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Abstract

We extend the artificial language learning ex-001
perimental paradigm from psycholinguistics002
and apply it to pre-trained language mod-003
els – specifically, BERT (Devlin et al., 2019).004
We treat a pretrained model as a subject in005
an artificial language learning experimental006
setting: in order to learn the relation be-007
tween two linguistic properties A and B , we008
introduce a set of new, non-existent, linguis-009
tic items, give the model information about010
their variation along property A, then mea-011
sure to what extent the model learns prop-012
erty B for these items as a result of train-013
ing. We show this method at work for de-014
gree modifiers (expressions like slightly, very,015
rather, extremely) and test the hypothesis016
that the degree expressed by the modifier017
(low, medium or high degree) is related to018
its sensitivity to sentence polarity (whether it019
shows preference for affirmative or negative020
sentences or neither). Our experimental re-021
sults are compatible with existing linguistic022
observations that relate degree semantics to023
polarity-sensitivity, including the main one:024
low degree semantics leads to positive polar-025
ity sensitivity (that is, to preference towards026
affirmative contexts).027

The method can be used in linguistic the-028
ory to elaborate on hypotheses and interpret029
experimental results, as well as for more in-030
sightful evaluation of linguistic representa-031
tions in language models.032

1 Introduction033

One over-arching goal of linguistics is to de-034

scribe and explain the limits of linguistic varia-035

tion. What is impossible in natural language and036

why? Linguistic expressions can be characterized037

along a large set of properties: what they mean,038

what parts they consist of, how they combine039

with other expressions and so on. Delineating the040

space of possible natural languages amounts to041

uncovering non-trivial relations between these042

properties that constrain this space. Observa- 043

tions about these relations can come in the form 044

of categorical implicational linguistic universals, 045

for example, Greenberg’s Universal 37: A lan- 046

guage never has more gender categories in nonsin- 047

gular numbers than in the singular. (Greenberg, 048

1963). Here, two properties of linguistic expres- 049

sions are related: the grammatical number of an 050

expression and how many gender distinctions 051

are available for this expression. More complex 052

generalizations may concern correlation between 053

two continuous properties A and B . 054

Moving from observation towards explanation, 055

one might also question the direction of this re- 056

lation: does the extent of A affect the extent of B , 057

or vice versa, or are they both affected by some 058

other unobserved factor? 059

In this paper, we study one particular case of 060

the latter type of linguistic generalization: the 061

problem of polarity-sensitivity of degree modi- 062

fiers (Israel, 1996, 2011; Solt, 2018; Solt and Wil- 063

son, 2021). Degree modifiers are words like 064

slightly, very, and extremely. Property A, in this 065

case, is the degree that these words convey, de- 066

fined on a interval from very low to very high. 067

For example, the degree of slightly is lower than 068

the one of very. Property B here encodes distri- 069

butional preferences of degree modifiers with re- 070

spect to polarity of a sentence where they appear 071

– roughly, whether they prefer to appear in nega- 072

tive or affirmative sentences, or show no polarity 073

preference. Polarity preferences can also be rep- 074

resented as a continuous property from very low 075

(negative polarity preference) to very high (posi- 076

tive polarity preference), with polarity-neutral in 077

the middle. A more detailed explanation of this 078

linguistic concept is provided in Section 2. 079

Linguistic generalizations constraining the 080

space of possible natural languages have been 081

subject to experimental studies. One prominent 082

experimental method is artificial language learn- 083
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ing, a framework actively used in psycholinguis-084

tics and cognitive science (Friederici et al., 2002;085

Motamedi et al., 2019; Kanwal et al., 2017; Culbert-086

son et al., 2012; Ettlinger et al., 2014; Finley and087

Badecker, 2009). It has the following main ingredi-088

ents: (1) a fragment of an artificial language in the089

form of expressions that do not belong to the lan-090

guage that subjects are speakers of; (2) training091

phase, where some information about the lan-092

guage fragment is given to the subjects; (3) test-093

ing phase, where it is checked what other knowl-094

edge, beside the provided, was inferred during095

training. The main challenge for this method is096

that one only has limited access to the processes097

in the brain that underlie artificial language ac-098

quisition and use (although see Friederici et al.099

2002). In particular, it is hard to control for the100

role of the subjects’ native language in the ex-101

periment. Another approach is artificial language102

learning using (artificial) neural networks (Pianta-103

dosi et al., 2012; Carcassi et al., 2019; van de Pol104

et al., 2021). Replacing human subjects with neu-105

ral networks as learning agents allows to examine106

the learning process in more detail, and to control107

for the learner’s native language substrate, since108

the agent comes in a blank state with no prior109

knowledge. However, while this approach can110

make particular types of learnability statements,111

it raises questions about the extent to which its112

conclusions apply to natural language at all.113

We propose a methodology that is middle114

ground between these two paradigms. It also in-115

volves an artificial language fragment and train-116

ing to introduce knowledge about some property117

A, but it uses a pre-trained neural network lan-118

guage model (LM) (Peters et al., 2018; Devlin et al.,119

2019; Brown et al., 2020) as the learning subject.120

More technically, we extend a pre-trained LM121

with a set of new tokens with randomly initialized122

embeddings and perform fine-tuning on a care-123

fully constructed synthetic dataset. The dataset124

is constructed in a way to indirectly introduce dif-125

ferent values along property A for different new126

tokens. Upon fine-tuning, we measure how the127

training affected property B and how variation128

along B depends on the values of property A in-129

troduced during training.130

Our proposed approach combines the bene-131

fits of the two other approaches described above.132

First, learning happens on top of already existing133

linguistic knowledge, which makes these experi-134

ments more directly parallel to those with human 135

subjects. Second, like in other approaches involv- 136

ing computational modelling, the learning pro- 137

cess is more directly controllable and explorable. 138

Additionally, the factor of pre-existing linguistic 139

knowledge can be more easily controlled for, com- 140

pared to human experiments. Finally, our ap- 141

proach is scalable to a wide variety of languages, 142

provided there is a LM of sufficient quality. 143

The idea of using counterfactual linguistic data 144

is not new (Kaushik et al. 2020, 2021; Thrush et al. 145

2020 a.o.), but in this paper we do not use it for the 146

purpose of bias mitigation or model evaluation. 147

We make the following contributions: we pro- 148

pose a new experimental methodology based on 149

the artificial language learning paradigm; we use 150

this methodology to explore the relation between 151

two linguistic phenomena, degree and polarity- 152

sensitivity, as represented in one pre-trained LM 153

(BERT). We argue that, according to the experi- 154

mental results, there is indeed a direct connection 155

between the degree encoded by a degree modifier 156

and its polarity-sensitivity. 157

The paper is structured as follows: Section 2 158

gives linguistic background about degrees and 159

polarity. Section 3 describes the general method. 160

In Section 4, we define a synthetic dataset and the 161

measures we use to estimate degree and polarity. 162

Section 5 presents the experiment. Section 6 dis- 163

cusses our results, the limitations of our set-up 164

and suggestions for future work. 165

2 Background: Degrees and polarity 166

In this section we provide background on the 167

studied linguistic properties: we describe degree 168

as a property of degree modifiers, and polarity- 169

sensitivity as a property of linguistic items (words) 170

that tend to appear in certain types of contexts. 171

We outline the relation between these two prop- 172

erties, as discussed in theoretical linguistic lit- 173

erature. We will apply our proposed method to 174

experimentally verify the hypothesised relation. 175

Degree 176

So-called gradable adjectives describe properties 177

that can hold to a different degree. A classic exam- 178

ple of a gradable adjective is tall. A classic exam- 179

ple of a non-gradable one is prime. The former, as 180

opposed to the latter, can be part of comparative 181

and superlative constructions, and they can com- 182

bine with degree modifiers: words like slightly, 183

very, and extremely. Examples (1)-(2) illustrate 184
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this difference. We use ∗ to denote all types of185

linguistic deviancy, including ungrammaticality186

as well as semantic / pragmatic oddity:187

(1) ∗7 is more prime than 3.188
∗13 is the most prime number in this set.189
∗1 is somewhat / very / extremely prime.190

(2) Mary is taller than John.191

Mary is the tallest person in this room.192

Mary is somewhat / very / extremely tall.193

For a statement with a simple base form of a grad-194

able adjective – like Mary is tall – to be true, the195

property in question has to hold of the subject196

to some degree δ that is determined by linguistic197

and extra-linguistic contextual factors (Fara, 2000;198

Kennedy and McNally, 2005; Kennedy, 2007).199

When a gradable adjective appears in combina-200

tion with a degree modifier, the degree δ that201

makes the statement true changes to a value that202

depends on the modifier. For Mary to count203

as ‘somewhat tall’, her height needs to be much204

lower than for ‘extremely tall’, for instance. The205

requirements on δ that degree modifiers encode206

can be used to order these modifiers along a scale207

of degrees, for example, somewhat < extremely.208

Polarity-sensitivity209

For certain expressions, their acceptability210

and/or interpretation in a context is conditioned211

on the polarity of this context. Expressions with212

distributional preference1 for negative contexts213

are called negative polarity items (NPIs). Expres-214

sions with preference towards positive contexts215

are called positive polarity items (PPIs). For ex-216

ample, any is an NPI (3), while already is a PPI (4).217

NPIs and PPIs are said to be polarity-sensitive.218

Like degree, we treat polarity-sensitivity as a con-219

tinuous property on the [0,1] interval, where 0 is220

a very pronounced NPI, 1 a very pronounced PPI,221

with polarity-neutral items in the middle.222

(3) ∗Mary bought any books. NPI223

Mary didn’t buy any books.224

(4) John has arrived already. PPI225
∗John hasn’t arrived already.226

1We use the vague and permissive term ‘preference’ here
to cover the whole spectrum of asymmetries between posi-
tive and negative contexts that an expression shows – from
ungrammaticality to decreased prominence of a narrow
scope reading. Gradations of polarity-sensitivity will play a
crucial role in our discussion, but specifically for this reason
we are looking for a unified way to describe the whole space
of polarity sensitivity phenomena.

Sentences that are good contexts for NPIs and 227

PPIs are said to have negative and positive po- 228

larity, respectively. Polarity of a sentence does 229

not amount simply to the presence or absence of 230

sentential negation, it is a way more complex se- 231

mantic property (see Fauconnier 1975; Ladusaw 232

1979 and subsequent literature). However, we will 233

focus on the presence or absence of negation as a 234

proxy to polarity in the current discussion. 235

Relation between the two properties 236

Observations reported in linguistic literature sug- 237

gest an interaction between these two properties 238

(Israel, 1996, 2011; Solt, 2018; Solt and Wilson, 239

2021). Specifically, lower degrees associate with 240

PPI behaviour. Low-to-moderate degree modi- 241

fiers in English support this observation (Solt and 242

Wilson, 2021), as examples in (5) demonstrate. 243

This pattern is supported by other languages too 244

(van Os, 1989; Nouwen, 2013; Ito, 2015). 245

(5) The issue is fairly / pretty / somewhat / 246

rather / kind of / sort of important. 247
∗The issue isn’t fairly / pretty / somewhat 248

/ rather / kind of / sort of important. 249

On the other hand, modifiers in the moderate-to- 250

high range show mild association with negative 251

contexts (Israel, 1996). The association between 252

negative polarity and degree modifiers from a cer- 253

tain range comes from the phenomenon of ‘neg- 254

ative strengthening’ (Gotzner et al., 2018; Maz- 255

zarella and Gotzner, 2021): 256

(6) John isn’t particularly smart. 257

While the literal meaning of (6) is compatible 258

with John being smart quite often these types of 259

sentences are used to convey a stronger mean- 260

ing: that John is not smart at all. This is a prag- 261

matic asymmetry rather than a distributional con- 262

straint, but it contributes to the interaction pat- 263

terns between degree and polarity-sensitivity. 264

Existing work proposes analyses of degree mod- 265

ification with built-in causal connection between 266

the degree semantics of modifiers and their po- 267

larity profile (Israel, 1996; Solt and Wilson, 2021) – 268

even though the extent, exact shape and direction 269

of this connection is not established yet. We use 270

this state of affairs as a chance to contribute to 271

this discussion empirically and analytically, using 272

the method proposed below. 273
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3 Method274

In this section, we describe the details of a275

method to conduct artificial language learning276

experiments with pretrained LMs. Without loss277

of generality, we use BERT (Devlin et al., 2019) in278

our experiments, but other pretrained language279

models could be used instead.280

We design our method to be applied to linguis-281

tic hypotheses of the form A ⇒ B , where A,B282

are some properties in a given language. In this283

study, we specifically focus on the relationship be-284

tween adverbial degree modification and polarity-285

sensitivity. A in this context is low, medium or286

high degree of an adverbial modifier w , and B is287

negative, neutral or positive polarity of w . In gen-288

eral, we evaluate a hypothesis A(w, i ) ⇒ B(w, j )289

by showing that if A holds according to BERT for290

word w to an extent i , then so does B to some291

extent j , according to BERT.292

We use the cloze test (a task where the par-293

ticipant is asked to recover a missing language294

item) adapted for BERT (see Warstadt et al. 2019,295

[redacted for anonymity] for the cloze test on296

LMs for polarity). The test uses BERT’s probabil-297

ity distributions over tokens in masked positions298

in diagnostic contexts for property A or B .299

To show that a hypothesis holds in general for300

an arbitatrary w , we:301

(1) augment BERT’s vocabulary with a set W of302

new words and randomly initialize the cor-303

responding embeddings;304

(2) fine-tune the corresponding embeddings on305

a dataset where the new words appear in306

contexts that distributionally select for par-307

ticular values of A;308

(3) test whether the knowledge that B holds was309

acquired, to the extent that follows the hy-310

pothesised association pattern with A.311

As part of Step (1), we also verify that prior to312

training the initialized embeddings don’t show313

any biases w.r.t. both properties A and B . This314

approach presupposes a set of contexts that distri-315

butionally select for a specific linguistic property316

X , denoted S (X ). We describe a method to mine317

such contexts for the specific linguistic proper-318

ties of our case study in Section 4.3. Part of future319

work is extending it to a more general case. The320

general structure of the synthetic dataset is de-321

scribed in Section 4.1. It is also tailored to the 322

linguistic phenomenon under investigation. 323

4 Dataset and measures 324

First, we delineate a fragment of English that will 325

be the basis of our experiment (Section 4.1): sim- 326

ple sentences with a gradable adjective predi- 327

cated over a definite noun phrase (as in The pizza 328

is good). We re-shape these sentences to create 329

diagnostic contexts for properties A and B (Sec- 330

tions 4.2, 4.3). We also use it to exemplify values 331

of A during training (Section 4.3). 332

4.1 Basic set of sentences 333

First, we automatically identified the set of 334

gradable adjectives and nouns to build our 335

training samples from. We started with 336

bert-base-uncased2 vocabulary and as- 337

signed all full-word tokens a part of speech la- 338

bel with the SpaCy POS tagger3. We kept the top 339

1000 nouns. Using the CapitolWords dataset from 340

textacy4, we looked for co-occurrences of ad- 341

jectives with degree modifiers somewhat, very, 342

really, extremely, rather and picked 200 adjectives 343

with the highest ratio of modified uses. 344

Second, we generated sentences with these 345

nouns and adjectives using the following pattern: 346

The nounx cop.PRS adjy 347

where cop.PRS is either singular or plural cop- 348

ula in the Present tense (is or are), nounx is filled 349

with either of the 1000 picked nouns, and adjy 350

is filled with either of the 200 gradable adjectives. 351

The procedure gave us 400k sentences like these: 352

(7) The purpose is interesting. 353

The answer is simple. 354

The environment is large. 355

This 400k set varied in terms of naturalness, co- 356

herence and adherence to lexical selectional re- 357

strictions. To control for this, we ran the sen- 358

tences through GPT-25 and kept the bottom 10k 359

according to the assigned sentence perplexity. 360

The construction steps above aim to output 361

‘natural’ examples, based on insights from differ- 362

ent sources (GPT-2, BERT, corpus-based statis- 363

tics). Manual inspection of the resulting 10k 364

2 https://huggingface.co/
bert-base-uncased

3https://github.com/explosion/
spacy-models

4https://github.com/bdewilde/
textacy-data

5https://huggingface.co/gpt2
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dataset revealed occasional sentences that still365

sound intuitively ‘weird’. We do not see this as a366

problem though, since the majority of sentences367

are natural enough.368

The large quantity of examples in our dataset is369

crucial to make our experiments comparable to370

psycholinguistic experiments. In the latter, one371

item gives rise to multiple observations due to372

judgements of multiple participants. In our set-373

ting, we only have one agent (BERT), so we com-374

pensate by increasing the number of sentences.375

4.2 Estimating polarity376

To assign polarity scores to degree modifiers, we377

follow the procedure in (Warstadt et al. 2019,378

[redacted for anonymity]). We use the 10k ba-379

sic sentences (Section 4.1) to build a polarity con-380

trast set. For each sentence in the basic set, a pair381

of sentences, one positive and one negative, with382

the [MASK] token in the modifier position:383

The nounx cop.PRS [MASK] adjy .384

The nounx cop.PRS.NEG [MASK] adjy .385

We end up with 10k pairs of sentences like these:386

(8) The reason is [MASK] simple.387
The reason isn’t [MASK] simple.388

We use the generated sentence set to estimate389

polarity-sensitivity pol(m) of a degree modifier m390

using the probabilities that BERT assigns to each391

token in its vocabulary in the masked position:392

∑
s∈D�p([MASK] = m|smasked

pos ) > p([MASK] = m|smasked
neg )�

|D|
(1)

393

where D is the 10k dataset, smasked
pos is a sentence s394

from the dataset in the positive form, with [MASK]395

in the degree modifier position, and smasked
neg is its396

negative counterpart. So, we approximate polar-397

ity as the proportion of cases where token m got398

a higher probability in pos than in neg context.399

Previous applications of this estimation400

method has shown good alignment with human401

judgments for the NPI any [redacted for402

anonymity]. Also, upon manual inspection of403

the resulting polarity estimates we concluded404

that the method produces intuitively correct405

results: slightly gets a score of 0.99 (= is a PPI),406

particularly gets a score of 0.1 (is an NPI), while407

incredibly is a PPI again with score 0.94.408

We use this polarity estimation method to get409

a reliable list of degree modifiers with polarity410

scores. For each of the 10k sentence pairs, we 411

pick 100 tokens with highest probability in the 412

masked position for a positive sentence and 100 413

tokens for its negative counterpart. Then we take 414

two unions: one of all the “positive” tokens and 415

one for the “negative” ones. We filter these two 416

sets to only keep tokens that appear more than 417

100 times in one of them.6 We use the resulting 418

sets in the rest of the experiment. 419

4.3 Estimating and mining degree 420

To estimate polarity of words (Section 4.2), we 421

relied on their patterns of occurrence in positive 422

and negative contexts. To apply an analogous 423

procedure to degree, we need contexts that asso- 424

ciate with various degree semantics. We propose 425

the following intuition. What does an answer to a 426

yes/no-question with a gradable adjective – like Is 427

the pizza good? – depend on? It certainly depends 428

on how good the pizza is: the degree to which the 429

property applies to the subject. Given that degree 430

modifiers express exactly that, we can make a con- 431

nection between their degree value and particles 432

that answer the degree yes/no question. 433

For example, we expect particles to have differ- 434

ent distribution in the masked position in (9) as 435

an effect of the modifier: 436

(9) – Is the pizza good? 437

– [MASK], it is somewhat good. 438

– [MASK], it is extremely good. 439

We use this idea to mine particles that are asso- 440

ciated with low and high degree. The mined par- 441

ticles can be used to assess degree of the modi- 442

fiers, analogously to polarity measurement above. 443

As low degree modifiers, we use somewhat and 444

slightly; for high degree, very and extremely. We 445

modify each of the 10k sentences to generate 446

pairs of sentences like these, where MOD is one of 447

the four modifiers of interest: 448

(10) Is the question difficult? 449
[MASK], it is MOD difficult. 450

As before, we run the resulting (40k) sentences 451

through BERT and, for each sentence, we collect 452

the top 100 tokens according to the probability 453

of tokens in the masked position. We only keep 454

those tokens that appear in this list 100 times 455

or more. The particles in the resulting list are 456

then tested their degree-diagnosing potential, as 457

follows. 458

6Among the tokens that survived the filter: very, always,
quite, so, really, too, all, actually.
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We use the same procedure as for polarity: for459

each particle, we check in what proportion of460

cases the probability that BERT assigns to the par-461

ticle in the sentence with the high degree modifier462

is higher than with a low degree modifier. We per-463

form this comparison for each of the four pairs464

of high vs. low degree modifiers: very vs. some-465

what, very vs. slightly, extremely vs. somewhat,466

extremely vs. slightly. This procedure gives us a467

value from 0 to 1 for each particle from the list,468

depending on the extent to which it is associated469

with low degrees (the closer to 0, the more this470

holds) or high degrees (closer to 1). We fix the471

final set of top 10 particles that associate with low472

(11) degrees and with high degrees (12):473

(11) well, actually, now, but, however,474
still, so, why, anyway, sure475

(12) yes, oh, sir, absolutely, god,476
damn, remember, wow, seriously,477
man478

Finally, we reverse the process and, in turn, use479

these particles to produce a degree score for de-480

gree modifiers. For each of the 10k sentences, we481

modify it to get 20 sentences like the following482

(where PRT ranges over the 20 particles in (11)483

and (12)):484

(13) Is the question difficult? PRT,485
it is [MASK] difficult.486

Comparing modifier probabilities across condi-487

tions defined by the distinction in (11) and (12)488

as before, we get a measure defined on the [0,1]489

interval that corresponds to the modifier’s degree.490

As a final step, we manually cleaned the result-491

ing list of 415 tokens obtained from the [MASK]492

to get rid of syntactic junk and items whose selec-493

tional restrictions are too narrow, as well as some494

clear artefacts of our estimation technique, to end495

up with the list of 98 degree modifiers we base our496

experiment on7. Fig. 1 shows the distribution of497

polarity-sensitivity and degree for these modifiers498

(we color-code them as moderate, medium and499

high degree). As the scatterplot and the fitted500

parabola show, the existing data is compatible501

with what is hypothesised in the linguistic litera-502

ture: low degrees associate with positive polarity,503

while the rest is more varied – mid-range degrees504

gravitate towards more negative polarity some-505

what, while the higher range again gravitates to-506

wards PPI behaviour.507

7Code and data are at https://github.com/
nlpsubmissions/artificial_language_
learning_for_modifiers (anonymous).

Figure 1: Degree and polarity of existing modifiers.

5084.4 Degree and polarity in BERT embeddings 509

We conduct additional analysis to better under- 510

stand how polarity-sensitivity and degree seman- 511

tics are represented in BERT token embeddings 512

for degree modifiers. We use diagnostic classi- 513

fiers. Using embeddings of degree modifiers as 514

features, we fit logistic regression with L1 regular- 515

ization to demote non-zero coefficients for two 516

binary classification tasks: 1) token classification 517

into ‘negative’ (< .5) and ‘positive’ (> .5) with re- 518

spect to polarity; 2) token classification into ‘low 519

degree (< .4, based on somewhat skewed score 520

distribution) and ‘high degree’ (> .4). 521

On 5 folds, average accuracy for polarity on 522

train data is 79.2%, and 74.7% on test. For de- 523

gree, it’s 73% and 72.3%, respectively. For each 524

of the tasks, we find the most important part of 525

the embedding that is responsible for the distinc- 526

tion, by taking coordinates that have non-zero 527

coefficients in at least four of the folds. We found 528

20 important coordinates for polarity and 13 for 529

degree. There was no overlap between these co- 530

ordinates, indicating no representational overlap 531

between polarity and degree at the level of token 532

embeddings. This makes the experiment more 533

interesting: if the same coordinates were respon- 534

sible for both properties, teaching the model one 535

of the properties would make it acquire the other 536

one by something that is an artefact of the model. 537

5 Experiment 538

This section describes how we teach BERT a new 539

system of degree modifiers by only giving it infor- 540

mation about their degree. Section 5.1 describes 541

how we introduced new tokens into BERT’s vo- 542

cabulary and mined particles that signal the prop- 543

erties we wish to teach BERT. Section 5.2 provides 544

the details of the fine-tuning procedure and the 545

experimental results. 546
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Before training After training

degree polarity degree polarity

v1 0.48, 0.06 0.42, 0.24 0.18, 0.02 0.99, 0.03

v2 0.50, 0.06 0.43, 0.21 0.40, 0.02 0.00, 0.00

v3 0.48, 0.06 0.39, 0.18 0.83, 0.02 0.85, 0.26

Baselines

random 0.52, 0.06 0.38, 0.20 0.41, 0.09 0.83, 0.30

untrained 0.50, 0.06 0.39, 0.20 0.42, 0.08 0.00, 0.00

Table 1: Estimates of polarity and degree of new to-
kens before and after training. Each pair of numbers
represents a mean and a standard deviation. v1, v2,
v3 represent polarity and degree statistics for the new
modifiers (low, medium, high) from our main experi-
ment.

5.1 Mining contexts for new degree modifiers547

We partition the existing degree modifiers into548

three same-sized groups, based on the degree549

scale region they belong to: moderate, medium,550

high (or, v1, v2 and v3, respectively). This is551

shown as three vertical regions in Fig. 1. We use552

the identified groups to instantiate three classes553

of new degree modifiers. For each of the groups,554

we mine degree-region-specific particles, using555

the procedure described in Section 4.3. The re-556

sulting sets of particles are:557

V1: alternatively, myself, similarly,558
accordingly, otherwise, however,559
alternately, likewise, conversely,560
er, although, thus, nevertheless,561
nonetheless, still, hence562

V2: yes, once, naturally, evidently,563
eventually, not, surely, nowadays,564
however, someday, fortunately, here,565
presumably, ideally, accordingly,566
hopefully567

V3: god, gods, goddess, dammit, christ,568
goddamn, jesus, fucking, holy, kate,569
damn, skyla, lord, princess, love,570
daddy571

For each of the three groups, we instantiate 33572

new modifiers. Then, for each sentence in the573

10K set, we generate a v1 sentence, a v2 and a v3.574

The sentences are of the same question-answer575

form as in Section 4, and in each of them we insert576

a randomly picked particle corresponding to the577

degree class of the modifier (n = number id):578

(14) Is the reason simple? [prt_v1],579
it is [mod_v1_n] simple.580
Is the reason simple? [prt_v2],581
it is [mod_v2_n] simple.582
Is the reason simple? [prt_v3],583
it is [mod_v3_n] simple.584

5.2 Fine-tuning BERT to new tokens 585

We split the dataset into training and validation 586

parts with 0.85:0.15 ratio. Then we randomly 587

mask 15% of tokens in the resulting dataset and 588

fine-tune BERT for the task of masked token pre- 589

diction. We use the same type of pretrained 590

BERT model as in the previous steps. We use 591

the Adam optimization algorithm with decou- 592

pled weight decay regularization (Kingma and Ba, 593

2014; Loshchilov and Hutter, 2017) and learning 594

rate of 5e-5. We use the batch size of 32 and fine- 595

tune the model for three epochs. For the training, 596

we freeze all weights except for the very first layer 597

of token embeddings.8 598

We compare our method against two baselines: 599

600• random baseline: 99 randomly initialized 601

tokens are trained in contexts with particles 602

randomly chosen from any of the three sets 603

(v1, v2 and v3); 604

• untrained baseline: 99 new tokens to be 605

randomly initialized before the training 606

phase, but not fine-tuned. 607

Upon training, the three groups of tokens form 608

three clusters, as shown in Fig. 2. Tokens that 609

belong to groups v1 and v3 cluster in the PPI 610

region, medium-degree tokens (v2) show NPI- 611

like behaviour. This is generally in line with ob- 612

servations described in Sections 2 and 4. The 613

two baselines (Figure 3), as expected, don’t show 614

pronounced degree profiles – but develop non- 615

random polarity behaviour. The random baseline 616

gravitates towards positive polarity, while the un- 617

trained baseline shows NPI behaviour. Means 618

and standard deviations for degree and polarity 619

before and after training are listed in Table 1. 620

6 Discussion and future work 621

6.1 Interpretation of the experimental results 622

We saw that the training organized the new to- 623

kens into three clusters. First, we observe that 624

the tokens develop low, medium or high degree 625

behaviour, as intended by dataset construction. 626

This means that our procedure conveyed degree 627

information to the model. Furthermore, polarity 628

scores upon training show that the three groups 629

generally follow the hypothesis from Section 2 630

8This decision is based on the intuition that learning new
words in an artificial language learning setting shouldn’t lead
to deep changes in prior linguistic knowledge of a native
language for a realistic learner.
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Figure 2: Target new tokens before (left) and after fine-tuning (right).

Figure 3: Baselines: contexts randomly mixed during training (left) and untrained tokens (right)

and analysis from Section 4.3: low and high de-631

grees lead to PPI behaviour, while medium de-632

grees are associated with negative polarity.633

What is somewhat surprising though is how634

strong the association with negative polarity is for635

medium degrees. Here, looking at our baselines636

might provide a hint towards an explanation. The637

random baseline develops PPI behaviour: this is638

not particularly surprising given that a random639

pool of degree contexts is bound to contain a ma-640

jority of PPI-associated low and high degree di-641

agnostic particles. So, the model has prevailing642

evidence to treat random baseline items as PPIs.643

Untrained baseline is more interesting in this re-644

spect: new tokens that did not appear in the train-645

ing dataset at all develop NPI behaviour. We do646

not know what leads to this, but, at the level of647

observation, a general shift in the direction of648

lower polarity scores for the whole lexicon might649

be some artefact of our training procedure. If this650

is true, the very low polarity scores that we see651

for some items should be interpreted as actually652

corresponding to somewhat higher scores. We653

leave exploration of this effect to future work.654

6.2 Limitations and future work655

Summing up Sections 5.2 and 6.1, our results are656

compatible with existing linguistic observations657

concerning the relation between degree and po-658

larity. However, the biggest question to our ap-659

proach is how much we can trust the obtained660

results in making conclusions about natural lan-661

guage. We could gain insight on this question 662

by reproducing the experiment with human sub- 663

jects. The experiment with artificial LMs could 664

serve as a preliminary step to polish the under- 665

lying hypothesis and the setup for the human 666

experiment. We leave to future work as well. 667

Another question is whether there is a reli- 668

able way to introduce property A without leak- 669

ing information about property B in the training 670

data. Admittedly, the simple procedure we follow 671

does not take specific precautions to convincingly 672

show this did not happen. We hope that the ver- 673

sion of the experiment that we present here will 674

serve as a starting point for future work develop- 675

ing methods to address this question or recycling 676

existing tools from other types of experiments. 677

7 Conclusions 678

We introduced a methodology to assess linguistic 679

hypotheses using statistical and computational 680

modeling methods (specifically, pretrained LMs). 681

We applied it to a problem in linguistic semantics: 682

relation between degree and polarity-sensitivity. 683

We found that the experimental results are in line 684

with the generalizations from the linguistic litera- 685

ture, indicating validity of our approach. We hope 686

that this set-up can be applied to other types of 687

models (trained on languages other than English, 688

or multilingual) and other linguistic generaliza- 689

tions. There is a plethora of linguistic general- 690

izations waiting to be explored (Greenberg, 1963; 691

Corbett, 2010). 692
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