robustness of training.

Probability Update Based on Accuracy and Angular Signals. The Gaussian mean µt sets the
peak-sampling region. We initialize µ0 = 0 to prioritize high-angle concentration data, then gradually
increase µt as the model masters these samples, shifting focus to lower-angle concentration ones. At
each step, µt is updated from the batch d(t) using its average accuracy and angle concentration,

Acc(t) =
1

n

n∑
i=1

AccMt
(d

(t)
i), C(t) = 1

n

n∑
i=1

CMt
(d

(t)
i), (9)

where Mt represents the model at the tth training step, and AccMt
(d

(t)
i) and CMt

(d
(t)
i) denote

accuracy and angular concentration signals. Notably, computing these signals incurs no additional
cost as model inference is inherently performed during training. The update rule for µt+1 is given by,

µt+1 = µt +
n

2
· tanh

(
α(Acc(t) − β)

)
+

n

2
· tanh

(
γ · C(t)

)
, (10)

where α adjusts accuracy sensitivity, β sets the target accuracy, and γ controls angle sensitivity (see
Sect. 4 for guidelines). This update strategy maintains high-gradient training by targeting samples
near the desired accuracy while gradually incorporating harder, lower-angle data efficiently.

Appendix F experiments reveal that weighting the signal as CMintra + k · CMinter can further boost
performance. For simplicity and broad applicability, we adopt the unweighted signal here and leave
signal optimization to future work. Our main goal is to highlight angle concentration as a key signal.

7

0 25 50 75 100 125 150 175 200
Training Iteration

37

38

39

40

41

42

Ac
cu

ra
cy

GRPO
ADARFT(GRPO)
GAIN-RL(ours)

25 50 75 100 125 150 175 200
Training Iteration

20

22

24

26

28

Ac
cu

ra
cy

GRPO
ADARFT(GRPO)
GAIN-RL(ours)

Figure 7: Learning Dynamics of Different Methods on (Left) Qwen2.5-Math-1.5b-Instruct and
(Right) LLaMA-3.2-3b-Instruct. The y-axis shows average accuracy over GSM8K, Math, AMC 23,
AIME 24, OlympiadBench, and Minerva Math. Performance is evaluated every 5 epochs.

0.40 0.45 0.50 0.55 0.60 0.65
Avg. Angle (Untrained Model)
0

100

200

300

400

500

600

700

800

N
um

be
r

of
 S

am
pl

e

High AngConc biased Sampling

0.40 0.45 0.50 0.55 0.60 0.65
Avg. Angle (Untrained Model)
0

100

200

300

400

500

600

700

800

N
um

be
r

of
 S

am
pl

e

Uniform Sampling

0.40 0.45 0.50 0.55 0.60 0.65
Avg. Angle (Untrained Model)
0

100

200

300

400

500

600

700

800

N
um

be
r

of
 S

am
pl

e

Low AngConc biased Sampling

0 25 50 75 100 125 150 175 200
Training Iteration

12

14

16

18

20

22

24

Ac
cu

ra
cy

High AngConc biased Sampling
Uniform Sampling
Low AngConc biased Sampling
GAIN-RL(Full)
GRPO(Full)

Figure 8: Data Efficiency Analysis of GAIN-RL. We sampled half of the data from the math
dataset using three distinct sampling methods to train the Qwen2.5-0.5b-instruct model using GAIN-
RL(GRPO): (1) High Angle Concentration-biased Sampling, (2) Uniform Sampling, and (3) Low
Angle Concentration-biased Sampling. The first three figures illustrate the distribution of the sampled
data (highlighted in bright colors) within the overall dataset (grey) under each sampling scenario. The
rightmost figure presents the performance of models trained on differently distributed data, where
GAIN-RL (Full) and GRPO (Full) denote results obtained by training with the complete dataset.

4 Experiments

To evaluate the effectiveness of GAIN-RL, we conducted a comprehensive experimental study on
five levels: (1) Training Efficiency(Sect. 4.1), (2) Data Efficiency(Sect. 4.2), (3) RL Algorithms Gen-
eralization(Sect. 4.3), (4) Performance on Individual Tasks(Sect. 4.4), and (5) Ablation Studies(Sect.
4.5). For detailed descriptions of the used models and datasets, please refer to the Appendix E.

Training and Hyperparameter Settings. We set the target accuracy β = 0.5 to maintain strong
gradients during training. Sensitivity parameters α = 2 (for accuracy) and γ = 0.5 (for angle
concentration) are tuned on a validation set to ensure stable learning, keeping the tanh function
approximately linear over Acc(t) ∈ [0, 1] and C(t) ∈ [−1, 1]. Training is conducted using GRPO with
a batch size and sampling number n of 1024, implemented on the VerL framework with 8 NVIDIA
A100 GPUs. Additional details are provided in the Appendix E.

Baseline Settings. We compare GAIN-RL with the vanilla GRPO and ADARFT[14], a state-of-the-
art dynamic curriculum learning method in RL. The training settings are the same for all methods.

4.1 Training Efficiency of GAIN-RL

To evaluate the training efficiency of GAIN-RL, we use the DeepScaleR [24] and DeepCoder [25]
datasets to train models for math and code tasks, respectively. They both cover diverse problem types
and difficulty levels. Performance is tested on six math and three code benchmarks.

Model Performance. We report the performance of each method at 200 iterations during training.
As demonstrated in Tab. 1 and Tab. 2, models trained with GAIN-RL(GRPO) exhibited superior
performance across nearly all math and code datasets compared to models trained by vanilla GRPO
and ADARFT(GRPO). Notably, with the Qwen2.5-Math-1.5B-Instruct model, GAIN-RL(GRPO)
increased average accuracy across six math datasets from 39.95% and 41.09% to 42.63%, representing
gains of 2.68% and 1.54%, respectively. Furthermore, the performance improvement observed on

8

0 25 50 75 100 125 150 175 200
Training Iteration

33

36

39

42

45

48

51

Ac
cu

ra
cy

GRPO
GAIN-RL(ours)

0 25 50 75 100 125 150 175 200
Training Iteration

28

30

32

34

36

Ac
cu

ra
cy

GRPO
ADARFT(GRPO)
GAIN-RL(ours)

0 25 50 75 100 125 150 175 200
Training Iteration

4
5
6
7
8
9

10
11
12

Ac
cu

ra
cy

GRPO
ADARFT(GRPO)
GAIN-RL(ours)

Figure 9: Fine-tuning Performance on Single Tasks. (Left) GSM8k. (Mid) Math. (Right) AMC
23. Models are trained on the training sets and evaluated on their validation sets. ADARFT is
excluded from GSM8K due to missing difficulty coefficients.

0 25 50 75 100 125 150 175 200
Training Iteration

12

14

16

18

20

22

24

Ac
cu

ra
cy

Sort(Angle)+Update(Angle & Acc)
Sort(Angle)+Update(Acc)
Sort(Angle)+Update(Angle)
Sort(Acc)+Update(Acc)
GRPO

0 25 50 75 100 125 150 175 200
Training Iteration

12

14

16

18

20

22

Ac
cu

ra
cy

GAIN-RL(n=512)
GAIN-RL(n=768)
GAIN-RL(n=1024)
GRPO(n=1024)

Figure 10: (Left) Ablation Study of Module Components. (Right) Small Batch Scalability Test.
Experiments use Qwen2.5-0.5b-Instruct on Math training set, evaluate on the test set every 20
iterations.

LLaMA3.2-3B-Instruct demonstrates that GAIN-RL(GRPO) generalizes across different model
families. These results highlight both model-level and task-level generality of our method.

Hardware Efficiency. To evaluate hardware efficiency, we report the number of iterations required
for each method to reach the performance of vanilla GRPO at 200 iterations. As shown in Tab. 1 and
Tab. 2, GAIN-RL(GRPO) requires approximately only half the iterations across various models and
tasks. Specifically, for the Qwen2.5-Math-1.5B-Instruct and LLaMA3.2-3B-Instruct models, GAIN-
RL(GRPO) achieves approximately 2.5× speedup, significantly outperforming ADARFT(GRPO)
speedups of 1.33× and 1.43×, respectively. Fig. 7 further visualizes performance trajectories
during training, where GAIN-RL(GRPO) consistently demonstrates faster convergence and superior
performance at every iterations. As analyzed in Sect. 2, the acceleration mainly stems from the ability
of our method to maintain strong gradient signals throughout training, leading to faster learning.

4.2 Data Efficiency of GAIN-RL

To further investigate whether GAIN-RL can enhance data effectiveness in RFT, we fine-tuned the
Qwen2.5-0.5b-Instruct model on the Math dataset. We sampled half of the training dataset using three
distinct distribution strategies for GAIN-RL(GRPO) training: (1) Uniform Sampling, where half of
the training data was randomly selected; (2) High Angular Concentration-biased Sampling, where
data points were sampled based on their angular concentration scores, assigning a linear sampling
probability with a slope of 1 (prioritizing data points with higher angular concentration); and (3) Low
Angular Concentration-biased Sampling, applying a linear sampling probability with a slope of -1.

4.3 RL Algorithms Generalization Table 3: Performance of GAIN-RL com-
bined with PPO. Qwen2.5-0.5b-Instruct is
trained and evaluated on three datasets. Im-
plementation details are in Appendix E.

Task Performance Hardware Efficiency

Dataset PPO GAIN-RL
(PPO)

Iter@
200Acc Speed Up

GSM8K 42.46 45.26 80 2.5×
Math 32.15 34.80 100 2.0×

AMC 23 7.23 8.43 100 2.0×

To verify the algorithm generalization of GAIN-RL, we
also combine GAIN-RL with PPO. We evaluate the final
performance and hardware efficiency. Results in Tab.
3 highlight substantial gains in both performance and
hardware efficiency with GAIN-RL(PPO), achieving an
average of 2.2× training speedup across three mathemat-
ical benchmarks. This consistent benefit arises because
gradient updates are fundamental across RL algorithms,
validating GAIN-RL’s universal acceleration capability.

9

We compared the performance of models trained under these sampling strategies. The experimental
results, illustrated in Fig. 8, reveal that when using only half of the data, the model trained with High
Angular Concentration-biased Sampling outperformed even the model trained with the full dataset.
Based on the analysis in Sect. 2.3, we hypothesize this phenomenon occurs as data points with low
angular concentration tend to produce smaller gradient updates and activate dispersed neural regions.
Consequently, excluding these data points may enhance training efficiency. This insight provides
new guidance for data selection: prioritizing high angular concentration data and discarding low
angular concentration data can significantly improve data effectiveness of RFT. These findings
highlight GAIN-RL’s potential and effectiveness in guiding data selection. With uniform sampling,
GAIN-RL using half the data performs slightly worse than with full data but remains on par with
vanilla GRPO. In contrast, biased sampling toward low-angle concentration leads to unstable and
poor results, consistent with our analysis of weaker gradients and dispersed neuron activations.

4.4 Performance on Individual Tasks

To further demonstrate the generality of GAIN-RL(GRPO), we also evaluate its performance on
single-task RFT, which demands higher precision in data ordering and selection due to narrower
difficulty ranges. Using Qwen2.5-0.5b-Instruct, we fine-tuned separately on GSM8K, MATH, and
AMC training sets and evaluated on their test sets. Results in Fig. 9 indicate that GAIN-RL(GRPO)
consistently yielded higher performance and efficiency. Specifically, on GSM8K, GAIN-RL(GRPO)
achieved a 3.33× training speedup and a 4.72% final accuracy improvement. On the more challenging
MATH and AMC 23 datasets, GAIN-RL(GRPO) also achieves 2.5× and 2× speedups, respectively.
In contrast, ADARFT(GRPO) provided less improvement due to its fixed difficulty scoring, which
may not align precisely with actual model-perceived difficulty. In contrast, by leveraging model-
informed angle signals, GAIN-RL(GRPO) can predict learning priorities more accurately.

4.5 Ablation Studies

Module Ablation. To better understand the contribution of different components in GAIN-RL, we
conduct ablation studies, including (1) Data ordering + Accuracy-based probability updates, (2)
Data ordering + Angle-based probability updates, and (3) Accuracy-only (no ordering, discarding
fully correct data to reduce training costs). As shown in Fig. 10 (left), all ablation variants exhibit
degraded performance. The Accuracy-only group exhibits a marked performance drop, initially
improving but later declining due to forgetting from prematurely discarding data. This underscores
that data ordering and sampling constitute GAIN-RL(GRPO)’s primary performance advantages.
Moreover, while both Data ordering + Accuracy-based probability updates and Data ordering +
Angle-based probability updates show steady improvements over vanilla GRPO, they do not match
the performance of GAIN-RL(GRPO), as each only captures a single aspect of gradient.

Small-Batch Scalability Test. To validate the scalability of GAIN-RL under reduced training batch
sizes, we evaluated the model’s performance with varying batch sizes. Specifically, we conducted
experiments using the Qwen2.5-0.5b-instruct model on the Math dataset with training batch sizes of
512, 768, and 1024, respectively. The experimental outcomes, depicted in Fig. 10 (right), illustrate
consistent and stable performance improvement across iterations for all batch sizes. Remarkably,
even with the batch size reduced to half of the original size (n=512), which significantly reduces
computational time and memory usage per iteration, GAIN-RL maintained performance comparable
to vanilla GRPO. These results demonstrate that GAIN-RL effectively scales with smaller batch sizes,
offering the flexibility to accelerate training by lowering batch size, with only minor performance
degradation, especially beneficial under limited computational or memory resources.

5 Conclusion
We propose GAIN-RL, a novel Reinforcement Learning Fine-tuning framework that leverages
the angle concentration signals to dynamically allocate training data at each iteration. GAIN-RL
leverage the model’s intrinsic angle concentration signal to dynamically selects training data in each
iteration, ensuring consistently impactful gradient updates and thus significantly enhancing overall
training efficiency. Furthermore, our empirical results further show that GAIN-RL (GRPO) achieves
over a 2.5× acceleration in training efficiency across diverse mathematical and coding tasks and
varying model scales. Overall, GAIN-RL introduces a novel paradigm for training-efficiency RFT,
highlighting how model-centric data-processing approaches can remedy the sub-optimality of current
RFT methods and further elevate their effectiveness.

10

References
[1] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[2] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[3] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[4] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[5] Martin Kuo, Jianyi Zhang, Aolin Ding, Qinsi Wang, Louis DiValentin, Yujia Bao, Wei Wei,
Hai Li, and Yiran Chen. H-cot: Hijacking the chain-of-thought safety reasoning mechanism to
jailbreak large reasoning models, including openai o1/o3, deepseek-r1, and gemini 2.0 flash
thinking. arXiv preprint arXiv:2502.12893, 2025.

[6] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[7] Qinsi Wang and Sihai Zhang. Dgl: Device generic latency model for neural architecture search
on mobile devices. IEEE Transactions on Mobile Computing, 23(2):1954–1967, 2023.

[8] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[9] Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo.
Remax: A simple, effective, and efficient reinforcement learning method for aligning large
language models. arXiv preprint arXiv:2310.10505, 2023.

[10] Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models.
arXiv preprint arXiv:2501.03262, 2025.

[11] Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He.
Simplerl-zoo: Investigating and taming zero reinforcement learning for open base models in the
wild. arXiv preprint arXiv:2503.18892, 2025.

[12] Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is
more for reasoning. arXiv preprint arXiv:2502.03387, 2025.

[13] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

[14] Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement
finetuning via adaptive curriculum learning. arXiv preprint arXiv:2504.05520, 2025.

[15] Qinsi Wang, Saeed Vahidian, Hancheng Ye, Jianyang Gu, Jianyi Zhang, and Yiran Chen.
Coreinfer: Accelerating large language model inference with semantics-inspired adaptive sparse
activation. arXiv preprint arXiv:2410.18311, 2024.

[16] Zeping Yu and Sophia Ananiadou. Neuron-level knowledge attribution in large language models.
arXiv preprint arXiv:2312.12141, 2023.

[17] Chaojun Xiao, Zhengyan Zhang, Chenyang Song, Dazhi Jiang, Feng Yao, Xu Han, Xiaozhi
Wang, Shuo Wang, Yufei Huang, Guanyu Lin, et al. Configurable foundation models: Building
llms from a modular perspective. arXiv preprint arXiv:2409.02877, 2024.

11

[18] Proceedings of the ACM Web Conference 2023, Austin, TX, USA, 2023. Association for Com-
puting Machinery. URL https://dl.acm.org/doi/proceedings/10.1145/3543507.

[19] 2024 american invitational mathematics examination (aime). https://www.maa.org/
math-competitions, 2024. Accessed: 2025-05-14.

[20] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

[21] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving
quantitative reasoning problems with language models. Advances in Neural Information
Processing Systems, 35:3843–3857, 2022.

[22] Mikhail Mirzayanov. Open codeforces rating system. https://codeforces.com/blog/
entry/20762, 2015. Accessed: 2025-05-14.

[23] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[24] Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a
1.5 b model by scaling rl. Notion Blog, 2025.

[25] Michael Luo, Sijun Tan, Roy Huang, Xiaoxiang Shi, Rachel Xin, Colin Cai, Ameen Patel,
Alpay Ariyak, Qingyang Wu, Ce Zhang, et al. Deepcoder: A fully open-source 14b coder at
o3-mini level, 2025.

[26] Qinsi Wang, Hancheng Ye, Ming-Yu Chung, Yudong Liu, Yueqian Lin, Martin Kuo, Mingyuan
Ma, Jianyi Zhang, and Yiran Chen. Corematching: A co-adaptive sparse inference framework
with token and neuron pruning for comprehensive acceleration of vision-language models. arXiv
preprint arXiv:2505.19235, 2025.

[27] Wang Qinsi, Jinghan Ke, Masayoshi Tomizuka, Kurt Keutzer, and Chenfeng Xu. Dobi-svd: Dif-
ferentiable svd for llm compression and some new perspectives. In The Thirteenth International
Conference on Learning Representations.

[28] Judy Hanwen Shen, Archit Sharma, and Jun Qin. Towards data-centric rlhf: Simple metrics
for preference dataset comparison. In NeurIPS, 2024. URL https://arxiv.org/abs/2409.
09603.

[29] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization
algorithms. Advances in neural information processing systems, 36:49205–49233, 2023.

[30] Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J Kusner. No train no
gain: Revisiting efficient training algorithms for transformer-based language models. Advances
in Neural Information Processing Systems, 36:25793–25818, 2023.

[31] Dante Everaert and Christopher Potts. Gio: Gradient information optimization for training
dataset selection. arXiv preprint arXiv:2306.11670, 2023.

[32] Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection
with datamodels. arXiv preprint arXiv:2401.12926, 2024.

[33] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis,
Percy Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for
deep learning. arXiv preprint arXiv:1906.11829, 2019.

12

https://dl.acm.org/doi/proceedings/10.1145/3543507
https://www.maa.org/math-competitions
https://www.maa.org/math-competitions
https://codeforces.com/blog/entry/20762
https://codeforces.com/blog/entry/20762
https://arxiv.org/abs/2409.09603
https://arxiv.org/abs/2409.09603

[34] Hancheng Ye, Zhengqi Gao, Mingyuan Ma, Qinsi Wang, Yuzhe Fu, Ming-Yu Chung, Yueqian
Lin, Zhijian Liu, Jianyi Zhang, Danyang Zhuo, et al. Kvcomm: Online cross-context kv-cache
communication for efficient llm-based multi-agent systems. arXiv preprint arXiv:2510.12872,
2025.

[35] Yueqian Lin, Qinsi Wang, Hancheng Ye, Yuzhe Fu, Hai Li, Yiran Chen, et al. Hippomm:
Hippocampal-inspired multimodal memory for long audiovisual event understanding. arXiv
preprint arXiv:2504.10739, 2025.

[36] Qinsi Wang, Bo Liu, Tianyi Zhou, Jing Shi, Yueqian Lin, Yiran Chen, Hai Helen Li, Kun Wan,
and Wentian Zhao. Vision-zero: Scalable vlm self-improvement via strategic gamified self-play.
arXiv preprint arXiv:2509.25541, 2025.

[37] Zishan Shao, Yixiao Wang, Qinsi Wang, Ting Jiang, Zhixu Du, Hancheng Ye, Danyang Zhuo,
Yiran Chen, and Hai Li. Flashsvd: Memory-efficient inference with streaming for low-rank
models. arXiv preprint arXiv:2508.01506, 2025.

[38] Yueqian Lin, Zhengmian Hu, Qinsi Wang, Yudong Liu, Hengfan Zhang, Jayakumar Subra-
manian, Nikos Vlassis, Hai Helen Li, and Yiran Chen. Voice evaluation of reasoning ability:
Diagnosing the modality-induced performance gap. arXiv preprint arXiv:2509.26542, 2025.

[39] Hancheng Ye*, Jiakang Yuan*, Renqiu Xia, Xiangchao Yan, Tao Chen, Junchi Yan, Botian Shi,
and Bo Zhang. Training-free adaptive diffusion with bounded difference approximation strategy.
In The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS),
2024.

[40] Hancheng Ye, Chong Yu, Peng Ye, Renqiu Xia, Yansong Tang, Jiwen Lu, Tao Chen, and
Bo Zhang. Once for both: Single stage of importance and sparsity search for vision transformer
compression. In IEEE/CVF Computer Vision and Pattern Recognition (CVPR), 2024.

[41] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36:53728–53741, 2023.

[42] Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Active
preference optimization for sample efficient rlhf. arXiv preprint arXiv:2402.10500, 2024.

[43] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

[44] Shuai Li, Kui Jia, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep neural
networks. IEEE transactions on pattern analysis and machine intelligence, 43(4):1352–1368,
2019.

[45] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality
regularizations in training deep networks? Advances in Neural Information Processing Systems,
31, 2018.

[46] Yudong Liu, Jingwei Sun, Yueqian Lin, Jingyang Zhang, Ming Yin, Qinsi Wang, Jianyi Zhang,
Hai Li, and Yiran Chen. Keyframe-oriented vision token pruning: Enhancing efficiency of
large vision language models on long-form video processing. arXiv preprint arXiv:2503.10742,
2025.

[47] Qinsi Wang*, Jinghan Ke*, Zhi Liang, and Sihai Zhang. Mathnas: if blocks have a role in
mathematical architecture design. Advances in Neural Information Processing Systems, 36:
47475–47486, 2023.

[48] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving
quantitative reasoning problems with language models. Advances in Neural Information
Processing Systems, 35:3843–3857, 2022.

13

Organization In this Appendix, we provide in-depth descriptions of the materials that are not covered
in the main paper, and report additional experimental results. The document is organized as follows:

• A- Related Work

• B- Theoretical Supplement

– B.1 Theoretical Justification of Angle-Dependent Effects in LLMs
– B.2 Attention-Based Explanation of Layer-wise Angle Concentration Patterns
– B.3 Neuron-Based Explanation of Data-wise Angle Concentration Patterns

• C- Visualization Results

– C.1 Layer-wise Angle Concentration Patterns
– C.2 Data-wise Angle Concentration Patterns

• D- GAIN-RL Algorithm

• E- Experimental Setup

• F- Additional Experimental Results

– F.1 Performance of Weighted Signals
– F.2 Model Performance on Single Task

• G- Discussion and Future Work

A Related Work

Reinforcement Fine-Tuning (RFT)[8, 10] has demonstrated significant effectiveness in enhancing the
reasoning capabilities of large language models [15, 26, 27]. However, despite its promising potential,
its low sample efficiency and high computational costs remain critical barriers to the broader adoption
of RFT. Recent efforts aimed at addressing these efficiency have primarily focused on algorithmic
optimizations and data-centric strategies. Algorithmic optimizations, exemplified by methods such
as GRPO [8], REINFORCE++ [10], and ReMax [9], seek to reduce computational complexity by
streamlining underlying RL algorithms. Although these methods typically improve efficiency and
stability, they often involve inherent trade-offs. For instance, GRPO estimates advantages through
relative comparisons within output groups, thereby eliminating the need for value functions. While
this approach reduces complexity and the reliance on critics, it can introduce instability due to
increased noise in advantage estimation, higher variance in updates, and greater sample requirements.

In parallel, data-centric strategies [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] have emerged as
promising alternatives for efficient fine-tuning. For example, [28] provides the first quantitative audit
of preference datasets, introducing metrics for scale, noise, and information density that expose quality
bottlenecks before any policy update. Direct Preference Optimization (DPO) [41] simplifies the entire
loop by replacing on-policy RL with a closed-form classification loss, making the choice of high-value
preference data the primary driver of alignment quality. To further reduce annotation cost, Active
Preference Optimization [42] casts RLHF as an active-learning bandit, adaptively querying only the
prompts expected to maximize reward-model improvement. The latest data-centric strategies can be
categorized based on their approach to data manipulation: data selection and data sequencing. Data
selection techniques involve filtering extensive datasets to retain only a small subset of high-quality
training data based on predefined metrics. Methods such as LIMO[12] and s1[13] have demonstrated
that carefully curated small supervised fine-tuning datasets can achieve robust performance using
orders of magnitude less data. On the other hand, data sequencing strategies[43] enhance model
learning speed by rearranging the order of training data within existing datasets. Approaches like
ADARFT[14] have shown that dynamically selecting data for each iteration can effectively accelerate
the training process.

Nevertheless, existing data-centric strategies have generally failed to account for the unique char-
acteristics of different models, applying uniform data handling procedures across diverse model
architectures. Such uniformity can lead to suboptimal outcomes because models differ significantly
in their sensitivity and response to the same datasets. To overcome this challenge, this paper aims
to identify intrinsic signals within models that can reflect their perceptual capabilities toward data,
thereby enabling tailored data strategies without incurring substantial additional costs.

14

B Theoretical Supplement

In this section, we provide the theoretical explanation supporting the main text in Section 2. Specifi-
cally, we elaborate on the Angle-Dependent Effects of Attention and Activation (corresponding to
Section 2.1 of the main text), the Attention-Based Explanation of Layer-wise Angle Concentration
Patterns (corresponding to Section 2.2 of the main text), and the Neuron-Based Explanation of
Data-wise Angle Concentration Patterns (corresponding to Section 2.3 of the main text).

B.1 Theoretical Justification of Angle-Dependent Effects in LLMs

In this section, we demonstrate through derivation of the LLM computational process that the nonlin-
ear operations in LLMs—namely attention and activation computations—are inherently dependent
on the angles between the input hidden states.

To support this claim, we first introduce two empirical assumptions based on observation:

Observation 1. Wq and Wk are nearly approximately orthogonal to each other, i.e., Wq W
T
k ≈ θI.

θ is a constant.
(
Wo,Wu,Wd

)
are approximately orthogonal matrices, i.e., W WT ≈ λI . λ is a

constant.

Observation 2. For activation function output vectors Ai and AM , cos(∠(Ai, AM)) is proportional
to the number of intersections of activated neurons, i.e.,

∣∣Γ(xi) ∩ Γ(xM)
∣∣.

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 0

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 1

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 2

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 3

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 4

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 5

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 6

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 7

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 8

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 9

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 10

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 11

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 12

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 13
0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 14

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 15

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 16

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 17

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 18

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 19

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 20

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 21

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 22

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 23

0.0

0.2

0.0

0.2

0.0

0.2

0.0

0.2

0.0

0.2

0.0

0.2

0.0

0.2

0.4

0.0

0.5

0.00

0.25

0.50

0.0

0.2

0.0

0.2

0.4

0.0

0.2

0.4

0.00

0.25

0.50

0.0

0.5

0.00

0.25

0.50

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

Figure 11: Visualization of WD@WD.T at different layers in Qwen2.5-0.5B-Instruct.

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 0

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 1

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 2

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 3

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 4

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 5

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 6

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 7

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 8

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 9

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 10

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 11

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 12

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 13

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 14

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 15

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 16

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 17

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 18

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 19

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 20

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 21

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 22

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 23

0.00

0.25

0.50

0.0

0.2

0.0

0.2

0.0

0.2

0.0

0.1

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.0

0.2

0.4

0.0

0.2

0.0

0.2

0.4

0.0

0.2

0.0

0.1

0.2

0.0

0.1

0.0

0.2

0.0

0.5

0.0

0.1

0.2

0.0

0.2

0.0

0.2

0.0

0.2

0.4

0.0

0.5

0.0

0.5

0.0

0.5

0.00

0.25

0.50

Figure 12: Visualization of WO@WO.T at different layers in Qwen2.5-0.5B-Instruct.

15

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 0

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 1

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 2

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 3

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 4

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 5

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 6

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 7

0 8 16 24 32 40 48 56
0
8

16
24
32
40
48
56

Layer 8

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 9

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 10

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 11

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 12

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 13

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 14

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 15

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 16

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 17

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 18

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 19

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 20

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 21

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 22

0 8 16 24 32 40 48 56

0
8

16
24
32
40
48
56

Layer 23

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

2

0

1

0

1

0

1

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

0

1

2

0

1

2

0

1

2

0

1

2

0

5

0

2

Figure 13: Visualization of WU@WU .T at different layers in Qwen2.5-0.5B-Instruct.

We provide empirical validation to support both of these assumptions.

For Observation 1, we show WQ@WK .T , WV @WV .T , WD@WD.T of all different layers of
Qwen2.5-0.5B-Instruct in Fig. 11, 12, and 13. It can be seen that different layers have this orthogonal
relationship. In fact, the orthogonal relationship of matrices in neural networks has been studied
since a long time ago. In particular, [44] proposed a new regularization method that encourages
the weight matrix of the neural network to maintain orthogonality during training by introducing a
self-orthogonality module. This method helps to improve the training stability and generalization
ability of the model. [45, 46, 47] explores adding orthogonal regularization to weights during training
to improve training stability. The author proposed an orthogonal regularization method for weights,
aiming to solve the gradient vanishing and explosion problems encountered by deep convolutional
neural networks during training. It can be seen that modules with orthogonality are found in various
different models to improve the training stability and performance of the model. To the best of our
knowledge, we are the first work to intuitively show this orthogonal performance in LLM, which can
be more fully explored in subsequent research.

For Observation 2, this observation is illustrated in Fig. 14. An intuitive understanding is that if xi

and xM activate more of the same neurons, Ai and AM will have more positive values in common
positions, making cos(Ai, AM) larger.

2700 2800
Co-act Neuron Num

0.05

0.10

0.15

0.20

Co
s(

Ai
,A

M
)

Layer 0

2700 2800
Co-act Neuron Num

0.000

0.025

0.050

0.075

0.100

Co
s(

Ai
,A

M
)

Layer 1

2700 2800
Co-act Neuron Num

0.00

0.02

0.04

0.06

Co
s(

Ai
,A

M
)

Layer 2

2700 2800
Co-act Neuron Num

0.04

0.02

0.00

0.02

0.04

Co
s(

Ai
,A

M
)

Layer 3

2700 2800 2900
Co-act Neuron Num

0.00

0.05

0.10

Co
s(

Ai
,A

M
)

Layer 4

2800 2900 3000
Co-act Neuron Num

0.00

0.05

0.10

0.15

Co
s(

Ai
,A

M
)

Layer 5

2800 3000
Co-act Neuron Num

0.00

0.05

0.10

0.15

Co
s(

Ai
,A

M
)

Layer 6

2800 3000
Co-act Neuron Num

0.0

0.1

0.2

Co
s(

Ai
,A

M
)

Layer 7

2800 3000
Co-act Neuron Num

0.0

0.1

0.2

Co
s(

Ai
,A

M
)

Layer 8

2800 3000
Co-act Neuron Num

0.0

0.1

0.2

Co
s(

Ai
,A

M
)

Layer 9

2800 3000 3200
Co-act Neuron Num

0.0

0.1

0.2

Co
s(

Ai
,A

M
)

Layer 10

2750 3000 3250
Co-act Neuron Num

0.0

0.1

0.2

0.3

Co
s(

Ai
,A

M
)

Layer 11

2800 3000 3200
Co-act Neuron Num

0.0

0.1

0.2

0.3

0.4

Co
s(

Ai
,A

M
)

Layer 12

2750 3000 3250
Co-act Neuron Num

0.0

0.1

0.2

0.3

0.4

Co
s(

Ai
,A

M
)

Layer 13

2750 3000 3250
Co-act Neuron Num

0.0

0.1

0.2

0.3

Co
s(

Ai
,A

M
)

Layer 14

2750 3000 3250
Co-act Neuron Num

0.0

0.2

0.4

Co
s(

Ai
,A

M
)

Layer 15

2750 3000 3250
Co-act Neuron Num

0.0

0.2

0.4

Co
s(

Ai
,A

M
)

Layer 16

2750 3000 3250
Co-act Neuron Num

0.0

0.2

0.4

0.6

Co
s(

Ai
,A

M
)

Layer 17

3000 3500
Co-act Neuron Num

0.0

0.2

0.4

Co
s(

Ai
,A

M
)

Layer 18

2750 3000 3250
Co-act Neuron Num

0.0

0.2

0.4

Co
s(

Ai
,A

M
)

Layer 19

3000 3500
Co-act Neuron Num

0.0

0.2

0.4

0.6

Co
s(

Ai
,A

M
)

Layer 20

2750 3000 3250
Co-act Neuron Num

0.0

0.2

0.4

Co
s(

Ai
,A

M
)

Layer 21

3000 3500
Co-act Neuron Num

0.0

0.2

0.4

0.6

Co
s(

Ai
,A

M
)

Layer 22

3000 3500
Co-act Neuron Num

0.0

0.2

0.4

Co
s(

Ai
,A

M
)

Layer 23

3000 3500
Co-act Neuron Num

0.0

0.2

0.4

Co
s(

Ai
,A

M
)

Layer 24

3000 3500
Co-act Neuron Num

0.0

0.2

0.4

0.6

Co
s(

Ai
,A

M
)

Layer 25

3000 3500
Co-act Neuron Num

0.0

0.2

0.4

Co
s(

Ai
,A

M
)

Layer 26

2750 3000 3250
Co-act Neuron Num

0.0

0.2

0.4

0.6

Co
s(

Ai
,A

M
)

Layer 27

3000 3500
Co-act Neuron Num

0.2

0.4

Co
s(

Ai
,A

M
)

Layer 28

3000 3500
Co-act Neuron Num

0.1

0.2

0.3

0.4

0.5

Co
s(

Ai
,A

M
)

Layer 29

3000 3250 3500
Co-act Neuron Num

0.2

0.4

0.6

Co
s(

Ai
,A

M
)

Layer 30

3000 3500
Co-act Neuron Num

0.2

0.4

0.6

Co
s(

Ai
,A

M
)

Layer 31

Figure 14: Visualization of cos(∠(Ai, AM)) and co-act neurons number at different layers in
Qwen2.5-0.5B-Instruct.

Theoretical Insight 1. Within an attention block, the degree of interaction between two tokens is
governed by the relative angle of their input hidden states.

16

Justification. For a single token, suppose its input to the Attention block is y. Consider a sequence of
tokens [y1, y2, . . . , yM], for token ym , its computation in the Attention layer can be expressed as:

ŷm = LayerNorm(ym), Vm = ŷm Wv,

αim = Softmax
(
(ŷi Wq)

(
ŷm Wk

)T)
, i < m

Om = α1m V1 + α2m V2 + · · ·+ αmm Vm,

(11)

where αim is the attention score between the i-th and the m-th token. Om is the output vector of the
m-th token. To examine the influence of the i-th token yi on the final output Om of the m-th token,
we can consider the following projection value:∥∥ProjOm

(
αim Vi

)∥∥ =
∥∥αim Vi

∥∥ cos(∠(Vi, Om)
)
. (12)

where
∥∥ProjOm

(
αim Vi

)∥∥ is the projection value of αim Vi on Oi. And cos
(
∠(Vi, Om)

)
is the

cosine value of the angle between the Vi and Om vectors. From Eq. 11, Om is a sum of vectors in
different directions. Since the self-attention score αmm is typically much higher than αim for other
tokens, we can simplify the projection by assuming that Om is primarily determined by αmmVm, i.e.,

∥ProjOm
(αimVi)∥ ≈ ∥αimVi∥ cos(∠(Vi, Vm)), (13)

where αim = Softmax
(
(ŷi Wq)

(
ŷm Wk

)T
/
√
d
)
. Since the Softmax function is monotonic, that is,

Softmax(x) ∝ x. We can have αim ∝ (ŷi Wq)
(
ŷm Wk

)T
. Therefore,

∥αimVi∥ cos(∠(Vi, Vm))

∝ (ŷi Wq)
(
ŷm Wk

)T ∥Vi∥ cos(∠(Vi, Vm))

= ⟨ŷiWq, ŷmWk⟩⟨Vi, Vm⟩/∥Vm∥
=

(
ŷi(WqW

T
k)ŷTm

)(
ŷi(WvW

T
v)ŷTM

)
/∥Vm∥

(14)

Based on the Observation 1, WqW
T
k ≈ θI , WvW

T
v ≈ λI . Therefore, combining Eq. 13 and Eq. 14,

∥ProjOm
(αimVi)∥ ∝ θλ⟨ŷi, ŷm⟩⟨ŷi, ŷm⟩/∥Vm∥ (15)

Given that ŷ is the result of y after LayerNorm, ŷ and y share the same direction, and ∥ ŷ ∥= 1, it
holds that ⟨ŷi, ŷm⟩ = cos(∠(yi, ym)). We can have

∥ProjOm
(αimVi)∥ ∝ cos(∠(yi, ym)), (16)

Eq. 19 shows that the angle between different tokens directly affects their mutual interaction in
attention layer. The closer the angles of two tokens, the greater their mutual influence.

We also demonstrate that the computation of activations is influenced by the angular relationships
between hidden states. This justification is presented as Theoretical Insight 4 in Section B.3.

B.2 Attention-Based Explanation of Layer-wise Angle Concentration Patterns

In this section, we present an attention-based explanation of Layer-wise angular concentration
patterns. Specifically, we theoretically show that: (1) the degree of angular concentration between
two hidden states influences the magnitude of their attention scores, and (2) the presence of sink
attention structure encourages angular concentration among tokens.

Theoretical Insight 2. The smaller the angle between the input hidden states of two tokens to the
attention block, the higher their corresponding attention score.

Justification. For two tokens i and j, let their inputs to an attention block be denoted as xi and xj ,
respectively. Then, their attention score αij can be expressed as:

ŷi = LayerNorm(yi), ŷj = LayerNorm(yj),

αij = Softmax
(
(ŷi Wq)

(
ŷj Wk

)T/√
d),

(17)

Based on the Observation 1, WqW
T
k ≈ θI , Therefore,

αij = Softmax
(
(ŷi Wq)

(
ŷj Wk

)T
/
√
d
)
= Softmax

(
⟨ŷiWq, ŷjWk⟩/

√
d
)

= Softmax
(
ŷi(WqW

T
k)ŷTj /

√
d
)
= Softmax

(
θ · ⟨ŷi, ŷj⟩/

√
d
) (18)

17

Furthermore, since LayerNorm preserves the direction of vectors by normalizing only their magnitude,
the inner product between normalized outputs satisfies ⟨ŷi, ŷj⟩ = cos(∠(yi, yj)),

αij = Softmax
(
θ · cos(∠(yi, yj)/

√
d
)
∝ cos(∠(yi, yj)

)
(19)

Equation 19 indicates that the more aligned the hidden states of two input tokens are (i.e., the smaller
the angle between them), the higher their attention score.

Therefore, in conjunction with the layer-wise angle concentration pattern discussed in the main
text, we observe that inter-segment angular concentration reflects the model’s degree of attention to
internal components of the problem, while intra-segment angular concentration captures the level
of attention between the question and the system prompt—serving as an indicator of the model’s
instruction-following capability.

Theoretical Insight3. Presence of sink attention promotes angular concentration among hidden states.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17

Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

0.00

0.01

0.02

0.03

Va
lu

e

0.000
0.005
0.010
0.015
0.020
0.025
0.030

Va
lu

e

0.00

0.01

0.02

0.03

Va
lu

e

0.000

0.005

0.010

0.015

0.020

0.025

Va
lu

e

0.000

0.005

0.010

0.015

0.020

0.025

Va
lu

e

0.000

0.005

0.010

0.015

0.020

Va
lu

e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Va
lu

e

0.000

0.005

0.010

0.015

0.020

Va
lu

e

0.00

0.01

0.02

0.03
Va

lu
e

0.000

0.005

0.010

0.015

0.020

Va
lu

e

0.000

0.005

0.010

0.015

0.020

0.025

Va
lu

e

0.000

0.005

0.010

0.015

Va
lu

e

0.000
0.005
0.010
0.015
0.020
0.025
0.030

Va
lu

e

0.000

0.005

0.010

0.015

0.020

0.025

Va
lu

e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Va
lu

e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Va
lu

e

0.000

0.002

0.004

0.006

0.008

0.010

Va
lu

e

0.000

0.005

0.010

0.015

Va
lu

e

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

Va
lu

e

0.000

0.005

0.010

0.015

Va
lu

e

0.000

0.005

0.010

0.015

Va
lu

e

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Va
lu

e

0.00

0.01

0.02

0.03

Va
lu

e

0.00

0.01

0.02

0.03

Va
lu

e

Figure 15: Visualization of attention score at different layers in Qwen2.5-0.5B-Instruct.

Justification. To understand why token angles exhibitLayer-wise angular concentration patterns,
we start our analysis from the phenomenon of sink attention, which similarly shows segment-wise
characteristics yet remains insufficiently understood. In LLMs, attention scores exhibit segment-wise
tendencies, and, apart from self-attention, attention scores typically peak at the first token of each
segment. This phenomenon is termed sink attention, as illustrated in Figure 15.

Given an input representation for an attention block in an LLM as y ∈ Rm×d, where the i-th token
is denoted as yi, the attention mechanism output is defined as O = αV , where α represents the
attention scores, and V = LayerNorm(y)Wv denotes the value vectors. Suppose the attention scores
within a segment “sink” to the first token vector yi, then the outputs for the sink token yi and another
token yk within the same segment can be approximated as:

Oi ≈ αiiVi, Ok ≈ αikVi + αkkVk,

where αik denotes the attention score between tokens i and k. This approximation arises because
the sink token’s self-attention score significantly surpasses its attention scores to other tokens, while
other tokens primarily attend to themselves and the sink token.

Substituting these approximations, the angle between outputs Oi and Ok can be expressed as:

cos(∠(Oi,Ok)) =
αik∥Vi∥+ αkk∥Vk∥ cos(∠(Vi,Vk))√

α2
ik∥Vi∥2 + α2

kk∥Vk∥2 + 2αikαkk∥Vi∥∥Vk∥ cos(∠(yi,yk))

Furthermore, since Wv is approximately an orthonormal matrix (detailed proof in the appendix) and
thus preserves angles, we have WvW

⊤
v ≈ βI , where β is a constant. Combined with the fact that

18

LayerNorm scales only magnitudes without altering angles, we get:

cos(∠(Vi,Vk)) = cos(∠(yi,yk)).

Substituting into the earlier expression, we derive:

cos(∠(Oi,Ok)) =
αik + αkk cos(∠(yi,yk))√

β
√

α2
ik + α2

kk + 2αikαkk cos(∠(yi,yk))

Squaring both sides and simplifying, we arrive at the condition:

cos(∠(Oi,Ok)) > cos(∠(yi,yk)) if β(cos(∠(yi,yk)))
2 < 1 and β < 1.

Since weight parameters in LLMs are typically constrained to values less than 1, both β < 1
and β(cos(∠(yi,yk)))

2 < 1 generally hold. Thus, Equation (7) demonstrates that sink attention
inherently promotes angle concentration within segments. A detailed derivation is provided in the
appendix.

In Figure 15, we present the distribution of attention scores across different layers. In intermediate
layers, sink tokens operate primarily within segments to enhance intra-segment angle concentration.
In later layers, sink tokens across segments begin to interact, promoting inter-segment concentration.
This indicates that, due to the influence of sink tokens, token angles are increasingly concentrated
through the forward pass. The final layer’s angle concentration is particularly important as it reflects
the culmination of this process and directly determines the model’s output.

B.3 Neuron-Based Explanation of Data-wise Angle Concentration Patterns

In Section 2.3 of the main text, we demonstrate that the greater the number of tokens activating the
same neuron, the more gradient components that neuron receive. In this section, we further show that
the number of commonly activated neurons between tokens has a direct effect on the angle between
their output hidden states at the current layer.

Theoretical Insight 4. Within the FFN block, the extent of overlap in activated neurons between two
tokens directly affects the angular relationship between their output hidden states.

Justification. To analyze how the activation layer affects cos(∠(yi, yM)), we first decompose its
computation formula. Suppose the activation output of the i-th token is Ai, and yi = AiWd. Based
on Observation 1, Wd is a scalar multiple of a unitary self-orthogonal matrix, applying the same
rotation to any input while preserving the inner product and angle between any two input vectors.
Thus, we can have:

cos(∠(yi, yM)) = ⟨AiWd, AMWd⟩/(∥yi∥∥yM∥)
= Ai(WdW

T
d)AT

M/(∥yi∥∥yM∥)
= η⟨Ai, AM ⟩ /(∥yi∥∥yM∥),

(20)

where η is a constant based on Observation 1. Furthermore, since Wd is an orthogonal matrix,

∥yi∥2 = ∥AiWd∥2 = (AiWd)(AiWd)
T

= Ai(WdW
T
d)AT

i = ηAiA
T
i = η∥Ai∥2.

(21)

which means ∥yi∥ =
√
η∥Ai∥. Substituting this into Eq. 20 we can have

cos(∠(yi, yM)) = η⟨Ai, AM ⟩ /(η∥Ai∥∥AM∥)
= cos(∠(Ai, AM))

(22)

This shows that the orthogonal matrix Wd does not change the angles between the input vectors.
Furthermore, based on Observation 2, cos(∠(Ai, AM)) ∝

∣∣Γ(xi) ∩ Γ(xM)
∣∣, we can get

cos(∠(yi, yM)) ∝
∣∣Γ(xi) ∩ Γ(xM)

∣∣. (23)

which is consistent with Insight 2.

Eq. 23 shows that activation layers adjust token angles by controlling the intersections of their
activated neurons. More shared activated neurons lead to smaller angles and greater mutual influence.

19

C Visualization Results
In the main text, we presented layer-wise, epoch-wise, and data-wise patterns of angular concentration.
In this section, we provide more comprehensive visualizations to further support our conclusions.

C.1 Layer-wise Angle Concentration Patterns
In Fig. 16, 17 and 18, we present the layer-wise angular concentration patterns across all layers of the
Qwen2.5-0.5B-Instruct model for tasks of easy, medium, and high difficulty, respectively. Notably,
the model consistently demonstrates first intra-segment angle concentration and subsequently inter-
segment angle concentration—regardless of problem difficulty. This consistency suggests that the
observed pattern is a generalizable property of the model’s internal representation dynamics.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17

Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.1

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.2

0.3

0.4

0.5

Va
lu

e

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.2

0.3

0.4

0.5

Va
lu

e
0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.1

0.2

0.3

0.4

Va
lu

e

Figure 16: Visualization of Layer-wise Angle Concentration at different layers in Qwen2.5-0.5B-
Instruct at easy sample (correct num = 10).

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17

Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.1

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.2

0.3

0.4

0.5

Va
lu

e

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.1

0.2

0.3

0.4

Va
lu

e

Figure 17: Visualization of Layer-wise Angle Concentration at different layers in Qwen2.5-0.5B-
Instruct at medium difficulty sample (correct num = 5).

20

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17

Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

0.4

0.2

0.0

0.2

0.4

0.6

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.1

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.2

0.3

0.4

0.5

Va
lu

e

0.2

0.3

0.4

0.5

0.6

Va
lu

e
0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e
0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

0.5

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.0

0.1

0.2

0.3

0.4

Va
lu

e

0.1

0.2

0.3

0.4

Va
lu

e

Figure 18: Visualization of Layer-wise Angle Concentration at different layers in Qwen2.5-0.5B-
Instruct at difficult sample (correct num = 0).

C.2 Data-wise Angle Concentration Patterns

Fig. 19 provides a more fine-grained view of the data-wise angle-concentration patterns. Consistent
with the conclusions in the main text, it reveals a curriculum-like trend: the model learns samples
exhibiting high angular concentration earlier, followed by samples with lower angular concentration.

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

intra + inter

0

20

40

60

80

100

120

N
um

be
r

of
 S

am
pl

e

Epoch 0

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

intra + inter

Epoch 25

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

intra + inter

Epoch 50

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

intra + inter

0

20

40

60

80

100

120

N
um

be
r

of
 S

am
pl

e

Epoch 75

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

intra + inter

Epoch 100

0

2

4

6

8

10

Av
g.

 C
or

re
ct

 (M
ax

=
10

)

Figure 19: Visualization of Data-wise Angle Concentration at different iterations in Qwen2.5-0.5B-
Instruct at difficult sample. The training setting is consistent with Figure 3 in the main text.

21

D GAIN-RL Algorithm

Algorithm 1: GAIN–RL (GRPO): Gradient-driven Angle-Informed Navigated RL Frame-
work

Input: Training data D = {d1, d2, . . . , dN}; model M ; training steps T ;
batch size n; accuracy sensitivity α; target accuracy β;
angle sensitivity γ; sampling variance σ
Output: Trained model MT

1 Step 1: Reorder training data by angle signal
2 for i← 1 to N do
3 Prefill di with model M
4 Extract angle signal CM (di) = CMintra(di) + CMinter(di)
5 Sort D by CM (·) in descending order to obtain Ds

6 Step 2: Train with dynamic probabilistic sampling
7 Initialize Gaussian distribution P0 ∼ N (0, σ2)
8 for t← 1 to T do
9 Sample batch d(t) ∼ Sample(Ds;Pt, n)

10 for i← 1 to n do
11 Let model Mt answer d(t)i

12 Record CMt(d
(t)
i) and accuracy AccMt(d

(t)
i)

13 Update Mt with accuracy-based loss
14 Compute mean accuracy Acc(t) = 1

n

∑n
i=1 AccMt

(d
(t)
i)

15 Compute mean angle C(t) = 1
n

∑n
i=1 CMt(d

(t)
i)

16 Update sampling-mean

µt+1 = µt +
n

2
tanh

(
α(Acc(t) − β)

)
+

n

2
tanh

(
γ C(t)

)

E Experimental Setup

In this section, we describe our experimental setup in detail, covering the models, datasets, and
hyperparameters used.

E.1 Model and Dataset

To comprehensively evaluate the effectiveness of GAIN-RL, we conduct experiments across multiple
models and datasets. Specifically, we select models varying in size, including Qwen2.5-0.5b-
Instruct, Qwen2.5-Math-1.5B-Instruct, Qwen2.5-Math-7B-Instruct, Qwen2.5-Coder-3B-Instruct,
and LLaMA3.2-3B-Instruct. We primarily focus on two tasks: Math and Code. To evaluate the
training efficiency of GAIN-RL (Section 4.1 in the main text), we use the DeepScaleR [24] dataset for
mathematical task training and DeepCoder [25] for coding tasks training, each integrating problems
from diverse sources and covering a wide range of difficulty levels. For mathematical evaluations, we
employed six benchmark datasets of varying difficulty: GSM8K [3], MATH [4], AMC 23 [18], AIME
24 [19], OlympiadBench [20], and Minerva Math [48]. For coding evaluations, we utilized three
standard benchmark datasets: LivecodeBench (8/1/24–2/1/25) [6], Codeforces [22], and Humaneval+
[23]. For other experiments (Section 4.2-Section 4.5), we train model on the training dataset of single
tasks including GSM8K, MATH and AMC 23 to facilitate more convenient comparisons.

E.2 Training Configuration

We trained the models using the GRPO algorithm. The training was performed on a single node
equipped with 8 A100 GPUs. Each model was trained for about 200 steps using the veRL library.

22

To evaluate the training efficiency on GRPO-RL, the main training configuration for Qwen2.5-
Math-7B-Instruct is shown below. For Qwen2.5-Math-1.5B-Instruct and LLaMA3.2-3B-Instruct,
we set max_response_length=3000 to accommodate its shorter context window of 4096 to-
kens, while keeping all other parameters unchanged. For Qwen2.5-0.5B-Instruct and single task
training, we set max_prompt_length=max_response_length=512, while keeping other param-
eters unchanged. For Qwen/Qwen2.5-Coder-3B-Instruct, we set max_prompt_length=2048,
max_response_length=16384,train_batch_size=512 and ppo_mini_batch_size=64 due
to its higher single sample memory usage.

python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator=grpo \
data.train_files="$train_files" \
data.val_files="$test_files" \
data.train_batch_size=1024 \
data.max_prompt_length=1024 \
data.max_response_length=8192 \
actor_rollout_ref.model.path=Qwen/Qwen2.5-Math-7B-Instruct \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.ppo_mini_batch_size=256 \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=16 \
actor_rollout_ref.actor.use_dynamic_bsz=True \
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=8000 \
actor_rollout_ref.actor.use_kl_loss=True \
actor_rollout_ref.actor.kl_loss_coef=0.001 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.entropy_coeff=0 \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=16 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \
actor_rollout_ref.rollout.n=8 \
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=16 \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
algorithm.use_kl_in_reward=False \
trainer.critic_warmup=0 \
trainer.logger=[’console’,’wandb’] \
trainer.project_name=’verl_grpo_example_gsm8k_math’ \
trainer.experiment_name=’qwen2_MATH_7b_Instruct_function_rm’ \
trainer.n_gpus_per_node=8 \
trainer.nnodes=1 \
trainer.save_freq=20 \
trainer.test_freq=5 \
trainer.total_epochs=200 $@

F Additional Experimental Results

In this section, we present additional experiments to further validate the effectiveness of GAIN-RL.

F.1 Performance of Weighted Signals

In the main text, we employed an unweighted angular signal of the form: CM (di) = CMintra(di) +
CMinter(di). Here, we explore a weighted variant of the signal: CM (di) = CMintra(di) + c · CMinter(di),
where c is a constant weight.

23

As shown in Tab. 4, we investigate the final performance of the Qwen2.5-0.5B-Instruct model after
200 training iterations on the Math dataset, using different values of c in the weighted signal. The
results show that setting c = 4.0 yields the best performance for this model, suggesting that carefully
designed angle-based signals can further improve training effectiveness.

However, selecting the optimal weighting coefficient c requires extensive empirical tuning. To ensure
scalability and practical applicability, we adopt the unweighted version of the signal in this work and
leave signal optimization for future research. Our goal is to demonstrate that even without finely tuned
weighting, GAIN-RL is still capable of accelerating both training and data efficiency—highlighting
the strong potential of model-signal-based RLHF strategies.

Table 4: Model performance at iteration 200 under different weighting coefficients c.

c 0.25 0.5 1.0 2.0 4.0 8.0
Accuracy 36.20 37.20 37.40 38.00 38.40 38.20

F.2 Model Performance on Single Task

Fig. 9 in the main text illustrates the training dynamics of Qwen-2.5-0.5B-Instruct on three single-task
datasets. For a more detailed comparison, Tab. 5 reports the final performance at iteration 200 and the
corresponding training speedup across different training sets and methods. Notably, on the GSM8K
dataset, GAIN-RL outperforms the original GRPO by 4.72% in final accuracy and achieves a 3.3×
improvement in training speed.

These results demonstrate that GAIN-RL can effectively distinguish between samples of varying
learnability even in the single-task setting, highlighting its efficiency and general applicability.

Table 5: Fine-tuning performance on single tasks. Models are trained on the training sets and evaluated
on their validation sets. ADARFT is excluded on GSM8K due to missing difficulty coefficients.

Prepare GSM8K Math AMC

Metric Time ACC@
200Iter

Iter@
200Acc

Speed
Up

ACC@
200Iter

Iter@
200Acc

Speed
Up

ACC@
200Iter

Iter@
200Acc

Speed
Up

GRPO - - 48.43 200 1× 34.80 200 1× 9.64 200 1×
ADARFT(GRPO) Difficulty > 1 day - - - 35.80 150 1.33× 9.64 160 1.25×

GAIN-RL(GRPO) Angle < 10 min 53.15 60 3.33× 37.40 80 2.50× 12.04 100 2.00×

G Discussion and Future Work

In Section 3, we demonstrate that angles between token hidden states fundamentally mirror and
influence both the information propagation during inference and the learning dynamics throughout
model training. The proposed angle-based signals can, in fact, be generalized beyond RFT to enhance
model-centric effectiveness in various other domains. For instance, during pre-training, monitoring
angle signals could enable real-time evaluation of a model’s learning capacity across different domains,
thus allowing adjustments to training data to improve stability and final performance. Furthermore,
during inference, tracking changes in angle concentration between layers could provide insights
into the model’s comprehension of inputs and indicate whether additional test-time adjustments are
necessary to boost output accuracy. In future work, we plan to further investigate how this signal can
be leveraged across multiple domains to achieve comprehensive, model-centric optimizations.

24

	Introdction
	Model‑Informed Data Evaluation Signals
	Which Signals Should We Focus On?
	What Are the Characteristics of This Signal?
	How Can This Signal Be Leveraged to Accelerate Training?

	GAIN-RL Framework
	Experiments
	Training Efficiency of GAIN-RL
	Data Efficiency of GAIN-RL
	RL Algorithms Generalization
	Performance on Individual Tasks
	Ablation Studies

	Conclusion
	Related Work
	Theoretical Supplement
	Theoretical Justification of Angle-Dependent Effects in LLMs
	Attention-Based Explanation of Layer-wise Angle Concentration Patterns
	Neuron-Based Explanation of Data-wise Angle Concentration Patterns

	Visualization Results
	Layer-wise Angle Concentration Patterns
	Data-wise Angle Concentration Patterns

	GAIN-RL Algorithm
	Experimental Setup
	Model and Dataset
	Training Configuration

	Additional Experimental Results
	Performance of Weighted Signals
	 Model Performance on Single Task

	Discussion and Future Work

