
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM FEW TO MANY: ENHANCING IN-CONTEXT
LEARNING WITH OPTIMIZED EXAMPLE SELECTION
AND EXPANSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in long-context large language models (LLMs) have led to the
emerging paradigm of many-shot in-context learning (ICL), where it is observed
that scaling many more demonstrating examples beyond the conventional few-
shot setup in the context can lead to performance benefits. However, despite its
promise, it is unclear what aspects dominate the benefits and whether simply scal-
ing to more examples is the most effective way of improving many-shot ICL. In
this work, we first provide an analysis on the factors driving many-shot ICL, and
we find that 1) many-shot performance can still be attributed to often a few dis-
proportionately influential examples and 2) identifying such influential examples
(“optimize”) and using them as demonstrations to regenerate new examples (“gen-
erate”) can lead to further improvements. Inspired by the findings, we propose
BRIDGE, an algorithm that alternates between the optimize step with Bayesian
optimization to discover the influential sets of examples and the generate step to
reuse this set to expand the reasoning paths of the examples back to the many-shot
regime automatically. On state-of-the-art long-context Gemini models of differ-
ent sizes, we show BRIDGE led to significant improvements across a diverse set of
tasks including symbolic reasoning, numerical reasoning and code generation.

1 INTRODUCTION

Recent advances in large language models (LLMs) have led to the emergence of in-context learning
(ICL) as a promising new learning paradigm (Brown et al., 2020). ICL allows LLMs to learn tasks
by simply being presented with a few examples within their context window. A key bottleneck for
ICL has been the supported context length of LLMs, but with advancements in novel model archi-
tectures, computational infrastructures and efficient serving methods, state-of-the-art models such
as Gemini (Reid et al., 2024; Anthropic, 2024) feature context windows of millions of tokens are
overcoming this limitation. Such long-context LLMs open unprecedented avenues for the scaling
of ICL – whereas previous LLMs were limited to processing only up to dozens of examples, cur-
rent LLMs can now accommodate significantly more examples. More importantly, beyond merely
supporting a longer context, it has also been shown that scaling more examples led to substantial
performance improvements across tasks, creating a new promising paradigm known as many-shot
learning (Agarwal et al., 2024; Bertsch et al., 2024).

Despite these advances, as a nascent paradigm, many-shot ICL still faces several challenges. Long
context windows, while powerful, are computationally expensive and introduce significant latency
and cost to serving, making it impractical or uneconomical to fully exploit the maximum context
length and some kind of trade-off decisions have to be made under virtually any realistic settings.
To leverage the expanded context while controlling the cost and latency under an acceptable limit,
existing works typically investigate the experimental setting where as many examples as costs permit
are simply randomly sub-sampled from the pool of all available examples and dumped into the con-
text window. As observed both in prior works (Agarwal et al., 2024) and our investigations (Fig. 1),
using the same number of examples but with different combinations of examples as demonstrations
can lead to dramatically different performance for the same task. Across different tasks, it has also
been noted that the model behaves very differently when the number of examples is scaled up, with
some showing a near-monotonic increase in performance as more examples are added, while others

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 46# Demos
0.5

0.6

0.7
V

al
. A

cc

logical_deduction (7)

0 43# Demos

0.6

0.8

geometric_shapes

0 42# Demos
0.6

0.7

0.8

disambiguation_qa

Top-K

Bottom-K

Overall trendline

Reinf. ICL

All examples

Figure 1: It does not always take “many shots” to achieve many-shot performance – with judicious
selection, it is possible to match or exceed many-shot performance achieved with using all available
examples) with much fewer examples: Accuracy on held-out splits against the number of examples
on 3 BBH tasks of 1) overall trendline (fitted with locally weighted smoothing (LOWESS)), 2) using
top-K most positive examples, or 3) using bottom-K least positive examples based on the ranking of
the importance score described in Sec 2. Dotted lines refer to two many-shot baselines: reinforced
ICL: using input, model-generated reasoning and output of all correctly-predicted inputs; All ex-
ample: using all available input-output pairs from the train set. Lines and error bars show mean ±
standard deviation across 3 runs with the ordering of the examples shuffled each trial.

experience performance plateaus (e.g., gray line in the leftmost subfigure of Fig. 1) or even degra-
dation (e.g., red line in the rightmost subfigure of Fig. 4). Understandably, such variability could
pose challenges for practitioners and present obstacles to the application of many-shot learning as
an effective paradigm in practice.

To address these, this paper aims to answer key research questions and proposes an effective novel
approach. First, we analyze the factors driving the many-shot ICL in the reinforced ICL setup com-
mon in challenging reasoning tasks where we are provided with a labeled set of inputs and final
labels, but the intermediate reasoning path has to be model-generated. We find that while ICL
performance often increases with the number of shots, that improvement can often be at least par-
tially attributed to a much smaller subset of examples that highly disproportionately contribute to
the overall task performance – as we scale the number of examples, the probability of including
these examples also increases. In many cases, if, however, we judiciously isolate these influential
examples from the rest, the “many-shot” performance can be matched or even exceeded with this
sometimes extremely small subset of well-chosen examples alone while adding more examples be-
yond this set often provides little benefit or even harms performance. We also argue that the findings
explain some of the phenomena observed. For example, uneven influence can lead to high variance
across different combinations of examples, whereas plateauing performance may occur when we
run out of good examples with positive performance influences. One natural implication of these is
the efficiency gains by reducing redundancy in many-shot ICL and identifying the optimized sub-
sets. However, the natural next question to ask is whether scaling ICL examples in LLMs can still
be beneficial after using up all beneficial examples identified in the previous step. We answer affir-
matively to this: to still leverage LLMs’ long context, these optimized, high-performing examples
may serve as demonstrations to re-generate the more effective reasoning paths rationales on the train
set back into the many-shot regime, which we find to often outperform both the original many-shot
examples and using the optimized examples themselves. Building on these insights, we propose
Bayesian Refinement and Iterative Demonstration Generation for Examples (BRIDGE), a search al-
gorithm based on Bayesian optimization to improve many-shot ICL by automating the “optimize”
and “generate” steps above iteratively. In the “optimize” step, it frames the problem as a combina-
torial optimization task to discover the optimal set of demonstrations, and in the “generate” step, it
uses the optimal set as seed examples to generate more examples for further performance enhance-
ment. We demonstrate the effectiveness of BRIDGE on two Gemini variants across a diverse range
of tasks, including symbolic reasoning, numerical reasoning and text-to-SQL generation.

2 WHAT DRIVES MANY-SHOT IN-CONTEXT LEARNING PERFORMANCE?

Several previous studies on many-shot ICL (Agarwal et al., 2024; Bertsch et al., 2024) have inves-
tigated the presence of performance gains when we scale the number of examples. A key question
that remains unanswered, though, is what exactly leads to this improvement. For example, it is
unknown whether the benefit is from scaling examples itself due to expanded knowledge in the
context via more examples or because including more examples increases the probability of se-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

lecting a small subset of disproportionately positive examples, or a combination of the above with
some task specificity. We argue that answering this question is critical – if the benefit comes from
expanded knowledge from including more examples, it suggests that scaling and addressing long-
context understanding challenges would dominate the end-to-end performance improvements, and
future studies should aim to either include as many examples as practically possible or to imitate
the behavior of the LLM as if many examples are included. If, on the other hand, the performance
is dominated by a small effective subset of examples, more intelligent selection aiming to reduce
redundancies and identify the high-performing subsets should outweigh näively scaling examples.

Prior work on few-shot setup have studied related problems such as the sensitivity to examples in
the context (Zhao et al., 2021; Zhou et al., 2024). However, it is presently unknown to what extent
the findings still scale to the many-shot ICL setup because 1) in many-shot setup, the influence of
each individual example would get much smaller, and 2) it is unknown whether careful example
selection in the few-shot setup is still necessary if all examples can be included in the context, since
by definition, any high-performing examples are subsets of all examples – if the long-context LLM
is perfectly capable of identifying the most relevant pieces of information. If so, aside from other
practical concerns like cost and latency, the need for users to manually curate examples may no
longer be required.

Setup. We aim to shed insights on these important questions. We use the Gemini 1.5 Pro (Reid et al.,
2024), the state-of-the-art long-context model, to focus on several representative tasks from the BBH
tasks. All three tasks, as shown in by the gray lines in Fig. 1, benefit from increasing number of
examples to varying degrees (in logical deduction, the performance initially increases with
the number of examples before plateauing and decreasing; in the other two tasks, there is a noisy but
near monotonic improvement throughout) – we will test the key findings in a much more extensive
collection of tasks in Sec. 4. Given the increased emphasis of modern LLMs on problem-solving
and reasoning, we primarily focus on these tasks and adopt the reinforced ICL (Agarwal et al.,
2024) setup, where we assume the availability of a labeled set of inputs and final labels to be used
as many-shot demonstrations, whereas any intermediate outputs or rationales leading to the final
answer are model-generated and modifiable (although we also conduct preliminary experiments in
alternative setups such as low-resource machine translation in App. C.4). Lastly, we primarily focus
on the tasks with the number of available labeled data up to 150-200 samples – while modern LLMs
can often accommodate even more examples in the context, we focus on this range because 1)
we believe it is the most practically relevant and fills an important gap that neither few-shot ICL
nor supervised (parameter-efficient) fine-tuning (which usually requires hundreds to thousands of
examples) conventionally address, and 2) while possible and of academic value, scaling beyond
this range typically starts incurring significant latency and computational overhead, which scales
quadratically w.r.t the input length for exact attention and is thus often practically less desired for
most real-world use cases.

Many-shot performance can still be driven by few high-performing examples. A key test that
would distinguish and disentangle the two possible sources of benefits from scaling mentioned at
the beginning of this section is that whether we can attribute, at least to a large extent, the perfor-
mance improvement from scaling examples back to a carefully selected, high-performing subset of
examples with disproportionate influence. Formally, given a set of examples E = {ej}mj=1 and a
performance metric to be maximized g(·) : P(E) → R (in this case, the accuracy on the validation
set In this setup, the goal is to find whether we can construct a subset e∗ = {e∗i }ni=1 ⊂ E , s.t.n� m
such that g(e∗) is much better than a randomly selected set of examples e of similar size and/or can
even be comparable or better than using the full set of examples g(E) in the context.

Whereas a conclusive test would involve enumerating and evaluating g(·) on the power set of E
with |P(E)| = 2|E|, it is clearly computationally intractable, and a natural simplification is whether
we can rank the individual examples in E with some importance scoring function M(e) to con-
struct example subsets based on the example ranking. While many possible formulations of this
are possible, here we define M(e) based on imputed input gradient, which is a concept used in
interpretable machine learning for importance attribution (Simonyan, 2013; Selvaraju et al., 2017;
Sundararajan et al., 2017; Samek et al., 2021). In our context, directly computing input gradient
is impossible as we only assume black-box LLMs without gradient backpropagation and g(·) is
not necessarily differentiable. To bypass these issues, we use use a sample-efficient Gaussian pro-
cess regressor (GPR) (Williams & Rasmussen, 1995; 2006) to approximate g(·) with ĝ(·), whose

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

input gradient ∇eĝ(e) is analytically available: we first randomly sample n subsets of E to give
e1:n = [e1, ..., en], where each subset of examples is represented as a m-dimensional binary col-
umn vector ei ∈ {0, 1}m with e

(j)
i = 1 if the j-th example is present or 0 otherwise; we then

evaluate the performance metric of each ei to obtain g1:n = [g(e1), ..., g(en)]. We then compute
and average the input gradient w.r.t. each possible {ej}mj=1 ∈ E to obtain an approximated marginal-
ized importance of each example in E1. Finally, we sort the examples based on M(e) and construct
subsets at regular interval from size 1 to |E| in both ascending and descending directions. Formally,
we order {ei}ni=1 such that M(e1) ≤ M(e2) ≤ ... ≤ M(en); the ascending and descending sets of
size t ∈ [1, |E|] are given by at = e1:t and dt = en−t:n respectively. We then evaluate g(·) on these
sets and show the results in Fig. 1.

0 64

0.6

0.8

V
al

. A
cc

.

geometric_shapes

0 51# Demos

0.6

0.8

V
al

. A
cc

.

disambiguation_qa

Figure 2: Good demon-
strations lead to better
re-generated examples:
trendlines between accuracy
and # examples; note that
the re-generated examples by
using top-5 examples sets as
demonstrations outperform
the original examples (gray
line) by at all parts of the
curve.

As shown, while the gray lines (overall trend lines) often show posi-
tive correlation between performance and increasing number exam-
ples, we also observe often large gap between the green (top-k ex-
amples) and the red (bottom-k examples) lines, suggesting that dif-
ferent sampling strategies can lead to performance differences that
far outweigh the effect from naı̈ve scaling – e.g., if we establish an
“exchange rate” between different example sets based on their im-
puted ordering, we can observe that including around top-10 exam-
ples (green lines) examples is as effective as or more effective than
the set containing bottom-30 examples in geometric shapes.
More importantly, in both cases we observe that the green lines,
which represent an intelligent selection strategy more sophisticated
than random sampling, plateau far before the gray line, suggesting
that it is possible to achieve comparable performance with much
fewer number of examples: in disambiguation qa, we find
that using fewer than 20 top examples is almost already as good
as using all 42 examples whereas subsequent additions only led to a
few percent of gain, possibly within the margin of error with reshuf-
fling (denoted by error bars on the figure). In the other tasks, we
find the performance to peak much earlier and adding more exam-
ples to the context actually led to performance deterioration. The
results suggest 1) the fact that it is possible to match or outperform
using all examples with fewer, carefully selected examples means
that intelligent example selection is still relevant even with many-
shot ICL, echoing findings from the recent works (Li et al., 2024b)
that retrieval remains valuable for long-context models in the RAG
setup; and 2) naı̈vely including as many examples as possible can
be suboptimal both in terms of computing cost and performance –
while it is trivially true for the tasks whose performance does not
improve monotonically with the number of examples, we show that it can even be true when it ap-
parently does: e.g., on geometric shapes, the near monotonic improvement overall trend (gray
line) may lead someone to conclude that it is beneficial to include as many examples as possible,
even though the green line representing intelligent selection saturates and starts to decline earlier.

Can we still benefit from scaling examples? Experiments above demonstrated the presence of
redundancy in many-shot ICL, revealing that using a smaller subset of examples can often reduce
this redundancy without sacrificing performance. It is, however, a pruning operation that necessar-
ily reduce the input tokens consumed. This leads to a natural question: can we still benefit from
scaling through expanding? For this question, it is important to recognize that under the reinforced
ICL setup, while the inputs and labels in many-shot setups are fixed, the model-generated interme-
diate outputs, which represent reasoning paths, are modifiable. Given that these intermediate roles
are shown to play a critical role in steering model behaviors (Wan et al., 2024), it is possible that
examples previously identified as non-important or non-beneficial may be again beneficial if the
model-generated rationales can be improved.

To achieve so, we reuse the optimized example set from the previous steps as “seed” demonstrations
for LLMs to re-generate the examples on the train set, the same set from which the optimized

1We refer the readers to App. A for detailed derivation of the input gradient-based score.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Evaluate

performance

❌

, 84%)

, 45%)

, 75%)

Q1 A1

A3Q3

A1Q1 A3Q3

A1Q1

Set of available
examples

❌

LLM

Q2

Q3

Q4

Q5

Q6

A2

A3

A4

A5

A6

A1

A3

A5

A6

A6Q6

Q5

Bayesian

Optimizer

75%

84%

Q1

Q3

Q5

Q6

✅

✅

✅

✅

A5

1 1 0 1

0 1 1 0

45%

(

(

(

Update
Suggest New

LLM

Select argmax

A3Q3Q5 A5

Generate Optimize

Use as demonstrations

for the next round

Sample

Pool of evaluated example sets

1 0 0 0

1

2

3
4

5

67

Figure 3: Overview of BRIDGE: With a labeled dataset D, exemplified with 6 samples, at the Gen-
eration phase (left half), we generate initial examples by performing LLM inference on the inputs
of D (“Q1-6”) with zero-shot prompting to obtain the initial responses “A1-6”, which include any
intermediate outputs critical for ICL (Step 1). At Step 2, consistent with reinforced ICL in Agarwal
et al. (2024), we filter the responses to retain the subset of D where the LLM predicted correctly
to ensure the examples include correct reasoning steps to build Ek, the pool of examples at round k
which form the search space for the subsequent Optimize step. At the Optimize step (right half),
we initialize the proposed Bayesian optimizer by randomly sampling subsets e(0) ⊆ Ek as demon-
strations to be Step 3 evaluated on a held-out validation dataset (D can be reused for this purpose)
to obtain a performance metric Step 4. The Bayesian optimizer (BO) is then updated with binary
vector representations of e that led to this validation performance as input and the metric itself as
output, and suggests a new subset of examples to be used as demonstrations for the next step Step 5;
Steps 4-5 are repeated (inner loop) until the BO budget is exhausted, after which the best evaluated
set e∗k is returned (Step 6). This set is then be used as demonstrations to generate the example pool
for the next round Ek+1 (Step 7).

examples are generated. As shown by Fig. 2 where we use example set of different sizes as the
seeds, the regeneration step not only increases the number of shots available but also results in better
performance across the accuracy versus number-of-demonstrations trade-off.

3 METHODOLOGY

The findings presented above highlight a significant need for improvements that extend beyond
simply increasing the number of examples straightforwardly. Instead, identifying the most useful
example subset e∗ is crucial both for effective cost-performance trade-off and for better reason-
ing path generation for more effective examples. Based on these insights, we propose Bayesian
Refinement and Iterative Demonstration Generation for Examples, or BRIDGE in short (described
in Algorithm 1 and depicted in Fig. 3, an optimization algorithm aiming to enhance many-shot ICL
with intelligent example selection and iterative example generation. At a high level, the outer loop of
BRIDGE is structured in two alternating steps of “optimize” and “generate”. In the “optimize” step,
the algorithm focuses on discovering the optimal subset of examples e∗ via a carefully-designed
(for low complexity, robustness to overfitting and budget control) Bayesian optimization algorithm
that naturally leverages the GPR surrogate used in Sec. 2; in the “generate” step, BRIDGE utilizes
the optimized subset as seed demonstrations to align the model with the best performing examples
seen so far to re-generate new reasoning paths as an integral part of more effective examples back
to the many-shot regime to leverage the long context. The two steps are iteratively repeated to
progressively refine the examples.

Optimize step. While effective, directly using the importance scoring approach from Sec. 2 to
identify the e∗ would require us to set the optimal number of examples to select ||e∗|| as a hy-
perparameter, the optimal value of which is task specific. Furthermore, a key motivation for the
importance-based ranking in Sec. 2 is to attribute performance to individual examples; this is, how-
ever, not required if we simply would like to find an optimal subset e∗. To nevertheless use the GPR
surrogate in Sec. 2 which has shown an impressive sample-efficient, modelling capability, we pro-
pose to use Bayesian optimization (BO) (Garnett, 2023; Frazier, 2018), a sample-efficient black-box
optimization algorithm that naturally synergizes with the GP surrogate yet automatically strikes a
balance between exploration and exploitation to discover e∗ without requiring us to set ||e∗|| be-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 BRIDGE.
1: Input: train set Dt, validation set Dv (can be the

same as the train set), number of iteration rounds
K ∈ N (outer-loop), evaluation budget for BO per
iteration neval (inner-loop).

2: Output: Optimized set of examples E∗.
3: [Generate] Generate the pool of initial exam-

ples E0 by predicting the LLM on the train set
with zero-shot prompting or few-shot prompting
(if handwritten few-shot demonstrations are avail-
able). Each instance in E0 is a concatenation of
{input, model-generated reasoning, final outputs}
for the subset of the train set where the model ob-
tained the correct prediction.

4: for k ∈ {1, ...,K} (Outer loop) do
5: [Optimize] Run Bayesian optimization (calling

subroutine Algorithm 2 on the validation set to
obtain e∗k ← BayesOpt(neval=neval, E=Ek).

6: [Generate] Re-generate examples Ek by re-
predicting the LLM on the train set, but with
the optimized examples e∗k from the previous
step as demonstrations; the {inputs, model-
generated reasoning, output}-tuples are con-
catenated to form the new set of examples Ek
for the next [Optimize] step.

7: end for
8: return Optimized example set E∗ afterK rounds.

Algorithm 2 Budget-controlled BO subroutine
with random scalarization (BayesOpt).
1: Input: Evaluation budget for BO per iteration neval

(inner-loop), full set of available samples E , number
of random initializations ninit = min(16, neval/2).

2: Output: Optimized set of examples e∗ ⊆ Et.
3: Randomly generate ninit subsets e1:ninit :=

{e1, ..., eninit} with each e ∼ {0, 1}|Et| s.t. |e| ∼
Uniform(1, |Et|).

4: Evaluate g1:ninit = [g(e1, ..., eninit]
> and fit a GP

on e1:ninit as inputs and g1:ninit as outputs. Set
D0 ← {e1:ninit ,g1:ninit}

5: for t ∈ {ninit, ..., neval} (Inner loop) do
6: Sample a random scalarization value

βt ∼ Uniform(0, 1) and compute
the scalarized objective of this iteration
ht(e) = TCH(βt, [g(e), |e|]).

7: Compute h1:t for all previously evaluated points
Dt−1, fit a GPR GPt on [e1:t,h1:t] and ob-
tain the next configuration to evaluate by max-
imizing the acquisition function α(·): et =
argmaxe⊆E α(e | GPt).

8: Evaluate g(·) with et and augment Dt ←
Dt−1 ∪ (et, g(et))

9: end for
10: return e∗ = argmaxe∈D g(e).

forehand, although BRIDGE is also compatible with alternative methods as drop-in replacement of
the “Optimize” step, which we investigate in detail in App. C.1.

Instead of consuming the entire query budget by sampling randomly, as illustrated by Algorithm 2,
BO only requires some initializing samples to warm-start (Step 3). Afterward, it guides exploration
by iteratively (re)fitting a GPR with the previous observed inputs and outputs so far. Formally,
at iteration t ∈ [1, T], we have evaluated g(·) t times at e1:t = [e1, ..., et]

> with observed val-
ues g1:t. Whereas a straightforward application of BO would directly train a GP on [e1:t,g1:t] as
inputs-outputs and perform BO with g(·) as the objective function directly, a subtle but important
distinction here is that our goal is to identify a subset e∗ that, when used as demonstrations on the
train set, generates to the most effective examples on the validation set, rather to simply find the
highest-performing e∗ on the validation set. While we expect the two objectives to be correlated
(i.e., e that led to high validation performance is also likely to generate better samples on the train
set), we also empirically find it is desirable to encourage e∗ to have a smaller cardinality akin to a
`0 regularization to reduce overfitting on the validation set and to discourage memorization in sub-
sequent generations from the previous example set Et−1 of which e∗ is a subset. To achieve so, we
augment the performance maximization max g(e) with a sparsity objective which counts the number
of non-zero elements in e: min

∑
j e

(j) – this transforms the problem into a bi-objective optimiza-
tion problem , where instead of maximizing for the validation performance only, we also encourage
sparsity as regularization. Practically, we solve the problem with random scalarization (Paria et al.,
2020; Knowles, 2006). Specifically, as hinted in Step 7 of Algorithm 2, at each BO iteration, we
first sample a random scalar βt ∼ Unif(βLB, βUB) that determines the weight of the performance
objective g(·) of the t-th BO iteration (the weight of the sparsity objective is given by 1 − βt) and
{βLB, βUB} denote the lower and upper bounds of the weight for g(·) which are set to {0.25, 1} by
default. With this βt, we then aggregate the vector objective [g(e),

∑
j e

(j)] back to a scalar ht(e)
via Tchebyshev scalarization (TCH), a theoretically well-founded scalarization scheme common in
multi-objective optimization (Chugh, 2020; Steuer & Choo, 1983; Bowman Jr, 1976) given by:

ht(e) = max
{
βt
(
g(e)−max{g(e1), ..., g(et)}

)
,−(1− βt)

∑
j

e(j)
}
, (1)

where the minus sign before the last term is to cast the sparsity objective as maximization. We
opt for random scalarization that differs step to step instead of a fixed scalarization weight or any
hard constraint on

∑
j e

(j) to retain the flexibility of exploring the entire Pareto front, since the
exact relation between the number of samples and performance can differ across tasks. Since βt is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

in general different for each t, we then compute ht = [ht(e1), ..., ht(et)] on previously evaluated
outputs and fit a GP on Ht := [e1:t,ht], which induces a Gaussian posterior predictive distribution
with mean and variance at any e ⊆ E (we use ĥt to denote that it is the GP approximation of the
actual function ht):

Eĥt(e)|Ht
[ĥt(e)] = kt(K+ η2I)−1ht, Vĥt(e)|Ht

[ĥt(e)] = k(e, e)− kt(K+ η2I)−1k>t , (2)

where kt = [k(e, e1), ..., k(e, et)] and k(·, ·) is the covariance function of the GP (we use Matern
2.5 by default) which measures the similarity between two inputs – in our case, it is a function of
the number of overlapping examples between two subsets of examples e, e′ ⊆ E . To select the next
configuration to evaluate ek, the BO optimizes an acquisition function, another key component of
BO that automatically trade off exploration and exploitation. At each inner-loop BO iteration, we
choose the maximizer of the expected improvement (EI) (Zhan & Xing, 2020) for the next iteration
et: et = arg maxe⊆E α(e) = arg maxe⊆E Eĥt(e)|Ht

[
max{0, ĥt(e)−maxt′∈{1,t} ĥt(et′)}

]
.

Generate step. At each outer-loop round k ∈ {1, ...,K}, given the optimized e∗k as demonstra-
tions, we regenerate and replace the example pool with the correct predictions and their generated
rationales Ek ← fLLM(Dt, e

∗
k ⊆ Ek−1) for subsequent optimize step.

4 EXPERIMENTS

Model and evaluation data. We conduct experiments on an extensive collection of
tasks requiring different set of skills task difficulty primarily on two Gemini 1.5 models
(gemini-1.5-pro-001 and gemini-1.5-flash-001) while also testing key findings on
Mistral Large (mistral-large-2407) and Claude 3.5 Sonnet: 1) BIG-Bench Hard (BBH) tasks
encompassing a wide range of challenging numerical reasoning, commonsense problem-solving,
logical deduction and tabular reasoning tasks – we particularly focus on the subset of 16 BBH tasks
where the model performances have not saturated; 2) Hendryck’s MATH (Hendrycks et al., 2021),
a challenging numerical reasoning dataset; 3) GSM-Hard (Gao et al., 2022), a more challenging
variant of the classical grade-school GSM8K (Cobbe et al., 2021) with the numbers in the questions
replaced with much larger and rarer ones. To further probe the utility of many-shot learning and
BRIDGE in coding tasks, we also experiment on 4) BIRD (Li et al., 2024a), a challenging large-scale
text-to-SQL generation benchmark where the LLM has to generate sqlite programs from natural lan-
guage instructions that are executed on real-world databases. For all datasets, when official train-test
split is not available, we randomly split the data into train and test splits; unless stated otherwise, a
single unified train split is used both for the generation of demonstrations and is reused for valida-
tion (i.e., the objective of the optimize step in Algorithm 1; the test splits are held-out and only used
for evaluation of the algorithm. We refer the readers to App. B for detailed descriptions, prompt
templates used and evaluation protocol.

Experimental setup. For all tasks, we run BRIDGE with K = 3 rounds (i.e., the number of outer-
loop iterations in Algorithm 1) and within each round, we allow for neval = 32 evaluations on the
validation set (i.e., the number of inner-loop iterations in Algorithm 2) and we report the results at
the end of each “optimize” and “generate” steps to visualize the iteration process. For baselines, we
consider 1) using all provided examples, with or without model-generated rationales; 2) reinforced
ICL (Agarwal et al., 2024), where all available input-output pairs from the correct predictions on the
train set with zero-shot prompting are used; and 3) an iterative variant of reinforced ICL which can
also be seen as BRIDGE without the optimize step: while we repeat the generation process on the
train set K = 3 times, we do not first aim to select the optimized subset but instead use the entire
generated examples from the previous step as demonstrations Ek ← fLLM(Dt, Ek−1). In App. C,
we also 1) conduct ablation studies by investigating the importance of the BayesOpt component in
BRIDGE by replacing it with other demonstration selection techniques and 2) give detailed statistics
on the number of examples used in each experiment.

Results and discussions. We show the test accuracy on the BBH tasks in Table 1
(gemini-1.5-pro-001), Table 3 (gemini-1.5-flash), Table 12 (Mistral) and Table 13
(Claude 3.5 Sonnet) (the latter two tables are in App. C.5). On MATH and GSM-Hard datasets, we
show the Gemini 1.5 Pro results in Table 2. We observe that naı̈ve many-shot scaling is in general
ineffective and is outperformed by reinforced ICL; BRIDGE, however, outperforms the base rein-
forced many-shot ICL by more than 7% and 3% on Tables 1 and 3, respectively, and the extent

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy of gemini-1.5-pro-001 on selected BBH tasks with different prompt-
ing approaches. “All” refers to using the entire labeled set of 75 examples as demonstrations (“Di-
rect”: using all input-final answer pairs without any model-generated content; “CoT”: using all
input-rationale-final answer triplet, where the rationale is model-generated; “Infill”: using all input-
rationale-final answer triplet, where the rationale is filled in by prompting the model to generate the
intermediate steps given the inputs and ground-truth answers); “Reinf. ICL” refers to reinforced
many-shot ICL where we include the subset of train set that the LLM answered correctly under
zero-shot as demonstrations; “Iterative Reinf.” refers to the iterative variant of reinforced many-shot
ICL where we directly use all the generated correct examples from the previous round as demonstra-
tions for the next round without the optimize step, and the different columns of BRIDGE show the
evolution of test accuracy at different milestones: e.g., 1O refers the results with optimized e∗1 from
initial examples E0 as demonstrations (in general, we have e∗k ⊆ Ek−1), and 1G refers to the results
using E1 generated by re-evaluating the train set with e∗1 as demonstrations. All results shown are
averaged across 4 random seeds with the standard deviation (stdev) denoted in the subscript. Best
and second-best results along each row are bolded and underlined, respectively (ties are broken by
favoring the result with lower stdev).

Tasks All Reinf. Iterative BRIDGE
Direct CoT Infill ICL Reinf. (Ours)

Iterations - 0 0 0 1 2 1O 1G 2O 2G 3O

causal judgement 61.04.7 62.72.1 68.02.8 66.34.8 68.71.9 69.32.7 68.31.5 62.71.6 59.71.5 72.00.0 70.02.0
date understanding 87.22.0 86.02.3 94.81.8 88.82.5 93.01.0 94.91.3 92.21.5 97.00.7 94.81.9 95.01.2 95.51.8
disambiguation qa 74.22.2 63.31.1 72.32.0 76.82.4 74.61.4 75.11.5 71.82.4 77.53.6 80.51.8 81.32.9 78.81.5
dyck languages 16.82.9 39.03.7 24.52.9 55.53.6 64.45.3 74.43.6 49.22.7 76.23.8 80.02.7 77.51.1 76.83.8
formal fallacies 82.83.7 86.81.3 84.32.8 86.21.1 88.10.9 89.41.4 86.02.1 85.02.5 90.82.3 90.82.8 88.22.3
geometric shapes 69.04.1 61.84.2 73.52.3 80.22.8 81.02.5 82.31.7 78.52.1 82.53.6 89.23.8 92.31.1 89.20.8
hyperbaton 70.84.1 93.23.1 89.52.6 90.21.1 91.52.2 86.22.5 96.50.9 94.21.5 94.82.8 96.50.5 97.20.4
logical deduction (7) 56.84.4 63.07.4 69.85.9 65.83.5 68.92.6 69.52.9 70.21.5 70.84.5 71.73.7 71.51.8 69.22.2
movie recommendation 75.01.0 63.72.2 68.02.8 65.21.6 68.82.0 82.01.9 67.01.2 69.50.5 69.33.1 72.81.8 67.01.2
multistep arithmetic two 86.52.2 96.80.8 88.81.8 96.50.5 95.90.8 94.51.3 96.20.8 94.51.1 97.00.7 98.00.7 96.81.8
object counting 92.52.3 84.84.3 95.31.3 95.50.9 95.82.2 95.11.6 96.20.4 96.01.9 94.51.1 94.20.4 95.00.7
ruin names 85.23.1 85.52.1 89.81.6 89.81.9 88.61.5 90.50.9 90.81.1 88.81.7 89.21.5 88.82.4 90.30.8
salient translation error detection 66.02.4 56.21.5 72.50.5 69.01.6 73.81.1 73.41.3 68.80.8 71.00.7 69.52.2 74.00.7 74.51.1
snarks 94.11.8 95.52.3 95.10.6 92.73.2 94.31.9 95.51.5 93.43.0 95.80.0 95.11.6 96.91.5 97.61.8
sports understanding 93.81.3 94.21.3 95.00.7 93.01.4 94.10.9 95.41.2 92.81.9 97.01.2 96.20.8 95.80.4 95.80.8
tracking shuffled objects (7) 76.07.2 52.52.1 64.32.8 62.34.2 64.52.2 65.54.6 95.80.4 95.01.2 100.00.0 97.00.7 99.50.5

Average 74.22 74.06 78.70 79.61 81.61 82.37 82.11 84.61 85.77 87.13 86.33

Table 2: Test accuracy of gemini-1.5-pro-001 on MATH and GSM-Hard datasets. Refer to
the captions of Table 1 for detailed explanations.

Tasks Reinf. Iterative BRIDGE
ICL Reinf. (Ours)

Iterations 0 1 2 1O 1G 2O 2G 3O

Hendryck’s MATH 63.750.5 63.600.9 63.601.1 62.601.3 63.001.2 63.851.1 64.650.3 64.400.9
GSM-Hard 69.880.8 69.840.4 69.330.3 71.890.4 71.310.4 71.810.4 73.320.4 72.500.6

of outperformance over the “Iterative reinforced ICL”, which leads to moderate improvements on
BBH with Gemini Pro but no significant performance gains on MATH, GSM-Hard and BBH with
Gemini Flash. Both demonstrate that optimize is an integral component of BRIDGE and implicitly
validates the findings in Sec. 3 that many-shot performance can be driven by few disproportionately
influential examples, which constitutes a core motivation for our method. Barring some expected
task-specific fluctuations, in both Tables 1 and 3, we also observe consistent and monotonic perfor-
mance improvement as BRIDGE progresses over the successive optimize and generate steps, even-
tually peaking at 2G on Gemini Pro and 2O on Gemini Flash (although the performance difference
between 2G and 2O on Gemini Flash is negligible and likely within margin of error) – based on
the overall results, we recommend stopping BRIDGE at 2G or 2O. Interestingly, we observe that
in both cases, an additional optimize step (i.e., the 3O column) somewhat degrades performance –
our hypothesis is that as BRIDGE progresses, the generated examples become more aligned with the
optimal behavior and the degree of redundancy as we observed in Sec. 2 reduces, and it becomes
more difficult to squeeze the number of examples without harming task performance – indeed, from
Fig.4 where we concretely analyze the behavior of the LLM in different tasks by evaluating the
LLM under random subsets of E0, ..., E2 as demonstrations in held-out splits, we observe that the
benefit from naı̈vely scaling examples under the base reinforced many-shot ICL (denoted by red
lines) can be highly unstable across tasks: from the different subfigures of Fig. 4, we find the per-
formance to consistently improve with more examples (leftmost), improve then plateau (middle
two figures) and even simply deteriorate with more examples (rightmost) – whereas the latter two
cases are direct manifestations that not all examples contribute positively to many-shot ICL and
naı̈vely scaling examples is suboptimal, we note that it remains true even in the former case where

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Test accuracy of gemini-1.5-flash-001 on BBH tasks. Refers to captions of Table 1
for detailed explanations.

Tasks All Reinf. Iterative BRIDGE
Direct CoT Infill ICL Reinf. (Ours)

Iterations - 0 0 0 1 2 1O 1G 2O 2G 3O

causal judgement 55.05.0 57.71.1 62.72.7 66.03.6 67.72.0 66.71.6 69.32.7 66.02.0 63.31.5 65.01.6 65.31.5
date understanding 84.84.2 83.31.3 89.30.8 84.52.3 86.80.8 87.30.8 85.01.3 90.50.5 91.50.4 90.80.7 92.50.8
disambiguation qa 68.87.2 54.21.5 69.02.2 75.50.5 77.81.6 78.53.5 77.51.3 79.01.1 77.51.2 76.30.8 74.31.1
dyck languages 46.09.5 19.57.0 31.33.3 66.81.9 61.32.6 60.01.9 63.32.0 62.01.7 64.51.8 62.82.4 61.83.8
formal fallacies 75.81.9 74.01.2 76.31.1 77.30.4 74.81.9 72.51.7 78.31.3 77.31.5 75.51.7 78.31.8 76.30.8
geometric shapes 45.81.5 74.24.1 71.32.4 86.01.9 93.80.8 93.31.5 93.82.5 94.04.2 95.51.1 97.00.0 98.00.0
hyperbaton 87.03.1 88.51.5 93.51.1 88.51.5 95.51.1 93.31.5 86.57.6 95.51.1 95.80.8 94.80.4 93.31.5
logical deduction (7) 37.53.3 41.01.9 57.02.7 59.53.4 61.91.9 57.54.7 61.85.1 57.51.1 70.50.9 66.51.1 75.00.7
movie recommendation 80.53.3 56.20.8 92.01.9 67.01.2 75.81.3 75.82.9 70.32.3 73.32.3 77.31.5 78.82.0 72.83.2
multistep arithmetic two 55.021.3 84.02.9 89.01.9 91.30.8 94.01.4 92.51.8 96.32.3 96.80.4 97.80.4 94.80.8 95.80.4
object counting 66.02.7 91.32.0 87.52.3 93.30.4 93.51.5 92.51.1 92.81.9 93.82.3 95.50.5 93.01.2 93.80.4
ruin names 83.21.3 86.21.3 88.01.9 86.51.8 89.50.9 86.80.8 89.30.4 89.30.8 87.01.2 90.30.8 90.01.2
salient translation error detection 62.03.7 58.82.0 65.31.3 64.81.5 71.52.2 64.02.9 62.80.8 71.00.7 69.82.0 69.00.7 67.30.4
snarks 81.20.7 92.01.2 80.91.2 89.21.8 88.92.2 86.51.5 88.92.0 89.91.8 89.60.7 90.60.6 83.73.5
sports understanding 92.51.5 91.50.5 95.80.4 95.80.8 95.50.5 96.31.1 93.31.1 95.30.4 91.80.4 95.01.2 95.00.0
tracking shuffled objects (7) 63.35.4 72.36.0 32.81.9 92.23.1 83.51.1 80.01.6 98.00.7 93.82.2 98.00.0 97.80.4 97.50.5

Average 67.77 70.29 73.83 80.25 81.91 80.72 81.61 82.79 83.79 83.77 83.25

0 71# Demos

0.6

0.8

Va
l. A

cc

geometricshapes

Round 0
Round 1
Round 2

0 59# Demos
0.6

0.7

0.8
salient_translationerror_detection

0 75# Demos
0.50

0.75

1.00
tracking_shuffled

objects(7)

0 83# Demos
0.55
0.60
0.65

MATH

Figure 4: Benefits from scaling examples naı̈vely (red lines) is very task specific, but
each iteration of BRIDGE addresses it to a considerable degree by continually improv-
ing upon the previous round: We randomly sample subsets of example pool Ek ∀ k ∈
{0 (i.e., original examples generated with handcraft few-shot or zero-shot), 1, 2} and evaluate them
on a held-out set in four representative tasks exhibiting different model behavior to example scaling.
The trendlines are moving regressions fitted with LOWESS. Refers to additional figures in App. C.3.

there is an apparent strong, positive correlation between number of demos and performance, as we
demonstrated in Sec. 2. Remarkably, BRIDGE alleviate the instability with each round of BRIDGE
continually improving upon the previous round – in cases where scaling examples is already ben-
eficial (geometric shapes, leftmost figure), subsequent rounds of BRIDGE led to much better
performance-cost trade-offs with the blue and green lines dominating over the red, whereas in other
cases, BRIDGE often “delays” the saturation point (e.g., salient translation) or at least
ensure more examples does not lead to deterioration (e.g., tracking shuffled objects).

Table 4: Execution accuracy on the BIRD
dev set with gemini-1.5-pro-001. {S,
M, C} refer to the accuracy aggregated
across {Simple, Moderate, Challenging}-
level problems based on assigned difficulty.

Method Exec. Breakdown
Acc. S M C

Direct 57.7 64.0 49.4 44.1
CHASE prompt 60.1 67.2 51.9 40.7
CHASE + BRIDGE
Round 0 59.1 65.7 51.3 42.1
Round 1 61.2 68.6 50.6 48.3
Round 2 62.0 68.5 53.0 49.0

PEFT (LoRA)
ntrain = 256 58.2 64.0 52.2 40.7
ntrain = 1024 60.2 66.6 53.0 42.1
ntrain = 4096 61.3 67.5 53.9 46.2
ntrain = 9428 (All) 63.8 68.6 58.8 48.9

On BIRD dataset, we show the results in Table 4.
Given the presence of a large training set (more than
9000 samples), we also compare against parameter-
efficient supervised fine-tuning (PEFT) (Han et al.,
2024), where we fine-tune the same target LLM with
LoRA (Hu et al., 2021) on either the entire training
set or using a number of train samples sub-sampled
from the full training set. We observe that whereas
the few-shot CHASE prompt effectively improves
upon the baseline zero-shot direct prompting, addi-
tional rounds of BRIDGE led to further gains. The
comparison against LoRA also demonstrates the po-
tential of BRIDGE as an alternative to PEFT at least
in certain scenarios. When provided with a simi-
lar number of labeled samples (i.e., ntrain = 256),
we observe that LoRA performs much worse, and it
only outperforms BRIDGE when using up the entire
train set for training.

5 RELATED WORK

Scaling ICL. Before the advent of the long-context LLMs, early efforts in scaling ICL often study
LLMs customized for long context (Li et al., 2023) or require architectural changes assuming white-
box model access (Hao et al., 2022). However, the tasks considered are often limited, e.g., to conven-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

tional, discriminative tasks like sentiment classification rather than generative tasks as considered in
this work. Furthermore, these often study LLMs that are merely capable with handling many ex-
amples, but their behavior may differ significantly to modern, natively long-context LLMs that may
actively take advantage of the context – indeed, both these works show mixed results, even signif-
icant performance deterioration when scaling up the number of examples, a phenomenon not seen
in modern long-context LLMs like Gemini and Claude. Recent works like Agarwal et al. (2024)
and Bertsch et al. (2024), on the other hand, reported significant gains in scaling ICL to hundreds or
more examples and provided important motivation for our work. However, as mentioned in Sec. 2,
these works primarily demonstrate the existence of the benefit from scaling but did not focus on in-
vestigate the sources of the gain or improving the cost-effectiveness of many-shot ICL. Additionally,
there have also been works focusing on applications of many-shot ICL to multi-modalities (Jiang
et al., 2024), LLM jail-breaking (Anil et al., 2024), detecting the risk of capturing incorrect skills
(Lin & Lee, 2024), and analyzing memorization (Golchin et al., 2024).

Example selection and expansion. BRIDGE combines the “optimize” and “generate” steps, and
there have been existing works sharing similar high-level ideas to each of the components. First,
the “optimize” step can be seen as a method to improve the data quality with pruning and selection;
in this regard, given that data quality is known to be one of the most influential factors for training
LLMs (Xia et al., 2024), many previous works have utilized some flavor of pruning to remove
redundant or harmful data samples at different stages of training, including pre-training (Marion
et al., 2023) and instruction tuning (Xia et al., 2024). In ICL, as mentioned in Sec. 2, given the
sensitivity of LLMs to examples, there have been numerous works analyzing prompt sensitivity
and proposing example selection techniques (Zhao et al., 2021; Lu et al., 2022; Zhou et al., 2024;
Wan et al., 2024). Recent work also explored heuristic-based selection based on similarity (Rubin
et al., 2022; Liu et al., 2022), diversity (Levy et al., 2023; Xu et al., 2024), uncertainty (Wan et al.,
2023a;b), etc. Our “generate” step, on the other hand, aims to acquire high-quality examples with
the LLM itself. In this area, STaR (Zelikman et al., 2022) first proposes to bootstrap rationales from
LLM with a small number of seed examples, followed by fine-tuning on the rationales that lead
to correct predictions; Self-Instruct (Wang et al., 2023) bootstraps LLMs to instruction data. The
“Reinforced ICL” technique introduced in Agarwal et al. (2024), upon which this work improves,
and several recent works (Chen et al., 2023; Khattab et al., 2023; Opsahl-Ong et al., 2024) use
similar technique to acquire and refine model-generated examples for ICL. Notwithstanding the
similarities described, there are a few crucial differences with respect to these prior works: Almost
all ICL works mentioned consider the few-shot setup, where selection is made necessary due to the
constraint on the number of examples allowed in the context. However, we show that even in the
many-shot setup where that constraint is relaxed and example selection is no longer a necessity, it
can still be highly beneficial for performance and efficiency. Unlike the few-shot setup, BRIDGE is
tailored for the many-shot setup with design decisions inspired by findings in Sec. 2, such as the
implementation of sparsity regularization in the optimization objective to enable from scaling.

6 CONCLUSION

This paper focuses on understanding and enhancing the core factors underlying scaling ICL. We first
provide an analysis on the nascent paradigm of many-shot ICL in LLMs and show that notwithstand-
ing the long-context abilities of LLMs, the common practice of naı̈vely dumping as many examples
as practically possible into the context can be both inefficient in cost and suboptimal in performance.
Instead, the benefit from scaling examples can often be realized by identifying a subset of influential
examples, and that subset can be used as demonstrations themselves to re-generate even more exam-
ples. Inspired by the findings, we propose BRIDGE by automatically executing the “optimize” and
“generate” steps iteratively. We demonstrate that BRIDGE perform competitively on a wide range of
tasks, significantly outperforming alternatives. We believe that this work builds the foundation for
future research in many-shot ICL. First, we mainly focused on the restrictive black-box LLM setup,
which is the most general and model-agnostic. However, for a more relaxed, white-box setup with
access to LLM weights, it may be possible to perform optimization more efficiently – for example,
it may be possible to take advantage of the internal representations of the model in reducing the
cost of iterative optimization. Second, we currently focus on the “reinforced ICL” setup typical for
reasoning-heavy tasks – while we have conducted experiments (e.g., low resource translation tasks)
beyond this setup, further validations on other types of tasks would be valuable. Lastly, after opti-
mization, the examples generated by BRIDGE are currently static at test time, and it would also be

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

interesting to combine with a mechanism for sample-dependent ICL optimization to further enhance
performance and reduce cost – we defer these important directions to future work.

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer
Abbas, Azade Nova, John D Co-Reyes, Eric Chu, et al. Many-shot in-context learning. arXiv
preprint arXiv:2404.11018, 2024.

Cem Anil, Esin Durmus, Mrinank Sharma, Joe Benton, Sandipan Kundu, Joshua Batson, Nina
Rimsky, Meg Tong, Jesse Mu, Daniel Ford, et al. Many-shot jailbreaking. Anthropic, April, 2024.

Anonymous. Chase-sql: Multi-path reasoning and preference optimized candidate selection in text-
to-sql. Under review at ICLR 2025, 2025.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
Advances in neural information processing systems, 33:21524–21538, 2020.

Amanda Bertsch, Maor Ivgi, Uri Alon, Jonathan Berant, Matthew R Gormley, and Graham Neu-
big. In-context learning with long-context models: An in-depth exploration. arXiv preprint
arXiv:2405.00200, 2024.

V Joseph Bowman Jr. On the relationship of the tchebycheff norm and the efficient frontier of
multiple-criteria objectives. In Multiple Criteria Decision Making: Proceedings of a Conference
Jouy-en-Josas, France May 21–23, 1975, pp. 76–86. Springer, 1976.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Wei-Lin Chen, Cheng-Kuang Wu, Yun-Nung Chen, and Hsin-Hsi Chen. Self-ICL: Zero-shot in-
context learning with self-generated demonstrations. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 15651–15662, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.968. URL https://aclanthology.org/2023.
emnlp-main.968.

Tinkle Chugh. Scalarizing functions in bayesian multiobjective optimization. In 2020 IEEE
Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen
Tan, Lazaros Polymenakos, and Andrew McCallum. Case-based reasoning for natural language
queries over knowledge bases. arXiv preprint arXiv:2104.08762, 2021.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2023.emnlp-main.968
https://aclanthology.org/2023.emnlp-main.968

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. Gpytorch:
Blackbox matrix-matrix gaussian process inference with gpu acceleration. Advances in neural
information processing systems, 31, 2018.

Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

Shahriar Golchin, Mihai Surdeanu, Steven Bethard, Eduardo Blanco, and Ellen Riloff. Memoriza-
tion in in-context learning. arXiv preprint arXiv:2408.11546, 2024.

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan Pino, Guillaume Lample, Philipp Koehn,
Vishrav Chaudhary, and Marc’Aurelio Ranzato. The FLORES evaluation datasets for low-
resource machine translation: Nepali–English and Sinhala–English. In Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 6098–6111, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1632. URL
https://aclanthology.org/D19-1632.

Jesse Michael Han, Igor Babuschkin, Harrison Edwards, Arvind Neelakantan, Tao Xu, Stanislas
Polu, Alex Ray, Pranav Shyam, Aditya Ramesh, Alec Radford, et al. Unsupervised neural ma-
chine translation with generative language models only. arXiv preprint arXiv:2110.05448, 2021.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yuxian Gu, and Furu Wei. Structured prompting:
Scaling in-context learning to 1,000 examples. arXiv preprint arXiv:2212.06713, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Yixing Jiang, Jeremy Irvin, Ji Hun Wang, Muhammad Ahmed Chaudhry, Jonathan H Chen, and
Andrew Y Ng. Many-shot in-context learning in multimodal foundation models. arXiv preprint
arXiv:2405.09798, 2024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy:
Compiling declarative language model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714, 2023.

Joshua Knowles. Parego: A hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems. IEEE transactions on evolutionary computation, 10(1):
50–66, 2006.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled from large
language models. arXiv preprint arXiv:2403.20327, 2024.

12

https://aclanthology.org/D19-1632

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Itay Levy, Ben Bogin, and Jonathan Berant. Diverse demonstrations improve in-context compo-
sitional generalization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Pro-
ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1401–1422, Toronto, Canada, July 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.acl-long.78. URL https://aclanthology.org/2023.
acl-long.78.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024a.

Mukai Li, Shansan Gong, Jiangtao Feng, Yiheng Xu, Jun Zhang, Zhiyong Wu, and Lingpeng Kong.
In-context learning with many demonstration examples. arXiv preprint arXiv:2302.04931, 2023.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu Mei, and Michael Bendersky. Retrieval aug-
mented generation or long-context llms? a comprehensive study and hybrid approach. arXiv
preprint arXiv:2407.16833, 2024b.

Ziqian Lin and Kangwook Lee. Dual operating modes of in-context learning. In Ruslan Salakhut-
dinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix
Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning, vol-
ume 235 of Proceedings of Machine Learning Research, pp. 30135–30188. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/v235/lin24l.html.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out (Dee-
LIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Ar-
chitectures, pp. 100–114, Dublin, Ireland and Online, May 2022. Association for Computational
Linguistics.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8086–8098,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.556. URL https://aclanthology.org/2022.acl-long.556.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
When less is more: Investigating data pruning for pretraining llms at scale. arXiv preprint
arXiv:2309.04564, 2023.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model
programs. arXiv preprint arXiv:2406.11695, 2024.

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-
objective bayesian optimization using random scalarizations. In Uncertainty in Artificial Intelli-
gence, pp. 766–776. PMLR, 2020.

Ajay Patel, Bryan Li, Mohammad Sadegh Rasooli, Noah Constant, Colin Raffel, and Chris
Callison-Burch. Bidirectional language models are also few-shot learners. arXiv preprint
arXiv:2209.14500, 2022.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.),
Proceedings of the 2022 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 2655–2671, Seattle, United States,

13

https://aclanthology.org/2023.acl-long.78
https://aclanthology.org/2023.acl-long.78
https://proceedings.mlr.press/v235/lin24l.html
https://aclanthology.org/2022.acl-long.556

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.191.
URL https://aclanthology.org/2022.naacl-main.191.

Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J Anders, and Klaus-
Robert Müller. Explaining deep neural networks and beyond: A review of methods and applica-
tions. Proceedings of the IEEE, 109(3):247–278, 2021.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Karen Simonyan. Deep inside convolutional networks: Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Ralph E Steuer and Eng-Ung Choo. An interactive weighted tchebycheff procedure for multiple
objective programming. Mathematical programming, 26:326–344, 1983.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Xingchen Wan, Ruoxi Sun, Hanjun Dai, Sercan Arik, and Tomas Pfister. Better zero-shot reason-
ing with self-adaptive prompting. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp. 3493–3514,
Toronto, Canada, July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-acl.216. URL https://aclanthology.org/2023.findings-acl.216.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Hanjun Dai, Julian Eisenschlos, Sercan Arik, and
Tomas Pfister. Universal self-adaptive prompting. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 7437–7462, Singapore, December 2023b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.461. URL https://aclanthology.org/2023.
emnlp-main.461.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, and Sercan O. Arik. Teach better or show smarter?
on instructions and exemplars in automatic prompt optimization. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=IdtoJVWVnX.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13484–
13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754.

Christopher Williams and Carl Rasmussen. Gaussian processes for regression. Advances in neural
information processing systems, 8, 1995.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
selecting influential data for targeted instruction tuning. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=PG5fV50maR.

Xin Xu, Yue Liu, Panupong Pasupat, Mehran Kazemi, et al. In-context learning with retrieved
demonstrations for language models: A survey. arXiv preprint arXiv:2401.11624, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_3ELRdg2sgI.

14

https://aclanthology.org/2022.naacl-main.191
https://aclanthology.org/2023.findings-acl.216
https://aclanthology.org/2023.emnlp-main.461
https://aclanthology.org/2023.emnlp-main.461
https://openreview.net/forum?id=IdtoJVWVnX
https://openreview.net/forum?id=IdtoJVWVnX
https://aclanthology.org/2023.acl-long.754
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Dawei Zhan and Huanlai Xing. Expected improvement for expensive optimization: a review. Jour-
nal of Global Optimization, 78(3):507–544, 2020.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=5NTt8GFjUHkr.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, pp. 12697–12706, 2021.

Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu, Jilin Chen, Katherine A Heller, and Subhrajit
Roy. Batch calibration: Rethinking calibration for in-context learning and prompt engineering.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=L3FHMoKZcS.

15

https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=L3FHMoKZcS
https://openreview.net/forum?id=L3FHMoKZcS

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DERIVATION OF THE APPROXIMATED IMPORTANCE SCORE

In this section, we give detailed derivation of the importance score used in Sec. 2 to rank the ex-
amples. Recalling that we are given a pool of examples E with |E| = m, a collection of T subsets
of ei, each represented as a binary vector ei ∈ {0, 1}m and their corresponding scores on the
validation set g(·) : {0, 1}m → R, we first fit a GP regression with e1:T = [e1, ..., eT]> and
g1:T = [g(e1, ..., g(eT)]>, as presented in Eq. 2, the mean of the posterior GP ĝ(·) is given by:

Eĝ(e)|GT [ĝ(e)] = k1:T (K + η2I)−1g1:T , (3)

where we define GT as the shorthand of [e1:T ,g1:T] to denote that the fitted function ĝ(e) is fitted
on the observed input-output pairs; kt = [k(e, e1), ..., k(e, et)] and k(·, ·) is the covariance function
of the GP (we use Matern 2.5 by default). As mentioned in Sec. 2, whereas we do not assume any
differentiability property from g(·) on e, since the approximated function ĝ(·) follows a posterior
GP, its gradient w.r.t e is analytically available and is itself a GP, given by:

∇eg =
∂g(e)

∂e
=
∂k1:T

∂e
(K + η2I)−1g1:T , (4)

noting that the expensive matrix inversion term, (K + η2I)−1 does not have a dependence on e
and can be directly cached from Eq. 3 when we compute the posterior mean. The derivative term
is essentially a differentiation operation of the covariance function to the input, and can be easily
computed either analytically for common kernel choices or via automatic differentiation for popular
GP or BO packages like gpytorch (Gardner et al., 2018) or botorch (Balandat et al., 2020).

With the computed ∇eg ∈ Rm, we can in principle compute the estimated derivative at any e ⊆ E .
However, in practice, we find the derivative estimate to be more reliable at the training points of
the GP (i.e., [e1, ..., eT]. We then evaluate the derivative at each of the training point, and the final
importance score is marginalized by averaging across the training points:

M(e(j)) =
1

T

T∑
t=1

∇eĝ|(j)e=et
, (5)

where we use the superscript (j) to denote that the estimated importance of the j-th individual
example (note the regular font e ∈ E denoting an individual example instead of the bold-face e
denoting a set of examples in E). We then compute the importance score of all examples in E , which
is then used to generate the assigned ranking in the analysis of Sec. 2 such as the Fig. 4.

B IMPLEMENTATION DETAILS

B.1 DATASETS.

In the section below, we give detailed implementation details for the availability, data splitting pro-
tocol, input prompts and licensing information of the datasets used.

BIG-Bench Hard (BBH). BBH is a collection of 26 challenging reasoning tasks, and a task is
selected if either 1) if it is studied in the seminal work on many-shot ICL (Agarwal et al., 2024) or
2) if the zero-shot performance of gemini-1.5-pro-001 is below 90%, which indicates non-
saturation of performance – these criteria led to a set of 16 tasks that we consider in Sec. 4. For
all tasks, we randomize the data points and reserve 40% (usually 100 samples, but some sub-tasks
of BBH benchmark have fewer data-points) as held-out sets for testing, whose inputs and labels
are not revealed to the model except for final evaluation. For the rest of the dataset, in Sec. 2, we
use 50% (30% of all available data points including the held-out test set) as the “train-set” from
which the examples are generated and the other 50% for validation (i.e., the split where results in
Fig. 4 is generated). In Sec. 4, we do not use the aforementioned validation set and use performance
on the same set that generates the examples as the optimization objective. The BBH dataset is
publicly available at https://github.com/suzgunmirac/BIG-Bench-Hard under an
MIT license. For all BBH tasks, we use the prompt templates below:

1 You will be given a question. Think step by step before giving a final answer to this question
. Show your final answer {{ TASK_SPECIFIC_CONSTRAINTS }} between <answer> and <\answer>

2

16

https://github.com/suzgunmirac/BIG-Bench-Hard

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

3 {{ EXAMPLES }}
4 ==
5
6 {{ QUESTION }}
7 {{ llm() }}

where we use a Jinja2-style syntax and the upper-cased blocks bracketed between double braces
are variables that are replaced at inference time: TASK SPECIFIC CONSTRAINTS denote the
constraint instruction specific to the type of the task. For example, for a multiple-choice task, this is
replaced with “answer option letter only”; for a binary choice question, this is replaced with “Yes or
No only” and for a free-form generation task, this is replaced by an empty string. EXAMPLES denote
the concatenation of any examples e added to the input – for the initial generation step (i.e., Step
3 in Algorithm 1), we use zero-shot prompting and EXAMPLES is an empty string. For subsequent
generation step, this is replaced with the concatenation of the examples selected by BRIDGE; finally,
llm() denotes the place where an LLM response is solicited; the answer is then extracted and
postprocessed to match with a ground-truth answer to measure accuracy.

MATH and GSM-Hard. In MATH and GSM-Hard, we similarly adopt the unified train set
setup as mentioned in the previous paragraph. To minimize the chance of data contamination
where the training inputs and outputs were leaked to the model during pre-training or instruc-
tion finetuning, we randomly sample 128 samples as the official test set as the train set from
which the examples are generated and use the rest of the official test set for testing. The MATH
dataset is available at https://github.com/hendrycks/math and GSM-Hard is available
at https://huggingface.co/datasets/reasoning-machines/gsm-hard. Both
datasets are license under an MIT license. On GSM-Hard, we use the same prompt as the BBH
dataset mentioned above. On MATH, we use the inner monologue prompt consists of human-
annotated few-shot prompt given by Agarwal et al. (2024) with an added preamble to ensure that the
LLM generation follows the style of the examples given, noting that any model-generated examples
will be added to the initial human-annotated examples:

1 You will be given several example math questions and their solutions. At the end, You will be
given another question that you will need to solve. Make sure you follow the examples,
and always finish your answer with ’Final Answer: The final answer is X. I hope it is
correct.’ where X is the correct answer.

2
3 Problem:
4 Find the domain of the expression $\frac{\sqrt{x-2}}{\sqrt{5-x}}$.
5
6 Solution:
7
8 I need to find the domain of this expression.
9

10 This expression has two square root expressions.
11
12 I know the values under each square root must be non-negative.
13
14 So let me start by ensuring that.
15
16 I set $x-2 \ge 0$, which simplifies to $x\ge2$.
17
18 Then, I set $5 - x \ge 0$, which simplifies to $x \le 5$.
19
20 But I need to make sure the denominator is not zero.
21
22 So, $5-x$ must also be greater than zero, which gives me $x<5$.
23
24 Therefore, the domain of the expression is $\boxed{[2,5)}$.
25
26 Answer: $[2,5)$.
27
28 Final Answer: The final answer is $[2,5)$. I hope it is correct.
29 ==
30
31 Problem:
32 If $\det \mathbf{A} = 2$ and $\det \mathbf{B} = 12,$ then find $\det (\mathbf{A} \mathbf{B}).$
33
34 Solution:
35
36 I need to find the determinant of the product of matrices A and B.
37
38 I remember that the determinant of the product of two matrices equals the product of their

determinants.
39

17

https://github.com/hendrycks/math
https://huggingface.co/datasets/reasoning-machines/gsm-hard

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

40 So, $\det (\mathbf{A} \mathbf{B}) = (\det \mathbf{A})(\det \mathbf{B}) = (2)(12) = \boxed{24}$
.

41
42 Answer: 24.
43
44 Final Answer: The final answer is 24. I hope it is correct.""",
45 r"""Problem:
46 Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead,

how many times must Terrell lift them in order to lift the same total weight?
47
48 Solution:
49
50
51 Okay, so Terrell lifts a total of $2\cdot 12\cdot20=480$ pounds of weight with the 20-pound

weights.
52
53 Well, if he switches to 15-pound weights, the total weight lifted will be $2\cdot15\cdot n

=30n$ pounds, where n is the number of lifts.
54
55 I want to find the number of lifts, n, for the total weight lifted to be the same.
56
57 I equate $30n$ to 480 pounds and solve for n.
58
59 \begin{align*}
60 30n&=480\\
61 \Rightarrow\qquad n&=480/30=\boxed{16}
62 \end{align*}
63
64 Answer: 16.
65
66 Final Answer: The final answer is 16. I hope it is correct.
67 ==
68
69 Problem:
70 If the system of equations
71
72 \begin{align*}
73 6x-4y&=a,\\
74 6y-9x &=b.
75 \end{align*}
76
77 has a solution (x, y) where x and y are both nonzero, find $\frac{a}{b},$ assuming b

is nonzero.
78
79 Solution:
80
81 I’m given a system of two equations.
82
83 I see that if I multiply the first equation by $-\frac{3}{2}$, I’ll get another equation that

has the same left-hand side as the second equation, $6y-9x$.
84
85 Let me try that $$6y-9x=-\frac{3}{2}a.$$
86
87 Ah, I also know that $6y-9x=b$, so I can equate these two equations.
88
89 So, $$-\frac{3}{2}a=b\Rightarrow\frac{a}{b}=\boxed{-\frac{2}{3}}.$$
90
91 Answer: $-\frac{2}{3}$.
92
93 Final Answer: The final answer is $-\frac{2}{3}$. I hope it is correct.
94 ==
95
96 {{ EXAMPLES }}
97
98 ==
99 Problem:

100 {{ QUESTION }}
101
102 Solution:
103
104 {{ llm() }}

BIRD On BIRD, we randomly sample 128 samples from the train split as the unified train and
validation set and use the official test set (of 1534 data points) for testing. Since BIRD is a code
generation task, the execution accuracy is computed not via a simple string match between the
predicted and the ground-truth SQLs but by actually executing both SQLs on the database provided,
and a score of 1 is only assigned when the predicted SQL is both executable and if whose results
exactly match the execution results from the ground-truth SQL. All data, including the databases,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

schemas and ground-truth gold SQL are available at the official repo: https://bird-bench.
github.io under a CC BY-SA 4.0 licence. With reference to Table 4, use two prompt versions
for different rows. The direct prompt is a standard, zero-shot prompt to elicit the SQL prediction
directly; it is used both for the “Direct” row to directly extract LLM answer and is also used as the
prompt template for finetuning in the different “LoRA” rows:

1 You are a SQL expert tasked with answering user’s questions about SQL tables by generating SQL
queries in the SQLITE dialect.

2
3 Use only the following tables to answer the question:
4
5 {{ SCHEMA }}
6
7 Question: {{ QUESTION }}
8 Hint: {{ HINT }}
9 SQL: {{ llm() }}

where SCHEMA refers to the table schema, which can be generated automatically by querying the
database, QUESITON is the natural language question that we would like the LLM to convert to a
SQL command and HINT is a hint which additionally explains the question provided by the BIRD
dataset. For the CHASE and CHASE + BRIDGE rows, we use the prompt template proposed in
Anonymous (2025) to invoke reasoning and divide-and-conquer before the LLM gives the final
answer:

1 You are an experienced database expert.
2 Now you need to generate a SQL query given the database information, a question and some

additional information.
3 The database structure is defined by the following table schemas (comments after ’--’ provide

additional column descriptions).
4 Note that the "Example Values" are actual values from the column. Some column might contain

the values that are directly related to the question. Use it to help you justify which
columns to use.

5
6 Given the table schema information description and the ‘Question‘. You will be given table

creation statements and you need understand the database and columns.
7
8 You will be using a way called "recursive divide-and-conquer approach to SQL query generation

from natural language".
9

10 Here is a high level description of the steps.
11 1. **Divide (Decompose Sub-question with Pseudo SQL):** The complex natural language question

is recursively broken down into simpler sub-questions. Each sub-question targets a
specific piece of information or logic required for the final SQL query.

12 2. **Conquer (Real SQL for sub-questions):** For each sub-question (and the main question
initially), a "pseudo-SQL" fragment is formulated. This pseudo-SQL represents the
intended SQL logic but might have placeholders for answers to the decomposed sub-
questions.

13 3. **Combine (Reassemble):** Once all sub-questions are resolved and their corresponding SQL
fragments are generated, the process reverses. The SQL fragments are recursively combined
by replacing the placeholders in the pseudo-SQL with the actual generated SQL from the

lower levels.
14 4. **Final Output:** This bottom-up assembly culminates in the complete and correct SQL query

that answers the original complex question.
15
16 Database admin instructions (violating any of the following is punishable to death!):
17 1. **SELECT Clause:**
18 - Only select columns mentioned in the user’s question.
19 - Avoid unnecessary columns or values.
20 2. **Aggregation (MAX/MIN):**
21 - Always perform JOINs before using MAX() or MIN().
22 3. **ORDER BY with Distinct Values:**
23 - Use ‘GROUP BY <column>‘ before ‘ORDER BY <column> ASC|DESC‘ to ensure distinct values.
24 4. **Handling NULLs:**
25 - If a column may contain NULL values (indicated by "None" in value examples or explicitly

), use ‘JOIN‘ or ‘WHERE <column> IS NOT NULL‘.
26 5. **FROM/JOIN Clauses:**
27 - Only include tables essential to answer the question.
28 6. **Strictly Follow Hints:**
29 - Adhere to all provided hints.
30 7. **Thorough Question Analysis:**
31 - Address all conditions mentioned in the question.
32 8. **DISTINCT Keyword:**
33 - Use ‘SELECT DISTINCT‘ when the question requires unique values (e.g., IDs, URLs).
34 - Refer to column statistics ("Value Statics") to determine if ‘DISTINCT‘ is necessary.
35 9. **Column Selection:**
36 - Carefully analyze column descriptions and hints to choose the correct column when

similar columns exist across tables.
37 10. **String Concatenation:**
38 - Never use ‘|| ’ ’ ||‘ or any other method to concatenate strings in the ‘SELECT‘ clause.

19

https://bird-bench.github.io
https://bird-bench.github.io

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

39 11. **JOIN Preference:**
40 - Prioritize ‘INNER JOIN‘ over nested ‘SELECT‘ statements.
41 12. **SQLite Functions Only:**
42 - Use only functions available in SQLite.
43 13. **Date Processing:**
44 - Utilize ‘STRFTIME()‘ for date manipulation (e.g., ‘STRFTIME(’%Y’, SOMETIME)‘ to extract

the year).
45
46 When you get to the final query, output the query string ONLY inside the xml delimiter <

FINAL_ANSWER></FINAL_ANSWER>.
47
48 Here are some examples:
49
50 {{ EXAMPLES }}
51
52 Now is the real question, following the instruction and examples, generate the SQL with

Recursive Divide-and-Conquer approach.
53 **************************
54 [Table creation statements]
55 {{ SCHEMA }}
56
57 **************************
58 [Question]
59 Question: {{ QUESTION }}
60 Hint: {{ HINT }}
61
62 **************************
63 [Answer]
64 Repeating the question and hint, and generating the SQL with Recursive Divide-and-Conquer.
65 {{ llm() }}

Similar to the inner monologue prompt in the MATH dataset, the EXAMPLES in the template above
also include 4 human annotated examples at initialization (an exemplary human-annotated exam-
ple is shown in the code snippet below); any model-generated examples from BRIDGE are again
concatenated to the human annotated examples at inference.

1 **************************
2 [Table creation statements]
3 CREATE TABLE generalinfo
4 (
5 id_restaurant INTEGER not null primary key,
6 food_type TEXT null, -- examples: ‘thai‘| ‘food type‘ description: the food type
7 city TEXT null, -- description: the city where the restaurant is located in
8);
9

10 CREATE TABLE location
11 (
12 id_restaurant INTEGER not null primary key,
13 street_name TEXT null, -- examples: ‘ave‘, ‘san pablo ave‘, ‘pablo ave‘| ‘street name‘

description: the street name of the restaurant
14 city TEXT null, -- description: the city where the restaurant is located in
15 foreign key (id_restaurant) references generalinfo (id_restaurant) on update cascade on

delete cascade,
16);
17
18 **************************
19 [Question]
20 Question: How many Thai restaurants can be found in San Pablo Ave, Albany?
21 Hint: Thai restaurant refers to food_type = ’thai’; San Pablo Ave Albany refers to street_name

= ’san pablo ave’ AND T1.city = ’albany’
22
23 **************************
24 [Answer]
25 Repeating the question and hint, and generating the SQL with Recursive Divide-and-Conquer.
26 **Question**: How many Thai restaurants can be found in San Pablo Ave, Albany?
27 **Hint**: Thai restaurant refers to food_type = ’thai’; San Pablo Ave Albany refers to

street_name = ’san pablo ave’ AND T1.city = ’albany’
28
29 **1. Divide and Conquer:**
30
31 * **Main Question:** How many Thai restaurants can be found in San Pablo Ave, Albany?
32 * **Analysis:** The question asks for a count of restaurants, so we’ll use ‘COUNT()‘ for

that. The count should include only Thai restaurants, which we can identify using the ‘
food_type‘ column in the ‘generalinfo‘ table. The location "San Pablo Ave, Albany" spans
two columns (‘street_name‘ and ‘city‘) in the ‘location‘ table, requiring us to join

these two tables.
33 * **Pseudo SQL:** SELECT COUNT(‘T1‘.‘id_restaurant‘) FROM ‘generalinfo‘ AS ‘T1‘ INNER JOIN

‘location‘ AS ‘T2‘ ON ‘T1‘.‘id_restaurant‘ = ‘T2‘.‘id_restaurant‘ WHERE <Thai
restaurant> AND <in San Pablo Ave, Albany>

34

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

35 * **Sub-question 1:** Thai restaurant
36 * **Analysis:** This is a straightforward filter on the ‘generalinfo‘ table using the

‘food_type‘ column.
37 * **Pseudo SQL:** ‘T1‘.‘food_type‘ = ’thai’
38
39 * **Sub-question 2:** in San Pablo Ave, Albany
40 * **Analysis:** This location information is spread across two columns in the ‘

location‘ table. We need to combine these conditions with an "AND" operator to ensure
both are met.

41 * **Pseudo SQL:** ‘T2‘.‘street_name‘ = ’san pablo ave’ AND ‘T2‘.‘city‘ = ’albany’
42
43 **2. Assembling SQL:**
44
45 * **Sub-question 1 (Thai restaurant):**
46 * **SQL:** ‘T1‘.‘food_type‘ = ’thai’
47
48 * **Sub-question 2 (in San Pablo Ave, Albany):**
49 * **SQL:** ‘T2‘.‘street_name‘ = ’san pablo ave’ AND ‘T2‘.‘city‘ = ’albany’
50
51 * **Main Question (count of restaurants):**
52 * **SQL:** SELECT COUNT(‘T1‘.‘id_restaurant‘) FROM ‘generalinfo‘ AS ‘T1‘ INNER JOIN ‘

location‘ AS ‘T2‘ ON ‘T1‘.‘id_restaurant‘ = ‘T2‘.‘id_restaurant‘ WHERE ‘T1‘.‘food_type‘ =
’thai’ AND ‘T2‘.‘street_name‘ = ’san pablo ave’ AND ‘T2‘.‘city‘ = ’albany’

53
54 **3. Simplification and Optimization:**
55
56 * The SQL query from step 2 is already quite efficient. We’ve used ‘INNER JOIN‘ to combine the

tables based on their relationship, and the ‘WHERE‘ clause clearly defines our filtering
criteria. There’s no need for nested queries or complex sub-selections in this case.

57
58 **Final Optimized SQL Query:**
59
60 <FINAL_ANSWER>
61 SELECT COUNT(T1.id_restaurant) FROM generalinfo AS T1 INNER JOIN location AS T2 ON T1.

id_restaurant = T2.id_restaurant WHERE T1.food_type = ’thai’ AND T1.city = ’albany’ AND
T2.street_name = ’san pablo ave’

62 </FINAL_ANSWER>

B.2 IMPLEMENTATION DETAILS OF THE INFILLING BASELINE

Infilling is a technique of generating the intermediate outputs given both input queries and the
ground-truth answer – this is used as a baseline in Tables 1 and 3 where we utilize all available
labeled data in the context. Concretely, we use the following prompt adapted from Hu et al. (2023)
to generate the intermediate rationales.

1 You will be given a question and its final, ground-truth correct answer.
2 Given the question and the answer, generate the step-by-step reasoning steps that led to the

correct answer. Write your intermediate reasoning steps (but NOT the final answer)
leading to the final answer between <answer> and </answer>.

3
4 Question: {{ question }}
5 Answer: {{ target }}
6 Steps: {{ llm()) }}

C ADDITIONAL EXPERIMENTS AND RESULTS

C.1 ABLATION AND SENSITIVITY STUDIES

Importance of Bayesian optimization. To ablate BRIDGE, in Table 6 and Table 5, we compare
against a simplified variant of BRIDGE with BO replaced with random search consuming the same
evaluation budget (32 per stage) – we find that while random search is a remarkably strong baseline,
BO nevertheless outperformed it consistently at all stages of the BRIDGE pipeline.

Comparison to and combination with heuristic demonstration selection. An alternative to it-
eratively optimize the demonstrations in the “Optimize” step is using heuristics for demonstration
selection which may incur a lower computational cost as we no longer have to repeatedly evaluate
on the labeled validation set m times. In this section, we study two representative demonstration
selection techniques: retrieval based on similarity in the embedding space and diversity, and we
both study them as standalone alternative to the full BRIDGE pipeline and, given that demonstration
selection is not the only component of the BRIDGE framework, it is also straightforward to combine

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 5: Comparison between BRIDGE with BO (BRIDGE-BO) and BRIDGE with random search
(BRIDGE-RS) using gemini-1.5-flash-001 on BBH tasks. The BRIDGE-BO results are lifted
from Table 3, and the last row denotes the average improvement due to the use of BO over RS at the
milestone in the progression of BRIDGE. Refers to captions of Table 1 for additional explanations.

Tasks BRIDGE-RS BRIDGE-BO
Iterations 1O 1G 2O 2G 3O 1O 1G 2O 2G 3O

causal judgement 59.32.0 66.71.6 67.71.5 63.01.1 64.01.6 61.32.7 66.02.0 63.31.5 65.01.6 65.31.5
date understanding 84.81.3 90.50.5 93.30.4 93.00.7 94.50.8 85.01.3 90.50.5 91.50.4 90.80.7 92.50.8
disambiguation qa 73.81.3 74.51.1 74.01.2 75.30.8 70.51.1 77.51.3 79.01.1 77.51.2 76.30.8 74.31.1
dyck languages 64.51.5 62.53.6 65.54.2 64.81.1 68.02.5 63.32.0 62.01.7 64.51.8 62.82.4 61.83.8
formal fallacies 77.31.1 75.02.6 74.51.7 77.51.7 78.32.5 78.31.3 77.31.5 75.51.7 78.31.8 76.30.8
geometric shapes 88.53.8 93.33.0 94.52.1 98.00.0 95.31.9 93.82.5 94.04.2 95.51.1 97.00.0 98.00.0
hyperbaton 94.00.7 94.30.4 95.00.7 95.00.7 88.81.5 86.57.6 95.51.1 95.80.8 94.80.4 93.31.5
logical deduction (7) 62.83.3 54.52.2 67.81.9 64.02.6 66.81.9 61.85.1 57.51.1 70.50.9 66.51.1 75.00.7
movie recommendation 68.54.0 75.32.6 72.51.7 77.51.3 77.51.8 70.32.3 73.32.3 77.31.5 78.82.0 72.83.2
multistep arithmetic two 82.50.5 92.31.3 95.01.4 89.51.5 92.52.6 96.32.3 96.80.4 97.80.4 94.80.8 95.80.4
object counting 92.01.2 92.51.5 92.51.1 93.00.7 92.31.1 92.81.9 93.82.3 95.50.5 93.01.2 93.80.4
ruin names 89.01.2 88.00.7 88.02.4 87.01.2 84.51.1 89.30.4 89.30.8 87.01.2 90.30.8 90.01.2
salient translation error detection 66.32.8 69.32.5 67.02.6 68.51.8 68.82.1 62.80.8 71.00.7 69.82.0 69.00.7 67.30.4
snarks 87.23.0 90.61.2 88.91.7 93.41.5 91.01.6 88.92.0 89.91.8 89.60.7 90.60.6 83.73.5
sports understanding 96.51.1 96.30.4 97.30.4 95.80.4 96.80.8 93.31.1 95.30.4 91.80.4 95.01.2 95.00.0
tracking shuffled objects (7) 98.30.8 89.50.9 96.51.1 92.32.4 98.51.5 98.00.7 93.82.2 98.00.0 97.80.4 97.50.5

Average 80.31 81.55 83.11 82.98 82.97 81.61 82.79 83.79 83.77 83.25
∆(BO - RS) - - - - - +1.30 +1.24 +0.68 +0.79 +0.28

Table 6: Comparison between BRIDGE with BO (BRIDGE-BO) and BRIDGE with random search
(BRIDGE-RS) using gemini-1.5-pro-001 on BBH tasks. The BRIDGE-BO results are lifted
from Table 1, and the last row denotes the average improvement due to the use of BO over RS at the
milestone in the progression of BRIDGE. Refers to captions of Table 1 for additional explanations.

Tasks BRIDGE-RS BRIDGE-BO
Iterations 1O 1G 2O 2G 3O 1O 1G 2O 2G 3O

causal judgement 66.23.0 68.52.0 70.22.4 69.52.4 70.82.2 68.31.5 62.71.6 59.71.5 72.00.0 70.02.0
date understanding 88.42.3 94.31.0 94.11.2 90.33.3 94.31.3 92.21.5 97.00.7 94.81.9 95.01.2 95.51.8
disambiguation qa 75.52.1 79.02.9 77.41.2 80.62.3 78.44.0 71.82.4 77.53.6 80.51.8 81.32.9 78.81.5
dyck languages 56.95.4 59.64.9 67.54.3 64.94.0 70.42.7 49.22.7 76.23.8 80.02.7 77.51.1 76.83.8
formal fallacies 87.41.5 86.82.3 90.82.1 88.52.2 88.82.2 86.02.1 85.02.5 90.82.3 90.82.8 88.22.3
geometric shapes 77.83.2 82.14.0 81.82.5 86.53.8 85.52.4 78.52.1 82.53.6 89.23.8 92.31.1 89.20.8
hyperbaton 94.31.6 93.12.4 94.21.3 94.91.5 94.01.2 96.50.9 94.21.5 94.82.8 96.50.5 97.20.4
logical deduction (7) 70.93.3 68.32.7 66.62.5 71.93.3 68.92.1 70.21.5 70.84.5 71.73.7 71.51.8 69.22.2
movie recommendation 63.53.2 67.41.8 67.42.1 64.62.3 63.42.9 67.01.2 69.50.5 69.33.1 72.81.8 67.01.2
multistep arithmetic two 97.31.1 97.50.7 96.90.8 96.11.5 97.90.3 96.20.8 94.51.1 97.00.7 98.00.7 96.81.8
object counting 95.32.4 98.11.1 97.31.7 97.31.9 95.42.3 96.20.4 96.01.9 94.51.1 94.20.4 95.00.7
ruin names 86.61.7 86.51.9 88.91.8 89.91.2 87.11.7 90.81.1 88.81.7 89.21.5 88.82.4 90.30.8
salient translation error detection 71.13.2 73.41.6 73.92.2 71.91.5 70.81.6 68.80.8 71.00.7 69.52.2 74.00.7 74.51.1
snarks 93.81.6 95.31.4 96.01.6 96.01.1 95.61.8 93.43.0 95.80.0 95.11.6 96.91.5 97.61.8
sports understanding 93.51.7 94.10.6 95.10.9 95.90.9 96.01.7 92.81.9 97.01.2 96.20.8 95.80.4 95.80.8
tracking shuffled objects (7) 92.43.8 94.41.2 99.90.3 98.40.9 100.00.0 95.80.4 95.01.2 100.00.0 97.00.7 99.50.5

Average 81.86 83.64 84.86 84.81 84.82 82.11 84.61 85.77 87.13 86.33
∆(BO - RS) - - - - - +0.25 +0.97 +0.91 +2.32 +1.51

them with BRIDGE by swapping the BO/random search component in the “Optimize” step with these
heuristics. Below we describe the implementation details of both techniques:

• Retrieval: One popular demonstration selection method is via retrieval (Rubin et al., 2022;
Das et al., 2021). Concretely, we may either use an off-the-shelf pretrained embedding
model (we use the latest Gecko embedding (Lee et al., 2024) for this purpose) or tune
a customized retriever to obtain the nearest examples from an example store, typically
by computing the vector embedding for each of the test queries and each of the cached
demonstrations followed by a maximum inner product search (MIPS) to retrieve the top-k
demonstrations based on cosine similarity. Unlike the optimization-based approach where
the number of examples in the context can be determined automatically, k here is a key
hyperparameter that needs to be set by the user. In this case, consider 3 different k val-
ues: k = {10, 25} where the number of examples is fixed, or k = All, where we use all
available, correctly predicted examples – this essentially uses the same set of examples as
Reinforced ICL but in a specific, input-dependent order: the examples are sorted in an as-
cending order based on the cosine similarity between the embedding of the test input and

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

the example store and the most similar examples appears as the final demonstration that is
directly concatenated to the test input.
• Diversity: Another popular learning-free demonstration selection method is by selecting

diverse examples. While multiple ways to measure diversity exist, here we use the tech-
nique similar to the one used in Zhang et al. (2023) by 1) computing the embedding of
all the available demonstrations and 2) run the k-means clustering algorithm and select the
k examples whose vector embeddings are nearest to each of the k centroids. Unlike re-
trieval, there is no input dependency as the clustering algorithm does not depend on the
input query but similar to retrieval, k here is also a hyperparameter to be set and we again
use k = {10, 25}. Note that we omit k = All, as otherwise the number of clusters would
be equal to the number of examples and we would be essentially be running Reinforced
ICL with all available examples as demonstrations.

Since these demonstration selection baselines purely perform selection (i.e., the “optimize” step of
BRIDGE) but neither the subsequent generations nor the iterative process, we first compare the BO
demonstration selection (i.e., BRIDGE at Step 1O) against these baselines and we show the results
in Table 7. Overall, we find that “Diversity” and “Retrieval”, regardless of their hyperparame-
ters, perform on par or slightly worse than Reinforced ICL. While the hyperparameter choice can
sometimes lead to significant differences on a per-task level, we also observe that when aggregated
across the tasks, it does not lead to significant differences. On the other hand, the BO selection
in BRIDGE outperform all these baselines. We believe there are two possible explanations leading
to this out-performance. Firstly, while the heuristic-based methods have lower computational cost,
key hyperparameters, such as the number of demonstrations to retrieve, need to be determined a-
priori. However, as we have shown in the main text at, for example, Fig. 4, the optimal number of
demonstrations can be highly task-specific, and while iterative optimization-based selection incurs
a higher cost, it is also capable of optimizing the number of demonstrations. Secondly, a key find-
ing we have in Sec. 2 is that not all examples are equally helpful and removing some examples as
in-context demonstrations can sometimes lead to performance improvement during the “Optimize”
stage. Again, while the heuristic-based approaches do not necessarily use all demonstrations, it
makes the selection choice purely from heuristic metric (e.g., similarity to test query) rather than
from a validation metric, and hence is incapable of removing these potentially “harmful” demon-
strations from the pool of candidate examples.

However, beyond a simple comparison between a single stage of BRIDGE against these methods,
it is also worth noting that BRIDGE is more than a demonstration selection method. As such, it is
also possible to combine these methods with BRIDGE by using them as a drop-in replacement of
the BO-based demonstration selection, effectively changing the implementation of the “Optimize”
step only. To test this, we test two other variants of BRIDGE, named BRIDGE-RETRIEVAL and
BRIDGE-DIVERSITY, where we replace the “Optimize” step in each round with the heuristic-driven
demonstration selection mentioned above and the aggregated results are shown in Table 8 whereas
the task-specific breakdown of the best method in Table 9 – for conciseness, we only show the
per-task breakdown for the best BRIDGE variant (BRIDGE-RETRIEVAL using all examples), which
show that BRIDGE also works well with alternative demonstration selection method, although the
advantage of optimization-based selection as shown in Table 7 carries over when we use the selection
as a component in the overall BRIDGE pipeline.

C.2 NUMBER OF EXAMPLES

We show the number of examples used for each experiment corresponding to Table 1 in Table 10.

C.3 ADDITIONAL VISUALIZATIONS

In this section, we show analysis similar to Fig. 4 on tasks not represented in the figure of the main
text.

C.4 USING BRIDGE FOR LOW-RESOURCE TRANSLATION

While we have primarily considered the reinforced ICL setup suitable for reasoning and general
problem-solving tasks, it is worth noting that the BRIDGE framework may also generalize to other

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 7: Comparison between BRIDGE with (one step of demonstration optimization only) against
Retrieval, Diversity and Reinforced ICL baselines using gemini-1.5-pro-001. Note that the
BRIDGE (1O) and Reinforced ICL results are taken from Table 1.

Tasks Diversity Retrieval Reinf. BRIDGE
Details / hyperparams k = 10 k = 25 k = 10 k = 25 All ICL 1O

causal judgement 66.71.6 66.32.4 63.01.5 67.72.4 66.72.5 66.34.8 68.31.5
date understanding 93.21.3 93.02.7 87.03.5 93.31.5 93.01.9 88.82.5 92.21.5
disambiguation qa 72.23.0 77.80.8 76.50.9 71.20.8 77.51.1 76.82.4 71.82.4
dyck languages 54.015.7 38.52.6 39.54.4 33.23.1 47.85.2 55.53.6 49.22.7
formal fallacies 85.51.5 85.01.9 88.50.5 88.23.0 84.21.9 86.21.1 86.02.1
geometric shapes 71.24.4 69.31.6 69.82.8 68.54.2 79.23.3 80.22.8 78.52.1
hyperbaton 95.01.2 92.22.5 96.51.1 97.21.3 95.21.9 90.21.1 96.50.9
logical deduction (7) 65.83.0 67.54.4 69.24.4 66.32.9 67.32.4 65.83.5 70.21.5
movie recommendation 67.32.6 65.02.5 68.53.4 68.01.4 67.33.3 65.21.6 67.01.2
multistep arithmetic two 92.81.3 96.20.4 95.50.9 94.81.6 94.31.9 96.50.5 96.20.8
object counting 95.81.1 95.20.8 97.22.4 95.21.9 91.22.2 95.50.9 96.20.4
ruin names 87.81.3 89.81.3 87.80.8 91.52.1 90.52.2 89.81.9 90.81.1
salient translation error detection 68.52.3 69.52.1 68.23.3 58.22.8 61.02.1 69.01.6 68.80.8
snarks 94.82.3 96.21.2 94.41.7 97.61.2 95.51.2 92.73.2 93.43.0
sports understanding 95.01.2 95.81.1 95.50.9 95.80.8 95.01.9 93.01.4 92.81.9
tracking shuffled objects (7) 55.84.5 56.85.5 60.24.3 67.89.7 60.22.4 62.34.2 95.80.4

Average 78.83 78.38 78.59 78.41 79.12 79.61 81.61

Table 8: Average test accuracy on BBH tasks using gemini-1.5-pro-001 by combining
BRIDGE with different variants of the heuristic demonstration selection methods. Bold text in this
table shows the best algorithm variant at each round of BRIDGE.

Method 1O 1G 2O 2G 3O

BRIDGE-DIVERSITY (k = 10) 77.10 79.47 78.58 81.89 79.50
BRIDGE-DIVERSITY (k = 25) 78.15 80.86 78.74 80.63 79.68
BRIDGE-NEAREST (k = 10) 79.07 81.80 81.40 81.35 80.39
BRIDGE-NEAREST (k = 25) 78.36 79.49 80.16 81.09 80.10
BRIDGE-NEAREST (All) 79.65 82.91 82.01 83.20 84.14

Table 9: Task-specific test accuracy on BBH tasks using gemini-1.5-pro-001 with BRIDGE-
NEAREST (All) (best method from Table 8).

Task 1O 1G 2O 2G 3O

causal judgement 73.01.1 62.31.5 64.70.7 65.72.2 63.32.7
date understanding 94.31.3 92.01.6 95.01.4 92.22.3 92.80.4
disambiguation qa 76.80.4 75.85.0 72.01.0 82.02.7 82.80.8
dyck languages 58.82.3 75.04.3 75.03.3 78.53.0 82.01.2
formal fallacies 84.20.8 88.51.7 90.50.9 89.51.8 90.00.7
geometric shapes 75.82.5 86.23.3 79.80.8 84.02.1 84.51.1
hyperbaton 96.00.7 93.82.3 97.00.0 92.53.2 98.80.4
logical deduction seven objects 65.83.7 73.82.3 68.03.7 70.01.9 71.21.8
movie recommendation 67.01.2 69.51.7 63.21.1 70.02.5 73.80.8
multistep arithmetic two 92.50.5 97.01.2 96.70.8 97.50.9 94.00.0
object counting 91.81.5 95.01.2 97.00.7 96.51.7 100.00.0
ruin names 88.80.4 92.00.7 88.52.1 89.20.8 88.21.1
salient translation error detection 63.21.5 70.01.6 70.20.4 70.01.2 70.50.5
snarks 95.81.7 94.81.2 93.71.2 96.51.2 95.80.0
sports understanding 94.00.7 96.51.5 93.80.4 95.51.5 94.20.4
tracking shuffled objects seven objects 56.81.6 64.50.9 67.01.0 61.54.4 64.21.6

Average 79.65 82.91 82.01 83.20 84.14

practical settings that benefit from many-shot ICL with some modification on the “optimize” and the
“generate” steps. In this section, we conduct a preliminary analysis on the applicability of BRIDGE
in the context of machine translation (MT) for low-resource languages.

As noted in Agarwal et al. (2024) and Reid et al. (2024), low-resource machine translation (MT)
is one of the task types where many-shot in-context learning (ICL) has demonstrated remarkable
performance. In these tasks, there is often a nearly monotonic improvement in translation quality

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 10: Number of examples for each experiment corresponding to Table 1
(gemini-1.5-pro-001 on BBH tasks). Note that the “All” columns always use all 75
examples provided.

Tasks Reinf. Iter. BRIDGE-BO
ICL Reinf.

Iterations 1 2 3 1O 1G 2O 2G 3O

causal judgement 36 40 43 11 43 4 39 39
date understanding 61 67 72 57 73 44 73 57
disambiguation qa 42 66 69 28 61 60 68 65
dyck languages 15 40 52 9 45 42 59 20
formal fallacies 60 69 69 2 63 30 67 57
geometric shapes 42 59 68 40 59 19 71 70
hyperbaton 70 75 75 4 75 69 75 59
logical deduction seven objects 46 60 62 11 54 51 64 61
movie recommendation 42 53 54 39 49 36 51 41
multistep arithmetic two 65 74 74 38 74 28 72 38
object counting 65 75 75 60 75 48 75 14
ruin names 58 70 71 51 70 69 69 21
salient translation error detection 44 59 60 13 58 7 59 41
snarks 47 50 51 19 49 5 48 39
sports understanding 64 75 75 52 75 74 74 68
tracking shuffled objects seven objects 58 60 53 2 75 1 75 22

Average 50.94 62.00 63.94 27.25 62.38 36.69 64.94 44.50

as more source-target language pairs are incorporated into the context – as a notable exception to
our observations in Sec. 2 that primarily involve reasoning tasks, in low resource MT, we often
observe “more is better” given the information-dense nature of translation tasks – indeed, for trans-
lation tasks, barring glaring human errors in the annotation process, the provided data is generally
assumed to be of high quality and problems like false positive in model-generated reasoning paths
in reasoning tasks are generally negligible for tasks like low resource MT with high quality anno-
tated data. However, in low-resource languages, the model’s inherent knowledge is often weak or
non-existent due to the lack of exposure to target languages during pre-training or fine-tuning, which
can lead to a bottleneck in data availability especially for extremely low-resource languages, where
1) the model lacks zero-shot translation abilities due to insufficient exposure to target languages,
and 2) the scarcity of annotated data becomes a critical limiting factor – to address these, previous
works often attempt to augment ground-truth translation data with model-synthesized translations
(Han et al., 2021; Patel et al., 2022).

In this section, along this line of work, we investigate the applicability of BRIDGE as a method to
iteratively improve the model-synthesized translation so that they can act as more effective augmen-
tations to the scarce ground-truth data. Specifically, we assume the following in our setup:

• Availability of some ground-truth source-target sentence pairs – this pair will both act as
the train set from which ground-truth examples are generated and also as the validation set
for machine-generated translations.

• Abundant source language text – this is almost always true. For example, if we are inter-
ested in translating from English to a low-resource language, it is extremely easy to obtain
abundant text in English whereas the difficulty is to obtain the corresponding tranlsaiton in
the target language.

• LLM for “pseudo-labelling” – we assume the availability of a (strong) LLM that can be
queried to generate synthesized data.

To approach the problem, we propose to retain the high-level framework of BRIDGE but modify
the “optimize” and “generate” steps to accommodate the low-resource MT setup. With reference
to Algorithm 3 where we have marked the key differences in blue, the main difference lies in the
“generate” step: instead of generating examples with model-generated reasoning paths in the case
presented in the main text, here we synthesized examples on the unlabeled set U that we assumed
to be available. Since we no longer have access to the ground-truth translation of the sentences in
U , we optimize for the optimal subset e∗ by evaluating different combinations of the synthesized
examples on the partition of the labeled dataset Ev .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 20 40
Demos

0.55

0.60

0.65

0.70

0.75

Va
l. A

cc.

causal_judgement

Round 0
Round 1
Round 2

0 20 40 60
Demos

0.75

0.80

0.85

0.90

0.95

Va
l. A

cc.

date_understanding

Round 0
Round 1
Round 2

0 20 40 60
Demos

0.6

0.7

0.8

Va
l. A

cc.

disambiguation_qa

Round 0
Round 1
Round 2

0 20 40 60
Demos

0.3
0.4
0.5
0.6
0.7
0.8

Va
l. A

cc.

dyck_languages

Round 0
Round 1
Round 2

0 20 40 60
Demos

0.75

0.80

0.85

0.90

Va
l. A

cc.

formal_fallacies

Round 0
Round 1
Round 2

0 25 50 75
Demos

0.875
0.900
0.925
0.950
0.975
1.000

Va
l. A

cc.

hyperbaton

Round 0
Round 1
Round 2

0 20 40 60
Demos

0.4

0.5

0.6

0.7

0.8

Va
l. A

cc.

logical_deduction_seven_objects

Round 0
Round 1
Round 2

0 20 40
Demos

0.40
0.45
0.50
0.55
0.60
0.65
0.70

Va
l. A

cc.

movie_recommendation

Round 0
Round 1
Round 2

20 40 60
Demos

0.92

0.94

0.96

0.98

1.00

Va
l. A

cc.

multistep_arithmetic_two

Round 0
Round 1
Round 2

20 40 60
Demos

0.85

0.90

0.95

1.00

Va
l. A

cc.

object_counting

Round 0
Round 1
Round 2

0 20 40 60
Demos

0.80
0.82
0.84
0.86
0.88
0.90

Va
l. A

cc.

ruin_names

Round 0
Round 1
Round 2

0 20 40
Demos

0.80

0.85

0.90

0.95

Va
l. A

cc.

snarks

Round 0
Round 1
Round 2

0 25 50 75
Demos

0.88
0.90
0.92
0.94
0.96
0.98
1.00

Va
l. A

cc.

sports_understanding

Round 0
Round 1
Round 2

0 25 50 75
Demos

0.72

0.74

0.76

0.78

Va
l. A

cc.

GSM-Hard

Round 0
Round 1
Round 2

Figure 5: Additional visualization of the task performance at different rounds. Note that in most
datasets, additional rounds of BRIDGE led to performance improvement, and some of the exceptions
(e.g., multi arithmetric two) are possibly caused by visualization artefacts of the extremely
small performance variation as shown by the small y-axis ranges.

To test BRIDGE on the MT setup, we consider the English-Bemba translation task in the Flores
dataset (Guzmán et al., 2019) that was also considered in Agarwal et al. (2024). We assume the
access to 100 labeled examples asD and 50 unlabeled examples U , and hold out another 400 samples
as the test set. We use Gemini Flash as the target model and Gemini Pro as the generator model
in Algorithm 3, and we show the result in Table 11. Overall, we observe that running iterative
optimization also improves performance on this task, both exemplified by improvement on the test
and validation chrf score, although it seems that additional optimization round in this case led to a
small performance degradation. While a more comprehensive evaluation is required, we believe the
preliminary result is promising for future effort on this direction.

C.5 EXPERIMENTS ON ADDITIONAL MODELS

In this section, we report BBH results on two additional models: Mistral Large
(mistral-large-2407) (Jiang et al., 2023) (Table 12) and Claude 3.5 Sonnet (Anthropic,
2024) (Table 13). For both models, we use the versions served on Google Cloud Vertex AI plat-
form. We find that while the base capabilities of the tested models differ slightly (e.g., Claude 3.5
Sonnet has a higher accuracy across the board), the high-level findings primarily derived from Gem-

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 11: Test chrf score of gemini-1.5-flash-001. “Gold-only” refers to the result obtained
by only using the 100 labeled examples in the context; “All” refers to the result with 100 labeled
examples + 50 initially generated examples from gemini-1.5-pro-001. Refers to captions of
Table 1 for additional explanations.

Tasks Gold-only All BRIDGE-MT
Iterations - 0 1O 1G 2O 2G 3O

en bem 37.78 38.46 38.33 39.11 39.30 38.90 39.29

Table 12: Test accuracy of Mistral Large (mistral-large-2407) on BBH tasks. Refer to
captions of Table 1 for detailed explanations.

Tasks Reinf. Iterative BRIDGE
ICL Reinf. (Ours)

Iterations 0 1 2 1O 1G 2O 2G 3O

causal judgement 69.3 66.7 72.0 68.0 65.3 69.3 64.0 73.3
date understanding 92.0 92.0 96.0 93.0 94.0 95.0 92.0 96.0
disambiguation qa 82.0 82.0 79.0 81.0 87.0 87.0 84.0 86.0
dyck language 56.0 62.0 56.0 70.0 59.0 70.0 63.0 71.0
formal fallacies 90.0 82.0 86.0 89.0 89.0 90.0 83.0 85.0
geometric shapes 87.0 80.0 93.0 88.0 85.0 95.0 71.0 94.0
hyperbaton 99.0 96.0 100.0 100.0 98.0 100.0 100.0 99.0
logical deduction (7) 81.0 85.0 76.0 82.0 88.0 90.0 86.0 92.0
movie recommendation 74.0 71.0 74.0 77.0 66.0 78.0 80.0 79.0
multistep arithmetic two 88.0 92.0 93.0 91.0 89.0 88.0 86.0 93.0
object counting 99.0 99.0 99.0 98.0 98.0 98.0 100.0 98.0
ruin names 88.0 90.0 92.0 86.0 89.0 87.0 89.0 89.0
salient translation error detection 66.0 68.0 70.0 78.0 69.0 75.0 72.0 73.0
snarks 95.8 95.8 97.2 94.4 95.8 95.8 95.8 93.1
sports understanding 94.0 97.0 98.0 93.0 95.0 96.0 97.0 96.0
tracking shuffled objects (7) 96.0 68.0 100.0 100.0 73.0 100.0 57.0 100.0
Average 84.82 83.22 87.08 86.65 83.70 88.07 82.80 88.52

Table 13: Test accuracy of Claude 3.5 Sonnet (claude-3-5-sonnet@20240620) on BBH
tasks. Refer to captions of Table 1 for detailed explanations.

Tasks Reinf. Iterative BRIDGE
ICL Reinf. (Ours)

Iterations 0 1 2 1O 1G 2O 2G 3O

causal judgement 64.0 68.0 65.3 62.7 69.3 73.3 70.7 65.3
date understanding 94.0 95.0 96.0 97.0 94.0 95.0 96.0 95.0
disambiguation qa 73.0 82.0 79.0 81.0 87.0 87.0 84.0 86.0
dyck language 68.0 68.0 65.0 74.0 85.0 90.0 92.0 87.0
formal fallacies 93.0 94.0 97.0 96.0 95.0 98.0 96.0 95.0
geometric shapes 92.0 94.0 98.0 88.0 90.0 85.0 96.0 89.0
hyperbaton 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
logical deduction (7) 92.0 96.0 96.0 89.0 95.0 97.0 91.0 93.0
movie recommendation 87.0 90.0 92.0 89.0 90.0 88.0 93.0 90.0
multistep arithmetic two 99.0 99.0 99.0 99.0 99.0 99.0 100.0 100.0
object counting 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ruin names 93.0 93.0 94.0 91.0 94.0 94.0 92.0 94.0
salient translation error detection 71.0 71.0 73.0 71.0 72.0 73.0 73.0 73.0
snarks 97.2 97.2 97.2 95.8 95.8 98.6 98.6 97.2
sports understanding 92.0 91.0 94.0 93.0 94.0 94.0 93.0 91.0
tracking shuffled objects (7) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Average 88.45 89.89 90.35 89.16 91.26 92.00 92.20 90.97

ini results in the main text largely hold. On Claude 3.5 Sonnet, we observe an almost identical
high-level trend to Gemini, where each round of BRIDGE incrementally improves performance up
to 2G. On the other hand, while Mistral Large seemingly benefits less from scaling demonstrations
(e.g., sometimes the generate step leads to drops in performance) directly, the improved quality
of the generated demonstrations still enables successive optimize step to improve on the preced-
ing round, demonstrating the effectiveness of BRIDGE even when the model does not benefit from
scaling examples directly.

C.6 TRANSFERRING LEARNED DEMONSTRATIONS FROM GSM-HARD TO GSM-8K

In this section, we investigate whether the BRIDGE-discovered demonstrations can transfer across
related but distinct datasets. Specifically, we investigate the extent to which the demonstrations

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

found on GSM-Hard (Table 2) generalize to the original GSM-8K and we show the result in Ta-
ble 14, where we compare the performance of the demonstrations directly transferred from GSM-
Hard at different stages of BRIDGE against directly optimizing on GSM-8K. We find that whereas
the demonstrations generated from (iterative) reinforced ICL led to small deterioration of GSM-8K
performance, we found the transferred demonstrations from BRIDGE led to small improvement even
though the Gemini 1.5 Pro performance on GSM-8K has been rather saturated. While optimizing
directly on GSM-8K unsurprisingly led to the highest performance given that there is no distribution
shift, we also find that the GSM-Hard demonstrations exhibit considerable generalizability.

Table 14: Comparison of the transferred BRIDGE-generated demonstrations on GSM-Hard vs. di-
rectly running BRIDGE on GSM-8K. Runs with performance deteriorations w.r.t. the 0-shot results
are marked in red in the table.

Tasks 0-shot Reinf. Iterative BRIDGE
ICL Reinf. (Ours)

Iterations - 0 1 2 1O 1G 2O 2G 3O

Direct 91.92 93.81 93.06 92.68 93.81 93.18 94.70 94.19 93.94
Transferred - 90.66 91.79 91.16 93.81 92.55 93.81 93.18 91.16

D COMPUTATIONAL COST ANALYSIS

Algorithm 3 BRIDGE with pseudo-labelling.
1: Input: train set D, unlabeled set with source lan-

guage sentence, U , number of iteration rounds
K ∈ N (outer-loop), evaluation budget for BO
per iteration neval (inner-loop), Generator model
used to synthesize examplesMg .

2: Output: Optimized set of model-synthesized ex-
amples E∗.

3: Partition D into two disjoint sets Dt and Dv via
random sampling.

4: [Generate] Generate the pool of initial examples
E0 by predictingMg on the unlabeled set, using
the entire train set D as the demonstrations in the
context: E0 ←Mg(U|D).

5: for k ∈ {1, ...,K} (Outer loop) do
6: [Optimize] Run Bayesian optimization (call-

ing subroutine Algorithm 2 on theDv to obtain
e∗k ← BayesOpt(neval=neval, E=Ek).

7: [Generate] Re-generate examples Ek by re-
predicting the LLM on the unlabeled set, but
with the optimized examples e∗k from the previ-
ous step andDt as demonstrations; the {inputs,
output}-pairs are concatenated to form the new
set of examples Ek for the next [Optimize] step.

8: end for
9: return Optimized example set E∗ afterK rounds.

In this section, we provide a computational cost
analysis of BRIDGE. In general, since BRIDGE
consists of multiple rounds of “Optimize” and
“Generate” steps, here we analyze each step in
detail.

• Optimize: The cost of the “opti-
mize” step depends on the budget al-
located (neval in Line 5 of Algorithm
2), which is user-configurable. If
we opt for iterative optimization (such
as using Bayesian optimization in the
main section of the paper, or ran-
dom search in App. C.1), each “op-
timize” step thus entails neval LLM
inferences on the validation set. As
shown in the App. C.1, it is also possi-
ble to use non-iterative method based
on retrieval or embedding diversity, in
which case each “optimize” step en-
tails a single round of LLM inferences
on the validation set (or the train set,
if we use the dataset for both training
and validation).

• Generate: The “generate” step always
involves a single round of LLM infer-
ences on the train set where we simply
use the optimized examples from the
“optimize” step above as demonstra-
tions and run inference again on the

train set.

28

	Introduction
	What Drives Many-Shot In-Context Learning Performance?
	Methodology
	Experiments
	Related work
	Conclusion
	Derivation of the Approximated Importance Score
	Implementation Details
	Datasets.
	Implementation details of the Infilling baseline

	Additional Experiments and Results
	Ablation and Sensitivity Studies
	Number of examples
	Additional Visualizations
	Using bridge for low-resource translation
	Experiments on Additional Models
	Transferring learned demonstrations from GSM-Hard to GSM-8K

	Computational Cost Analysis

