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Abstract

Large Language Models have not yet been broadly adapted for the analysis of
scientific datasets due in part to the unique difficulties of tokenizing numbers. We
propose XVAL, a numerical encoding scheme that represents any real number
using just a single token. XVAL represents a real number by scaling a dedicated
embedding vector by the number value. Combined with a modified number-
inference approach, this strategy renders the model end-to-end continuous when
considered as a map from the numbers of the input string to those of the output
string. This leads to an inductive bias that is generally more suitable for applications
in scientific domains. We evaluate our proposal on a number of synthetic and real-
world datasets. Compared with existing number encoding schemes, we find that
XVAL is more token-efficient and demonstrates improved generalization.

1 Introduction

Even as Large Language Models (LLMs) exhibit sophisticated behavior in the generation and analysis
of textual data, the scientific community has seen little success in applying these models to datasets
consisting mostly of numerical values. LLMs have historically struggled to solve simple arithmetic
problems such as multi-digit multiplication [1] and have a tendency to “confabulate” answers [2, 3].
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Standard LLM tokenization schemes do not inherently capture the precise quantitative properties that
distinguish numerical data from other natural language inputs [4, 5].

Recent work has explored several potential improvements for encoding numerical information as
inputs to language models (see [6] for a review). For instance, numbers can be encoded digit-by-digit,
in scientific notation format, or in base-10 format. [7] maps numbers onto a finite set of “prototype
numerals”, while [8] enforces constraints such that the cosine distances between the embeddings
of numbers reflects their actual mathematical distance. Transformers that use such encodings have
been shown to successfully solve various mathematical problems, such as linear algebra problems
including matrix multiplication [9].

Despite these improvements, many challenges remain unresolved. Language models are known to
exploit shortcuts and spurious correlations in the data [10, 11, 1] and still struggle with interpolation
and out-of-distribution generalization in mathematical problems and in scientific domains [12, 13].
Functions appearing in such domains are often continuous or smooth, with certain exceptions such as
points of criticality. Similarly, transformer architectures applied to vision and audio domains [e.g.,
14, 15] typically treat numbers continuously without tokenization [see however 16, 17], but these
models typically require highly structured inputs, and cannot be applied to datasets with arbitrary
sequences of text and numbers. On the other hand, when encoding numbers as text, LLMs are
inherently discontinuous in both the encoding and decoding stages. While discrete models can (and
do) learn to approximate continuous functions [18], this can be more challenging and less sample
efficient compared to models that have continuity built-in by construction, as in many non-parametric
regression models [19]. In order to overcome this inherent challenge, it is necessary to impose the
appropriate inductive bias based on our knowledge of the continuous nature of numbers.

We introduce XVAL, an inherently continuous method of encoding numerical values in Large
Language Models. By encoding the magnitude of numerical values multiplicatively and orienting
them in a learnable direction within the embedding space, XVAL substantially changes how numbers
are processed and interpreted by transformer architectures. This leads to an encoding scheme with a
single vocabulary element that also encodes every number as a single token. XVAL is therefore both
token-efficient and has minimal vocabulary footprint.

Coupled with a modified number-inference paradigm, XVAL allows a transformer model to be
continuous (or smooth given smooth non-linearities) when considered as a map between the numbers
of the input string and those of the output. We expect that this leads to a better inductive bias when
the functions being approximated are continuous or smooth. We evaluate XVAL on a number of
synthetic and real-world scientific datasets and compare with existing number encoding schemes. We
demonstrate that XVAL is both more token-efficient and exhibits better interpolation properties.

Our contributions

• We introduce XVAL, a novel approach for encoding numerical values in Large Language
models. Compared to existing number encoding schemes, XVAL is both token-efficient and
has a minimal vocabulary footprint.

• We introduce a modified number inference scheme that, in conjunction with XVAL, renders
transformer models continuous as a function of the numerical values appearing in the text.

• We evaluate XVAL and a number of existing number encoding schemes on several synthetic
and real world datasets. We demonstrate that XVAL consistently provides better interpolation
properties and is more compute-efficient than prior work.

2 Methods

xVal: A Continuous Number Encoding. Instead of using different tokens for different digits or
composite numbers, XVAL embeds numerical values directly along a specific learnable direction of
the embedding space. A diagram of this procedure can be seen in Fig. 1. Specifically, given a string
input x comprising both numbers and text, we first parse x to extract all the numerical values and
collect them in a separate list xnum. We then construct a new string xtext by replacing all numbers in
x with a designated token [NUM] that acts as a placeholder for numerical values. We tokenize and
embed xtext, arriving at htext. We then multiply the embedding of each appearance of the [NUM] token
with its associated numerical value in xnum. This process can be done efficiently by defining a new
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Figure 1: (Left) XVAL is contrasted with the P1000 text-based numerical encoding scheme. (Right)
we illustrate how numbers are addressed within the decoder.

list hnum by scattering xnum to have the same length as the tokenized xtext and inserting a 1 for any
token other than [NUM]. The final embedding of the sample is hemb = hnum × htext, which is then fed
to the transformer trunk.

This encoding process can be performed both for masked language modeling (MLM) and auto-
regressive (AR) generation. During training, in cases where MLM is used, we simultaneously mask
both htext and hnum, i.e., if the token being masked is a [NUM] token, we replace the corresponding
number in hnum with 1.

Implicit normalization via layer-norm. In our implementation, the multiplicative embedding of
XVAL is followed by the addition of a positional encoding vector and then a layer-norm in the first
transformer block. The effect of the layer-norm is to normalize the embedding of each token on a
per-sample basis. When the added positional embeddings are not collinear to the embedding of the
[NUM] token, the scalar value is effectively passed through a non-linear rescaling function. Indeed,
denoting u ∈ Rd as the embedding of [NUM], p ∈ Rd as the positional embedding, and x ∈ R as the
scalar to be encoded, and assuming for simplicity u · p = 0 with ∥u∥ = ∥p∥ = 1, we have

u · xu+ p

∥xu+ p∥
=

x√
1 + x2

, (1)

such that the value x is still encoded in the same direction u. Figure 9 shows that such a property
approximately holds empirically up to a constant after training, and we found these curves to be
near-identical for any positional embedding.

This normalization property implies that the dynamic range of XVAL is more limited than those of
other text-based encoding schemes. In the experiments of this paper, we normalize numbers in the
text corpus such that they fall within the range [−5, 5] as a preprocessing step before training.

Numerical value inference. XVAL defines an embedding that is continuous in the numerical values
of the input. However, if we use a multi-class classification task as our output and training algorithm,
the model as a whole will not be end-to-end continuous when considering the map from the input
numbers to the output numbers. For this reason, we treat numbers separately at the output layer. This
process is illustrated in the right-hand portion of Fig. 1.

As is standard practice in transformer-based language models, we define a token head that outputs
a probability distribution of the tokens of the vocabulary. However, since our formalism replaces
numbers with the [NUM] token, this head does not carry any information about the number value. We
therefore introduce a new number head with a scalar output, trained via mean squared error (MSE)
loss, to recover the numerical value associated with each instance of the [NUM] token. For any input,
we first look at the output of the token head. If the generated token is the [NUM] token, we then look
at the number head to fill in the value for this token. As shown in Section 3, since the transformer is
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now end-to-end continuous when inferring numerical values, it performs better when interpolating to
previously unseen values.

3 Experiments

In this section, we evaluate the performance of XVAL and highlight its strengths and weaknesses
compared to existing numerical encoding algorithms. In particular, we look at three datasets: a
synthetic dataset of arithmetic operations, a dataset of global temperature data, and a dataset of
planetary orbit simulations.

For our transformer models, we use an architecture based on GPT-2 [20]. Details of our specific
architecture are included in Appendix A). We explore the effects of various architectural design
choices in Appendix B.5.

Table 1: Comparison of XVAL with four other number encodings. XVAL is more token-efficient
and has a minimal vocabulary footprint. Vocabulary size differs from [9] because we only consider
exponents from 1E-8 to 1E+8.

Encoding Tokens −6.02× 101 Tokens per number Vocabulary Size

P10 {±, d, E±d} [-, 6, 0, 2, E-1] 5 28
P1000 {±, ddd, E±d} [-, 602, E-1] 3 918
B1999 {±ddd, E±d} [-602, E-1] 2 1816
FP15 {±ddd E±d} [-602 E-1] 1 28800
XVAL {[NUM]} [NUM] 1 1

Comparison with other number encodings. We compare the performance of XVAL with four other
number encodings, following the notation of [9]. In these encodings, numbers are first processed
into the format ±ddd E±d. The encodings are then determined by which parts of this format are
encoded as single or multiple tokens. These range from encodings with limited vocabulary size but
high number of tokens per number, leading to longer encoded sequence lengths (e.g., P10), to those
with very large vocabulary footprints but only one token per number, leading to shorter encoded
sequence lengths (e.g., FP15). XVAL provides a minimal vocabulary footprint and uses just a single
token per number, leading to the shortest sequence lengths. A summary of these encodings and an
example can be seen in Table 1.

Number encodings that do not lead to a fixed number of tokens for all numbers (e.g., learned Byte
Pair Encoding [21] used in GPT-2 [20]) can lead to erratic behaviors where the transformer learns
spurious correlations that exist between the length of the encoded numbers in the dataset. An example
of this type of behavior is shown in Appendix B.4.

Learning Arithmetic. Simple arithmetic problems have acted as a test bed for probing the mathe-
matical reasoning abilities of language models [1]. In this section, we investigate the effect of the
number encoding scheme on the ability of language models to perform multi-digit multiplications as
well as multi-operand mathematical operations. Multi-digit multiplication is a notably challenging
task for even the largest LLMs [22]. [1] show that GPT-4 achieves only 59% zero-shot accuracy on
three-digit multiplication problems, while its accuracy for four- and five-digit multiplication drops to
4% and 0%, respectively.

We designed a dataset of multi-operand mathematical operations. We used random binary trees
combining a fixed number of operands (2, 3, or 4) using the binary operators of addition, subtraction,
and multiplication. build a dataset in which each sample is an arithmetic statement such as ((1.32 *
32.1) + (1.42-8.20)) = 35.592. We then processed the samples according to the processing
requirements of each number-encoding scheme. The task is evaluation of the expression on the
left-hand side of the equation, implemented as a mask completion, where the right-hand-side number
is masked. Table 2 shows the adjusted R2 scores results on this task. XVAL performs remarkably well
on this task.For further experiments on multiplication using these encoding schemes see Sec. B.1.

Arithmetic experiments alone are not sufficient for fully evaluating the mathematical abilities of
language models. The samples in these datasets are often short sequences and the underlying
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Table 2: Arithmetic evaluation task of random binary trees combining different numbers of operands
with addition, subtraction, and multiplication. R2 measured between true expression value and
transformer prediction.

Encoding 2 operands 3 operands 4 operands

P10 0.998 0.996 0.992
P1000 0.991 0.990 0.991
FP15 0.993 0.981 0.935
XVAL 0.99998 0.99994 0.99998

data manifold is low-dimensional. These problems therefore do not push the boundary of what is
computationally possible with LLMs.

Temperature forecasting. As an example of real-world scientific analysis, we look at the task of
temperature forecasting. In this experiment, we construct a dataset as a subset of the ERA5 global
climate dataset [23]. For simplicity, we only focus on the surface temperature data (T2m field in
ERA5). We split the dataset into individual samples, where each sample includes 2–4 days of surface
temperature data (normalized to have unit variance) as well as the latitude and longitude from 60–90
randomly selected reporting stations. We also include the time of the first included timestep. We
encode the coordinates by using the sine of the latitude and the sine and cosine of the longitude such
that we preserve the periodicity. Similarly, we encode the time of year and time of day using the sine
and cosine of the position along the 24 hour and 365 day cycles. We include all this information in a
JSON format as follows3:

{‘description’:{‘coords’:[[1,-.32,.95] ... [.96,.61,.79]],
‘start’:[0,1,-.026,-1]}, ‘data’:[[-2.6,-2.6 ... -3.2,-3.1,-3]]}

The coords, start, and data correspond to the reporting station coordinates, the time of the
first sample, and the normalized temperature data, each reported separately per station and then
concatenated in the data list. In this way, the model needs to parse both the textual aspects of the
sample (e.g., where the commas appear to separate different parts of the data) as well as the numerical
values. Furthermore, as is often the case with JSON-formatted data, the data does not have a causal
format. We therefore train the language models using an MLM approach instead of the more common
AR approach. We evaluate the performance of the different numerical encodings on the task of

Table 3: Performance (in MSE) and runtime of the different encodings on predicting the temperature
for the next time step. “Equal Samples” columns refer to all models being trained for 500k iterations.
Training was performed on 4 Nvidia H100 GPUs using Pytorch Distributed Data Parallelism.

Equal Samples Equal Tokens Equal Runtime

Method Loss Runtime Loss Runtime Loss Runtime

P10 73 2d 22h 73 2d 22h 73 2d 22h
P1000 20 2d 2h 23 3d 10h 21 2d 22h
B1999 20 20h 19 2d 23h 19 2d 22h
FP15 2.14 19h 1.76 3d 12h 1.85 2d 22h
XVAL 1.75 9h 1.62 1d 15h 1.51 2d 22h

predicting the next temperature timestep for all reporting stations simultaneously in a held out test set.
We do so by masking the tokens (and numbers, if applicable) of all the data associated with the final
timestep. Because the temperature data is provided separately per station, the masks are scattered
throughout the input data and are not all simply at the end of the sample.

Table 3 shows the results of this experiment. XVAL provides the best performance while taking
considerably less compute time.

3For demonstration purposes, we show a few digits per number, but for both scientific datasets, all numbers
are floating point numbers. For the text-based encodings, this text string is then processed according to the
procedure described above.
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Figure 2: Performance of the encoding schemes predicting the temperature of the next timestep.

Figure 3: A failure mode of text based encoding scheme (left). Because of the distribution of the
numbers in the training set (center and right), numbers that are close to ±1 (denoted by the black
arrows) get misclassified as 100E-3, i.e. 0.1, the combination of the most common digit and the most
common exponent in the dataset.

This task exemplifies one of the shortcomings of text-based encoding schemes: they can take
advantage of spurious correlations in the data. In this case, P10, P1000 and B1999 have a tendency
to predict normalized temperature ±0.1, which manifest as extended protrusions in Fig. 2. This is
due to the over-abundance of this number in the dataset compared to other numbers, as seen in Fig 3.
While individually, 100 and E-3 are the most common numbers and exponents in the dataset, when
combined, 100E-2 is much more frequent than 100E-3. This explains why FP15, which encodes
the digits and exponents as one token, does not get confused in this case. It also implies that the
model has failed to learn the correct joint distribution of the numbers. In these cases, because of
the tokenization scheme, the length of the tokenized samples are very long, averaging around 8000
and 5000 tokens respectively for P1000 and P10 (compared to 1800 tokens for FP15 and XVAL).
The poor performance in these models might therefore be due to the the challenges of modelling
long-range interactions [24].

For more details on the performance of the different encodings, as well as comparison with some
non-transformer baselines, see Appendix B.2. In Appendix B.4 we look at the performance of a BPE
tokenizer on this task and demonstrate how LLMs can exploit the tokenized length of the number.

Predicting planetary orbits. We then compare the performance of the various number encoding
schemes on a simulated dataset of planetary orbits. We construct a dataset consisting of planetary mo-
tion simulations generated by the REBOUND N-body codebase [25] and integrated using IAS15 [26].
The dataset consists of 1.25 million samples, split into 80%, 10%, 10% for training, validation, and
test. Each sample consists of simulation parameters (mass and orbit properties of each planet and
the simulation timestep size) as well as a sequence of (x, y) positions for each planet, organized in a
JSON format. The details of the simulation are provided in Appendix B.3. A typical sample in this
dataset is given by:

{‘description’:{‘planet0’:{‘m’:2.38, ‘a’:2.96, ‘e’:1.73},
‘planet1’:{‘m’:1.35, ‘a’:2.96, ‘e’:1.73}, ... , ‘stepsize’:0.2},
‘data’:[[[2.60,-0.75],[0.81, 0.42]],[[2.63,-0.63],[0.70,0.60]]...]}

We pretrain the models using MLM and evaluate the models on the task of inferring the simulation
parameters, specifically the simulation timestep ∆t, and the semi-major axis, eccentricity and mass
of the first planet (a1, e1,m1) by masking the appropriate locations. The quantities ∆t and a1 in
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the training corpus take values that are either discrete or are sampled from intervals with gaps. This
property makes these quantities a good testing ground for interpolation generalization.

Table 4: Performance of the different encodings on the planetary motion inference problem. Here,
OoD implies evaluation on samples where the quantity was not seen in the training corpus. The
percentages in brackets denote the fraction of the predictions that could not be parsed as numbers.
When not specified, this fraction was less than 0.01%. (†) The poor performance here is because of a
number of outliers that are being mis-classified.

Method a1 a1 (OoD) e1 ∆t ∆t (OoD) m1

P10 7.6× 10−4 0.0076 (1%) 0.20 0.0 0.0036 1.5
P1000 4.5× 10−6 0.048 0.0067 0.0 0.011 0.74
B1999 3.6× 10−6 0.11 0.0057 0.0 0.022 0.44
FP15 4.0× 10−6 0.050 3.6× 10−4 0.0065† 0.0075 (0.2%) 0.37
XVAL 6.4× 10−5 0.0010 0.0020 6.6× 10−5 0.0021 1.4

The results of this test are presented in Table 4. In the numerical encoding schemes other than
XVAL, we see an overall inverse relationship between performance in- and out-of-distribution. For
example, P10—the encoding with the fewest vocabulary elements—provides the worst in-distribution
performance but is best on out of distribution tasks. This is an example of the bias/variance trade-off
applied to the number of vocabulary elements.

Figure 4: Out of distribution generalization properties of the different number encoding schemes.
Left: Inferring ∆t, which takes discrete values in the training set. Right: Inferring a1 which is either
1 or > 1.16 in the training set. Because of the generation procedure, taking a1 → 1.16 here does not
result in an in-train-distribution sample.

In comparison, we see that XVAL provides the best out-of-distribution performance while staying
competitive in-distribution (with one exception). The out-of-distribution performance of these
encoding methods can be seen in Fig. 4. Here we see that the text-based encodings, with the exception
of P10, simply do not predict any number that they did not explicitly see for this parameter in the
training corpus. As expected from a function that is continuous by construction, XVAL continuously
interpolates between the values seen in the training set and offers much better performance.

Figure 4 shows that the predictions coming from the text-based encodings can be discontinuous when
evaluated out-of-distribution. This discontinuity has two potential sources: the discontinuous nature
of the number embeddings and the argmax that is taken over the logits during inference. Since the
encodings of the number tokens in text-based encodings have been shown to form continuous-looking
structures (see Sec. B.6 and [27, 18]), it is possible that the discontinuiuty is only a side effect of the
argmax and that the logits themselves vary more smoothly. Figure 5 shows an example of the logits of
the P1000 encoding when predicting the step-size out-of-distribution. Here, the color lines denote the
highest-value logits, with the other logits carrying negligible weight. The dashed gray lines denote
the values of the step-size seen in the training set. We see that these lines are smooth in neither small
or larger scales. We expect that this is a combination of the text-based number encodings’ discrete
embedding schemes together with the cross-entropy training paradigm that does not incorporate
number distances into the loss.
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Results summary. It is evident that embedding the magnitude
of numbers directly, as in XVAL, leads to a different inductive
bias than treating numbers as tokenized text. This can be clearly
seen in the varying performance of these language models
in different tasks. When predicting the next timestep in the
temperature dataset, XVAL provides by far the best results. On
the other hand, in the mass prediction task, it fails to learn the
correct relationship, along with vocabulary-sparse P10.

Where XVAL excels is in out-of-distribution performance, while
the text-based encoding schemes fail to interpolate properly.
The best interpolation for the text-based encodings is given
by the vocabulary-sparse P10, which performs poorly on the
in-distribution tasks. However, it often performs poorly when
evaluated on in-distribution tasks. The the extra encoding length of P10 also makes it prohibitively
expensive to deploy as can be seen in Table 3. On the other hand, FP15 provides the best in-distribution
performance but it has poor interpolation properties and expensive embedding cost. Overall, XVAL
provides the best mix of in-distribution and out-of-distribution performance. Moreover, it is the most
computationally efficient of the encoding schemes we considered.

Failure modes. There are a number of ways that number inference via a large language model can
fail. The language model can predict a non-numeric token in the place of the number, leading to an
invalid prediction. These are denoted in the percentages in brackets in Table 4, shown only when the
percentage exceeded 0.01%. This failure mode is uncommon and becomes less frequent the more
the model is trained. Another failure mode is when the model exploits spurious correlations. For
example, the model can learn the distribution of the digits, as discussed in the example of temperature
dataset, or the length of the encoding (see Appendix B.4).

Figure 6: Different failure modes of
XVAL and text-based encodings.

A model can also fail to learn the correct distribution. In
the planetary orbits example, learning the mass of the planet
is the most challenging task – all encodings struggle with
this. In this task, XVAL performs uncharacteristically poorly.
We suspect that this is due to the high uncertainty in esti-
mating the mass and that a multi-modal distribution such
as the categorical distribution learned by traditional LLMs
would perform better. This can be seen in Fig. 6, where
the predictions of P10 and XVAL are shown. While both of
these models perform poorly when considering the MSE of
the prediction, the multi-modal prediction of P10 would be
a better starting point for capturing an uncertain distribution.
We therefore suspect that generalizing the number-head such
that instead of predicting a scalar for each number, it fits a
mixture of Gaussians, would improve this performance. We leave explorations in this direction for
future investigation.

4 Discussion

In this work, we introduced XVAL, a continuous number encoding that makes transformer-based
models end-to-end continuous when considered as a function mapping the numerical values of the
input to those of the output. We demonstrated that even though XVAL is more token-efficient and
has a minimal vocabulary footprint, it excels in numerical tasks and leads to superior performance,
especially when evaluated on out-of-distribution samples. Because of the fundamentally different
treatment of numbers across these cases, XVAL and text-based encodings lead to different inductive
biases, making the choice of the best encoding method on a given dataset highly dependent on the
problem under consideration.
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A Architecture details

In our experiments, all the language models, regardless of encoding, adopt the main features of
GPT-2 [20]. That is, we use absolute position encoding and the transformer blocks have layer norms
prior to the attention module and the MLP (i.e., after each residual connection). We also set the width
of the MLP hidden layer equal to 4 times the width of the embedding. We deviate from GPT-2 in
that we initialize all the weights of the transformer blocks with a normal distribution with standard
deviation given by (2× fan-in × num-layers)−1/2. The dependence of the standard deviation on the
number of transformer blocks is to counteract the effect of having a series of residual connections.
We also do not use any biases in the trunk of the transformer. As is standard, after the transformer
blocks, we have a token-head, comprised of a single linear layer, which maps the latent embedding
of each token into a distribution over the vocabulary. As in GPT-2, we tie this weight to that of the
embedding matrix which maps the tokens of the input to the embedding space.

For the LLMs using XVAL encoding and an MSE number-head in addition to the token head, we
promote both heads (number and token) to be MLPs with one hidden layer of width equal to the
embedding dimension. This was to allow the two different prediction types (the number and the
distribution over the vocabulary) to be processed separately before the final prediction. In particular,
we explore the possibility of having biases for the number-head and not in the token-head in Sec. B.5.

For all of our training runs, we use a cosine learning-rate schedule with warm-up. The scheduler is
adjusted such that it reaches the minimum learning rate at the end of the training run.

B Further experimental details

B.1 Multiplication

Table 5 reports the R2 scores for multi-digit multiplication problems on several language models
designed to handle numerical values. All number encodings generally perform well on this task.
However, we find that some encoding schemes (P10 and FP15) show a tendency to yield a small
percentage of highly erroneous predictions in some contexts, thereby reducing the R2 score, while
XVAL does not produce such outliers.

Table 5: Adjusted R2 scores calculated between predictions and true values for the different encodings
on various arithmetic datasets. (Higher is better; R2 = 1 is the theoretical maximum.)

Encoding 3-digit Multiplication 4-digit Multiplication 5-digit Multiplication

P10 0.9989 0.6071 0.9439
P1000 0.9997 0.9783 0.9991
B1999 0.9998 0.9984 0.9997
FP15 0.7119 0.9959 0.9980
XVAL 0.9986 0.9975 0.9958

B.2 Temperature forecasting

B.2.1 Experiment details

Dataset details. The ERA5 dataset [23] is a high-resolution, state-of-the-art global atmospheric
reanalysis product provided by the European Centre for Medium-Range Weather Forecasts (ECMWF).
It is the fifth generation of ECMWF atmospheric reanalyses and represents the latest advancement in
the ERA (ECMWF Re-Analysis) project. The dataset covers the period from 1979 to near-real-time
and is updated regularly.

In our experiment, we take only the surface temperature of the dataset (field T2m) sampled at 8 hour
intervals. For each sample, we randomly choose 60–90 of the ∼1-million spatial grid points of the
dataset, and include 8–16 temperature time points at 8-hour intervals (corresponding to 2–4 days),
starting from a random time. We generate 1.25 million examples in this way and split it into 1 million
train, 125 thousand validation and test set samples.
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{‘description’:{‘coords’:[[1,-.32,.95] ... [.96,.61,.79]],
‘start’:[0,1,-.026,-1]}, ‘data’:[[-2.6,-2.6 ... -3.2,-3.1,-3]]}

The samples are individually preprocessed such that the temperature range across all samples has
mean zero and standard deviation equal to 1. We also include the lattitude longitude information. To
respect the periodicity of this information, we provide the sine of the lattitude and the sine and cosine
of the longitude. Furthermore, we specify the starting time for each sample as the day of year and
time of day. Again to respect the periodicity of these quantities, we provide the sine and cosine of the
phase of these quantities.

Architecture design hyperparameters. For all experiments done with this dataset, we use trans-
formers with 6 transformer blocks, each with 6 heads and each head having width 128, resulting in a
embedding width of 768 (43.5M parameters).

Training hyperparameters. For the equal samples training runs, we train each model for 500k
iterations with batch size equal to 64 samples. For the equal tokens runs, we increase the number
of iterations proportionately such that the total number of tokens seen is equal. This implies: 500k
samples for P10, 820k for P1000, 1.2M for B1999, and 2.3M for FP15 and XVAL. Since there
is non-numeric data in the samples, the ratio of the length of the equal tokens is slightly different
from the ratio of the length of each encoding scheme’s tokenization length for numbers. The other
hyperparameters in this task are given in Table 6.

Table 6: Training hyperparameters for the different encodings on the Temperature Forecast dataset.

Encoding Learning Rate Minimum LR Warmup Max Context Length

P10 3× 10−5 3× 10−6 2000 8222
B1999 10−4 10−5 2000 1251
P1000 10−4 10−5 2000 5010
FP15 10−4 10−5 2000 1798
XVAL 2× 10−4 2× 10−5 2000 1798

B.2.2 Non-transformer baselines

To understand this task better, we trained a number of non-transformer baselines for comparison.
These models are reported just for comparison and by no means represent the best possible non-
transformer based baslines.

First, we looked at the performance of an MLP model when trained in a supervised way to predict
the next time step (All stations). To deal with the varying number of locations and varying number of
time-steps, we simply keep the number of locations/time-steps that is the minimum across all samples
(60 locations and 8 time-steps.) We then looked at the possibility of temperature forecast based on a
single reporting station (Single Station). And then on this single-station dataset, we looked at the
performance on the temperature data alone (Single Station - temp all), temperature data + station
coordinate (Single Station - temp + coord), and temperature data + first time step time of year (Single
Station - temp + ToY).

The MLPs acting on single stations have 3 hidden layers of width 256. The MLP looking at 60
stations simultaneously is larger to validate that the poorer performance is not because of limited
network size. We tried width from 256–8192 and up to 5 layers and the results remain similar.

Table 7: Temperature forecast MLP baselines

Method MSE Loss (C)

All Stations 2.31
Single Station 1.57
Single Station - Temp only 1.79
Single Station - Temp + Coord 1.65
Single Station - Temp + ToY 1.74
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The results of these tests can be seen in Table 7. We see that for good performance, it is important for
the model to have access to both the time of year as well as the coordinate of the reporting station.
However, providing the information for multiple reporting stations at once makes the performance
worse.

This implies that for the transformer model to be able to predict the temperature with MSE less than
1.7, it needs to properly parse all this information that is scattered across the different parts of the
input string. XVAL was the only model to achieve MSE below that of the MLP model (Table 3)
meaning that it has likely learned to leverage the temperature of other reporting stations as well.

B.3 Planetary motion

Dataset details. In this dataset we use the REBOUND N-body simulation codebase [25] and IAS15
integrator [26] to generate a number of planetary systems (with a central mass m⊙ ≡ 1) and follow
their orbits for a number of time points. Each planetary property is drawn from a uniform prior: the
number of planets n ∈ [2, 4], mass m/m⊙ ∈ [10−5, 5 · 10−5], semimajor axis equally spaced for
the planets between 1 and af ∈ [1.5, 3] (i.e. if 3 planets and af = 1.8 then a1 = 1, a2 = 1.4 and
a3 = 1.8), eccentricity e ∈ [0, 0.1], and starting angle in the (x, y) plane equal to zero for 30% of the
samples and uniform θ ∈ [−π/6, π/6] for the remainder. These choices are made such that when
generating the large number of samples required for training, we do not come across instabilities or
collisions. Finally, we use an integration step-size sampled uniformly from {0.2, 0.3, 0.5, 0.8}.

We generate 1.25 million examples in this way and split it into 1 million train, 125 thousand validation
and test set samples. We normalize the masses such that they take value between 1 and 5 and the
eccentricities such that they are between 0 and 2. We then construct a JSON format sample including
all of this information. A generic sample is given in this example.

{‘description’:{‘planet0’:{‘m’:2.38, ‘a’:2.96, ‘e’:1.73},
‘planet1’:{‘m’:1.35, ‘a’:2.96, ‘e’:1.73}, ... , ‘stepsize’:0.2},
‘data’:[[[2.60,-0.75],[0.81, 0.42]],[[2.63,-0.63],[0.70,0.60]]...]}

Architecture design hyperparameters. Similar to the Temperature Forecasting dataset, for all
experiments, we use transformers with 6 transformer blocks, each with 6 heads and each head having
width 128, resulting in a embedding width of 768 (43.5M parameters).

Training hyperparameters. We train each model for 500k iterations with batch size equal to 64
samples. The hyperparameters in this task are given in Table 8.

Table 8: Training hyperparameters for the different encodings on the Temperature Forecast dataset.

Encoding Learning Rate Minimum LR Warmup Max Context Length

P10 10−4 10−5 2000 2707
B1999 10−4 10−5 2000 1251
P1000 10−4 10−5 2000 1736
FP15 10−4 10−5 2000 767
XVAL 2× 10−5 2× 10−6 2000 767

B.4 Erratic behavior of number encodings of unfixed length

In many JSON formatted datasets, the data does not follow a causal pattern, i.e. earlier entries might
depend logically on latter entries. This is also the case for our JSON formatted samples. Because
of this we used Masked Language Modeling (MLM) for pretraining our models. In the context of
MLM, number encodings that lead to encoding lengths that vary based on the number can prove
troublesome both during training and during testing. During train time, the length of the encoding
acts as a cue to help the model figure what the number is. This is an example of spurious correlations
that LLMs are known to exploit [10, 11, 1]. Similarly at test time, the length of the mask can bias the
model toward predicting one number or another.
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As a demonstration of this feature, we first preprocessed the Temperature Forecast dataset such that
every number has only two significant figures and drop leading zeros for efficiency (e.g. 0.12 → .12).4
We then used a tokenizer that included single and double digits as well as ±, the decimal point and
exponents ranging from (E-8 to E+2). In this dataset, Positive and negative floats with magnitude
between 0.1 and 1 (e.g. .23 and -.34) would have encoding lengths equal to 2 and 3 and Positive
and negative floats with magnitude between 0.01 and 0.1 (e.g. -.034 = 3.4E-2) would have encoding
lengths 4 and 5. There are exceptions however. For example in this scheme 0.030=3E-2 has encoding
length 2.

The results of this experiment can be seen in Fig. 7. We see that even though the model’s overall
performance is not great, it can tell with very high accuracy the numbers sign, whether or not it has
absolute value greater/less than 1, or greater/less than 0.1. This is due to the fact that the model
is exploiting the correlation of the numbers with the length of the encoding. We verify this by
highlighting in orange the cases where in the range between 0.01 and 0.1, the number has encoding
length 2, that is it does not follow the general trend mentioned above. We see that the model believes
that these numbers are greater than 0.1 (which as we saw generally had encoding length 2).

Figure 7: LLMs can exploit spurious correlations in the data. In this case, the model has learned the
correlation between the number signs/values with the length of the encoding. Highlighted in orange
are numbers between 0 and 0.1 that do not have the encoding length equal to 2..

B.5 Architectural explorations

There are a number of engineering choices that we made regarding the architecture and hyperpa-
rameters of the transformer models trained with XVAL and the number head. Here, we explore the
effect of these on the Temperature Forecast task. Because of the large exploration space and the high
amount of compute required, we do the ablation tests on a shorter run, 100k iterations compared to
500k iterations of the main text. For this exploration, we first run all of the configurations with 4
different learning rates (2.5E-5, 5E-5, 1E-4, 2E-4). We then choose the best performing learning rate
for each configuration and then run each configuration two more times with this learning rate. The
result of this exploration is given in Table 9.

We summarize the various configurations that we run this experiments in and their effects as follows:

• Ratio of the final learning rate of the cosine scheduler to the initial learning rate
(min-LR/LR). We found decreasing this ratio from 0.1 to 0.01 does not affect performance
in this experiment. But we found that it does increase stability in longer runs.

• Turning off the layer norm prior to the MLP of the first transformer block (First Layer Norm
= False). This change does not affect average performance. This is not surprising since the
effect of the layer norm at this stage is simply to normalize the numbers and the numbers in
this dataset are in the regime where the normalization discussed in Sec. 2 is linear.

4In the experiments of the Sec. 3, the numbers have three significant figures. Therefore the results of this
section are not directly comparable to those of the main text.
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Table 9: Ablation tests for the various design choices. Here Normal refers to min-LR/lr=0.1, Weight
decay = 0.1 and MLM probability = 0.2, and the opposite dichotomy for the other choices.

Configuration Best Validation Loss Learning Rate

Normal (6.8± 0.2)× 10−3 0.0002
min-LR/LR = 0.01 (7.0± 0.1)× 10−3 0.0002
First Layer Norm = False (6.8± 0.5)× 10−3 0.0002
MLP Layer Norm = False (9.0± 0.1)× 10−3 0.0001
MLM probability = 0.1 (8.2± 0.6)× 10−3 0.0002
MLM probability = 0.3 (6.4± 0.4)× 10−3 0.0002
Weight decay = 0.0001 (8.2± 0.6)× 10−3 0.0002
Weight decay = 1 (5.3± 0.3)× 10−3 0.0002
Trunk bias = True (6.2± 0.4)× 10−3 0.0002
Num-head bias = False (6.9± 0.1)× 10−3 0.0002
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Figure 8: Two-dimensional PCA projection of the learned embeddings for mantissa tokens. (left) P10
encoding trained on the planet dataset; (center) P1000 encoding trained on the planet dataset;
(right) P1000 encoding trained on the arithmetic dataset. Brighter colors denote higher number
values.

• Turning off the layer norm prior to the MLPs of all transformer blocks
(MLP Layer Norm = False) This change had a significant negative impact on the performance
of the model.

• Changing the masking probability to 10% or 30% (default is 20%). Decreasing (resp.
increasing) this probability lead to performance deterioration (resp. improvement) in this
experiment. However, this seems to be dependent on the dataset as in other instances 30%
seems to be too high for effective learning.

• Changing the weight decay to 0.0001 or 1 (default is 0.1). Increasing this value lead to the
largest improvement. However, similar to the masking probability, this seems to be dataset
dependent. The effect of increased weight decay can also depend on the length of the run.

• Including a bias in the modules of the transformer block (they are absent by default).
Including this bias improved performance at the cost of increased variability.

• Turning off the bias in the number head (present by default). This change did not affect the
performance significantly.

B.6 Learned embeddings for text-based number encodings

Figure 8 shows the structure of number embeddings learned on different datasets for different
encodings. For P10 the models learn rotary structure which is reminiscent of other works such as
grokking [27], and allows recovering relative numbers from inner products. It is also interesting to
see how different datasets can lead to different learned encoding structures, for instance the arithmetic
tasks seem to induce a more precise curve structure, while the planet data leads to more spread out
embeddings, perhaps because the task is less sensitive to small perturbations of the numbers.

B.7 Normalization via Layer-Norm

We verified empirically that Eq. equation 1 approximately holds. Figure 9 show such a curve.
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Figure 9: Value of the embedding of the number x after layer-norm, projected onto the direction of
the [NUM] embedding vector.
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