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ABSTRACT

Out-Of-Distribution (OOD) generalization has gained increasing attentions for
machine learning on graphs, as graph neural networks (GNNs) often exhibit perfor-
mance degradation under distribution shifts. Existing graph OOD methods tend to
follow the basic ideas of invariant risk minimization and structural causal models,
interpreting the invariant knowledge across datasets under various distribution
shifts as graph topology or graph spectrum. However, these interpretations may be
inconsistent with real-world scenarios, as neither invariant topology nor spectrum is
assured. In this paper, we advocate the learnable random walk (LRW) perspective
as the instantiation of invariant knowledge, and propose LRW-OOD to realize graph
OOD generalization learning. Instead of employing fixed probability transition
matrix (i.e., degree-normalized adjacency matrix), we parameterize the transition
matrix with an LRW-sampler and a path encoder. Furthermore, we propose the
kernel density estimation (KDE)-based mutual information (MI) loss to generate
random walk sequences that adhere to OOD principles. Extensive experiment
demonstrates that our model can effectively enhance graph OOD generalization un-
der various types of distribution shifts and yield a significant accuracy improvement
of 3.87% over state-of-the-art graph OOD generalization baselines.

1 INTRODUCTION

Graph neural networks (GNNs) have become a fundamental solution of encoder architectures for
modeling graph-structured data (Wu et al. (2020); Zhou et al. (2022); Bessadok et al. (2022);
Song et al. (2022)). They facilitate the efficient computation of node representations, which can
be readily adapted to a wide range of graph-based applications, including social network analysis,
recommendation systems, anomaly detection and so on (Zhao et al. (2021); Virinchi et al. (2022); Tang
et al. (2022); Chen et al. (2022a)). Despite great advances of GNNs, most of existing models follow
the i.i.d. assumption, i.e., the testing nodes independently generated from an identical distribution as
the training ones (Kipf and Welling (2017); Veličković et al. (2018); Hamilton et al. (2017); Pei et al.
(2020); Sun et al. (2023); Li et al. (2024)). However, this assumption doesn’t necessarily conform to
real-world scenarios since spurious correlations among datasets may infect GNNs’ training. Recent
evidence has demonstrated that GNNs perform unsatisfactorily on Out-Of-Distribution (OOD) data
where the distributions of test data exhibit a major shift compared to the training data (Arjovsky et al.
(2019); Koyama and Yamaguchi (2020); Chen et al. (2022b)). Thus, such problem, also known as
graph OOD generalization, remains a great challenge to be solved.

Existing graph OOD generalization models for node-level tasks are largely inspired by the concepts
from the invariant risk minimization (IRM) and structural causal models (SCMs) (Arjovsky et al.
(2019); Koyama and Yamaguchi (2020); Chen et al. (2022b)). These models employ various mecha-
nisms to extract invariant knowledge shared between the training and testing datasets and discard the
spurious correlation among them. Broadly, graph OOD generalization models can be categorized into
two primary approaches: capturing invariant graph topology and capturing invariant graph spectrum,
as shown in Figure 1(b) (Wu et al. (2022); Guo et al. (2024); Xia et al. (2023); Zhu et al. (2021); Liu
et al. (2022); Wu et al. (2024); Zhu et al. (2024)). The first approach interprets invariant knowledge as
specific graph topology and leverages techniques such as pseudo-environment-generation to facilitate
graph OOD generalization learning. In contrast, models that focus on invariant graph spectrum
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Figure 1: An example of the heterophilic citation network under temporal distribution shift and pipelines of
existing graph OOD models. Topology-based and spectrum-based pipelines are the two primary approaches for
graph OOD generalization, while the random-walk-based pipeline is the proposed one in this paper.

learning emphasize the acquisition of a stable spectral representation across graphs under multiple
environments. These models typically assume that certain spectral components, particularly the low-
frequency spectrum, remain invariant. Thus, they introduce perturbations to the remaining spectral
components, thereby generating diverse graph data for graph OOD generalization learning. Despite
the advancements in the aforementioned methods, they still fail to achieve satisfactory performance
in graph OOD generalization learning. Take the heterophilic citation networks of Figure 1(a) as
an example, where nodes represent papers and edges denote citation relationships. The objective
in such networks is to predict the category of a given paper (e.g., mathematics, physics, AI and
biology), and the latent distribution shifts arise due to temporal variations in citation patterns. For
instance, in the 1990s, mathematics-related papers were predominantly cited by works in physics
and biology, whereas in the 2020s, mathematics-related papers within a similar local topology may
exhibit a stronger tendency to be cited by AI-related research. In this scenario, previous graph
OOD generalization models exhibit severe limitations as follow: (L1): The presence of an invariant
graph topology across graphs is not assured, as structurally similar topologies may correspond to
distinct semantic interpretations under varying distribution shifts. For instance, in the citation network
depicted in Figure 1(a), the semantic significance of the local topology formed by nodes around
physic papers differs from that of nodes around AI papers, despite the fact that both subgraphs exhibit
analogous topological structures. (L2): The extraction of a universally invariant graph spectrum
remains unreliable due to the lack of a well-defined theoretical relationship between the graph spec-
trum and the formulation of OOD generalization in graphs. For example, in the citation network
depicted in Figure 1(a), the graph from the 1990s exhibits stronger homophily, resulting in higher
magnitudes in the low-frequency spectrum components and lower magnitudes in the high-frequency
components. In contrast, the graph from the 2020s demonstrates increased heterophily, leading to
a complete reversal in the distributions across frequency bands. Consequently, no invariant graph
spectrum persists in such graphs under temporal distribution shifts.

To address the aforementioned limitations, we utilize learnable random walk sequences as a means of
capturing invariant knowledge across graphs under various distribution shifts for node-level tasks. The
underlying motivations are derived from two perspectives: (M1) Different from the two approaches
illustrated above, learnable random walk sequences are capable of integrating graph topology and
node features together into the probability matrix, thus concretizing invariant knowledge into the
probability of the next random walk. Intuitively, such learnable-probability-based invariant random
walk exists as long as there are invariant knowledge shared across graphs under distribution shifts.
(M2) Through rigorous mathematical analysis, we demonstrate that learnable random walk sequences
exhibit a well-defined theoretical connection to the formulation of graph OOD generalization outlined
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in Section 3. This approach effectively captures invariant knowledge while mitigating spurious
correlations, thereby facilitating robust graph OOD generalization learning. Based on the illustration
above, we propose the Learnable Random Walk for graph OOD generalization model (LRW-OOD).
The detailed contributions of this paper are summarized below:

Our contributions. (1) New Perspective. To the best of our knowledge, this study is the first
to systematically examine the impact of learnable random walk sequences on the graph OOD
generalization problems. Our findings offer valuable insights into graph OOD learning, contributing
to a deeper understanding of how random walk sequences can enhance model’s performance on
datasets under diverse distribution shifts. (2) New Graph OOD Learning Paradigm. We propose
LRW-OOD, which employs an OOD-aware LRW encoder to adaptively sample sequences that adhere
to specific graph OOD principles. This approach enables the model to extract random walk paths that
encapsulate sufficient invariant knowledge while effectively eliminating spurious correlations. This
novel paradigm offers significant insights into the advancement of graph OOD learning, paving the
way for future research in this domain. (3) SOTA Performance. We conduct a series of performance
evaluations on seven benchmark datasets, comparing our proposed model, LRW-OOD, against nine
state-of-the-art graph OOD generalization models. The experimental results demonstrate that the
proposed LRW-OOD outperforms the most competitive baselines when utilizing both GCN and GAT
as the GNN backbone, achieving an average improvement of 3.87% on graph OOD generalization.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

The Semi-supervised Node Classification Tasks on Graphs. We consider a general graph rep-
resentation method, denoted as G = (V, E), where |V| = n represents the number of nodes and
|E| = m denotes the number of edges. The adjacency matrix (including self-loops) for the graph is
A ∈ Rn×n, where each entry A(u, v) = 1 if (u, v) ∈ E and A(u, v) = 0 otherwise. Additionally,
the node feature matrix is represented as X = {x1, . . . , xn}, where each xv ∈ Rf corresponds to the
feature vector associated with node v. The node label is denoted as y. In the semi-supervised node
classification paradigm, the graph is partitioned into a labeled node set VL and an unlabeled set VU .
The classification process leverages the graph topology and the node features, wherein the model is
trained using VL and subsequently applied to infer the labels of nodes in VU .

The OOD Generalizations on Graphs. In this paper, we primarily investigate the problem of graph
OOD generalization at the node level, where multiple distribution shifts—such as topology shifts
and node feature shifts—occur between the training and testing sets. Formally, this is characterized
by a discrepancy in the joint distribution, i.e., Prtr(G, y) ̸= Prte(G, y), where the objective is
to accurately predict node labels despite these distribution shifts. The key factors driving such
distribution shifts are referred to as confounders or environments, which can be understood through
the lenses of data generation distributions and causal inference learning. Since the training and testing
sets are derived from distinct environments, spurious confounders may be embedded within the
correlations between the graph G and the label y. However, despite the presence of these confounding
factors, certain invariant or stable properties persist across different environments. The goal of graph
OOD generalization models is to learn representations that capture these invariant factors while
eliminating the influence of spurious confounders, thereby enhancing model performance under
diverse distribution shifts.

2.2 RELATED WORKS

Graph Neural Networks. GNNs have garnered significant attention due to their efficacy in learning
high-quality representations from graph-structured data (Kipf and Welling (2017); Veličković et al.
(2018); Zhang et al. (2019; 2022); Klicpera et al. (2019); Xu et al. (2019)). While extensive research
has been conducted on the expressiveness and representational power of GNNs, their generalization
capability remains an open question, particularly in scenarios where the test data is drawn from
distributions different from those of the training data (Arjovsky et al. (2019); Koyama and Yamaguchi
(2020); Chen et al. (2022b)). Following the ideas of invariant risk minimization and structural causal
models which reveal that the fundamental challenge of OOD generalization in graph data stems
from latent confounder, this paper propose a theoretically grounded model designed to effectively

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

extract the invariant knowledge and discard the spurious correlations across datasets under various
distribution.

OOD Generalization Learning on Graphs. The problem of learning under distribution shifts
in graph-structured data has increasingly attracted attention within the graph learning research
community. SRGNN (Zhu et al. (2021)) attempts to address performance degradation by incorporating
a regularization term and reducing the disparity between embeddings derived from the training
and testing sets. DGNN (Guo et al. (2024)) conducts extensive empirical studies and leverages
self-attention mechanisms along with a decoupled architecture to facilitate OOD generalization in
graph learning. However, these approaches fail to account for the essential factors contributing
to the performance deterioration of GNNs under diverse distribution shifts. Consequently, their
improvements remain limited compared to traditional GNNs. Recent advancements in addressing
graph OOD generalization learning have predominantly centered on the core principles of IRM and
SCMs, and can be broadly classified into two primary approaches: invariant topolog extraction and
invariant spectrum extraction. Specifically, methods such as EERM (Wu et al. (2022)), CIT (Xia et al.
(2023)), MARIO (Zhu et al. (2024)), CaNet (Wu et al. (2024)) and GRM (Wang et al. (2025)) adopt
the first approach by leveraging various mechanisms, including pseudo-environment-generatio, node
clustering and contrastive learning, to facilitate the extraction of invariant local topological structures
of nodes. Alternatively, SpCo (Liu et al. (2022)) follows the second approach by distinguishing
between low-frequency and high-frequency components of the graph spectrum, treating the former
as invariant knowledge and the latter as spurious information. This distinction enables the model to
enhance OOD generalization through graph contrastive learning. However, as discussed in Section 1,
the existence of a universally invariant topology or spectrum is not guaranteed across all graphs in
OOD generalization problems. These limitations hinder the performance and generalization capability
of existing models, particularly in real-world applications.

3 METHODS

3.1 MOTIVATION

As discussed in Section 1, existing graph OOD generalization models exhibit the following limitations:
(1) the assumption of an invariant graph topology is not necessarily valid across graphs under different
distributions; and (2) the extraction of a universally invariant graph spectrum remains unreliable.
These limitations give rise to the following question: what constitutes an appropriate instantiation of
invariant knowledge across graphs under multiple distribution shifts?

While existing approaches predominantly rely on either topology or spectrum as the carrier of
invariant knowledge, we argue that learnable random walk sequences, sampled according to specific
probabilistic rules, provide a more suitable representation of invariant knowledge in graph OOD
scenarios. The motivations behind this claim is outlined as follows:

Motivation 1: In contrast to existing approaches where neither topology nor spectrum necessarily re-
mains invariant under various distribution shifts, we posit that invariant knowledge can be instantiated
in the form of learnable random walk sequences. This perspective is grounded in the observation that
invariant knowledge can be encoded within the probability of transitioning to the next node that shares
similar semantic information and possesses invariant features. As long as graphs exhibit common
invariant patterns across distribution shifts, this property ensures that random walk sequences can
effectively capture and preserve the underlying invariant knowledge.

Motivation 2: Furthermore, random walk sequences maintain a well-defined theoretical relationship
with the formulation of graph OOD generalization. Specifically, the probability transition matrix
governing these sequences can be learned in accordance with the principles underlying graph OOD
generalization, ensuring the adaptability and robustness across various distribution shifts of graphs.

Building upon the prior works (Wu et al. (2022); Xia et al. (2023); Liu et al. (2022); Wu et al.
(2024); Zhu et al. (2024)), the problem of OOD generalization in graphs can be reformulated as an
optimization task. Specifically, it involves minimizing the loss of the worst-case performance of
the model across multiple graphs within all possible environments. These environments comprise
both invariant knowledge shared among them and spurious correlations unique to each specific
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environment. This problem can be expressed as follows:

min
f

max
Ge∼G

L(f(Ge), y), (1)

where G is the set of graphs under all environments, Ge is the graph under the environment e, L is the
loss function, f is the graph OOD model and y is the label. However, this optimization formulation
cannot be directly applied to graph OOD generalization due to the inaccessibility of environmental
factors e. To address this challenge, Wu et al. (2022) introduces two conditions that are theoretically
equivalent to the aforementioned graph OOD generalization formulation while also being directly
applicable to graph OOD learning. These conditions are formally stated as follows: (1) sufficient
condition: y = f∗(Ge) + σ ↔ maxf I(y, f), where f∗ denotes the model f with the optimal
parameters, while σ represents the random variable entirely independent of the predicted label y. (2)
invariance condition: Pr(y|e) = Pr(y) ↔ minf I(y, e|f).
It is important to note that random walk sequences can inherently incorporate the two graph OOD
generalization conditions by parameterizing the probability transition matrix in accordance with
these principles. Specifically, rather than adopting the conventional approach of fixing the probability
transition matrix as the degree-normalized adjacency matrix (Xie et al. (2023); Su et al. (2024)), it can
instead be parameterized as a learnable matrix. This matrix is initialized using the cosine similarity
matrix, which captures the semantic similarity between the soft embeddings of node pairs within
graphs, thereby integrating node semantic information into the random walk sequences. However,
the semantic similarity matrix alone cannot reliably capture the invariant knowledge across graphs
under multiple distribution shifts, as it is susceptible to spurious correlations arising in different
environments. To address this limitation, the learnable probability transition matrix must be guided
by a distribution-invariant loss that adheres to the two graph OOD generalization conditions outlined
above. The details of this approach will be elaborated in the following section.

3.2 MODEL FRAMEWORK

The overall framework of the proposed LRW-OOD method is illustrated in Figure 2 and pseudo
code Algorithm 1. Our approach adopts a two-stage training paradigm for OOD generalization
in graph learning: (1) the initial stage focuses on training an OOD-aware Learnable Random
Walk (LRW) encoder, and (2) the subsequent stage involves training a GNN-based classifier. The
LRW encoder is designed to produce high-quality node embeddings that capture invariant features
across diverse distribution shifts. These embeddings are then utilized by the GNN classifier—built
upon standard GNN backbones such as GCN (Kipf and Welling (2017)) or GAT (Veličković et al.
(2018))—through a weight-free embedding aggregator (i.e., mean-pooling or concatenation) to
support various downstream tasks. Given that the primary objective of this paper is to enable graph
OOD generalization learning via learnable random walk sequences, the subsequent of the section will
primarily focus on the detailed formulation and design of the proposed OOD-aware LRW encoder.

OOD-aware Learnable Random Walk Encoder. To enable the extraction of invariant knowledge
from graphs under various distribution shifts, we introduce the OOD-aware Learnable Random
Walk (LRW) encoder, depicted in the top-left corner of Figure 2. Departing from conventional
random walk strategies—which typically utilize a fixed degree-normalized adjacency matrix as
the transition probability matrix (Xie et al. (2023); Su et al. (2024))—we propose a more adaptive
approach. Specifically, the LRW sampler employs a GNN (i.e. a two-layer MLP for simplicity in the
experiments) to generate soft node embeddings from the original node features. These embeddings
are then used to construct a similarity-based transition matrix, which guides the sampling of k random
walk paths. This mechanism enables the integration of both topological and semantic information
inherent in the graph data. Formally, for a given node vi, and given the graph topology A and node
features X, the LRW sampler generates k random walk paths {pri }

k
r=1 as follows:

{pri }kr=1 = RW(vi, k), s.t. Pr
vj∈N (vi)

(vi → vj) = cos(zi, zj), z = GNN(A,X), (2)

where N (vi) denotes the set of neighboring nodes of vi, and RW(vi, k) represents the random walk
sampler that generates k random walk paths initiated from node vi. After obtaining k random walk
paths started at node vi, we then apply a path encoder (i.e., MLP) to transform the embeddings of
nodes along the r-th random walk path into the LRW embeddings hr

i :

hr
i = MLP(Concat({zj}vj∈pr

i
)), s.t. 1 ≤ r ≤ k. (3)
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Figure 2: The framework of the proposed LRW-OOD.

The resulting LRW embeddings {hr
i }

k
r=1, together with the corresponding label yi of node vi, are

subsequently input into a KDE-based MI loss module. This component serves as a key component
within the LRW encoder, facilitating the model’s ability to capture invariant knowledge and discard
spurious correlations under OOD scenarios.

KDE-based MI Loss Calculator. As discussed in Section 3.1, the graph OOD generalization
can be formulated as an optimization task aimed at minimizing the loss under the worst-case
distribution shift. Also, this objective is theoretically equivalent to the two OOD conditions: (1)
sufficiency condition, expressed as y = f∗(Ge) + σ ↔ maxf I(y, f), and (2) invariance condition,
given by Pr(y|e) = Pr(y) ↔ minf I(y, e|f). To encourage the LRW encoder to generate node
embeddings that capture invariant features while discarding spurious correlations, we introduce
two complementary objectives: the MI sufficiency maximization loss and the risk extrapolation
minimization loss, which correspond to the sufficiency and invariance conditions, respectively.

To achieve the sufficiency condition, a natural approach would be to directly maximize the mutual
information (Steuer et al. (2002); Kraskov et al. (2004)) between the LRW embeddings {hr

i }
k
r=1

and the corresponding label yi. However, this approach is unfeasible due to the agnosticism of
the latent label distribution Pr(y) in the context of graph OOD generalization (Wu et al. (2024);
Zhu et al. (2024)). As a result, traditional graph OOD models often resort to distance-based loss
functions, such as KL divergence, to approximately satisfy the sufficiency condition (Wu et al.
(2022); Wang et al. (2025)). Nevertheless, these methods are prone to inaccuracies due to the
approximations they involve. In contrast, our proposed MI sufficiency maximization approach
leverages an estimation-based mechanism to approximate the distributions of the LRW embeddings
{Pr(hr

i )}
k
r=1 and the label distribution Pr(y), allowing the model to directly compute and maximize

the mutual information between these variables. Rather than relying on histogram-based estimation
methods—which are non-differentiable due to the discrete partitioning of the hypercubes—we utilize
kernel density estimation (KDE) with a Gaussian kernel (Moon et al. (1995); Steuer et al. (2002);
Kraskov et al. (2004)). This choice is motivated by the differentiability of KDE and its computational
efficiency, which allows for gradient-based optimization. The formal expression of this approach is
provided below:

LMI Suff (h
r
i ,yi) = −P̂r(hr

i ,yi) log2
P̂r(hr

i ,yi)

P̂r(hr
i )P̂r(yi))

, s.t. P̂r(s) =
e−u2/2

(2π)d/2mddet(S1/2)
,

(4)
where d represents the dimension of the random variable s, m denotes the kernel bandwidth, S
is the covariance matrix associated with the random variable s, and u signifies the variance of s.
Meanwhile, following the prior works (Wu et al. (2022); Wang et al. (2025)), we introduce the risk
extrapolation minimization loss by minimizing the variance among the MI sufficiency maximization
losses {LMI Suff(h

r
i ,yi)}kr=1. Based on the illustration above, we propose the overall KDE-based
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MI loss formulated as below:

L =

n∑
i=1

(
V({LMI Suff(hr

i , yi)}
k
r=1) +

1

k

k∑
r=1

LMI Suff(hr
i , yi)

)
. (5)

3.3 THEORETICAL DISCUSSION

In this section, we will illustrate the theoretical guarantee that the proposed KDE-based MI loss
formulated as Eq. (5) is capable of guiding a valid random walk sampling for graph OOD general-
ization formulated as Eq. (1). Moreover, we will also give a theoretical upper bound of LRW-OOD,
showcasing the computation-friendly property of the proposed model. The detailed proofs for the
following theorems are illustrated in the Appendix B.
Theorem 3.1. Let f(Ge) denotes the learnable random walk encoder. If it is optimized by minimizing
the KDE-based MI loss defined in Eq. (5), then the resulting encoder satisfies both the sufficiency
condition: y = f∗(Ge) + σ and the invariance condition: Pr(y|e) = Pr(y).

Building upon Theorem 3.1, we establish the theoretical guarantee that connects the OOD conditions
to the formulation of graph OOD generalization through the following theorem:
Theorem 3.2. Let f∗(Ge) denotes the optimized learnable random walk encoder satisfying both the
sufficiency and invariance conditions. Then, the encoder f∗(Ge) is the solution to the graph OOD
generalization formulated as Eq. (1).

Building upon Theorem 3.1 and Theorem 3.2, we further discuss the theoretical upper bound of the
OOD error of the proposed KDE-based MI loss through the following theorem:
Theorem 3.3. Let n, k be the number of the nodes and the sampled random walk paths, hr

i be the r-th
LRW embedding of node vi and d be the dimension of the LRW embedding hr

i . Then, the proposed
KDE-based MI loss is convergent.

The preceding theorems establish that the learnable random walk encoder, optimized by the KDE-
based MI loss, is theoretically capable of generating random walk sequences that preserve invariant
information while effectively eliminating spurious correlations across datasets exhibiting distribu-
tional shifts. Furthermore, with the OOD-awareness guaranteed by theorems above, we proceed to
demonstrate the model’s time efficiency and memory efficiency through the following theorem:
Theorem 3.4. Let n, k, s, d be the number of nodes, the times of random walk per node, the walk
length per node and the feature dimension, l1 be the number of layers for the LRW sampler, and l2
be the number of layers for the path encoder. The overall time complexity and space complexity of
LRW-OOD is O

(
nd2(l1 + l2) + nksd

)
and O (nd(l1 + l2)), respectively.

4 EXPERIMENTS

In this section, we present comprehensive experiments evaluating the proposed LRW-OOD under
datasets with diverse distribution shifts. The objective of these experiments is to address the following
research questions: Q1: How does the proposed model perform compared to state-of-the-art models
on datasets under various distribution shifts? Q2: To what extent do the proposed components of
LRW-OOD contribute to its OOD generalization capabilities on graph data? Q3: How sensitive is the
performance of the proposed model to variations in its hyperparameters? Q4: What insights can be
obtained from visualizing the representations of the proposed model? Due to page limit, we put part
of experiment results and detailed analysis in Appendix D.

4.1 EXPERIMENT SETUP

Datasets. In line with prior studies, we employ seven node classification datasets that exhibit diverse
sizes, characteristics, and types of distribution shifts. These datasets are categorized as follows:
(1) synthetic datasets: Cora (Yang et al. (2016)), CiteSeer (Yang et al. (2016)), PubMed (Yang
et al. (2016)), and LastFMAsia (Rozemberczki and Sarkar (2020)); (2) cross-domain datasets:
Twitch (Rozemberczki et al. (2021)) and WebKB (Pei et al. (2020)); and (3) temporal evolution
dataset: ogb-ArXiv (Hu et al. (2020)). Specifically, for the synthetic datasets, we augment the original
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(a) Cora (b) CiteSeer (c) PubMed (d) LastFMAsia

Figure 3: The performance comparison of graph OOD models using GCN as the backbone.

(a) Cora (b) CiteSeer (c) PubMed (d) LastFMAsia

Figure 4: The performance comparison of graph OOD models using GAT as the backbone.

node features with the artificially generated noise of environment-specific spurious correlations,
whose dimension dspu varies from 20 to 160. A comprehensive summary of the datasets is provided
in Table 2, with additional details about data pre-preprocessing presented in Appendix C.

Baselines. We evaluate the performance of the proposed LRW-OOD model against nine state-of-the-
art graph OOD generalization methods, namely ERM, IRM, SRGNN, SpCo, EERM, CIT, DGNN,
CaNet, and MARIO. To mitigate the effects of randomness and ensure reliable evaluation, each
experiment is repeated 10 times, and the average performance is reported.

Experiment Environment. To facilitate reproducibility, we report the hardware and software
configurations used in our experiments. All experiments were conducted on a server equipped with an
Intel(R) Xeon(R) Gold 6240 CPU 2.60GHz, and a NVIDIA A800 GPU with 80GB memory, utilizing
CUDA version 12.4.

4.2 PERFORMANCE COMPARISON

To answer Q1, we evaluate our model against baselines on datasets with synthetic, cross-domain, and
temporal shifts, with results in Figures 3, 4, and Table 1.

Distribution Shifts on Synthetic Datasets. We evaluate testing accuracy on Cora, CiteSeer, PubMed,
and LastFMAsia, each augmented with spurious noise features of dimensions 20-160 (Figures 3
and 4). Although all models degrade with increasing noise dimensionality, LRW-OOD consistently
outperforms baselines with both GCN and GAT backbones, demonstrating strong robustness to
distribution shifts.

Distribution Shifts on Cross-domain & Temporal Evolution Datasets. As shown in Table 1,
LRW-OOD consistently outperforms all baselines on WebKB, Twitch, and ogb-ArXiv, despite
substantial domain and temporal shifts. It achieves average gains of 3.1% with GCN and 1.0% with
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Table 1: The performance of graph OOD models on corss-domain and temporal evolution datasets.

Dataset Backbone ERM IRM EERM SpCo SRGNN CIT CaNet DGNN MARIO LRW-OOD

GCN 52.1±1.6 52.1±1.7 OOM 49.0±0.4 47.8±2.4 53.9±0.3 54.3±0.8 52.7±3.1 53.9±0.1 55.5±1.0Twitch GAT 51.8±1.0 51.5±1.0 OOM 46.9±1.6 53.9±0.1 54.0±0.4 54.0±0.2 53.8±0.2 54.4±0.3 55.3±1.3

GCN 9.8±0.1 9.8±0.1 28.4±10.3 9.8±0.1 9.9±0.2 16.0±1.0 11.9±5.7 48.8±12.7 40.4±18.2 52.0±1.9WebKB GAT 9.9±0.2 10.6±2.0 29.5±18.2 15.3±2.9 56.5±0.9 9.8±0.1 19.5±9.4 37.7±21.9 41.4±17.3 56.7±3.1

GCN 52.7±0.2 53.1±0.4 39.7±1.4 OOM 48.3±0.5 OOM 52.8±2.0 44.8±0.6 OOM 57.7±0.1ogb-ArXiv GAT 52.8±0.2 53.9±0.3 46.7±0.5 OOM 49.2±0.7 OOM 57.1±2.7 43.1±2.1 OOM 58.9±0.1

GAT, demonstrating its capacity to learn invariant representations and mitigate spurious correlations,
thereby supporting robust real-world deployment.

4.3 ABLATION STUDY

To answer Q2, we conduct an ablation study of LRW-OOD on Cora, CiteSeer, PubMed, and
LastFMAsia, with results reported in Table 3 (Appendix D). The variants include: w/o SM, replacing
the KDE-based sufficiency maximization loss with KL-divergence (Wu et al. (2022); Wang et al.
(2025)); w/o REM, removing the risk extrapolation minimization loss; and w/o LRW, the baseline
random-walk GNN without the LRW encoder. Results show that w/o LRW yields the poorest
performance, underscoring the encoder’s critical role in extracting invariant knowledge. Moreover,
w/o REM generally outperforms w/o SM, highlighting the greater importance of SM loss for graph
OOD generalization.

4.4 SENSITIVITY ANALYSIS

To answer Q3, we examine the effect of two hyperparameters—the number of walk steps and walk
times—on LRW-OOD, with results in Tables 4 and 5 (Appendix D). Table 4 shows that a single
step suffices for Cora, CiteSeer, and PubMed, while LastFMAsia requires longer walks due to lower
homophily, where invariant patterns extend beyond 1-hop neighborhoods. Table 5 further indicates
that multiple walks per node consistently improve performance, as individual walks may capture
spurious correlations, whereas multiple walks preserve invariant patterns and mitigate noise.

4.5 MODEL VISUALIZATION

To address Q4, we visualize LRW embeddings from different walk orders on Cora, CiteSeer, PubMed,
and LastFMAsia (Figure 5 in Appendix D). The embeddings show clear distinctions across datasets
with varying spurious correlations. This indicates that LRW encodes distinct representations from
random walks, mitigating spurious correlations and capturing invariant information, thereby yielding
more expressive representations for graph OOD generalization.

5 CONCLUSION

In this paper, we introduce LRW-OOD, a novel approach for graph OOD generalization at the node
level, which necessitates the model’s ability to handle multiple distribution shifts between the training
set and the testing set. Distinct from existing methods that primarily rely on graph topology or
spectral properties as the medium for invariant knowledge, our method leverages Learnable Random
Walk (LRW) sequences to capture such invariant representations. Rather than utilizing a conventional
fixed-probability transition matrix (e.g., the degree-normalized adjacency matrix), our framework
employs an LRW-based sampler alongside a path encoder to learn LRW embeddings that parameterize
the transition probabilities of the random walk. To ensure the generated random walk sequences
conform to the OOD principles, we further propose a KDE-based MI loss, which integrates an MI
sufficiency maximization component and a risk extrapolation minimization component. Extensive
experimental evaluations demonstrate the superior performance of LRW-OOD in addressing diverse
types of distribution shifts across various graph datasets.
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Algorithm 1 Our Proposal’s LRW-OOD Workflow

1: for training epoch l = 1, · · · , L do
2: Generate node embeddings z through a GNN encoder according to Eq. (2);
3: for each node i = 1, · · · , n do
4: Calculate the transition probability from node vi to its neighbor vj according to Eq. (2);
5: Sample k random walk paths starting at node vi according to Eq. (2);
6: for each path r = 1, · · · , k do
7: Obtain the LRW embedding hr

i of r-th path starting at node vi according to Eq. (3);
8: Calculate the MI sufficient loss of between LRW path embedding hr

i and node label yi
according to Eq. (4);

9: end for
10: end for
11: Calculate the overall KDE-based MI loss according to Eq. (5);
12: Update the parameters in the LRW sampler and path encoder according to the gradient

calculated from Eq. (5);
13: end for

A THE OVERALL WORKFLOW OF THE PROPOSED LRW-OOD

The overall workflow of the proposed LRW-OOD framework is depicted in Figure 2, with the
corresponding pseudocode provided in Algorithm 1. During each of the L training epochs, node
embeddings are first generated using a GNN encoder, as defined in Eq. (2). Subsequently, for each
node vi (i = 1, . . . , n) in the graph, the transition probabilities to its neighboring nodes vj are
computed. Based on these probabilities, k random walk paths originating from node vi are sampled
in accordance with Eq. (2). Finally, the model computes a KDE-based MI loss and updates the
parameters of both the LRW sampler and the path encoder using the gradient of the loss, as specified
in Eq. (5).

B THEORETICAL ANALYSIS FOR SECTION 3.3

Before proceeding with the proofs of the theorems presented in Section 3.3, we first introduce a
useful lemma concerning the theoretical effectiveness of kernel density estimation:

Lemma B.1. Let I(x,y) be the real mutual information of the random variables x, y, and Î(x,y) be
the corresponding kernel density estimation as defined in Eq. 4, then Î(x,y) converges in probability
to I(x,y), i.e.:

Î(x,y)
a.s.−−→ I(x,y). (6)

Proof. Recall from Section 3.3 that the kernel density function we employ is Gaussian kernel

function formulated as: P̂r(x) = e−u2/2

(2π)d/2mddet(X1/2)
. According to the propositions of Gaussian

kernel function (Silverman (2018); Moon et al. (1995)), we have:∫ +∞

−∞

e−u2/2

(2π)d/2mddet(X1/2)
du = 1,∫ +∞

−∞
u

e−u2/2

(2π)d/2mddet(X1/2)
du = 0,∫ +∞

−∞
u2 · e−u2/2

(2π)d/2mddet(X1/2)
du = 1 < +∞,

(7)

which signify the following facts: (1) the integration of Gaussian kernel function is 1; (2) the bias of
Gaussian kernel function is 0; and (3) The variance of Gaussian kernel function is bounded. Thus,
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according to the theorem of Glivenko–Cantelli (Ash and Doléans-Dade (2000)), we have:

sup
x,y

|P̂r(x,y)− Pr(x,y)| a.s.−−→ 0,

sup
x

|P̂r(x)− Pr(x)| a.s.−−→ 0,

sup
y

|P̂r(y)− Pr(y)| a.s.−−→ 0,

(8)

which illustrate that the distributions and the joint distribution of random variable x, y all
converge in probability. Given that the continuous form of mutual information I(x,y) =∫

x

∫
y Pr(x,y) log2

Pr(x,y)
Pr(x)Pr(y)dxdy and Î(x,y) =

∫
x

∫
y P̂r(x,y) log2

P̂r(x,y)

P̂r(x)P̂r(y)
dxdy, the formu-

lations of these two mutual information also converge in probability. Thus, the lemma is proved.

B.1 THEORETICAL PROOFS FOR THEOREM 3.1

For the sufficiency condition, we have the following fact that minimizing LMI Suff (h,y) =

−P̂r(h,y) log2
P̂r(h,y)

P̂r(h)P̂r(y))
is equivalent to maximizing the discrete form of mutual information

I(h, y), according to lemma B.1. Let h∗ be the optimal parameters that satisfy the sufficiency con-
dition y = f∗(Ge) + σ, and h′ be the parameters that are learned by minimizing LMI Suff (h,y).
Suppose h∗ ̸= h′. Then, according to the definitions of h∗, h′ and the propositions of mutual
information, we have:

I(h∗, y) = I(h∗, f∗(h∗) + σ)

= I(h∗, f∗(h∗)),
(9)

I(h′, y) = I(h′, f∗(h∗) + σ)

= I(h′, f∗(h∗)).
(10)

Since h∗ ̸= h′, it’s obvious that I(h∗, f∗(h∗)) ≥ I(h′, f∗(h∗)). However, h′ is obtained by
minimizing LMI Suff (h,y), which suggests that I(h∗, f∗(h∗)) ≤ I(h′, f∗(h∗)). The contradiction
exists due to the false prerequisite of h∗ ̸= h′. Thus, h∗ = h′, and the sufficiency condition is
satisfied.

According to the invariance condition, we have:

Pr(y|e) = Pr(y) ↔ Pr(y|e)
Pr(y)

= 1

↔ Pr(y, e)
Pr(y)Pr(e)

= 1.

(11)

Note that I(y, e) =
∑

y,e Pr(y, e) log2
Pr(y,e)

Pr(y)Pr(e) . Thus, given the fact that I(y, e) ≥ 0, Eq. 11 is
equivalent to minimizing I(y, e). According to the chain low of mutual information, I(y, e) ≤
I(y, e|h). As a consequence, minimizing I(y, e|h) is equivalent to minimizing I(y, e). Also, given
the definitions of mutual information and KL divergence, we have:

I(y, e|h) = KL(Pr(y|h, e)||Pr(y|h))
= KL(Pr(y|h, e)||Ee(y|h, e))
≤ KL(Pr(y|h)||Ee(y|h))
≤ Ve(y|h),

(12)

where the first inequality is achieved due to the inaccessibility of the spurious environment e,
and the second inequality is achieved due to the convexity of KL divergence and the Jenson In-
equality. As the sufficiency condition illustrated above, the predicted label y is derived from the
embedding h optimized by minimizing LMI Suff . Thus, minimizing the risk extrapolation term
V({LMI Suff(hr

i , yi)}
k
r=1) in the Eq. 5 is capable of minimizing Ve(y|h), thus realizing the invariance

condition.
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B.2 THEORETICAL PROOFS FOR THEOREM 3.2

As illustrated as the Eq. 1, the OOD formulation requires models to enhance the worst-case perfor-
mance among multiple graphs within all possible latent environments. Thus, to prove theorem 3.2,
we need to prove the value of the KDE-based MI loss L(f∗(Ge), y) calculated under the optimal
parameters f∗ is less than L(f(Ge), y) under any sub-optimal parameters f , formulated as:

max
Ge∼G

L(f(Ge), y) ≥ max
Ge∼G

L(f∗(Ge), y). (13)

The formulation above is equivalent to proving the statement that given any kinds of paramenters
f , there exists a graph under certain environment G′

e ∼ G and the corresponding loss value of
L(f(G′

e), y), such that the loss value of L(f∗(Ge), y) under any graph Ge ∼ G is less than that of
L(f(G′

e), y), formulated as below:

L(f(G′
e), y) ≥ L(f∗(Ge), y). (14)

Note that the optimized parameter f∗ has satisfied the sufficiency condition y = f∗(Ge) + σ,
which suggests that the loss of f∗ is minimized compared to other kinds of parameters f under the
graph G′

e. We can derive that L(f(G′
e), y) ≥ L(f∗(G′

e), y). Moreover, the optimized parameter
f∗ has also satisfied the invariance condition Pr(y|e) = Pr(y), which suggests that the loss of
f∗ is minimized under any graph with arbitrary environment Ge. As a result, We can obtain that
L(f∗(G′

e), y) ≥ L(f∗(Ge), y). Based on the illustration above, the theorem 3.2 is thus proved.

B.3 THEORETICAL PROOFS FOR THEOREM 3.3

In this section, we present a comprehensive theoretical analysis of the convergence property of the
proposed KDE-based MI loss. Initially, we conduct an in-depth examination of the upper and lower
bounds of the OOD error associated with the proposed loss function. Subsequently, we establish the
convergence of the loss function, utilizing the derived bounds, while also analyzing the convergence
rate of the kernel density estimation.

As for the upper-bound of the loss, according to the definition of LMI Suff(hr
i , yi) formulated as Eq. (4)

and the non-negative nature of the mutual information, we have the fact that LMI Suff (hr
i , yi) ≤ 0.

Thus, we have:

L =

n∑
i=1

(
V({LMI Suff(hr

i , yi)}
k
r=1) +

1

k

k∑
r=1

LMI Suff(hr
i , yi)

)

≤
n∑

i=1

V({LMI Suff(hr
i , yi)}

k
r=1),

(15)

Let Lmax
MI Suff ,Lmin

MI Suff be the maximum and the minimum value of the set {LMI Suff(hr
i , yi)}

k
r=1,

respectively. According to the Popoviciu’s inequality (Niculescu (2009); Butt et al. (2015)), we have:

L ≤
n∑

i=1

V({LMI Suff(hr
i , yi)}

k
r=1)

≤
n∑

i=1

(Lmax
MI Suff − Lmin

MI Suff)
2

4

≤
n∑

i=1

max
{
(Lmax

MI Suff)
2, (Lmin

MI Suff)
2
}
,

(16)

Note that LMI Suff (h,y) = −P̂r(h,y) log2
P̂r(h,y)

P̂r(h)P̂r(y))
, where P̂r(∗) is computed through kernel

density estimation. Thus, it is equivalent to the following equation: LMI Suff (h,y) = −(I(h, y) +
O(k

1
α )), where the first term is the real mutual information between the LRW embedding h and

the label y, and the second term is the estimated error of the kernel density estimation (Wand and
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Jones (1994); Silverman (2018)). Since both h and y have the finite range, I(h, y) is equivalent to a
constant Cmax that has no relationship with the OOD error. Thus, we have:

L ≤
n∑

i=1

max
{
(Lmax

MI Suff)
2, (Lmin

MI Suff)
2
}

≤
n∑

i=1

(C2
max +O(k

2
α ))

≤ nC2
max +O(nk

2
α ).

(17)

Similarly, as for the lower-bound of the loss, we have:

L ≥ 1

k

n∑
i=1

k∑
r=1

LMI Suff (h
r
i ,yi)

≥
n∑

i=1

(Cmin +O(k
1
β ))

≥ nCmin +O(nk
1
β ).

(18)

Since both the upper-bound and the lower-bound are convergent to finite values when k → ∞, the
proposed loss function has a finite range. Also, according to Ouimet and Tolosana-Delgado (2022),
the convergent rate of the estimated error of the kernel density estimation is O(k−

4
d+4 ). This means

that the proposed loss function is convergent when k → ∞.

This property illustrates the fact that the proposed KDE-based MI loss can effectively guide the model
to extract invariant knowledge while discarding the spurious correlations under various distribution
shifts, as long as the sufficient random walk paths are sampled. Thus, theorem 3.3 is proved.

B.4 THEORETICAL PROOFS FOR THEOREM 3.4

In this section, we provide a detailed theoretical analysis to establish the computational efficiency of
the proposed model, as formalized in Theorem 3.4. Let n denote the number of nodes, k the number
of random walks initiated per node, s the length of each walk, and d the dimensionality of node
features. Furthermore, let l1 and l2 represent the number of layers in the GNN-based LRW sampler
and the MLP-based path encoder, respectively. The LRW sampler utilizes a GNN with l1 layers to
compute LRW embeddings, incurring a time complexity of O(nd2l1). Similarly, the path encoder,
implemented as an l2-layer MLP, introduces an additional time complexity of O(nd2l2). Regarding
the learnable random walk process, each node initiates k random walks of length s, and at each
step computes cosine similarities between its own LRW embedding and those of its neighbors. This
operation results in a time complexity of O(nksd). Consequently, the total time complexity of the
proposed LRW-OOD model can be expressed as O

(
nd2(l1 + l2) + nksd

)
. The space complexity of

LRW-OOD is composed of LRW embeddings and the path embeddings generated in the LRW sampler
and the path encoder. Thus, the overall space complexity of the proposed model is O(nd(l1 + l2)).
Thus, Theorem 3.4 is proved.

C DATASETS AND PRE-PROCESSING

In this section, we describe the experimental datasets used in this paper, along with the corresponding
data pre-processing procedures and dataset splitting strategies. The datasets are categorized into three
distinct groups based on the type of distribution shift they represent: synthetic datasets, cross-domain
datasets, and a temporal evolution dataset. These correspond to artificial shifts, cross-domain shifts,
and temporal shifts, respectively, as summarized in Table 2. The subsequent subsections provide a
detailed account of the pre-processing steps and data partitioning strategies applied to each category.

C.1 SYNTHETIC DATASETS PRE-PROCESSING

Cora, CiteSeer, PubMed, and LastFMAsia are four widely utilized benchmark datasets for node
classification tasks, frequently employed to evaluate the performance and design of GNNs. The Cora,
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Table 2: The detailed information of the original datasets.

Distribution shift Dataset #Nodes #Edges #Features #Classes Train/Val/Test

Artificial Shift

Cora 2,708 5,429 1,433 7 Domain-level
CiteSeer 3,327 4,732 3,703 6 Domain-level
PubMed 19,717 44,338 500 3 Domain-level

LastFMAsia 7,624 55,612 128 18 Domain-level

Cross-domain Shift Twitch 34,120 892,346 2,545 2 Domain-level
WebKB 617 1,138 1,703 5 Domain-level

Temporal Shift ogb-ArXiv 169,343 1,116,243 128 40 Time-level

CiteSeer, and PubMed datasets represent citation networks, where nodes correspond to academic
papers and edges denote citation relationships between them. LastFMAsia is a social network dataset
in which nodes represent users of the LastFM platform, and edges indicate friendship relations among
users.

For each dataset, we first duplicate the original graph by nenv times (the number of latent environ-
ments), each one prepared for being augmented by the corresponding spurious environment-sensitive
noise. Then, we use the adjacency matrix and the label to construct the spurious noise. Specifically,
assume the adjacency matrix as A, the original node features as Xori and the node label as y. Then
we adopt a randomly initialized GNN (with the adjacency matrix A and the node label y) to generate
the invariant node features, denoted as Xinv. Then, we employ another randomly initialized MLP
(with input of a Gaussian noise whose mean value is the corresponding environment id within nenv)
to generate spurious node features Xspu. By integrating the invariant and spurious node features
together, we obtain the node features with the artificial distribution shift Xart = Xinv + Xspu.
After that, we concatenate the original node features and the features with artificial distribution
shift X = [Xori,Xart] as input node features for training and evaluation. In this way, we construct
nenv = 5 graphs with different environment id’s for each dataset. For all baselines, we use three
environments for training, one for validation and report the classification accuracy on the remaining
graph.

C.2 CROSS-DOMAIN DATASETS PRE-PROCESSING

A common scenario in which distribution shifts arise in graph-structured data is cross-domain transfer.
In many real-world applications, multiple observed graphs may be available, each originating from
a distinct domain. For instance, in the context of social networks, domains can be defined based
on the geographic or demographic context in which the networks are collected. More generally,
graph data typically captures relational structures among a specific set of entities, and the nature
of interactions or relationships often varies significantly across different groups. As a result, the
underlying data-generating distributions differ between domains, giving rise to domain shifts.

The Twitch and WebKB datasets exemplify cross-domain distribution shifts as described above.
The Twitch dataset comprises six distinct networks, each representing a different geographical
region—specifically, DE, PT, RU, ES, FR, and EN. In these networks, nodes correspond to Twitch
users of game streaming, and edges represent friendship relations among them. While these networks
share invariant characteristics—such as the majority of users being game streamers—they also exhibit
region-specific spurious correlations (e.g., users from a particular region may demonstrate preferences
for certain games). This combination of shared and domain-specific features makes Twitch a suitable
dataset for evaluating OOD generalization under cross-domain shifts. For all baseline models, we use
the networks from DE and PT as the training domains, those from RU and ES for validation, and the
remaining networks (FR and EN) for testing.

Another dataset is WebKB which consists of three networks (i.e., Wisconsin, Cornell and Texas) of
web pages collected from computer science departments of different universities. In each network,
nodes represent web pages and edges represent the hyperlink between them. On the one hand, these
networks share some invariant knowledge since they are all collected from the computer science
departments; on the other hand, they also contain spurious correlations due to the fact that these
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departments from different universities may have different research focuses. As a result, these
properties make WebKB an ideal OOD dataset with various cross-domain distribution shifts. For
all baselines, we employ the network from Wisconsin for the training set, that from Cornell for the
validation set and the remaining for the testing set.

C.3 TEMPORAL EVOLUTION DATASETS PRE-PROCESSING

Another prevalent scenario for OOD generalization arises in the context of temporal graphs, which
evolve dynamically over time through the addition or deletion of nodes and edges. As illustrated in
Figure 1(a) of Section 1, such graphs are common in large-scale real-world applications, including
social and citation networks, where the distributions of node features, topological structures, and
labels often exhibit strong temporal dependencies at varying time scales. To investigate temporal
distribution shifts in node classification, we employ the widely-used ogb-ArXiv dataset, which
provides a benchmark setting for evaluating model performance under temporal dynamics. The
ogb-ArXiv dataset consists of 169,343 nodes, each representing a computer science paper from the
arXiv repository, with 128-dimensional feature vectors. It contains 1,116,243 edges that capture
citation relationships between papers, and 40 distinct node labels corresponding to the subject areas
of the papers. This dataset serves as a representative benchmark for OOD generalization under
temporal distribution shifts, as citation behaviors naturally evolve over time. For all baseline models,
papers published prior to 2017 are used for training, those published in 2018 for validation, and the
remaining papers for testing.

D DETAILED EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we provide the additional experimental results and analysis illustrated in Section 4.
Figure 4 is the experiment results of the performance comparison from Section 4.2. Table 3 is the
experiment results of the ablation study from Section 4.3. Table 4 and Table 5 are the experiment
results of the sensitivity study from Section 4.4. Figure 5 is the experiment results of the model
visualization from Section 4.5.

D.1 OVERALL PERFORMANCE COMPARISON

In this Section, we aim to answer Q1: How does the proposed LRW-OOD perform compared
to state-of-the-art models on datasets under various distribution shifts? To this end, We conduct
a comprehensive evaluation of our model against other models across various kinds of datasets,
including synthetic datasets, cross-domain datasets and the temporal evolution dataset. The results
are shown in Figure 3, Figure 4 and Table 1.

Distribution Shifts on Synthetic Datasets. We report the testing accuracy on the Cora, CiteSeer,
PubMed, and LastFMAsia, each augmented with environment-specific spurious noise features of
varying dimensions, ranging from 20 to 160, as illustrated in Figure 3 and Figure 4. While all
evaluated models exhibit a decline in performance as the dimensionality of the spurious features
increases, the proposed LRW-OOD consistently achieves superior accuracy compared to all baseline
methods, regardless of employing GCN or GAT as the backbone. These results highlight the robust
graph OOD generalization capability of LRW-OOD in the presence of complex distribution shifts.

Distribution Shifts on Cross-domain & Temporal Evolution Datasets. As presented in Table 1,
we report the test accuracy on the WebKB, Twitch, and ogb-ArXiv. The proposed LRW-OOD demon-
strates consistently strong performance, significantly outperforming all baseline methods, despite
the challenges of substantial domain/temporal distribution shifts within these datasets. Specifically,
LRW-OOD achieves an average improvement of approximately 3.1% when using the GCN backbone
and around 1.0% with the GAT backbone compared to the sub-optimal baselines. These results
underscore the model’s ability to effectively learn invariant representations while mitigating the
influence of domain-specific and temporal-specific spurious correlations, thereby highlighting its
potential for robust deployment in real-world scenarios.
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Table 3: The ablation performance for LRW-OOD.

Backbone Model Cora CiteSeer PubMed LastFMAsia

GCN

LRW-OOD 82.63±0.64 73.79±1.69 82.71±0.13 73.62±0.45
w/o SM 81.47±1.01 71.94±0.41 82.13±0.10 71.71±0.45

w/o REM 81.80±0.57 70.18±0.72 82.16±0.04 73.47±0.34
w/o LRW 73.4±0.39 59.08±0.27 78.03±0.35 67.4±0.26

GAT

LRW-OOD 82.61±0.03 73.65±0.44 82.84±0.24 73.83±0.78
w/o SM 81.38±0.84 71.72±0.17 81.86±0.10 72.48±0.87

w/o REM 81.63±0.58 70.16±0.79 82.07±0.03 73.51±0.6
w/o LRW 75.1±0.33 59.25±1.03 78.25±0.99 71.79±1.34

D.2 ABLATION STUDY

To answer Q2, we present a comprehensive ablation analysis of the contribution of each individual
component within LRW-OOD across Cora, CiteSeer, PubMed, and LastFMAsia. The experiment
results are summarized in Table 3. Specifically, w/o SM refers to the variant of LRW-OOD where
the sufficiency maximization loss is modified by substituting the original KDE-based approach with
KL-divergence, following established methodologies in prior literature (Wu et al. (2022); Wang et al.
(2025)). w/o REM indicates the model configuration without the risk extrapolation minimization loss.
Finally, w/o LRW corresponds to the vanilla random-walk-based GNN model without the proposed
LRW encoder. From Table 3, it can be observed that LRW-OOD without the LRW encoder achieves
the worst performance compared to that without SM loss and that without REM loss, which emphasis
the great importance of the LRW encoder as the extractor of the invariant knowledge. Meanwhile,
we also observe that LRW-OOD without REM loss achieves a better performance compared to that
without SM loss on most of the datasets, which demonstrates that the SM loss plays a more important
role than the REM loss for the graph OOD generalization.

D.3 SENSITIVITY ANALYSIS

To answer Q3, we investigate the impact of key hyperparameters—specifically, the number of
random walk steps and the number of random walk times—on the performance of the proposed
LRW-OOD. The evaluation is conducted across multiple datasets, including Cora, CiteSeer, PubMed,
and LastFMAsia. The corresponding experimental results are presented in Table 4 and Table 5.
As illustrated in Table 4, LRW-OOD achieves optimal performance with a single-step on the Cora,
CiteSeer, and PubMed. In contrast, more walk steps are required to attain the best results on
LastFMAsia. This discrepancy can be attributed to differing levels of homophily across datasets: Cora,
CiteSeer, and PubMed exhibit more homophily, wherein the invariant knowledge is predominantly
localized within the 1-hop neighborhood. Conversely, LastFMAsia demonstrates lower homophily,
implying that invariant patterns reside in higher-order neighborhoods. As shown in Table 5, LRW-
OOD consistently achieves optimal performance when multiple random walks are initiated per node
across all evaluated datasets. This observation suggests that each individual random walk may capture
environment-specific spurious correlations. By conducting multiple random walks, LRW-OOD is
better equipped to retain invariant patterns while effectively mitigating the influence of spurious
correlations across walks.

D.4 MODEL VISUALIZATION

To address Q4, we visualize the LRW embeddings derived from different orders of random walk
paths on four synthetic datasets: Cora, CiteSeer, PubMed, and LastFMAsia, as shown in Figure 5.
The visualizations reveal that LRW embeddings generated from different walk orders exhibit clear
distinctions across all datasets. Notably, these datasets are constructed with varying environment-
specific spurious correlations, as described in Section 4.1. Consequently, the model learns to encode
distinct representations from random walks, effectively mitigating spurious correlations and capturing
invariant information shared across environments with various distribution shifts. This results in a
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Table 4: The performance of LRW-OOD under different hyper-paramenters of random walk steps.

Backbone Dataset 1-step 2-steps 3-steps 4-steps 5-steps

GCN

Cora 84.4±0.11 83.24±0.14 82.66±0.37 82.63 ±0.64 82.53±0.20
CiteSeer 74.78±0.64 73.58±0.43 73.25±0.37 73.79±1.69 72.72±0.09
PubMed 83.14±1.32 82.76±0.78 82.8±0.43 82.71±0.13 82.53±0.54

LastFMAsia 73.20±0.30 73.32±0.16 73.35±0.23 73.47±0.34 74.36±0.32

GAT

Cora 85.98±0.19 85.01±0.31 84.43±0.43 82.61±0.03 83.75±0.50
CiteSeer 77.80±0.20 77.06±0.38 76.33±0.54 73.65±0.44 72.98±0.39
PubMed 83.76±1.48 83.68±0.62 83.12±0.14 82.84±0.24 82.45±0.35

LastFMAsia 73.44±0.37 73.56±0.06 74.18±0.14 73.83±0.78 72.92±0.15

Table 5: The performance of LRW-OOD under different hyper-paramenters of random walk times.

Backbone Dataset 1-time 2-times 3-times 4-times 5-times

GCN

Cora 81.52±0.24 82.92±0.13 82.45±0.23 82.63±0.64 83.01±0.23
CiteSeer 71.54±1.23 72.98±0.29 73.25±0.37 73.79±1.69 73.08±0.24
PubMed 81.94±0.41 81.88±1.01 82.03±0.14 82.71±0.13 83.01±0.48

LastFMAsia 71.90±0.54 72.59±0.2 72.43±0.20 73.47±0.34 73.96±0.13

GAT

Cora 81.90±0.43 82.93±0.52 81.49±0.28 82.61±0.03 83.62±0.43
CiteSeer 72.94±0.67 73.12±0.35 73.33±0.54 73.65±0.44 73.22±0.42
PubMed 81.96±0.94 82.08±1.14 82.53±0.89 82.84±0.24 83.01±0.84

LastFMAsia 72.81±0.45 73.00±0.37 73.07±0.11 73.83±0.78 73.98±0.23

more expressive representation that facilitates the learning of predictive relationships beneficial for
graph OOD generalization.

E LIMITATIONS AND FUTURE DIRECTIONS

In this section, we mainly examine the limitations of the proposed model and outline potential avenues
for enhancing its performance and applicability. The primary drawbacks of the model are twofold:
computational complexity and the hyperparameter tuning overhead.

Existing Limitations. (1) Computational Complexity: As stated in Theorem 3.4, the time complexity
of the proposed model is O(nd2(l1 + l2) + nksd). Since the complexity scales linearly with the
number of nodes n and quadratically with the feature dimension d, the computational cost becomes
substantial in large-scale scenarios—for instance, when the graph contains over 109 and the feature
dimension exceeds 103. (2) Hyperparameter Tuning Overhead: The hyperparameters of the proposed
model are primarily tuned manually based on empirical knowledge, rather than through automated
optimization techniques. This manual tuning process is both time-consuming and suboptimal in terms
of efficiency and effectiveness.

Based on the aforementioned limitations, several promising research directions can be pursued to
address these challenges, as outlined below.

Future Directions. (1) Down-sampling & Graph Condensation Strategies: For extremely large-scale
graphs, it is beneficial to apply down-sampling or graph condensation techniques to reduce the graph
size while preserving key topological and semantic properties. These approaches can effectively
mitigate the computational burden by generating compact graph representations that approximate the
original structure and information content. (2) Automated Hyperparameter Tuning Methods: Manual
hyperparameter tuning is often labor-intensive and may lead to suboptimal results. To improve both the
efficiency and effectiveness of this process, automated hyperparameter optimization methods—such
as Optuna (Akiba et al. (2019)) and Ray Tune (Liaw et al. (2018))—can be integrated into the model
training pipeline. These frameworks facilitate systematic exploration of the hyperparameter space
and can significantly enhance model performance with reduced human intervention. (3) Extension
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Figure 5: The visualization of weights of LRW-OOD on the synthetic datasets.

to Broader Downstream Tasks: While the current work primarily evaluates the model on the node
classification task, the proposed framework can be readily extended to other downstream applications
such as link prediction and graph classification. For instance, in the link prediction scenario, the
mutual information term LMI Suff(hr

i , yi) can be replaced by LMI Suff(hi, hj) and apply the KDE-
based MI loss formulated as Eq. ( 5), where hi, hj can be the aggregated LRW embeddings of their
corresponding k sampled random walk paths of node vi and its neighbor vj , respectively. Similarly,
for the graph classification task, a graph-level LRW embedding hi can be obtained by aggregating
the LRW embeddings of all nodes in graph Gi, and the mutual information term in Eq. (5) can be
reformulated as LMI Suff(hi, yi).

F GENAI USAGE DISCLOSURE

In the preparation of this manuscript, we have utilized generative artificial intelligence (GenAI) tools,
specifically GPT-4o and claude, to assist with text polishing and refinement, as well as to support
the drafting and modification of code snippets. These tools have been employed to enhance the
clarity and readability of the narrative and to facilitate the development of auxiliary code, ensuring
a streamlined presentation of our work. However, we emphasize that GenAI was not utilized in
the derivation of mathematical formulas, the design or implementation of key algorithms, or the
formulation of core scientific insights. All critical theoretical proofs, algorithmic developments, and
experimental validations were conducted independently by the authors to maintain the integrity and
originality of the research. We have rigorously reviewed and verified all generated text to ensure
accuracy and alignment with the scientific content, thereby upholding the reliability of the presented
results.
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