Revisiting the Activation Function
for Federated Image Classification

Jaewoo Shin, Taehyeon Kim, Se-Young Yun
KAIST Al
Seoul, Korea
{yimsungen5, potter32, yunseyoung}t@kaist.ac.kr

Abstract

Federated learning (FL) has become one of the most popular distributed machine
learning paradigms; these paradigms enable training on a large corpus of decen-
tralized data that resides on devices. The recent evolution in FL research is mainly
credited to the refinements in training procedures by developing the optimization
methods. However, there has been little verification of other technical improve-
ments, especially improvements to the activation functions (e.g., ReLU), that are
widely used in the conventional centralized approach (i.e., standard data-centric
optimization). In this work, we verify the effectiveness of activation functions in
various federated settings. We empirically observe that off-the-shelf activation
functions that are used in centralized settings exhibit a totally different perfor-
mance trend than do federated settings. The experimental results demonstrate
that HardTanh achieves the best accuracy when severe data heterogeneity or low
participation rate is present. We provide a thorough analysis to investigate why the
representation powers of activation functions are changed in a federated setting
by measuring the similarities in terms of weight parameters and representations.
Lastly, we deliver guidelines for selecting activation functions in both a cross-silo
setting (i.e., a number of clients < 20) and a cross-device setting (i.e., a num-
ber of clients > 100). We believe that our work provides benchmark data and
intriguing insights for designing models FL. models. The code is available at
https://github.com/Jaewoo-Shin/FL_ACT,

1 Introduction

Federated learning (FL) has become a common and ubiquitous paradigm for collaborative machine
learning techniques [3} 14} 23], 133 134, 144}, 37| [45]] because it maintains data privacy. Each client (e.g.,
mobile devices or the whole business) communicates with the central server by transferring the model
but not the data; all local updates are aggregated in a global server-side model. Although a centralized
method enhances generalization by employing a large amount of training data, the features of the
FL methods appear to differ from those of a centralized method owing to data heterogeneity, client
resource capability, and model communication [24, 37} 150].

Most FL studies focus on improving the performance of the global model. To this end, they apply
a new regularizer in the optimization algorithm [[1} 25} 132} |33} [18] 1351 146 147, 48 150, 21} 10, [13]].
Recently, there has been an increasing demand for the personalization of models according to the
client. Jiang et al. [22]] and Fallah et al. [9] attempt to train personalized models for each client with a
few rounds of fine-tuning rather than focusing on the performance of a server model. In consideration
of system heterogeneity (i.e., clients having different computational and communication capabilities),
Avdiukhin et al. [2] mitigate model communication problems by using asynchronous local SGD;
Horvath et al. [17] improve accuracy in heterogeneous resource capacity by using different model
sizes per client.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/Jaewoo-Shin/FL_ACT

51— Tann I Centralized Settings FL Settings
. . HardTanh 90
Linear Operation —— RelU 60
41 — Leaky RelU
Activation —— Swish 80 50
— Mish
3 GelU 70 40
Best
2 30
60
Best 20
1 ;
50
10
0
PP ST R SR NI £ 8 & O O & . &
- ; ; ; } ; < @05@0 @y*&v o 0 s /@0&@0 vafev "}S’ S
-4 -2 0 2 4 L 2 & &
Neural Network L . N N;
(a) Category of Activation Functions (b) CIFAR-10 (c) CIFAR-100

Figure 1: (a) Plots of different activation functions. (b), (c) Accuracies on CIFAR-10 and CIFAR-100
according to the changes of activation functions, respectively. The blue line indicates the performances
of models trained in a single central server. The orange line indicates those of models trained in FL
environment where 20 clients participate in the training per round among the total 100 clients. We use
a model with four convolution layers and one classifier. Here, ‘Linear’ indicates the model without
any activation function. In one machine centralizing the training data, the more up-to-date activation
function used, the better the performance (Blue line). In contrast, interestingly, HardTanh [7]] prints
the best server accuracy for both CIFAR-10 and CIFAR-100 under heterogeneous scenarios (Orange
line). The detailed explanation about activation functions are provided in

Despite the popularity of FL, some options for federated model optimization remain under-explored.
Designing FL-familiar training recipes is essential to optimizing model performance, but few studies
have attempted to design a new recipe instead of using those intended for a centralized setting. Charles
et al. [5] present an empirical analysis of the impact of hyperparameter settings for federated training
dynamics from the perspective of a large cohort size. However, FL activation functions [37, 25} 134]
have rarely been studied, whereas activation functions play a crucial role in facilitating generalization
and convergence. We thus raise the seemingly doubtful question: Do activation functions that are
popular in centralized settings also produce good optima in FL?

We conduct a pilot experiment to compare performance in centralized settings with performance
in FL settings to answer this question. [Figure T|(b) and (c) show the accuracy of neural networks
trained under a centralized setting and a FL setting according to the changes in activation functions.
A shallow neural network that uses Tanh has better accuracy than ReLLU, which is a silver bullet in
the centralized deep learning field. The problems mentioned above lead us to the intriguing question:

Do off-the-shelf activation functions intended for a centralized setting
also perform appropriately in the FL setting?

In this work, we answer the question with thorough empirical evaluations: the latest developed
activation functions rather degrade the performance of the server as the heterogeneity gets severe.

Several considerations (e.g., the total number of clients, client participation, heterogeneity) in selecting
activation functions may improve significantly. Combining considerations may further boost the
model accuracy. We experiment with various activation functions, including widely-used and rarely-
used functions in the centralized setting, in various environments based on CIFAR-10 and CIFAR-100.
The experiments identify an interesting phenomenon in FL in which applying activation functions like
ReLU in stacked convolutional layers demonstrates low accuracy owing to the shape of the function.
We also provide an analysis of the representation power according to the changes in activation
functions for federated image classification. Our key contributions are summarized as follows:

* We provide guidelines for selecting activation functions in FL. FL has the following special
considerations: number of clients, participation ratio, and non-IIDness. We provide guide-
lines for cross-silo settings (i.e., for a number of clients < 20) and cross-device settings (i.e.,
for a number of clients > 100); the suitable activation function depends on the situation.

* We provide an explanation for the performance degradetion (i.e., for the performance dif-
ference between centralized settings and FL settings) of activation functions, that are the
preferred in a centralized setting. Specifically, we measure the similarities in the manner of
weight parameters and representations.

* We empirically show that the HardTanh activation function [7] leads to a better optimum do
other activation functions such as ReL.U [39]], Leaky ReLU [36], and GeLU [16] for severe

Table 1: Accuracy of centralized and FL settings in two datasets. Centralized settings train one server
model using all training data and FL settings train 100 clients with heterogeneous data. We use
R =0.2,and o = 0.1.

Aetiva] CIFAR-10 | CIFAR-100
ctivation Function
| Centralized Setting FL setting | Centralized Setting ~ FL Setting

Linear 73.744+1.54 10.00 46.52+0.31 28.39
Tanh 81.0040.89 52.58 55.394+0.24 30.75
HardTanh 80.6440.77 54.43 54.31£0.46 31.76
ReLU 87.01+0.11 48.37 59.7540.33 23.99
Leaky ReLU 87.3040.03 48.34 60.28+0.22 24.04
Swish 86.5040.08 46.16 60.024+0.47 21.55
Mish 86.384+0.29 50.02 60.6740.03 24.98
GeLU 87.771+0.11 47.46 61.341+0.35 23.26

non-IID setting, a low participation rate, and with a large number of clients, and we provide
benchmark data for activation functions in FL.

2 Related Work

This work is related to activation functions in neural networks, and FL methods. For details, refer to
Append A

3 Experiments

In this section, we compare several activation functions. We categorize the activation functions into
two groups: (1) ReLU, Leaky ReLLU, Swish, Mish, and GeLU as recent SOTA activation functions
that are widely used in centralized settings; and (2) Tanh and HardTanh as Tanh-like activation
functions that are not widely used in centralized settings.

3.1 Experimental Setup

Dataset and Heterogenous Settings. We use two benchmark datasets: CIFAR-10 and CIFAR-
100 [29]). We provide the descriptions of the datasets in[Appendix B] To randomize the heterogeneous
data, we assume that all client training data use class labels according to an independent categorical
distribution for N classes parameterized by the vector q:

¢;>0,i€[1,N] and Z g =1
i€[1,N]

For the heterogeneous distribution, the Dirichlet distribution [18 /48], ¢ ~ Dir(cx) is used, where «
is an N-length concentration vector having all elements o > 0, that is, the prior distribution for [NV
classes controls the heterogeneity of clients.

Models. Our study focuses on compact models that are realistically possible in FL. Therefore,
we use a simple ConvNet having four convolutional layers and one classifier; ConvNet4 refers to
ConvNet with four convolutional layers. The first convolution layer has 64 kernels, and deeper
layers have a larger number of kernels [40]. For additional models, which have a shortcut and batch
normalization layer, we use Resnet20, Resnet32, Resnet44 [15], and MobileNetv2 [43].

Training Details. In this study, we conduct numerical experiments by varying the number of clients
N, the client participation ratio R, and the Dirichlet distribution constant o. We mainly exhibit
the training of ConvNet4 on heterogeneously distributed CIFAR-10 by modifying R and «. In the
captions, we explain each IV, R, and « value. The details are explained in[Appendix B|

3.2 Comparative Experiments on the Changes in Activation Functions

shows the result of both centralized and FL settings using CIFAR-10 and CIFAR-100 as the
datasets. In centralized settings, GeLU shows the best performance, and other recent SOTA activation
functions surpass the Tanh-like activation functions. However, in FL settings, the activation functions
show a significantly different tendency. HardTanh achieves the highest accuracy. Furthermore, the
recent SOTA activation functions show lower accuracy than Linear using CIFAR-100 as the dataset.

Table 2: Server accuracy of ConvNet4 with four different Dirichlet constant values « (0.01, 0.1, 1,
10). Weuse N = 100 and N = 20 with R = 0.2.

Activation Function ‘ N =100 N =20
‘ale a=1 a=0.1 az0.0l‘ale a=1 a=01 a=0.01

Linear 62.48 62.43 10.00 10.00 66.48 66.48 63.54 10.00

Tanh 64.49 64.14 52.58 29.50 70.22 69.55 65.97 27.64
HardTanh 65.27 65.40 54.43 30.09 70.53 70.01 66.53 28.92
ReLU 57.80 56.23 48.37 34.03 75.59 74.21 63.39 34.70
Leaky ReLU 57.85 56.16 48.34 33.92 75.36 74.23 63.67 35.15
Swish 52.62 51.48 46.16 35.65 72.58 71.58 64.57 36.93

Mish 57.30 55.08 50.02 38.94 73.69 72.95 66.47 37.89

GeLU 55.59 54.34 47.46 36.09 75.68 74.41 65.62 37.77

Table 3: Server accuracy of ConvNet4 with four different participation ratios R (0.1, 0.2, 0.3, 0.4).
Weuse N = 100 and N = 20 with o = 0.1.

Activation Function ‘ N =100 ‘ N=20
\R:0.4 R=03 R=02 R=U.1\R=O.4 R=03 R=02 R=0.1

Linear 10.00 10.00 10.00 10.00 65.85 66.12 63.54 58.36

Tanh 62.61 61.79 52.58 46.61 69.22 67.75 65.97 62.67
HardTanh 59.45 61.75 54.43 41.90 69.25 68.80 66.53 43.96
ReLU 53.26 50.67 48.37 41.95 71.96 70.17 63.39 54.47
Leaky ReLU 53.17 50.76 48.34 42.05 66.12 70.22 63.67 54.46
Swish 51.72 49.45 46.16 40.00 70.36 67.99 64.57 53.74

Mish 56.67 52.80 50.02 43.37 71.30 69.34 66.47 60.38

GeLU 53.35 50.61 47.46 41.50 72.32 70.10 65.62 54.05

Activation functions have different accuracy drop; only recent SOTA activation functions have an
accuracy drop near 40, while HardTanh and Tanh have 26.21 and 28.42 at CIFAR-10. As a result,
we can find that the most popular activation function, ReLU (as well as recent SOTA activation
functions), does not show outstanding performance in an FL setting.

3.3 Strategies for Selecting Activation Functions in FL

This section presents the experimental results and guidelines for selecting the activation functions
for various FL settings. FL settings have various environmental limitations relative to centralized
settings. It has additional components to consider, such as the number of clients, [ID-ness, and the
participation ratio.

Number of Clients. In different FL strategies, the number of clients varies. A cross-silo setting
uses fewer than 20 clients, and a cross-device setting use more than 100 clients. As the number of
clients differs, the drop in accuracy caused by the activation functions varies. The o = 0.1 columns
of lists the accuracy for different client numbers. As the number of clients decreases, the
overall drop in accuracy decreases. For both numbers of clients, HardTanh achieves the highest
accuracy. However, the accuracy difference between the recent SOTA activation functions and
Tanh-like activation functions is larger for 100 clients. Considering the observations for the number
of clients, we hypothesize that as the number of clients increases, recent SOTA activation functions
are increasingly affected and show a more significant accuracy drop.

IID-ness. With the Dirichlet distribution parameter «, we can control the IID-ness: a larger value
of « indicates higher IID-ness (lower heterogeneity). presents the accuracy for different
different values of «.. In most cases, HardTanh shows the highest accuracy. For 100 clients, at lower
IID-ness the accuracy of the Tanh-like activation functions surpasses the accuracy of the recent SOTA
activation functions with larger accuracy gap. For 20 clients, the recent SOTA activation functions
surpass the Tanh-like activation functions at high I[ID-ness. Activation’s shape cause severe accuracy
drop of the recent SOTA activations with low IID-ness, which we discuss at The low
accuracy of the Tanh-like activation functions at & = 0.01 occurs due to tough training settings and
the Tanh-like activation functions fail to find the optimum, such as Linear.

Participation Ratio. The participation of clients is limited in FL depending on the environment. In
a cross-silo setting, high participation may be possible, whereas only limited participation is available
in a the cross-device setting. shows the accuracy in FL settings for four different values of the

Convl1 Layer Conv3 Layer MaxPool

1.000 1.00 1.00
- - —
~ ~ ~
0.998 0.98 099
o - = ™
< < <
o 2 099 Q 09 2 0.98
S Zn Swn
- < € I
o 2o Lo 2o
S L0994 = = |
S 0.94 097
~ ~ [SIS O
© © ©
| 0992 0.92 -0.96
o o o
=1 = =)
=
-os0 o0 ™ 095

1234567 8910 123456 78910 12345678910
Client ID Client ID Client ID

1.000 1.00 1.00
]

0.99

0.98

-0.97

-0.96

-0.95

123456780910 12345678 910 12345678910
Client ID Client ID Client ID

0.998

0.996

Client ID
Client ID

10987654321

-0.994

HardTanh
Client ID

-0.992

—
~
™
<
0
©-
~
@ -
o
o
—

10987 654321

-0.990

Figure 2: CKA similarity between 10 client using test images of CIFAR-10. Each client’s model is
the model before 100t/ aggregation. We use N = 100 with R = 1.0 and a = 0.1 for training. We
calculate the CKA similarity using features passing through each layer and its activation function.

Convl Layer Conv2 Layer Conv3 Layer Conv4 Layer
N _— L ooss o 008
~ oo 000w ~ 007
)

MI s 7]] s 7 "
S NS | g v 07
3 e S [| S S
2 5o Lo So g e L So oo £

~ ~ ~ ~ i

-0.010 . - -0.010

o N u o o ®

o Loos o) m = Loos @ -

o o = o

L e e e B s s s) -0.000 B s e e, e e, Y -0.000 - . -0.000 ~. v . 0.00

123456782910 123456780910 123456782910 123456780910
Client ID Client ID Client ID Client ID.
003 . m oo o0
00m] o0
002
002 ooz
0.020 3 0.020 00

oot oo

HardTanh
Client ID
Client ID

10987654321
Client ID
10987 654321
Client ID
10987654321

Lo

“o010

| -

“““ -0.000

0010

- 0005

10987654321

0005

008
007
006
005
004
003
o0z
001
L 000

12345678910
Client ID

Figure 3: Weight difference between 10 client selected in[Figure 2] We calculate the weight difference
by subtracting each client’s weight from the same layer and normalizing it with Lonorm.

0000 -0.000

123456780910
Client ID

123456780910
Client ID Client ID

participation ratio. For 100 clients, the Tanh-like activation functions achieve the highest accuracy.
With 20 clients, however, there is a noticeably larger accuracy drop as participation decreases for
the most recent SOTA activation functions. With higher client participation, client drift 26,
reduces, and the influence of the activation function’s shape of the recent SOTA activation functions
drops and occur smaller accuracy.

Different FL settings components affect accuracy when different activation functions are used,
according to the observations above. The number of clients is the most dominant component, and it
interacts with the influence of other components when a small number of clients is used. Therefore,
the Tanh-like activation functions are favorable for a large number of clients, such as in a cross-device
setting. For a cross-silo setting, with low data IID-ness, and a low ratio of client participation the
Tanh-like activation functions are preferred. Conversely, the recent SOTA activation functions are
preferred for a cross-silo setting, with high data IID-ness, and high ratio of client participation.

3.4 Additional Experiment

Additional experiments with different FL. method and models showed a similar tendency, where Tanh-
like activation functions surpassed recent SOTA activation functions as observed above. We chose
FedProx as the additional FL. method and Resnet20, Resnet32, Resnet44, and MobileNetv2 as
the additional models. For details of the experimental results, refer to

4 Analysis

We present thorough investigations on model behavior and the changes in representation during the
local training to answer this question: do recent SOTA activation functions have a disadvantage in
FL settings?

4.1 Investigation of Weight Parameters and Latent Representations

The activation function selects important features to pass through each layer, and the model is trained
using these features. The number of selected features varies according to the shape of an activation
function. In a conventional centralized setting, a single model can access all the data and select
optimal training features. However, in an FL setting, each client can only access a portion of the data,
which is partitioned in the non-IID condition, and each client trains its model to select features that
are important to itself. This results in a phenomenon known as client drift. During the FL aggregation
step, a problem arises where important features for the global optimum cannot be selected due to
client drift. This phenomenon appears to be severe when the recent SOTA activation functions are
used. Due to the shape of their activation functions, the excluded features are greater in number than
for Tanh-like activation functions, and a severe accuracy drop occurs. [Figure 3|(a) in[Appendix C
shows the feature distribution after the first convolution layer. The recent SOTA activation functions
exclude more feature and have a high density near 0. The empirical results in show that
for a large number of clients and a small client participation ratio, the client drift increases, and the
accuracy drop for recent SOTA activation functions is maximal.

This can be simply summarized by saying that, the number of excluded features varies due to the
different shapes of the activation functions, and as an activation function excludes more feature values,
the drop in accuracy increases. Recent SOTA activation functions tend to exclude features smaller
than 0. Tanh-like activation functions, on the other hand, exclude features that are smaller than -1
and larger than 1. Tanh-like activation functions have low sensitivity about the accuracy drop in the
FL aggregation step because they exclude a much smaller number of features than do recent SOTA
activation functions. Additionally, HardTanh and Tanh show better accuracy than Linear in most
situations due to their existence of non-linearity. [Figure 3|(b) in[Appendix C]shows the accuracy in
FL settings for different versions of ConvNet, which have different numbers of convolutional layers.
Deeper models exclude more features, and as a result, ConvNet used with recent SOTA activation
functions shows a significant drop in accuracy.

To observe how the activation function affects ConvNet4, we perform two additional experimental
studies on heterogeneous local models. For simplicity, we look at 10 clients out of a total 100. First,
we perform Centered Kernel Alignment (CKA) [28] to measure the similarity of the output features
between different clients. Each client trains the server model for 5 epochs with their own non-1ID
data. In ReLU has a higher CKA similarity than HardTanh in every layer. Because feature
selection fails for the server model, as indicated above, ConvNet4 with ReLU has a smaller feature
change than does HardTanh, which indicates a lower learning ability. Second, we calculate the weight
differential to check how similar other clients weights are. [Figure 3|reveals that ConvNet4 with ReLU
has a smaller weight difference in each layer than does HardTanh, which also indicates ReLU has a
limited learning ability.

4.2 Analysis of Landscape

To check if each activation functions reaches the global optimum, we visualize the 2-D landscape of
Tanh, HardTanh, ReLU, and Leaky ReLU in[Appendix D} Figure 5 shows the 2-D landscape of each
activation function. It seems that ReLU and Leaky ReL. U fails to approach to the global optimum.
In contrast, Tanh and HardTanh succeed in reaching the global optimum. Furthermore, ReLU and
Leaky ReLU has steep slope in their landscape where Tanh and HardTanh does not.

These findings suggest that the sensitivity of the activation functions in the FL aggregation step,
where the accuracy drop occurs, is indicated by the shape of the activation functions. The accuracy
drop increases as the number of features excluded by an activation function increases, and it reaches
a maximum with severe client drift; a large number of clients, a low client participation ratio, and
high heterogeneity.

5 Conclusion

This study clarifies that the drop in accuracy varies according to the activation function in FL. Our key
finding is that the accuracy of the recent SOTA activation functions drops in an FL setting due to the
shape of the functions, and HardTanh outperforms other activation functions in most environments.
Additionally, we provide guidelines and benchmark data for selecting activation functions in various
FL settings. We believe that further research is needed to find the silver bullet of activation function
in an FL setting, which our paper did not address, and that our work will inspire others.

Acknowledgement

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by Korea government (MSIT) [No. 2021-0-00907, Development
of Adaptive and Lightweight Edge-Collaborative Analysis Technology for Enabling Proactively
Immediate Response and Rapid Learning, 90%] and [No. 2019-0-00075, Artificial Intelligence
Graduate School Program (KAIST), 10%].

References

[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N What-
mough, and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv
preprint arXiv:2111.04263, 2021.

[2] Dmitrii Avdiukhin and Shiva Kasiviswanathan. Federated learning under arbitrary communi-
cation patterns. In International Conference on Machine Learning, pages 425-435. PMLR,
2021.

[3] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Kone¢ny, Stefano Mazzocchi, H Brendan McMahan, et al.
Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

[4] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone¢ny, H Brendan
McMabhan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097, 2018.

[5] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On
large-cohort training for federated learning. arXiv preprint arXiv:2106.07820, 2021.

[6] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[7] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of machine learning
research, 12(ARTICLE):2493-2537, 2011.

[8] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3-11, 2018.

[9] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A
meta-learning approach. arXiv preprint arXiv:2002.07948, 2020.

[10] Jack Goetz and Ambuj Tewari. Federated learning via synthetic data. arXiv preprint
arXiv:2008.04489, 2020.

[11] Tan Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio.
Maxout networks. In International conference on machine learning, pages 1319-1327. PMLR,
2013.

[12] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas, and H Se-
bastian Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature, 405(6789):947-951, 2000.

[13] Weituo Hao, Mostafa El-Khamy, Jungwon Lee, Jianyi Zhang, Kevin J Liang, Changyou Chen,
and Lawrence Carin Duke. Towards fair federated learning with zero-shot data augmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3310-3319, 2021.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026-1034, 2015.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770778, 2016.

[16] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[17] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos I Venieris,
and Nicholas D Lane. Fjord: Fair and accurate federated learning under heterogeneous targets
with ordered dropout. arXiv preprint arXiv:2102.13451, 2021.

[18] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[19] Hidenori Ide and Takio Kurita. Improvement of learning for cnn with relu activation by sparse
regularization. In 2017 International Joint Conference on Neural Networks (IJCNN), pages
2684-2691. IEEE, 2017.

[20] Kevin Jarrett, Koray Kavukcuoglu, Marc’ Aurelio Ranzato, and Yann LeCun. What is the best
multi-stage architecture for object recognition? In 2009 IEEE 12th international conference on
computer vision, pages 2146-2153. IEEE, 2009.

[21] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun
Kim. Communication-efficient on-device machine learning: Federated distillation and augmen-
tation under non-iid private data. arXiv preprint arXiv:1811.11479, 2018.

[22] Yihan Jiang, Jakub Kone¢ny, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

[23] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977,
2019.

[24] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,

et al. Advances and open problems in federated learning. Foundations and Trends® in Machine
Learning, 14(1-2):1-210, 2021.

[25] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132-5143. PMLR, 2020.

[26] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. First analysis of local gd on
heterogeneous data. arXiv preprint arXiv:1909.04715, 2019.

[27] Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Proceedings of the 31st international conference on neural information
processing systems, pages 972-981, 2017.

[28] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, pages
3519-3529. PMLR, 2019.

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25:1097—
1105, 2012.

[31] Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun.
com/exdb/lenet, 20(5):14, 2015.

[32] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10713-10722,
2021.

[33] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning
and Systems, 2:429-450, 2020.

[34] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

[35] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust
model fusion in federated learning. Advances in Neural Information Processing Systems, 33:
2351-2363, 2020.

[36] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, page 3. Citeseer, 2013.

[37] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273—1282. PMLR, 2017.

[38] Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

[39] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Icml, 2010.

[40] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458, 2015.

[41] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

[42] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510-4520, 2018.

[44] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the
22nd ACM SIGSAC conference on computer and communications security, pages 1310-1321,
2015.

[45] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning. arXiv preprint arXiv:1705.10467, 2017.

[46] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

[47] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611-7623, 2020.

[48] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang,
and Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In
International Conference on Machine Learning, pages 7252-7261. PMLR, 2019.

[49] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. Parameterized
knowledge transfer for personalized federated learning. Advances in Neural Information
Processing Systems, 34, 2021.

[50] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Appendix

A Related Work

A.1 Activation Functions in Neural Networks

In deep neural networks, using activation functions is a ubiquitous technique for learning non-linear
latent representations; an input signal is transformed into the non-linear output centered on zero.
Recent evolution occurs along with the enhancement of representation power and the efficiency of
computational costs. In the experiment, we use the following non-linear activation functions:

Tanh. The equation of Tanh is:

x —XT

e’ —e

tanh(z) = ——
er +e "

It is known that it is zero-centered, but computationally expensive and causes vanishing gradient

problems as neural networks become deeper.

HardTanh. It is another variant of the hyperbolic tangent function, which represents computation-
ally more efficient form of tanh:

HTanh(z) = min(1, max(—1, z))

ReLU. The equation of ReLU [[12, 20} 39]] is:
ReLU(z) = max(0, x)

ReLU is the abbreviation of Rectified Linear Unit, a modified linear function. When the input
value of ReLU is negative, the gradient of its output value is zero; the model does not learn. ReLU
has shown great performance with Convolutional Neural Networks (CNN) [30, 31]. Since ReLU
is computationally cheap, it is still commonly used regardless of numerous attempts to replace
it |36, [11}, (14} l6l 27, [8].
Leaky ReLLU. The equation of Leaky ReLLU [36] is:

LReLU(z) = max(0.01z, z)

This function was created to solve the Dying ReLU problem in ReLU. It is ReLU multiplied by a tiny
constant on the negative part. Due to the small range, the graphs are drawn almost similarly with
ReLU.

Swish. The equation of Swish [41] is:
Swish(z) = z - sigmoid(z)

This function shows better accuracy than ReL.U in deep neural networks regardless of batch size.
Mish. The equation of Mish [38] is:

Mish(z) = x - tanh(In(1 + €%)))
This function has the characteristic of allowing gradients to flow better than the Relu Zero Bound
because it allows some negative numbers.
GeLU. The equation of GeLU [16] is:

GelU(z) =z - %[1 + tanh[V27(x + 0.0447152°)]]

This function is widespread on BERT, GPT, VIT models. GeLU is derived by combining the

characteristics of dropout, zoneout, and ReL.U.
Activation functions have been devised for the gradient exploding/vanishing issues; the magnitude of

gradients becomes either near zero or infinite during backward propagation. A general choice for
activation functions is ReLU which raises significantly cheap computational costs. Still, it is not
differentiable at zero as well as causes significant dying neurons forgetting the information during
propagation. Recently, some works [41}138]] lead to more smooth optima by designing self-regularized
gradients. On the other hand, these studies are based on centralized settings, whereas those based on
FL settings are badlands. Details of activation functions are explained in[Appendix B}

10

A.2 Federated Learning Methods

Federated optimization methods manage to handle multiple clients without collecting data, and they
use server weights from a central server to coordinate the global model across the network. In
particular, these methods aim to minimize the following objective function:

N
minf(w) where f(w) = 5 3 ¥ (w) ™
k=1

where f(*) is the loss function based on the client k. N is the total number of clients. At each round
K < N clients are selected from the total devices. The selected clients run each local model using
SGD for E number of local epochs and finally aggregate the selected models at the server model.

In the FL environment, the oracle of a global model can be drifted by optimizing the local clients
because the statistical data heterogeneity causes different local optimums widely apart from each
other. It is called Client drift [25, 26l 42]] which indicates the inconsistency among each optimum.
Recently, some works prevent Client drift designing aggregation methods; Wang et al. [47] present a
method of normalized averaging that removes objective inconsistency, and Zhang et al. [49]] propose
a training algorithm for group knowledge transfer, which allows each client to keep a personalized
prediction on the server to assist the local training of others.

Federated Averaging (FedAvg [37]) uses the local server for stochastic gradient descent (SGD)
locally for E number of epochs. As a result, the selected client resulting k’s weight is updated as wy,.
At each round, to aggregate the local client models, FedAvg sums and averages for the server model

parameters formulated as:
1
=z Z wh,)

kES:

where w' is the server weight of the ¢-th round, w! is the client &’s model after local training using
w'~t, and S; is the client set. McMahan et al. [37] empirically shows the significance of tuning the
hyperparameters in FL training additionally, we present that with respect to the architectural and
operational side.

A.3 Algorithms of Federated Learning Methods

We use both FedAvg and FedProx for federated learning methods. shows the algorithm
of FedAvg and shows the algorithm of FedProx. FedProx is similar to FedAvg in that it
selects a selection of clients at each round, performs local training, and then averages client’s weight
to generate a global update. However, the difference between FedAvg and FedProx is shown in line 6.
For local training, FedAvg trains each client’s model using SGD with its local data whereas FedProx,

trains each client with additional proximal term, & ||w — w’ H2 Using the proximal term which
contributes to the method’s stability by efficiently reducing the impact of variable modifications.

Algorithm 1 Federated Averaging (FedAvg)

1: Input: K, T,n, E,w’, N,k €[l,---,N]

2: fort=0,---, T —1do

3: Server selects a subset S; randomly which includes number of K devices
4. Server send w! to all selected devices

5 fori=0,---,F—1do

6: Selected device k € S; updates their local weight w,tjl using SGD with step-size n
7: end for
8.

9

0

Selected device k € S; sends their local weight w,tjl back to the server

1 and gets new server weight wt!

Server aggregates the local weights, w;,

_ 1 t
: = % 2kes, Wk
10: end for

11

Algorithm 2 FedProx
1: Input: K, T,n, p, E,w°, N,k € [1,--- ,N]
2: fort=0,---,T—1do
3: Server selects a subset .S; randomly which includes number of K devices

4: Server send w' to all selected devices

5. fori=0,---,F—1do

6: Selected device k € S; updates their local weight w} ™ mug'nh(k) (w;w?) = f®)(w) +

Ellw— wt||* with step-size 1

7: end for

8: Selected device k € S; sends their local weight w,fjl back to the server

9: Server aggregates the local weights, wi“, and gets new server weight w!*™! = % D ke s, wh
10: end for

B Implementation Details

B.1 Model Architecture

shows ConvNet with five different depth (3,4,5,6, and 7). Each version of ConvNet has
convolution layer corresponding to the number after the model (e.g., ConvNet3 has three convolution
layers and ConvNet7 has seven convolution layers). The details of each convolution layer is shown in
ConvNet with different depth use convolution layers sequentially from the top in[Table 4|(e.g.,
ConvNet3 use Convl, Conv2, Conv3 whereas, ConvNet7 use Convl, Conv2, Conv3, Conv4, Conv5,
Conv6, and Conv7).

Image Image Image Image Image
3x3conv, 64 3x3 cinv, 64 3x3conv, 64 3x3conv, 64 3x3conv, 64
activation function activation function activation function activation function activation function
3x3conv, 64 3x3conv, 64 3x3conv, 64 3x3conv, 64 3x3conv, 64
activation function activation function activation function activation function activation function
3x3conv, 128 3x3conv, 128 3x3cony, 128 3x3conv, 128 3x3cony, 128
activation function activation function activation function activation function activation function
3x3cony, 128 3x3cony, 128 3x3cony, 128 3x3cony, 128
activation function activation function activation function activation function

3 x3conv, 256 3 x3conv, 256 3x3conv, 256
activation function activation function activation function
3 x3conv, 256 3 x3conv, 256
activation function activation function
3x3cony, 512
activation function

max pool, /2 max pool, /2 max pool, /2 max pool, /2 max pool, /2
fc 32768 fc 32768 fc 65536 fc 65536 fc 131072
ConvNet3 ConvNet4 ConvNet5 ConvNet6 ConvNet7

Figure 4: The architecture of ConvNet with different number of convolution layers.

B.2 Dataset statistics

We use both CIFAR-10 and CIFAR-100 for our experiments. As shown in[Table 5] CIFAR-10 consists
of 60000 images of size 32x32. It is divided into 10 classes, and each class consists of 6000 images.
Also, 5000 are training data and 1000 are test data. CIFAR-100 also consists of 60000 images with a

12

Table 4: Setting of each convolution layer in ConvNet. Each version of ConvNet uses the number
convolution layer as much as their version number. (i.e ConvNet3 uses convl through conv2 and
ConvNet7 uses convl through conv7.)

Layer Number of Input Filter ~Number of Output Filter ~Kernel Size Padding

Convl 3 64 3%x3 1
Conv2 64 64 3x3 1
Conv3 64 128 3%x3 1
Conv4 128 128 3x3 1
Conv5 128 256 3x3 1
Conv6 256 256 3x3 1
Conv7 256 512 3%x3 1

size of 32x43. It is classified into 100 classes, and each class consists of 600 images. These 100
classes are divided into 20 superclasses, which we do not use in our experiments. Also, 500 are
training data and 100 are test data.

Table 5: Data set statistics.

Data set Train examples Test examples Class Number Task
CIFAR-10 50,000 10,000 10 Image Classification
CIFAR-100 50,000 10,000 100 Image Classification

B.3 Training Details

In this study, we conduct numerical experiments by changing the number of clients IV, the client
participation ratio R, and the Dirichlet distribution constant «. We adapt FedAvg and perform 200
rounds with 5 local epochs using a learning rate of 0.01, with a learning decay of 0.1 at the 50th and
75th round, a weight decay of 1le—4, and a momentum of 0.9. Limited client numbers are available
in different FL settings; in a cross-silo setting, a small number of clients are available, and a large
number of clients are requested in a cross-device. For the cross-silo setting, we use N = 20 and
R = 0.2 in which we select 4 clients each round. For the cross-device setting, we use N = 100 and
R = 0.2, which we select 20 clients each round.

We mainly exhibit the training of ConvNet4 on CIFAR-10 heterogeneously distributed by modifying
the « in the Dirichlet distribution. In the captions, we explain each N, R, and « value.

C Additional Experiment Result

C.1 ConvNet4 Result

Experiment results in fix variables such as N, R, and «. shows the result with
all combinations of R and a with N = 100. shows the result using CIFAR-100 with all
combinations of R and o with N = 100. We implement all experiments on Single GPU NVIDIA
2080-Ti.

[Figure 5|(a) shows the feature distribution in ConvNet4 with different activation functions after
passing the first convolution layer. After passing the convolution layer and activation function, we
flatten the feature values and draw a distribution. The feature densities of the recent SOTA activation
functions have discreteness and a high density near 0 due to their function shape. As the features
pass deeper layers, the densities near O of the recent SOTA activation functions increase compared
with the Tanh-like activation functions. In a centralized setting, the recent SOTA activation functions,
especially ReLLU work well due to its discreteness at 0 and its function shape, which is similar to a
linear function which prevents the vanishing gradient and exploding gradient problems [19].

13

Table 6: Server accuracy of ConvNet4 using four different o and four different participation R,
where N = 100. The most right columns show the accuracy drop as non-IIDness increases. Since
using Linear at « = 0.01, 0.1 with participation ratio 0.1, 0.2, 0.3, and 0.4 could not train, leave
blank at &« = 0.01 — 0.1, « = 1 — a = 0.1 with participation ratio 0.1, 0.2, 0.3, and 0.4.

Participation Ratio | Activation Function | « =10 a=1 «a=01 «=00l |a=10—-1 a=1-01 «a=01-0.01

Linear 58.24 57.38 10.00 10.00 0.86 - -
Tanh 58.98 57.86 46.61 31.97 1.12 11.25 14.64
HardTanh 59.85 59.62 41.90 30.34 0.23 17.72 11.56
0.1 ReLU 51.61 49.73 41.95 28.83 1.88 7.78 13.12
: Leaky ReLU 51.60 49.76 42.05 28.90 1.84 7.71 13.15
Swish 47.01 46.28 40.00 29.88 0.73 6.28 10.12
Mish 50.00 49.59 43.37 33.13 0.41 6.22 10.24
GeLU 48.64 48.02 41.50 31.61 0.62 6.52 9.89
Linear 62.48 62.43 10.00 10.00 0.05 - -
Tanh 64.49 64.14 52.58 29.50 0.35 11.56 23.08
HardTanh 65.27 65.40 54.43 30.09 -0.13 10.97 24.34
02 ReLU 57.80 56.23 48.37 34.03 1.57 7.86 14.34
. Leaky ReLU 57.85 56.16 48.34 33.92 1.69 7.82 14.42
Swish 52.62 51.48 46.16 35.65 1.14 5.32 10.51
Mish 57.30 55.08 50.02 38.94 222 5.06 11.08
GeLU 55.59 54.34 47.46 36.09 1.25 6.91 11.37
Linear 64.66 64.46 10.00 10.00 0.20 - -
Tanh 67.34 66.57 61.79 31.35 0.77 4.78 30.44
HardTanh 68.35 67.86 61.75 29.93 0.49 6.11 31.82
03 ReLU 62.43 60.38 50.67 37.91 2.05 9.71 12.76
” Leaky ReLU 62.62 60.34 50.76 38.02 2.28 9.58 12.74
Swish 58.04 55.88 49.45 39.78 2.16 6.43 9.67
Mish 65.53 62.21 52.80 42.57 3.32 9.41 10.23
GeLU 62.39 59.20 50.61 39.14 3.19 8.59 11.47
Linear 65.71 65.83 10.00 10.00 -0.12 - -
Tanh 68.83 68.37 62.61 29.49 0.46 5.76 33.12
HardTanh 69.95 69.35 59.45 27.22 0.60 9.90 32.23
0.4 ReLU 66.88 64.39 53.26 40.96 2.49 11.13 12.30
. Leaky ReLU 67.02 64.60 53.17 41.17 242 11.43 12.00
Swish 64.78 60.13 51.72 41.86 4.65 8.41 9.86
Mish 68.96 67.27 56.67 44.41 1.69 10.60 12.26
GeLU 67.59 63.42 53.35 40.99 4.17 10.07 12.36
—|_inear Tanh HardTanh e Rc] U
s | eaky ReLU e Swish Mish GeLU
20.01 504 %%
17.51 > S
E 12.51 E ~—,
< 10.01 = 307
0 [
o 7.5 2
L}
5.0 n 20
ool ﬁ&‘t Al w0
- 3 i 5 i : ; 7
Feature Value # of Conv Layers
(a) Feature Distribution (b) Acc

Figure 5: (a) shows the distribution of the feature of all images of class 0 in the CIFAR-10 test dataset
passing through the first convolution layer and its activation function. (b) shows the accuracy of
ConvNet in Federated Setting with Different widths and depths. For both figure, we use N = 100,
R=0.2and a=0.1.

14

Table 7: Server accuracy of ConvNet4 using CIFAR-100 as dataset and N = 100. The most
right columns show the accuracy drop as non-IIDness increases. Since using Linear at « = 0.01
with participation ratio 0.1, 0.2, 0.3, and 0.4 could not train, leave blank at « = 0.01 — 0.1 with
participation ratio 0.1, 0.2, 0.3, and 0.4.

Participation Ratio | Activation Function | « =10 a=1 a=01 «=001 |a=10—-1 a=1-01 «a=01-0.01

Linear 25.94 25.57 22.58 1.00 0.37 2.99 -
Tanh 26.56 26.03 21.81 13.47 0.53 422 8.34
HardTanh 29.04 28.66 23.70 14.66 0.38 4.96 9.04
0.1 ReLU 21.83 22.67 17.98 10.97 -0.84 4.69 7.01
: Leaky ReLU 21.95 22.77 18.12 11.13 -0.82 4.65 6.99
Swish 19.66 20.67 15.41 11.10 -1.01 5.26 431
Mish 23.75 23.30 18.42 11.86 0.45 4.88 6.56
GeLU 21.21 21.77 16.65 11.15 -0.56 5.12 5.50
Linear 31.78 31.89 28.39 1.00 -0.11 3.50 -
Tanh 34.01 34.74 30.75 19.56 -0.73 3.99 11.19
HardTanh 35.68 36.08 31.76 21.93 -0.40 432 9.83
02 ReLU 26.91 27.59 23.99 15.61 -0.68 3.60 8.38
: Leaky ReLU 26.93 27.77 24.04 15.68 -0.84 3.73 8.36
Swish 26.39 26.14 21.55 14.57 0.25 4.59 6.98
Mish 29.40 28.89 24.89 16.41 0.51 4.00 8.48
GeLU 27.66 26.73 23.26 15.08 0.93 3.47 8.18
Linear 35.50 35.32 31.47 1.00 0.18 3.85 -
Tanh 37.68 38.76 34.24 23.11 -1.08 4.52 11.13
HardTanh 39.05 39.40 35.03 24.09 -0.35 4.37 10.94
03 ReLU 29.81 30.24 27.31 17.92 -0.43 2.93 9.39
~ Leaky ReLU 29.74 30.26 27.45 17.97 -0.52 2.81 9.48
Swish 29.96 29.53 25.34 17.37 0.43 4.19 797
Mish 32.33 32.71 29.19 20.16 -0.38 3.52 9.03
GeLU 30.24 29.77 27.24 17.89 0.47 253 9.35
Linear 37.48 37.53 33.79 1.00 -0.05 3.74 -
Tanh 40.01 40.85 37.13 26.35 -0.84 3.72 10.78
HardTanh 41.69 41.73 37.41 27.44 -0.04 432 9.97
04 ReLU 30.75 3145 30.55 20.51 -0.70 0.90 10.04
: Leaky ReLU 31.05 31.61 30.79 20.61 -0.56 0.82 10.18
Swish 32.54 32.37 27.61 19.45 0.17 4.76 8.16
Mish 34.64 35.94 33.11 22.01 -1.30 2.83 11.10
GeLU 32.37 32.12 29.27 20.73 0.25 2.85 8.54

15

C.2 Resnet Result

Table 8| [Table 9] and [Table 10]shows the result of Resnet20, Resnet32, and Resnet44 with all

combinations of R and o with N = 100. For all values of R and o, Resnet20 using HardTanh shows
the highest accuracy. As model gets deeper, Resnet32 and Resnet44, in some cases recent SOTA
activation functions overcome Tanh-like activation functions. It seems to occur due to shortcut’s
existence. A deeper layer can use features that the activation function has excluded via a shortcut [15],
which helps to prevent the recent SOTA activation functions’ accuracy drop.

Table 8: Server accuracy of Resnet20 using four different o and four different participation R,
where N = 100. The most right columns show the accuracy drop as non-IIDness increases.

Participation Ratio | Activation Function | « =10 a=1 a=01 «=00l |a=10—-1 a=1-01 «a=01-0.01

Linear 49.01 48.60 38.60 24.63 0.41 10.00 13.97

Tanh 50.68 49.20 38.83 23.82 1.48 10.37 15.01

0.1 HardTanh 51.23 49.44 39.28 2391 1.79 10.16 15.37
ReLU 48.81 48.12 37.53 23.34 0.69 10.59 14.19

Leaky ReLU 48.63 48.15 37.71 23.50 0.48 10.44 14.21

Linear 56.93 56.96 45.73 26.70 -0.03 11.23 19.03

Tanh 59.66 57.42 46.58 26.50 2.24 10.84 20.08

0.2 HardTanh 59.60 57.54 46.19 26.52 2.06 11.35 19.67
ReLU 56.90 56.95 45.35 25.73 -0.05 11.60 19.62

Leaky ReLU 56.78 56.49 45.18 26.10 0.29 11.31 19.08

Linear 63.17 61.67 49.35 28.25 1.50 12.32 21.07

Tanh 64.63 61.74 49.69 27.90 2.89 12.05 21.79

0.3 HardTanh 64.41 61.59 50.16 27.86 2.82 11.43 22.30
ReLU 61.99 61.59 48.71 27.58 0.40 12.88 21.13

Leaky ReLU 61.87 61.34 48.38 27.38 0.53 12.96 21.00

Linear 66.24 65.30 52.09 30.17 0.94 13.21 21.92

Tanh 68.08 65.05 52.92 28.92 3.03 12.13 24.00

0.4 HardTanh 67.90 64.91 53.69 29.51 2.99 11.22 24.18
ReLU 66.10 64.94 52.54 28.28 1.16 12.40 26.26

Leaky ReLU 66.04 64.82 5223 28.70 1.22 12.59 23.53

Table 9: Server accuracy of Resnet32 using four different o and four different participation R,
where N = 100. The most right columns show the accuracy drop as non-IIDness increases.

Participation Ratio | Activation Function | « =10 a=1 a=01 «a=001 | a=10—-1 a=1-01 «a=0.1-001

Linear 50.06 47.94 37.39 21.95 2.12 10.55 15.44

Tanh 49.55 47.15 38.24 21.61 2.40 8.91 16.63

0.1 HardTanh 50.04 47.99 38.34 22.37 2.05 9.65 15.97
ReLU 50.68 48.39 37.87 24.29 2.29 10.52 13.58

Leaky ReLU 50.71 48.57 37.33 2391 2.14 11.24 13.42

Linear 60.12 56.84 43.01 24.98 3.28 13.83 18.03

Tanh 60.03 56.81 43.92 25.90 3.22 12.89 18.02

0.2 HardTanh 59.30 57.39 43.99 25.51 1.91 13.40 18.48
ReLU 58.52 56.34 43.09 26.66 2.18 13.25 16.43

Leaky ReLU 58.97 56.16 43.42 26.42 2.81 12.74 17.00

Linear 64.51 62.20 46.15 28.63 2.31 16.05 17.52

Tanh 64.60 61.96 47.77 28.04 2.64 14.19 19.73

0.3 HardTanh 63.74 62.20 47.73 28.03 1.54 14.47 19.70
ReLU 64.23 61.58 46.49 28.90 2.65 15.09 17.59

Leaky ReLU 64.20 61.59 46.81 28.49 2.61 14.78 18.32

Linear 68.45 65.75 49.49 30.28 2.70 16.26 19.21

Tanh 67.75 66.58 51.03 29.41 1.17 15.55 21.62

0.4 HardTanh 67.33 66.17 50.75 29.18 1.16 15.42 21.57
ReLU 67.52 65.55 49.72 30.18 1.97 15.83 19.54

Leaky ReLU 67.46 65.71 49.40 30.43 1.75 16.31 18.97

16

Table 10: Server accuracy of Resnet44 using four different o and four different participation R,
where N = 100. The most right columns show the accuracy drop as non-IIDness decreases.

Participation Ratio | Activation Function | « =10 a=1 a=01 «=00l |a=10—-1 a=1-01 «a=01-0.01

Linear 49.68 47.28 39.56 23.26 2.40 7.72 16.30

Tanh 49.13 46.47 38.19 23.06 2.66 8.28 15.13

0.1 HardTanh 49.33 47.10 38.88 23.77 2.23 8.22 15.11
ReLU 48.89 46.38 38.57 22.84 2.51 17.81 15.73

Leaky ReLU 48.71 46.27 37.35 23.05 2.50 8.92 14.30

Linear 57.55 55.98 45.14 27.50 1.57 10.84 17.64

Tanh 57.94 55.54 46.42 27.23 2.40 9.12 19.19

0.2 HardTanh 58.80 57.54 45.98 26.46 1.26 11.56 19.52
ReLU 56.89 54.23 44.42 26.06 2.66 9.81 18.36

Leaky ReLU 57.02 53.76 43.97 26.37 3.26 9.79 17.60

Linear 63.29 61.20 47.78 30.71 2.09 13.42 17.07

Tanh 64.43 61.27 50.67 29.53 3.16 10.60 21.14

0.3 HardTanh 64.31 61.42 51.23 28.84 2.89 10.19 22.39
ReLU 62.79 60.19 46.25 28.41 2.60 13.94 17.84

Leaky ReLU 62.63 59.63 46.84 28.27 3.00 12.79 18.57

Linear 67.30 65.09 51.25 32.67 221 13.84 18.58

Tanh 68.14 64.67 52.89 32.37 3.47 11.78 20.52

0.4 HardTanh 67.91 65.02 53.95 31.90 2.89 11.07 22.05
ReLU 66.74 64.20 50.31 30.51 2.54 13.89 19.80

Leaky ReLU 66.41 64.26 50.40 31.03 2.15 13.86 19.37

17

C.3 MobileNetv2 Result

shows the result of MobileNetv2 with four different R with N = 100 and o = 0.1.
Tanh-like activation functions surpass recent SOTA activation functions. Especially recent SOTA
activation functions accuracy is lower than Linear.

Table 11: Server accuracy of MobileNetv2 with four different participation ratio R (0.1, 0.2, 0.3,
0.4). Weuse N = 100 with o = 0.1.

Activati | CIFAR-10 \ CIFAR-100
ctivation Function
| R=04 R=03 R=02 R=01|R=04 R=03 R=02 R=01

Linear 3674 3686 3586 3550 | 1502 1476 1423 13.17
Tanh 3339 3364 3159 3183 | 1920 1699 1476 1119
HardTanh 3382 3241 2891 2995 1864 1591 13.54 9.39
ReLU 36.99 3421 2693 2012 16.71 13.97 8.16 5.17
Leaky ReLU 3554 3307 3069 2044 | 1692 1384 10.14 5.67

C.4 FedProx Result

As mentioned in studies to improve the server model in FL add proximal terms to the
local object to enhance the method’s stability so that the local model rarely differs from the global
model. We choose FedProx [33]] as an additional FL. method because it is the most basic method
that focuses on improving the server model by adding a proximal term. The details of FedProx is
shown in[Appendix B} [Table 12| shows the accuracy for different activation functions using FedProx
as a learning algorithm. Similar to FedAvg, HardTanh achieves the best accuracy, followed by the
other Tanh-like activation functions. Proximal terms in local training do not appear to help prevent
accuracy loss.

Table 12: Server accuracy using FedProx with following setting: N = 100, R = 0.2, and o = 0.1.

Act. Func. | Acc.

Linear 48.74
Tanh 45.50
HardTanh 49.16
RelLU 42.19
Leaky ReLU | 42.40
Swish 35.79
Mish 39.83
GeLU 36.00

18

D Landscape Result

We visualize the affect of different activation functions; Tanh, HardTanh, ReL.U, and Leaky ReL.U.
The color bar beside each figure shows the loss difference. Tanh and HardTanh has extremely small
number compared to ReLU and Leaky ReLLU. Which emphasize that Tanh and HardTanh smooth out
the landscape considerably comparison to ReLU and Leaky ReLU. Additionally, Tanh and HardTanh
has its significant lowest value where perturbation X and perturbation Y is both 0. However, ReLU
and Leaky ReLU does not show this phenomenon. Which we can consider that only Tanh and
HardTanh succeed in reaching the global optimum.

HardTanh
—

TR

Leaky ReLU

e500
000
s2s00
45000
7500
30000
2500
15000
7500
o

) P?ﬁ?rbation Y
F?nurbation Y
Perturbation Y

‘Fsﬁurbaﬁon

.2 . -
2 15 0 5 0 s MEE] 20 15 0 5 0 s

0)
Perturbation X Perturbation X

Figure 6: Landscape of ConvNet4 with Tanh, HardTanh, ReLU and Leaky ReLLU. We use N = 100
with R = 0.1 and o = 0.01 for training. We draw landscape with 150 levels.

EEE]

5 -l T 1 5
Perturbation X Perturbation X

19

	Introduction
	Related Work
	Experiments
	Experimental Setup
	Comparative Experiments on the Changes in Activation Functions
	Strategies for Selecting Activation Functions in FL
	Additional Experiment

	Analysis
	Investigation of Weight Parameters and Latent Representations
	Analysis of Landscape

	Conclusion
	Related Work
	Activation Functions in Neural Networks
	Federated Learning Methods
	Algorithms of Federated Learning Methods

	Implementation Details
	Model Architecture
	Dataset statistics
	Training Details

	Additional Experiment Result
	ConvNet4 Result
	Resnet Result
	MobileNetv2 Result
	FedProx Result

	Landscape Result

