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Abstract
Key-Value (KV) caching is a widely adopted tech-
nique in large language models (LLMs) to accel-
erate long-context inference. While recent studies
predominantly focus on question-dependent KV
cache eviction where cache entries are evicted
based on known queries. In this paper, how-
ever, we observe these approaches often fail in
question-independent scenarios. Our empirical
analysis reveals that most existing KV cache evic-
tion methods underperform in this setting due to
their heavy reliance on importance metrics de-
rived from question tokens. The core challenge
here is to conduct well-founded estimation on
token importance without access to future ques-
tions. To address this, we propose OracleKV
for question-independent KV cache eviction. Or-
acleKV operates by steering model’s attention
with an oracle guidance containing surface-level
statistics of user preferences from large-scale real-
world dialogues. Unlike existing methods, Ora-
cleKV operates at the data level, allowing seam-
less integration with other eviction algorithms in
a plug-and-play manner. We evaluate OracleKV
on both multi-turn and single-turn benchmarks,
demonstrating its efficiency and effectiveness.

1. Introduction
Recently, long-context capabilities have become a standard
feature in large language models (LLMs)(OpenAI, 2023;
Anthropic, 2024; Meta, 2024; 2025; Yang et al., 2024b;
Achiam et al., 2023). For example, GPT-4.1(OpenAI, 2023;
Achiam et al., 2023) can process up to 1M tokens, Claude
3.7 (Anthropic, 2024) supports a 200K-token context win-
dow, and the instruction-tuned version of LLaMA-4 (Meta,
2025) extends this further to 10M tokens. These models
exhibit remarkable potential on long-context tasks, achiev-
ing groundbreaking performance on various language un-
derstanding and generation benchmarks (Hendrycks et al.,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Under review by the Workshop on Long-Context Foundation Mod-
els (LCFM) at ICML 2025. Do not distribute.

     LLM

Docs Prefill & Eviction Docs 
KV Cache

     LLM
Reload     Doc 

KV Cache

Docs

Chunk
Retrival

w/ Pre-caching

w/o Precaching

Chunk Pre-Caching in RAG

     LLM

Long Context

Prefill &
Eviction

     LLM

User Query 1

Response 1

     LLM

User Query 2

Response 2

Multi-turn Dialogues

Feed
Forward

Feed Forward

Feed Forward

Reload

Reload

Figure 1. Question-independent KV cache eviction scenarios.
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Figure 2. Question-independent KV cache eviction scenarios.

2021; Bai et al., 2024; Li et al., 2023; Ghazal et al., 2013).
However, the Key-Value (KV) cache used during inference
scales linearly with sequence length, leading to substan-
tial memory and computational overhead for long-sequence
inference in LLMs (Zhang et al., 2023; Liu et al., 2024b).

Evidence from several studies (Liu et al., 2024b; Zhang
et al., 2023; Mu et al., 2023) suggests that only a small
subset of the KV cache contributes to the majority of the
model’s attention. As a result, many KV cache compression
methods (Li et al., 2024a; Xiao et al., 2024b; Zhang et al.,
2023) have been proposed, leveraging improved important
metrics to identify and retain the most informative tokens.
Most current KV cache selection approaches (Qin et al.,
2025; Cai et al., 2024; Fu et al., 2024; Feng et al., 2024) are
based on observation window (Li et al., 2024a) selection,
which estimates the token importance based on the attention
distribution of recent tokens. These methods achieve impres-
sive results on several well-established benchmarks (such
as Longbench (Bai et al., 2024)). However, in question-
independent scenarios where question is unknown, such as
chunks pre-caching in RAG (Yao et al., 2025) and multi-turn
dialogues (Li et al., 2024b) as in Figure 1, we observe their
significant performance drop in Figure 2.
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Figure 3. Visualization of attention distribu-
tion and kept KV entries (10% budget).
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Our empirical analysis in Figure 3 reveals that the accurate
KV entry selection heavily rely on the attention distribution
induced by question tokens, which leads to the inadapt-
ability in the question-independent scenarios. Thus, the
fundamental challenge of this scenario lies in conducting
well-founded token importance estimation without query.

To bridge this gap, we propose to find some alternatives to
the exact future questions, which help estimate token impor-
tance. Inspired by recent reports (Handa et al., 2025; Maslej
et al., 2025) on large-scale user dialogues with LLMs, we
introduce a method called OracleKV. At a high level, we
append a oracle guidance to the end of the long context
as a substitute of the exact question. This guidance en-
codes the surface-level statistics about the distribution of
future questions—such as the expected types of queries and
categories of relevant information—based on prior analy-
ses (Handa et al., 2025; Maslej et al., 2025). During infer-
ence, we estimate the importance of each context token by
measuring its relevance with this oracle guidance. Tokens
with low correspondence to the anticipated question distri-
bution are progressively evicted until the retained KV cache
fits the memory budget.

In contrast to prior approaches that rely on token retention
heuristics based on internal model-specific computational
characteristics (Li et al., 2024a; Feng et al., 2024; Xiao
et al., 2024a), OracleKV leverages external statistical priors
about likely information requirements at the data level. This
design makes it highly flexible and model-agnostic: Ora-
cleKV can be seamlessly integrated with existing KV cache
compression frameworks to enhance their performance, es-
pecially under question-independent scenarios.

2. OracleKV
2.1. An Information Retaining Perspective of KV Cache

In this section, we investigate how an LLM can answer a
question from the perspective of retaining information, even

when only a subset of cache entries is preserved. We visu-
alize the attention distribution induced by pure context and
the query in Figure 11, which reveals that accuracy degrada-
tion primarily results from a mismatch between: (1) the KV
cache entries retained by a given eviction algorithm, and
(2) the entries actually required to answer the question, as
measured by their position and relevance with the question.

2.2. Attention Manipulation via Data-level Intervention
We aim to steer the distribution of attention across seman-
tic types in the retained entries. We resort to recent stud-
ies (Handa et al., 2025; Maslej et al., 2025) that indicates
users exhibit distinct preferences across task types when
interacting with large language models (LLMs). We sum-
marize the dominant information types associated with com-
mon long-context tasks from (Handa et al., 2025; Maslej
et al., 2025) and propose a data-level intervention method
to manipulate attention distribution. An overview of our
method is presented in Fig.4. We begin by manually de-
signing an oracle guidance Õ of length Lo, which encodes
surface statistics of prevalent information types in large-
scale dialogues (Handa et al., 2025; Maslej et al., 2025).
This oracle guidance Õ is then appended to the input con-
text Xctx as a substitude of Xques (question), allowing it to
steer the attention distribution during the prefilling phase:

K = WKConcat(Xctx, Õ), V = WV Concat(Xctx, Õ).
(1)

Following the instruction format described in (Zhou et al.,
2023), we design Õ to encourage the model to assign higher
attention to tokens representing specific information types.
We provide specific examples of Õ in Appendix. Our goal is
to select the KV entries semantically correlated to the oracle
Õ. Then we focus on the attention scores within the cache
entry window of Õ, as illustrated in Fig. 13, and retain the
top B entries using the following criterion:

argmax
C

L∑
i=L−Lo

A[i, : −Lo], s.t. |C| = B. (2)
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Figure 5. Performance comparison on RULER (Hsieh et al., 2024) benchmark. OracleKV provides superior tradeoff.
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Figure 6. Oracle Guidance provides significant performance increase on the Needle-In-A-Haystack (Kamradt, 2023) pressure test while
integrating into uniform (SnapKV(Li et al., 2024a)), layer-wise (PyramidKV (Cai et al., 2024)) and head-wise (Ada SnapKV (Feng et al.,
2024)) budget allocation methods.
Finally, we manually exclude the KV entries correspond-
ing to Õ itself, as these surface statistics do not directly
contribute to answering the query.
3. Experiment
Settings. We evaluate the performance of OracleKV using
Longbench (Bai et al., 2024), RULER (Hsieh et al., 2024),
Needle-In-A-Haystack (Kamradt, 2023), and SCBench (Li
et al., 2024b). Our experiments are conducted on three open-
source LLMs: Mistral-7B-Instruct-v0.2, Llama-3.1-8B-
Instruct, and Qwen2.5-7B-Instruct. We compare OracleKV
against several strong baselines: StreamingLLM (Xiao et al.,
2024b), H2O (Zhang et al., 2023), SnapKV (Li et al., 2024a),
PyramidKV (Cai et al., 2024), DuoAttention (Xiao et al.,
2024a) and AdaKV (Feng et al., 2024).

3.1. Accuracy Evaluation
We compare OracleKV against baselines under KV budgets
of 40% and 10% with context length of 60K for Llama and
32K for Mistral. Additionally, we integrate the head-level
adaptive allocation strategy from(Feng et al., 2024) into
OracleKV, denoted as Ada OracleKV. We evaluate Oracle

on the RULER benchmark with 4K context length on both
Llama and Qwen. The overall accuracy experimental results
are provided in Appendix.

LongBench(Bai et al., 2024). Table 1 presents the perfor-
mance of various methods across five task types, encom-
passing 14 datasets. OracleKV consistently demonstrates
superior performance on most tasks. Notably, under a 10%
cache budget, OracleKV and its variant significantly outper-
forms other methods across solid majority of all tasks on
both models, achieving an average improvement of 6.7%
for Llama and 1.6% for Mistral. This result highlights its
superior adaptability under extreme memory constraints.

RULER(Hsieh et al., 2024). Figure 5 illustrates the per-
formance across five retrieval subtasks, comparing base-
lines with KV budgets ranging from 100% to 10%. Ora-
cleKV demonstrates an exceptional tradeoff between mem-
ory budget and accuracy across most subtasks, highlighting
its strong retrieval capabilities. Notably, OracleKV experi-
ences a minimal performance drop on three subtasks with
only 30% of the KV budget.
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Table 1. Average performance of various baselines across different LLMs in single-turn (Bai et al., 2024) and multi-turn (Li et al., 2024b)
benchmarks. We compare OracleKV with baselines under 40% and 10% KV budget.

Method Budget Single-turn LongBench Multi-turn SCBench
Sin.QA Mul.QA Sum. Few.Shot. Syn. AVG. M.C. M.S. M.F. QA.En QA.Ch Sum. AVG.

LLaMA-3.1-8B-Instruct

Full Cache 100% 44.3 47.0 29.2 51.1 55.6 45.7 5.7 40.0 28.0 20.9 27.5 30.9 25.8

StreamingLLM

40%

27.9 34.6 25.7 53.4 26.1 33.5 7.9 38.2 12.2 18.0 16.3 22.3 19.1
SnapKV 35.3 44.8 26.5 53.6 54.5 42.9 6.1 44.4 22.5 17.8 23.5 27.7 23.7
PyramidKV 34.1 35.3 25.7 55.3 51.5 40.4 5.5 42.8 19.5 18.6 19.9 23.5 21.6
Ada SnapKV 37.0 45.6 26.7 55.1 54.3 44.1 5.7 40.4 19.8 19.3 24.0 28.3 22.9
DuoAttention 42.4 44.3 27.2 53.5 52.8 43.5 8.3 39.6 15.3 18.6 25.4 29.4 22.8
OracleKV 40.9 46.4 27.4 54.0 56.1 45.0 5.2 44.2 23.3 20.5 25.7 29.8 24.8
Ada OracleKV 42.0 45.5 27.6 53.4 55.8 44.9 5.7 43.0 22.9 20.5 27.2 30.5 24.9

StreamingLLM

10%

20.7 24.6 21.3 51.0 10.0 25.5 6.6 38.9 12.0 15.6 10.1 20.8 17.3
SnapKV 22.6 29.6 21.7 51.6 29.5 30.1 6.1 50.7 21.2 15.2 14.5 22.3 21.7
PyramidKV 21.3 24.0 21.7 51.8 27.1 29.2 5.2 48.8 20.6 13.6 11.0 21.4 20.1
Ada SnapKV 24.1 30.7 22.3 51.7 31.5 32.1 5.7 50.4 20.3 14.7 15.9 23.0 21.7
DuoAttention 18.2 23.3 21.4 49.4 28.0 28.1 7.4 47.4 19.7 12.3 7.6 25.3 20.0
OracleKV 24.5 33.2 23.5 56.3 45.3 36.5 6.1 45.2 21.3 18.5 18.1 25.9 22.5
Ada OracleKV 28.8 34.0 23.8 58.3 49.3 38.8 5.7 50.4 21.0 17.0 19.3 26.3 23.3
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Figure 7. Prefilling latency and memory footprint of OracleKV comparing with other methods across different context length: (1)
Comparison of peak memory usage. (2) Comparison of prefilling latency. (3) The computation cost scales with the length of the guidance.

Needle-In-A-Haystack (NIAH)(Kamradt, 2023). As
shown in Figure6, baseline methods demonstrate signifi-
cant improvement when integrated with Oracle Guidance,
highlighting its effectiveness in refining retrieval accuracy.

Multi-turn Benchmark. We evaluate OracleKV along with
all baselines on the multi-turn SCBench(Li et al., 2024b).
Table1 shows that OracleKV consistently outperforms all
other baselines on most tasks, maintaining superior perfor-
mance under the same KV budget across all three models.

3.2. Efficiency Evaluation
We evaluate the prefilling latency and memory footprint of
OracleKV on Llama-3.1-8B-Instruct for 96K context pre-
filling and Qwen2.5-7B-Instruct for 240K context prefilling.
Peak Memory Usage. As shown in 7(1), OracleKV shows
comparable memory savings with uniform budget allocation
strategies (SnapKV (Li et al., 2024a)) and layer-pattern
budget allocation strategies (PyramidKV (Cai et al., 2024)),
notably reducing memory consumption of full attention.

Prefilling Latency (Time-To-First-Token). Figure 7(2)
shows OracleKV achieves comparable TTFT to PyramidKV

(fixed-pattern allocation) and SnapKV (uniform allocation).

Computational Cost with Guidance Length. We examine
how memory footprint and prefilling latency scale with the
guidance length, using context lengths of 64K and 150K.
As shown in Figure 7(3), the memory usage and latency
increases to 1.63× and 1.18× from length of 256 to 1K.

3.3. Ablation Study
We perform ablation studies on the multi-key retrieval and
summarization tasks to investigate the effect of various de-
sign choices in OracleKV. Results are provided in Appendix.

4. Conclusion
We present OracleKV, a data-level intervention approach
designed for question-independent KV cache compression.
OracleKV steers the attention distribution of by append-
ing an oracle guidance to the pure context, then selects
semantically correlated KV entries based on corresponding
attention score. We confirm the effectiveness of OracleKV
and hope it could serve as an useful component within more
comprehensive long-context inference framework.
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Impact Statement
OracleKV provides a new perspective to guide KV cache
eviction in large language models (LLMs) by leveraging
data-level intervention to introduce inductive biases. While
OracleKV demonstrates significant performance improve-
ments in question-independent eviction settings, its potential
extension to other setting (such as question-aware or task-
oriented KV cache eviction) presents a exciting direction
for future research. Additionally, the limitations of Ora-
cleKV, especially the task-specific nature of its benefits and
the increased computational and memory overhead, high-
light important trade-offs in the practical deployment. In
particular, the increased latency and memory consumption
could pose challenges for real-time applications on resource-
constrained devices.

Furthermore, the need for task-specific oracle design raises
concerns about scalability and generalizability, potentially
reinforcing disparities between well-resourced and low-
resource tasks or domains. We believe that future work
should explore more efficient and generalizable oracle guid-
ance designs that balance interpretability, performance, and
system efficiency, ensuring that such techniques can be eq-
uitably applied across a broad range of use cases.
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Figure 8. Question-independent KV cache eviction scenarios.

Recently, long-context capabilities have become a stan-
dard feature in large language models (LLMs)(OpenAI,
2023; Anthropic, 2024; Meta, 2024; 2025; Yang et al.,
2024b; Achiam et al., 2023). For example, GPT-
4.1(OpenAI, 2023; Achiam et al., 2023) can process up
to 1M tokens, Claude 3.7 (Anthropic, 2024) supports a
200K-token context window, and the instruction-tuned
version of LLaMA-4 (Meta, 2025) extends this further to
10M tokens. These models exhibit remarkable potential
on long-context tasks, achieving groundbreaking perfor-
mance on various language understanding and generation
benchmarks (Hendrycks et al., 2021; Bai et al., 2024; Li
et al., 2023; Ghazal et al., 2013). However, the Key-Value
(KV) cache used during inference scales linearly with
both sequence length and batch size, leading to substantial
memory and computational overhead for long-sequence
inference in LLMs (Zhang et al., 2023; Liu et al., 2024b).

Evidence from several studies (Liu et al., 2024b; Zhang et al., 2023; Mu et al., 2023) suggests that only a small subset of the
KV cache contributes to the majority of the model’s attention. As a result, many KV cache compression methods (Li et al.,
2024a; Xiao et al., 2024b; Zhang et al., 2023) have been proposed, leveraging improved important metrics to identify and
retain the most informative tokens. Most current KV cache selection approaches (Qin et al., 2025; Cai et al., 2024; Fu et al.,
2024; Feng et al., 2024) are based on observation window (Li et al., 2024a) selection, which estimates the token importance
based on the attention distribution of recent tokens. These methods achieve impressive results on several well-established
benchmarks (such as Longbench (Bai et al., 2024)). However, in question-independent scenarios where question is unknown,
such as chunks pre-caching in RAG (Yao et al., 2025) and multi-turn dialogues (Li et al., 2024b) as in Figure 8, we observe
their significant performance drop in Figure 9. This motivates the following core questions:

Why question-independent KV cache compression fails, and how to improve it?

To answer these questions, our empirical analysis in Figure 11 reveals that the accurate KV entry selection heavily rely
on the attention distribution induced by question tokens, which leads to the inadaptability in the question-independent
scenarios. Thus, the fundamental challenge of this scenario lies in conducting well-founded estimation of token importance
in the absence of target knowledge, i.e. without knowing exact questions or prompts the model will respond to, as shown in
Figure 10.

To bridge this gap, we propose to find some alternatives to the exact future questions, which help estimate token importance.
Recent report (Handa et al., 2025; Maslej et al., 2025) on AI economics observe that in large-scale real user dialogues with
LLMs, user-asked question types exhibit strong statistical regularities. Moreover, for each type of question, the associated
required information follows predictable distributional patterns (Maslej et al., 2025). Inspired by this, we introduce a method
called OracleKV. At a high level, we append a oracle guidance to the end of the long context as a substitute of the exact
question. This guidance encodes the surface-level statistics about the distribution of future questions—such as the expected
types of queries and categories of relevant information—based on prior analyses (Handa et al., 2025; Maslej et al., 2025)
and large-scale benchmarks (Hendrycks et al., 2021; Rein et al., 2024; Chen et al., 2021). During inference, we estimate the
importance of each context token by measuring its relevance with this oracle guidance. Tokens with low correspondence to
the anticipated question distribution are progressively evicted until the retained KV cache fits the memory budget.

In contrast to prior approaches that rely on token retention heuristics based on internal model-specific computational
characteristics (Li et al., 2024a; Feng et al., 2024; Xiao et al., 2024a; Cai et al., 2024; Fu et al., 2024), OracleKV leverages
external statistical priors about likely information requirements at the data level. This design makes it highly flexible and
model-agnostic: OracleKV can be seamlessly integrated with existing KV cache compression frameworks to enhance their
performance, especially under question-independent scenarios.

This paper makes following principal contributions. (1) We identify the root cause of challenges of question-independent KV
cache compression (Section C and D.1); (2) We build a theoretical model statistically illustrating the relationship between
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Ted Brimble was born on 28 June 1910 in 
Moleno, ...
He began elementary school in ......
Ted married .... on 26 October 1929....
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team, and ...
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Figure 10. Question-aware KV cache compression vs. question-independent KV cache
cache compression.

information induced by the question and required information to answer the question ((Section D.1). Then, we present a
data-level intervention technique, OracleKV, designed to address question-independent KV cache eviction (Section D.2).(3)
Our empirical evaluation shows that OracleKV results in a significant performance increase under the question-independent
setting, on both single-turn long-context tasks (e.g., RAG-style pre-caching) and multi-turn dialogue scenarios, suggesting
that OracleKV introduces a useful inductive bias. (Section E).

B. Related Work
KV Cache Eviction. Leveraging the inherent sparsity in the self-attention mechanisms, early studies (Liu et al., 2024b;
Zhang et al., 2023) propose maintaining a queue with a pre-allocated budget and progressively evicting unimportant cache
entries during the inference. StreamingLLM (Xiao et al., 2024b) and LM-Infinite (Han et al., 2024) utilize the attention sink
phenomenon to retain both initial and most recent tokens. SnapKV (Li et al., 2024a) uses attention scores with recent tokens
to estimate importance. PyramidKV (Cai et al., 2024), PyramidInfer (Yang et al., 2024c) and CAKE (Qin et al., 2025)
dynamically adjust KV cache retaining ratio of different layers. DuoAttention (Xiao et al., 2024a) employs a learning-based
method to identify compression-insensitive attention heads, while HeadKV (Fu et al., 2024) classifies heads based on their
retrieval and reasoning utility. However, most existing methods (e.g. (Li et al., 2024a; Cai et al., 2024; Yang et al., 2024c;
Qin et al., 2025; Feng et al., 2024; Fu et al., 2024; Hao et al., 2025)) rely heavily on importance metrics derived from the
attention scores with given the exact question, limiting their robustness and applicability in real-world question-independent
scenarios. In contrast, our approach operates at the data level, leveraging surface-level statistical regularities in the question
distribution, making it compatible with existing methods and easily integrable into a broader range of applications.

In-Context Learning/Instruction Following. Early studies (Devlin et al., 2019; Liu et al., 2019) observed that language
models can ”learn” to perform a task from a few shot input-output examples provided in context at inference. (Xie
et al., 2021) interprets the emergence of in-context learning by inferring the shared latent concept among demonstration
examples. Based on these, OracleKV affects the attention behavior through in-context data manipulation, aiming to select
instruction-correlated tokens.

Recent Works. Several recent works evaluate the importance of KV entries without the question. (Feng et al., 2025) identify
the value states within KV entries are critical, isolated with the attention matrices. However, their approach stem from
predictive perturbation analysis and do not focus on the question-independent scenarios. KV-Distill (Chari et al., 2025)
employs a distillation-based algorithm to select important tokens but need to retrain the model for days, and may overfit the
training data. More related works are provided in Appendix due to limited space.

C. Preliminary
Revisit of KV Caching. Modern LLMs (OpenAI, 2023; Anthropic, 2024; Touvron et al., 2023) typically perform
transformer-based auto-regressive generation (Achiam et al., 2023). We begin to revisit the core self-attention (Vaswani
et al., 2017) operation. For an attention layer parameterized by projection matrices WQ,WK ,WV , the query, key, and
value are computed by:

Q = XWQ, K = XWK , V = XWV , (3)
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with the input sequence X ∈ RL×d of length L and dimension d. The self-attention is defined as (Vaswani et al., 2017):

Attention(Q,K,V) = Softmax(
QKT

√
d

)V = AV, (4)

where A denotes the attention matrix. During auto-regressive generation, each newly generated token xi necessitates
recalculating QKT, which is computationally expensive. The goal of KV caching is to transform the recomputation of
QKT to qiK

T by caching the key and value state K and V (Pope et al., 2023):

K = Concat(K,xiWK), V = Concat(V,xiWV ) (5)

where qi = xiWQ. Eq(5) highlights the length of KV cache grows linearly with the input sequence length, results in
significant memory footprint and computational costs in long context inference.

Attention-based KV Cache Eviction. Generally, X is a concatenation of context Xctx and question Xques (or instruction).
We denote its KV cache index set as Ω with sequence length L = |Ω|. KV cache compression targets at exploring an subset
of Ω, denoted as C = {li}Bi=1 and cache budget B, to maintain the model’s complete capability. StreamingLLM (Xiao et al.,
2024b) and LM-Infinite (Han et al., 2024) utilize a heuristic attention sink phenomenon to retain both initial and recent KV
cache. Score based methods (Li et al., 2024a; Cai et al., 2024; Qin et al., 2025; Xiao et al., 2024a) select the top B entries
based on the attention score within a Lw-long window (i.e. the observation window) in the tail of the context:

argmax
C

L∑
i=L−Lw

A[i, : −Lw], s.t. |C| = B. (6)

Question-independent Scenarios. However, the success of these methods depends on identifying relevant tokens with
high overlap of the observation window or indexes with high attention score. In question-independent scenario, X = Xctx
and question Xques is not given during prefilling. When the exact question Xques is not given, these methods fail to capture
crucial information related to Xques in the context Xctx as shown in Figure 11.

D. OracleKV
D.1. An Information Retaining Perspective of KV Cache Eviction

In this section, we investigate how an LLM can answer a question from the perspective of retaining information, even when
only a subset of cache entries is preserved. We visualize the attention distribution induced by pure context Xctx and the

10
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query Xques in Figure 11, which reveals that accuracy degradation primarily results from a mismatch between: (1) the KV
cache entries retained by a given eviction algorithm, and (2) the entries actually required to answer the question, as measured
by their position and relevance with the question token.

In light of this, we build a statistical model to describe the relationship between question answering and the information
retaining. Formally, for an answerable question q (i.e. Xques), let Q denote the ideal set of token indexes that are critical for
maintaining the model’s ability to answer q. The predictive accuracy is positively correlated with |Q∩C|, where C represents
the set of retained cache entry indexes (defined in Sec C). The objective of KV cache compression can be summarized as to
optimize the retention process so that the retained entry indexes better align with Q, effectively ensuring that the critical
information required to answer the question is preserved. We begin with the assumption of semantic types for KV entries.

Assumption D.1. Each KV entry KVi, i ∈ Ω, its retrained information belongs to one of K semantic ”types” (such as
topics, concepts, etc.).

For required cache indexes Q, the KV entries retrained information belongs to type Ti account for:

PQ(Ti) =
|{KVj|type of KVj ∈ Ti, j ∈ Q}|

|Q|
. (7)

On the other hand, the retained cache indexes C, under a budget B = |C|, exhibits a type distribution given by:

PC(Ti) =
|{KVj|type of KVj ∈ Ti, j ∈ C}|

|C|
, |C| = B (8)

Our goal is to show that the index overlap of retrained caches and required caches |Q∩ C| ↑ as the semantic type distribution
PC aligns to PQ. Based on Assumption G.1, we derive the following theorem.

Theorem D.2. Let the semantic type of cache entries with index C be a discrete variable TC , and the semantic type of cache
entries with index set Q be a discrete variable TQ. The infimum of expected predictive accuracy is positively correlated to:

inf
C⊆Ω

ETC∼PC,TQ∼PQ (|Q ∩ C|) ∝ 1−DKL(PQ || PC). (9)

Remark D.3. Theorem G.3 indicates that the infimum of predictive accuracy is inversely correlated with the KL divergence
between PQ and PC . Specifically, as PC more closely matches PQ, the retained entries are more likely to be relevant to the
query q, thereby improving predictive performance. See proofs in Appendix A.1.

D.2. Attention Manipulation via Data-level Intervention

Building on the insights from Theorem G.3, our objective is to align PC(Ti) with PQ(Ti) as closely as possible, ensuring
that the retained entries effectively cover the semantic diversity required to answer the question. Result from Figure 11
provide a possibility to impose constraints on probability mass by manipulating attention over specific regions through data
level manipulation.
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Based on the idea, we aim to control the distribution of attention across semantic types in the retained entries. We resort
to recent studies (Handa et al., 2025; Maslej et al., 2025) that indicates users exhibit distinct preferences across task
types when interacting with large language models (LLMs). Specifically, (Handa et al., 2025) reports that over 30% of
Claude (Anthropic, 2024) dialogues are dedicated to code generation tasks. In artistic fields, approximately 10% of LLM
usage is devoted to writing tasks, including technical writing, advertising copy, and archival work, while report writing
and book processing account for 4–6% of total dialogues. Additionally, (Handa et al., 2025) emphasizes the significance
of LLMs in supporting writing refinement (e.g., rewriting) and academic reading tasks (e.g., information retrieval and
interpretation). Moreover, (Maslej et al., 2025) underscores that the widespread adoption of LLMs hinges on their advanced
capabilities in processing long-context information—such as retrieval, reasoning, and summarization—frequently applied in
complex scenarios like clinical note processing. We summarize the dominant information types associated with common
long-context tasks from (Handa et al., 2025; Maslej et al., 2025) in Figure 12.

We propose a data-level intervention method to manipulate attention distribution. An overview of our method is presented in
Fig.13. We begin by manually designing an oracle guidance Õ of length Lo, which encodes surface statistics of prevalent
information types in large-scale dialogues (Handa et al., 2025; Maslej et al., 2025). This oracle guidance Õ is then appended
to the input context Xctx as a substitude of Xques (question q), allowing it to steer the attention distribution during the
prefilling phase:

Q = WQConcat(Xctx, Õ), K = WKConcat(Xctx, Õ), V = WV Concat(Xctx, Õ). (10)

Following the instruction format described in (Zhou et al., 2023), we design Õ to encourage the model to assign higher
attention to tokens representing specific information types as in Figure 14. We provide specific examples of Õ in Appendix.
With analysis in Figure 11, we make reasonable assumption:

Assumption D.4. The attention matrix explicitly reflects the semantic correlation between KV entries.

Our goal is to select the KV entries semantically correlated to the oracle Õ. Based on the Assumption D.4, we focus on
the attention scores within the cache entry window of Õ, as illustrated in Fig. 13, and retain the top B entries using the
following criterion:

argmax
C

L∑
i=L−Lo

A[i, : −Lo], s.t. |C| = B. (11)

Finally, we manually exclude the KV entries corresponding to Õ itself, as these surface statistics do not directly contribute
to answering the query. With Theorem G.3 and Assumption D.4, Our method result in a corollary:

Corollary D.5. Let C̃ be the retrained index set with oracle guidance Õ. The oracle guidance Õ constrains the probability
mass of PC̃ over specific semantic regions Ri (Ri ∩Rj = ∅, i ̸= j) as follows:

PC̃(Ri) =
∑

Ti∈Ri

PC|Õ(Ti) =
∑

Ti∈Ri

PQ(Ti) = PQ(Ri), (12)

The following inequality holds:

inf
C̃⊆Ω

ETC̃∼PC̃,TQ∼PQ

(
|Q ∩ C̃|

)
≥ inf

C⊆Ω
ETC∼PC,TQ∼PQ (|Q ∩ C|) (13)

Remark D.6. Corollary D.5 shows that oracle guidance improves predictive accuracy by redistributing probability mass over
semantic types to better align with PQ, thereby enhancing the retention of relevant entries. See proofs in Appendix A.1.

E. Experiment
Datasets and Backbone LLMs. We evaluate the performance of OracleKV using several well-established benchmarks.
We choose Longbench (Bai et al., 2024), RULER (Hsieh et al., 2024) and Needle-In-A-Haystack (Kamradt, 2023) to
evaluate the performance of OracleKV in single-turn dialogues (matching prefix-caching scenarios), and SCBench (Li et al.,
2024b) for multi-turn dialogues (matching multi-turn dialogues shared prefix-caching). Our experiments are conducted
on three state-of-the-art, open-source, instruction-tuned LLMs: Mistral-7B-Instruct-v0.2, Llama-3.1-8B-Instruct, and
Qwen2.5-7B-Instruct, offering context window sizes of 32K, 128K, and 1M, respectively.
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Figure 15. Performance comparison on RULER (Hsieh et al., 2024) benchmark. OracleKV provides superior KV budget and accuracy
trade-off on most subtasks.
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Figure 16. Oracle Guidance provides significant performance increase on the Needle-In-A-Haystack (Kamradt, 2023) pressure test while
integrating into uniform (SnapKV(Li et al., 2024a)), layer-wise (PyramidKV (Cai et al., 2024)) and head-wise (Ada SnapKV (Feng et al.,
2024)) budget allocation methods.

Compared Baselines. We compare OracleKV against several strong baselines categorized as: (1) Progressive Eviction
Methods, including StreamingLLM (Xiao et al., 2024b) and H2O (Zhang et al., 2023); (2) Selection-Based Methods,
exemplified by SnapKV (Li et al., 2024a); (3) Layer-Level Methods, represented by PyramidKV (Cai et al., 2024); and
(4) Head-Level Methods, including DuoAttention (Xiao et al., 2024a) and AdaKV (Feng et al., 2024). These baselines
offer a diverse range of approaches for comparison, ensuring a comprehensive evaluation of OracleKV. The detailed oracle
guidance and further details regarding the implementation and justification of these baselines are provided in Appendix A.2.

E.1. Accuracy Evaluation
We evaluate OracleKV on four benchmarks: Longbench(Bai et al., 2024), RULER(Hsieh et al., 2024), Needle-In-A-
Haystack(Kamradt, 2023), and SCBench (Li et al., 2024b). For Longbench and SCBench, we compare OracleKV against
baselines under KV budgets of 40% and 10% with context length of 60K for Llama and 32K for Mistral. Additionally, we
integrate the head-level adaptive allocation strategy from(Feng et al., 2024) into OracleKV, denoted as Ada OracleKV. Note
that the original design of H2O (Zhang et al., 2023) is unsuitable for long-context scenarios due to its quadratic memory
cost during the prefilling. We evaluate H2O on the RULER benchmark with 4K context length on both Llama and Qwen.
The overall accuracy experimental results are provided in Appendix A.3.

LongBench(Bai et al., 2024) is a comprehensive multi-task benchmark suite meticulously designed to evaluate the long-
context understanding capabilities of LLMs across diverse scenarios. Table 2 presents the performance of various methods
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Figure 17. Prefilling latency and memory footprint of OracleKV comparing with other methods across different context length: (1)
Comparison of peak memory usage. (2) Comparison of prefilling latency. (3) The computation cost scales with the length of the oracle
guidance.

across five task types, encompassing 14 datasets. OracleKV consistently demonstrates superior performance on most
tasks. Notably, under a 10% cache budget, OracleKV and its variant significantly outperforms other methods across solid
majority of all tasks on both models, achieving an average improvement of 6.7% for Llama and 1.6% for Mistral. This result
highlights its superior adaptability under extreme memory constraints.

RULER(Hsieh et al., 2024) is specifically designed benchmark to evaluate a model’s ability to identify and retrieve relevant
information from long contexts, which includes complex needle-in-a-haystack tests. Figure 15 illustrates the performance
across five retrieval subtasks, comparing baselines with KV budgets ranging from 100% to 10%. OracleKV demonstrates an
exceptional tradeoff between memory budget and accuracy across most subtasks, highlighting its strong retrieval capabilities.
Notably, OracleKV experiences a minimal performance drop on three subtasks with only 30% of the KV budget.

Needle-In-A-Haystack (NIAH)(Kamradt, 2023) is a widely adopted benchmark designed to rigorously assess a model’s
ability to retrieve a specific string (the “needle”) from a context (the “haystack”). As shown in Figure16, baseline methods
struggle to extract the correct answer from contexts of varying depths. Notably, these methods demonstrate significant
improvement when integrated with Oracle Guidance, highlighting its effectiveness in refining retrieval accuracy. This
performance boost is particularly evident in deeper contexts, where other methods typically experience sharp declines in
retrieval precision. OracleKV’s robust handling of long-context scenarios thus proves crucial in improving the model’s
overall reliability in practical retrieval tasks.

Multi-turn Benchmark. To investigate performance in real-world multi-turn dialogues, we evaluate OracleKV along with
all baselines on the multi-turn SCBench(Li et al., 2024b). SCBench is a challenging KV-centric multi-turn benchmark that
includes various tasks such as QA, choice, summary, and many-shot in-context learning, where each shared context involves
at least four turns of dialogue. Table2 shows that OracleKV consistently outperforms all other baselines on most tasks,
maintaining superior performance under the same KV budget across all three models.

E.2. Efficiency Evaluation
We evaluate the prefilling latency and memory footprint of Oralce on Llama-3.1-8B-Instruct for 96K context prefilling and
Qwen2.5-7B-Instruct for 240K context prefilling. All experiments are conducted with a fixed 4K KV cache budget BF16
inference on a single A100 GPU. Since the primary goal of OracleKV is to compress KV cache in context-only scenarios
without on-the-fly requirement, we do not evaluate its decoding efficiency.

Peak Memory Usage. As shown in 17(1), OracleKV shows comparable memory savings with uniform budget allocation
strategies (SnapKV (Li et al., 2024a)) and layer-pattern budget allocation strategies (PyramidKV (Cai et al., 2024)), both of
which significantly reduce memory consumption compared to full attention. Notably, OracleKV saves 26.7% with on Llama
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Figure 18. Ablation studies of OracleKV: (1) Comparison of OracleKV with varying descriptive granularity, showing the superior of
high-level descriptive oracle guidance. (2) Analysis of OracleKV with guidance with different information coverage, showing the
task-specific guidance results in performance increase on corresponding task but with the loss of generalization capability accordingly. (3).
Comparison of retraining and evicting the KV entries of oracle guidance.

model with 96K context length, while saving more than 62% memory on Qwen model with 120K context length.

Prefilling Latency (Time-To-First-Token). Figure 17(2) illustrates the prefilling latency for each method. OracleKV
achieves comparable prefilling speed to PyramidKV (fixed-pattern allocation) while being marginally slower than SnapKV
(uniform allocation). This tradeoff reflects the efficient cache management of OracleKV.

Computational Cost with Guidance Length. To further investigate the computational efficiency of OracleKV, we examine
how its memory footprint and prefilling latency scale with the guidance length, using context lengths of 64K and 150K. As
shown in Figure 17(3), the memory usage increases significantly beyond a guidance length of 512 tokens. For a guidance
length of 1K, peak memory usage increases by 1.63× and 1.98× for 64K and 150K contexts, respectively. Prefilling latency
(TTFT) also increases, with a 1.18× increase for the 64K context and a 1.11× increase for the 150K context. These findings
illustrate the tradeoffs between guidance length and computational efficiency in OracleKV, providing insights into optimal
configuration choices for various scenarios.

E.3. Ablation Study
We perform ablation studies on the multi-key retrieval and summarization tasks to investigate the effect of various design
choices in OracleKV, with Llama-3.1-8B-Instruct model of KV cache budget ranging from full cache to 5% budget.
Appendix A.4 presents more specific design of OracleKV.

Descriptive Granularity. We examine the effect of descriptive granularity in oracle guidance with three levels: (1)Abstract
Level: the oracle guidance provides generalized instructions, such as ”Please remember the specific details.” (2) Contextual
Level: The guidance specifies information types as ”Please remember the numerical information.” (3) Specific Level:
The guidance explicitly lists information types with examples, such as ”Please remember numerical information, such as
timelines, birthdays, and percentages.” As shown in Figure 18(1), contrary to our initial expectations, the abstract-level
guidance outperforms other two on both tasks, suggesting that concise, high-level instructions are more effective in guiding
the model than overly detailed descriptions.

Information Coverage of Oracle Guidance. We further explore the impact of information coverage in oracle guidance by
tailoring the guidance to the target task (e.g., specifying ”This is a retrieval task.”). Figure 18(2) shows that task-specific
guidance significantly enhances performance on the corresponding task but leads to performance degradation on other
tasks. In contrast, the default general (surface-level) guidance achieves balanced performance across all tasks. This finding
indicates that task-specific oracle guidance can significantly boost performance when the task is explicitly known. However,
it also impair the model’s generalization capabilities, accordingly.

Retraining vs. Evicting Oracle Guidance. Finally, we investigate the effect of maintaining or evicting oracle guidance
in the KV cache. As shown in Figure 18(3), retaining oracle guidance leads to a substantial performance drop as the KV
cache budget decreases. This decline occurs because the oracle guidance–descriptive rather than factual–occupies valuable
KV cache space without contributing directly to the task’s answer. evicting the oracle guidance effectively mitigating the
adverse impact of retaining invasive, non-essential guidance.
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F. Conclusion
We present OracleKV, a data-level intervention approach designed for question-independent KV cache compression.
OracleKV steers the attention distribution of by appending an oracle guidance to the pure context. It then selects KV entries
that are semantically correlated with oracle guidance based on attention score. Comprehensive experiments demonstrate
OracleKV results in a significant performance increase on four long-context benchmarks under question-independent setting.
We do not claim that OracleKV alone constitutes a state-of-art data-level solution for KV cache compression. Rather,
we view it as a promising step toward more adaptive and context-aware cache compression. With extensive validation
and development, OracleKV could serve as an useful component within a broader, more comprehensive framework for
long-context inference.
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Table 2. Average performance of various baselines across different LLMs in single-turn (Bai et al., 2024) and multi-turn (Li et al., 2024b)
benchmarks. We compare OracleKV with baselines under 40% and 10% KV budget.

Method Budget Single-turn LongBench Multi-turn SCBench
Sin.QA Mul.QA Sum. Few.Shot. Syn. AVG. M.C. M.S. M.F. QA.En QA.Ch Sum. AVG.

LLaMA-3.1-8B-Instruct

Full Cache 100% 44.3 47.0 29.2 51.1 55.6 45.7 5.7 40.0 28.0 20.9 27.5 30.9 25.8

StreamingLLM

40%

27.9 34.6 25.7 53.4 26.1 33.5 7.9 38.2 12.2 18.0 16.3 22.3 19.1
SnapKV 35.3 44.8 26.5 53.6 54.5 42.9 6.1 44.4 22.5 17.8 23.5 27.7 23.7
PyramidKV 34.1 35.3 25.7 55.3 51.5 40.4 5.5 42.8 19.5 18.6 19.9 23.5 21.6
Ada SnapKV 37.0 45.6 26.7 55.1 54.3 44.1 5.7 40.4 19.8 19.3 24.0 28.3 22.9
DuoAttention 42.4 44.3 27.2 53.5 52.8 43.5 8.3 39.6 15.3 18.6 25.4 29.4 22.8
OracleKV 40.9 46.4 27.4 54.0 56.1 45.0 5.2 44.2 23.3 20.5 25.7 29.8 24.8
Ada OracleKV 42.0 45.5 27.6 53.4 55.8 44.9 5.7 43.0 22.9 20.5 27.2 30.5 24.9

StreamingLLM

10%

20.7 24.6 21.3 51.0 10.0 25.5 6.6 38.9 12.0 15.6 10.1 20.8 17.3
SnapKV 22.6 29.6 21.7 51.6 29.5 30.1 6.1 50.7 21.2 15.2 14.5 22.3 21.7
PyramidKV 21.3 24.0 21.7 51.8 27.1 29.2 5.2 48.8 20.6 13.6 11.0 21.4 20.1
Ada SnapKV 24.1 30.7 22.3 51.7 31.5 32.1 5.7 50.4 20.3 14.7 15.9 23.0 21.7
DuoAttention 18.2 23.3 21.4 49.4 28.0 28.1 7.4 47.4 19.7 12.3 7.6 25.3 20.0
OracleKV 24.5 33.2 23.5 56.3 45.3 36.5 6.1 45.2 21.3 18.5 18.1 25.9 22.5
Ada OracleKV 28.8 34.0 23.8 58.3 49.3 38.8 5.7 50.4 21.0 17.0 19.3 26.3 23.3

Mistral-7B-Instruct-v0.2

Full Cache 100% 32.1 24.3 27.7 55.4 38.5 35.6 11.4 64.1 5.7 6.1 10.1 24.0 20.2

StreamingLLM

40%

19.5 18.5 25.4 46.3 16.6 25.3 11.4 57.0 6.0 6.0 8.0 19.3 18.0
SnapKV 23.9 19.4 25.2 53.9 37.9 32.0 10.5 59.3 3.7 6.8 9.1 23.1 18.7
PyramidKV 23.9 20.8 25.1 54.7 34.0 31.7 11.4 61.1 5.7 6.7 9.5 22.5 19.5
Ada SnapKV 24.3 20.0 24.5 53.5 35.6 31.6 11.1 58.5 5.5 6.7 9.7 23.8 19.2
DuoAttention 15.3 14.4 22.4 44.0 6.3 20.5 9.6 56.3 3.5 5.9 4.6 23.7 17.3
OracleKV 25.4 21.1 26.3 53.6 37.2 32.7 11.9 62.6 5.7 6.4 9.5 23.9 20.0
Ada OracleKV 26.4 21.3 26.2 53.7 37.8 33.1 11.5 61.5 4.5 6.4 10.3 24.3 19.7

StreamingLLM

10%

13.9 12.5 21.3 38.6 6.9 18.7 10.5 61.1 3.0 4.5 5.0 20.0 17.4
SnapKV 15.1 13.5 21.8 49.5 23.0 24.6 9.6 59.4 3.2 5.7 6.2 20.5 17.4
PyramidKV 14.6 13.7 21.6 49.2 21.6 24.1 8.3 60.2 6.8 5.2 6.5 20.3 17.9
Ada SnapKV 15.9 14.4 21.7 50.3 26.6 25.8 9.7 59.1 4.6 5.7 6.7 21.1 17.8
DuoAttention 14.0 13.1 20.4 40.8 5.3 18.7 9.2 48.9 2.2 4.4 3.6 21.0 14.9
OracleKV 17.6 13.7 23.3 49.1 26.9 26.1 10.5 59.9 6.0 5.5 8.8 21.1 18.6
Ada OracleKV 18.3 14.1 23.5 48.3 32.6 27.4 10.9 59.7 4.3 5.7 9.1 21.9 18.6
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Limitation and Broader Impact
Limitation. While OracleKV has been experimentally demonstrated to introduce useful inductive bias for KV cache eviction,
it is not exempt from the ”no free lunch” theorem–oracle guidance inevitably entails certain side effects. Specifically, we
observe that in some specialized tasks, such as code generation, where issues related to token frequency are prominent,
the general oracle guidance employed by OracleKV may fail to yield significant improvements. In some cases, it may
even degrade the performance of the LLM on these tasks. Though, designing task-specific oracle guidance can enhance
performance in such scenarios. However, as highlighted in our ablation study, this approach still suffers from side effects in
other tasks.

Moreover, OracleKV involves the computation and explicitly return of the windowed attention matrix, which, to the best
of our knowledge, cannot be optimized using memory-efficient techniques like flash attention (Dao et al., 2022; Dao,
2024). This limitation not only leads to notable latency but also results in high memory usage. In environments with
rigorous memory peak requirements, such as edge devices, this necessitates carefully design within the length limit of oracle
guidance for KV cache eviction. Nevertheless, as demonstrated in our ablation experiments, longer and more detailed oracle
guidance does not always correlate with better performance.

Broader Impact. OracleKV provides a new perspective to guide KV cache eviction in large language models (LLMs) by
leveraging data-level intervention to introduce inductive biases. While OracleKV demonstrates significant performance
improvements in question-independent eviction settings, its potential extension to other setting (such as question-aware or
task-oriented KV cache eviction) presents a exciting direction for future research. Additionally, the limitations of OracleKV,
especially the task-specific nature of its benefits and the increased computational and memory overhead, highlight important
trade-offs in the practical deployment. In particular, the increased latency and memory consumption could pose challenges
for real-time applications on resource-constrained devices. Furthermore, the need for task-specific oracle design raises
concerns about scalability and generalizability, potentially reinforcing disparities between well-resourced and low-resource
tasks or domains. We believe that future work should explore more efficient and generalizable oracle guidance designs that
balance interpretability, performance, and system efficiency, ensuring that such techniques can be equitably applied across a
broad range of use cases.

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

OracleKV: Oracle Guidance for Question-Independent KV Cache Eviction

G. Supplementary Results
G.1. Complete Assumptions/Proofs for Theoretical Results

Assumption G.1. type Each KV entry KVi, i ∈ Ω, its retrained information belongs to one of K semantic ”types” (such
as topics, concepts, etc.).

For required cache indexes Q, the KV entries retrained information belongs to type Ti account for:

PQ(Ti) =
|{KVj|type(KVj) ∈ Ti, j ∈ Q}|

|Q|
. (14)

On the other hand, the retained cache indexes C, under a budget B = |C|, exhibits a type distribution given by:

PC(Ti) =
|{KVj|type(KVj) ∈ Ti, j ∈ C}|

|C|
, |C| = B (15)

Our goal is to show that the index overlap of retrained caches and required caches |Q∩ C| ↑ as the semantic type distribution
PC aligns to PQ. Based on Assumption G.1, we derive the following theorem.

Lemma G.2. (Pinsker’s inequality) Let P and Q be two distributions defined on a universe U , then

DKL(P || Q) ≥ 1

2
||P −Q||21 (16)

We first prove the above inequality for the special case of U = {0, 1}. Then we show how one can prove the general case,
by reducing it to the binary case.

Proof of Lemma G.2. For the binary case:

P =

{
1, w.p. p
0, w.p. 1− p

Q =

{
1, w.p. q
0, w.p. 1− q

(17)

We assume p ≥ q (proof of q ≥ p is similar), and let

f(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
− 1

2 ln 2
(2(p− q))2. (18)

Since
∂f

∂q
= −p− q

ln 2

(
1

q(1− q)
− 4

)
≤ 0, (19)

and f = 0 when q = p, we conclude that f(p, q) ≥ 0 where q ≤ p. By change the logarithm base from 2 to e, we have
DKL(P || Q) ≥ 1

2 ||P −Q||21 for this special case. We consider the general case. Let P and Q be distributions on U , let
A ⊂ U be

A = {x | p(x) ≥ q(x)}. (20)

And PA, QA be

PA :=

{
1, w.p.

∑
x∈A p(x)

0, w.p.
∑

x/∈A p(x)
QA :=

{
1, w.p.

∑
x∈A q(x)

0, w.p.
∑

x/∈A q(x)
(21)

Then,

||P −Q||1 =
∑
x

|p(x)− q(x)| (22)

=
∑
x∈A

(p(x)− q(x)) +
∑
x/∈A

(q(x)− p(x)) (23)

=

∣∣∣∣∣∑
x∈A

p(x)−
∑
x∈A

q(x)

∣∣∣∣∣+
∣∣∣∣∣
(
1−

∑
x/∈A

p(x)

)
+

(
1−

∑
x/∈A

q(x)

)∣∣∣∣∣ (24)

= ||PA −QA||1 (25)
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To caculate the KL-divergence, we define the random variable

Z =

{
1, if x ∈ A,

0, if x /∈ A.
(26)

Since Z is a function of X , we can also think of the two distributions P and Q as joint distributions for the random variables
(X,Z). Applying the chain rule for KL-divergence gives

DKL(P || Q) = DKL(P (X,Z) || Q(X,Z)) (27)
= DKL(P (Z) || Q(Z)) +DKL(P (X|Z) || Q(X|Z)) (28)
≥ DKL(P (Z) || Q(Z)) (29)
= DKL(PA || QA) (30)

≥ 1

2
||PA −QA||2 (31)

=
1

2
||P −Q||21, (32)

which completes the proof.
Theorem G.3. (Theorem 4.2) Let the semantic type of cache entries with index C be a discrete variable TC , and the semantic
type of cache entries with index set Q be a discrete variable TQ. The lowerbound of expected predictive accuracy is
positively correlated to:

inf
C⊆Ω

ETC∼PC,TQ∼PQ (|Q ∩ C|) ∝ 1−DKL(PQ || PC). (33)

Proof. Let Ni = {KVj | type(KVj) ∈ Ti, j ∈ Ω} For a questions with required information type Ti, for a long-context, the
model is possible to answer it correctly only when the retained KV caches contain the information of type Ti. i.e.

E (|Q ∩ C|) ∝
∑
i

|Q|PQ(Ti) ·BPC(Ti)

Ni
= |Q| ·B

∑
i

PQ(Ti)PC(Ti)

Ni
, (34)

∝
∑
t∈ΩT

PQ(t)PC(t) = ⟨PQ, PC⟩. (35)

Where ΩT is the type space. Consider

⟨PQ, PC⟩ = 1− 1

2

∑
t∈ΩT

(PQ(t)− PC(t))
2 = 1− 1

2
||PQ − PC ||22, (36)

since ||x||2 ≤ ||x||1, we have
||PQ − PC ||22 ≤ ||PQ − PC ||21. (37)

By Pinsker’s inequality (Lemma G.2), we have

||PQ − PC ||1 ≤
√

2DKL(PQ || PC), (38)

then substitute Eq(38) to Eq(35) and we have

E (|Q ∩ C|) ∝
∑
t∈ΩT

PQ(t)PC(t) ≥ 1−DKL(PQ || PC), (39)

which completes the proof.
Corollary G.4. Let C̃ be the retrained index set with oracle guidance Õ. The oracle guidance Õ constrains the probability
mass of PC̃ over specific semantic regions Ri (Ri ∩Rj = ∅, i ̸= j) as follows:

PC̃(Ri) =
∑

Ti∈Ri

PC|Õ(Ti) =
∑

Ti∈Ri

PQ(Ti) = PQ(Ri), (40)

The following inequality holds:

inf
C̃⊆Ω

ETC̃∼PC̃,TQ∼PQ

(
|Q ∩ C̃|

)
≥ inf

C⊆Ω
ETC∼PC,TQ∼PQ (|Q ∩ C|) (41)

20



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

OracleKV: Oracle Guidance for Question-Independent KV Cache Eviction

Proof of Corollary G.4. Based on Theorem G.3, we show above inequality by proving DKL(PQ || PC̃) ≤ DKL(PQ || PC).
We first define a random variable Z that indicates the region to which a type T belongs to Z = i if T ∈ Ri. Since the
regions are disjoint and exhaustive, Z is a deterministic function of T , The chain rule for KL-divergence allows us to express
the divergence over the joint distribution of (T,Z):

DKL(P (T ) || Q(T )) = DKL(P (Z) || Q(Z)) +
∑
z

DKL(P (T |Z = z) || Q(T |Z = z)), (42)

where P (Z) and Q(Z) are the marginal distributions over the regions, and P (T |Z = z) and Q(T |Z = z) are the conditional
distributions within region z. KL-divergence calculation:

DKL(PQ || PC) = DKL(PQ(Z) || PC(Z)) +
∑
i

PQ(Z = i)DKL(PQ(T |Z = i) || PC(T |Z = i)) (43)

where

PQ(Z = i) = PQ(Ri) =
∑
t∈Ri

PQ(t) (44)

PC(Z = i) = PC(Ri) =
∑
t∈Ri

PC(t) (45)

PQ(T = t|Z = i) =
PQ(t)

PQ(Ri)
, w.r.t. t ∈ R (46)

PC(T = t|Z = i) =
PC(t)

PC(Ri)
, w.r.t. t ∈ R (47)

And then we calculate

DKL(PQ || PC̃) = DKL(PQ(Z) || PC̃(Z)) +
∑
i

PQ(Z = i)DKL(PQ(T |Z = i) || PC̃(T |Z = i)) (48)

Assumption G.5. The type distribution PC and PC̃ are identical on regions Ri in the sense of expectation. or

DKL[PQ(T |Z = i) || PC̃(T |Z = i)] = DKL[PQ(T |Z = i) || PC(T |Z = i)] (49)

Then we compare the KL-divergence

DKL(PQ || PC)−DKL(PQ || PC̃) (50)
= [DKL(PQ(Z) || PC(Z))−DKL(PQ(Z) || PC̃(Z))] (51)

+[
∑
i

PQ(Z = i)DKL(PQ(T |Z = i) || PC(T |Z = i)) (52)

−
∑
i

PQ(Z = i)DKL(PQ(T |Z = i) || PC̃(T |Z = i))] (53)

By Assumption G.5, the second term vanishes. For the first term, since

DKL(PQ(Z) || PC̃(Z)) =
∑
i

PQ(Z = i) ln
PQ(Ri)

PC(Ri)
(54)

=
∑
i

PQ(Ri) ln
PQ(Ri)

PQ(Ri)
= 0, (55)

thus we have

DKL(PQ || PC)−DKL(PQ || PC̃) = DKL(PQ(Z) || PC(Z)) ≥ 0, (56)

which completes the proof.
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G.2. Implementation Details

Table A3. Detailed dataset configuration of all experiments. Our experiments involve four datasets with comprehensive datasets and
varying context length.

Benchmark Task Dataset Average Length Test Length

LongBench (Bai et al., 2024)

Single-Document QA
NartvQA 18409

60000(Llama)
32000(Mistral)

Qasper 3619
MultiFieldQA-En 6701

Multi-Document QA
HotpotQA 9151

2WikiMQA 4887
Musique 11214

Summarization
GovReport 8734
QMSum 10614

MultiNews 2113

Few-shot Learning
TREC 5177

TriviaQA 8209
SAMSum 6258

Synthetic Passage Count 11141
Passage Retrieval 9289

Code Lcc 1235
Repobench-p 4206

SCBench (Li et al., 2024b)

Multiple Choice Multiple Choice 188000

In-Context Learning Many Shot 22000

Math Find Math Find 120000

Question Answering QA.En 198000
QA.Ch 1500000

Summarization Summarization 18409

RULER (Hsieh et al., 2024)

NIAH Single
NIAH-Single-1

4000 4000 for Llama
and Qwen

NIAH-Single-2
NIAH-Single-3

NIAH Multikey
NIAH-Multikey-1
NIAH-Multikey-2
NIAH-Multikey-3

NIAH-Multiquery Summarization

NIAH-Multivalue Summarization

Variable Tracing Variable Tracing

Word Extraction Common Word Extraction
Frequent Word Extraction

Question Answering QA.1
QA.2

Needle-In-
-A-Haystack (Kamradt, 2023)

NIAH Single Synthetic depth
0%∼100%

2K∼32K(Mistral)
8K∼128K(Llama)

G.2.1. DATASET CONFIGURATION

We adopt four benchmark datasets for our experiments: LongBench(Bai et al., 2024), RULER(Hsieh et al., 2024), and
Needle-In-A-Haystack(Kamradt, 2023). Detailed configurations of the datasets used are provided in TableA3.

For LongBench, we evaluate OracleKV and compare it with baseline methods on 14 tasks (excluding code-related tasks).
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Results for the code tasks are reported separately in the subsequent section. Due to the unavailability of head-level
identification files for Qwen2.5(Yang et al., 2024a), we omit the DuoAttention(Xiao et al., 2024a) results on Qwen2.5.

Regarding H2O (Zhang et al., 2023), its original design is not well-suited for long-context inference (e.g., 32K tokens) due
to the high memory cost of window attention, which leads to out-of-memory (OOM) errors for context lengths exceeding
11K tokens.

For RULER, we use a 4K context length to evaluate and compare the performance of OracleKV and other baselines on a
subset of the tasks.

G.2.2. EXAMPLES OF ORACLE GUIDANCE

Table A4 provides some examples of the oracle guidance. The general oracle guidance contain that we use for accuracy and
efficiency experiments. The task-specific oracle guidance contain that we we use for ablation experiments.

G.2.3. DETAILS OF EXPERIMENTAL ENVIRONMENT AND BASELINE

We use PyTorch 2.3.1 as our primary experimental platform. Our implementation is based on the NVIDIA KVPress
repository (kvp, 2025), which also serves as the codebase for most baseline methods.

All experiments are conducted using a server equipped with an AMD EPYC 7742 64-Core Processor, 256 GB of CPU
memory, and four GPUs: three NVIDIA L40 GPUs for accuracy evaluations and ablation studies, and one NVIDIA A100
GPU for efficiency experiments.

For H2O(Zhang et al., 2023), since the original algorithm is not designed to perform KV cache eviction during the prefilling
stage, we modify it to begin eviction only after prefilling is complete. For DuoAttention(Xiao et al., 2024a), whose effective
compression ratio varies dynamically with input length, we adaptively set the head compression ratio per input to maintain a
fixed KV cache budget. Additionally, to ensure a fair comparison, we disable all on-the-fly decoding mechanisms across all
baselines.

G.3. Supplementary Accuracy Evaluation Results

G.3.1. SUPPLEMENTARY RESULTS FOR LONGBENCH

We present the detailed results on LongBench (Bai et al., 2024) in Table A5, Table A6, and Table A7. These include extended
evaluations of Qwen2.5-7B-Instruct-1M on LongBench, as well as two additional code datasets that are not reported in the
main paper.

We observe that LLaMA-3.1-8B-Instruct is generally more robust than both Mistral-7B-Instruct-v0.2 and Qwen2.5-
7B-Instruct-1M across tasks. Notably, the performance of KV cache compression methods on multi-document QA
datasets—such as HotpotQA and MuSiQue (Table A5)—tends to be unstable. In some cases, the compressed models
actually outperform the full model. This is especially pronounced with Qwen2.5-7B-Instruct-1M, where several KV
compression methods exceed the full-model performance on both single-document QA (e.g., NarrativeQA) and multi-
document QA (e.g., MuSiQue).

Interestingly, OracleKV leads to slight degradation on some multi-document QA datasets (e.g., 2WikiMQA) compared
to head-level compression methods such as DuoAttention(Xiao et al., 2024a) and Ada SnapKV(Feng et al., 2024), under
the 40% KV cache budget. However, under the extreme condition of a 10% KV cache budget, OracleKV consistently
outperforms all other methods across nearly all single- and multi-document QA datasets, highlighting its strong adaptability
in low-memory scenarios.

As shown in Table A6, most KV cache compression methods lead to performance improvements on few-shot learning and
in-context learning tasks across all three models—particularly on the TREC dataset. This suggests that longer contexts
may degrade few-shot performance. Additionally, streaming-based methods such as StreamingLLM(Xiao et al., 2024b)
and DuoAttention(Xiao et al., 2024a) show a notable advantage on TriviaQA. Again, OracleKV demonstrates a superior
accuracy–memory trade-off on both summarization and few-shot learning tasks, particularly under the 10

For passage count and passage retrieval tasks, as shown in Table A7, OracleKV delivers significant performance gains on
LLaMA-3.1-8B-Instruct under both 10% and 40% KV cache budgets. For Mistral-7B-Instruct-v0.2, OracleKV outperforms
all baselines on passage retrieval and achieves competitive performance with head-level methods on passage count at the
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Table A4. Example of Oracle guidance. The general oracle guidance can yield improvements on most of the tasks. The task-specific
oracle guidance can yield significant performance increase on corresponding tasks.

General

Next, you will be presented with a series of questions regarding the context above, including specific
details about the narrative, content, and numerical information. Also, Do not forget the global information
and the relations between entities. And note the structural cues. Please retain these details and provide
accurate responses.

Next, you will be presented with a series of questions regarding the context above. including specific
details about the narrative, content, numerical information and key global information. The questions
may also involve small fragmented relationships from the context, including term relationships, causal
relations, and temporal relations. Please retain these details and provide accurate responses.
Next, you will be presented with a series of questions regarding the context above. Please remember the
following information: 1. specific details like names, places, and numbers; 2. main theme, like overall
message; 3. relations, like family ties and event linkages, 4. semantic details, like grammar dependencies
and narrative information between words.

Analyze the given text carefully. Your tasks include: 1) Answering factual questions accurately. 2)
Generating concise summaries. 3) Demonstrating in-context learning. 4) Writing code based on the text.
5) Counting paragraphs. 6) Retrieving specific strings. 7) Extracting numerical values. 8) Selecting
correct answers in multiple-choice questions. 9) Calculating extreme values from arrays. Always ensure
your answers are strictly based on the provided text.

Carefully read and analyze the provided text. Your tasks involve multiple types of questions, each
requiring precise information extraction from the text. Specifically, you will: 1) Answer factual questions
by identifying accurate details directly from the text. 2) Generate concise and coherent summaries
without introducing any external information. 3) Demonstrate in-context learning by recognizing patterns
or concepts reflected in the text. 4) Write code accurately based on the textual instructions or examples.
5) Count the total number of paragraphs accurately. 6) Search and retrieve specific strings or terms
mentioned in the text. 7) Extract and list numerical values, maintaining their original form. 8) Solve
multiple-choice questions by selecting the most accurate answer based on the content. 9) Identify and
calculate extreme values (maximum, minimum) from any given array of numbers in the text. Always
ensure that your responses are strictly grounded in the provided text. Do not infer, assume, or generate
information beyond what is explicitly stated. Maintain clarity, accuracy, and completeness in your
answers. Stay focused on the input context and prioritize factual consistency.

Task-specific

Next, you will be asked with some questions about the context above. These questions includes: question
answering, summarization, code completion, in-context learning, paragraph counting, retrival, etc. Please
remember the relevant information and answering the question.

Next, you will be asked with some questions about the context above. These questions will ask you to
summarize the above context includes: question answering, summarization, code completion, in-context
learning, paragraph counting, retrieval, etc. Please remember the relevant information and answering the
question.

Next, you will be asked to write a summary of all the contexts above. Please take care of the global
information.

Next, you will be asked to find a special number in the context above. Please take care of the relevant
information.
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Table A5. Detailed results of LongBench (Bai et al., 2024), including Single-Document QA datasets(NartvQA, Qasper, and MF-en) and
Multi-Documents QA datasets(HotpotQA, 2WikiMQA, and Musique).

Method Budget NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique

LLaMA-3.1-8B-Instruct

Full Cache 100% 31.99 48.20 57.18 57.56 48.92 28.19

StreamingLLM

40%

23.44 30.69 29.64 47.29 33.94 22.43
SnapKV 27.04 35.66 43.22 56.79 47.50 30.06

Ada SnapKV 27.28 39.60 44.25 56.11 50.05 30.66
PyramidKV 26.85 33.16 42.14 47.17 39.22 19.60

DuoAttention 28.55 41.08 50.68 54.80 48.91 29.24
OracleKV 29.10 42.33 51.34 58.16 48.51 32.61

Ada OracleKV 28.51 44.44 53.04 57.47 47.41 31.47

StreamingLLM

10%

20.59 18.44 22.95 37.24 22.40 14.01
SnapKV 23.64 20.77 23.29 44.62 24.22 19.87

Ada SnapKV 24.24 21.14 26.88 46.35 26.95 18.80
PyramidKV 19.63 21.45 22.89 34.25 24.28 13.36

DuoAttention 15.13 14.21 25.22 35.02 22.31 12.59
OracleKV 26.77 20.18 26.59 48.31 29.19 21.95

Ada OracleKV 28.12 23.86 34.48 50.00 29.40 22.50

Mistral-7B-Instruct-v0.2

Full Cache 100% 20.84 29.34 45.99 35.11 20.73 16.95

StreamingLLM

40%

13.75 17.09 27.75 26.87 17.31 11.44
SnapKV 15.31 19.71 36.59 28.89 15.79 13.39

Ada SnapKV 17.29 19.07 36.39 30.74 16.16 13.24
PyramidKV 15.86 19.68 36.27 30.84 18.72 12.70

DuoAttention 11.51 9.09 25.27 21.51 15.03 6.76
OracleKV 18.61 21.21 36.24 29.84 18.71 14.70

Ada OracleKV 19.13 22.04 37.94 31.29 17.88 14.81

StreamingLLM

10%

10.01 10.55 21.02 17.82 12.33 7.41
SnapKV 12.75 9.08 23.54 20.06 12.20 8.12

Ada SnapKV 14.10 9.98 23.49 21.08 13.06 8.91
PyramidKV 10.43 9.08 24.38 21.26 12.64 7.28

DuoAttention 9.01 7.98 24.96 19.68 13.56 6.01
OracleKV 13.70 13.01 25.96 20.79 13.06 7.39

Ada OracleKV 13.85 13.65 27.49 21.31 13.36 7.59

Qwen2.5-7B-Instruct-1M

Full Cache 100% 20.23 49.72 52.53 62.91 56.35 33.74
StreamingLLM

40%

17.37 31.62 28.82 44.61 42.68 24.66
SnapKV 24.57 38.34 38.23 58.65 47.50 34.08

Ada SnapKV 26.05 38.79 41.63 59.30 48.24 33.77
PyramidKV 17.16 27.13 29.79 47.10 37.66 23.27
OracleKV 24.88 39.55 42.67 59.58 52.34 34.36

Ada OracleKV 25.08 40.32 44.64 60.07 53.86 34.87

StreamingLLM

10%

13.20 18.51 21.32 32.83 32.40 13.54
SnapKV 19.78 15.95 24.83 41.15 30.89 23.40

Ada SnapKV 22.44 17.91 25.89 42.57 31.27 22.52
PyramidKV 16.93 16.18 24.69 36.70 31.01 15.76
OracleKV 24.99 18.88 31.39 51.31 33.96 27.68

Ada OracleKV 24.97 20.73 30.33 47.04 35.03 28.94
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Table A6. Detailed results of LongBench (Bai et al., 2024), including Summarization datasets(Gov Report, QMSum, Multi News) and
Few-shot Learning datasets(TREC, Trivia QA, and SAMSum).

Method Budget GovReport QMSum MultiNews TREC TriviaQA SAMSum

LLaMA-3.1-8B-Instruct

Full Cache 100% 35.49 25.06 27.15 28.00 86.21 39.16

StreamingLLM

40%

30.41 21.69 24.97 31.50 91.40 37.21
SnapKV 30.96 23.37 25.07 34.50 85.13 41.04

Ada SnapKV 30.98 23.47 25.64 38.00 86.38 41.05
PyramidKV 29.72 22.65 24.86 49.00 86.28 30.76

DuoAttention 30.70 25.00 24.80 34.00 90.19 36.21
OracleKV 32.78 24.11 25.39 35.00 86.28 40.57

Ada OracleKV 32.85 24.40 25.64 33.50 87.21 39.49

StreamingLLM

10%

24.81 19.10 20.09 28.00 90.66 34.38
SnapKV 25.21 20.04 19.91 34.00 82.21 38.64

Ada SnapKV 25.57 20.87 20.52 33.00 82.88 39.18
PyramidKV 24.84 20.13 19.98 34.00 85.38 36.05

DuoAttention 23.70 17.70 22.83 25.00 86.92 36.21
OracleKV 27.61 21.28 21.45 45.50 84.11 39.31

Ada OracleKV 27.90 21.97 21.44 49.50 85.59 39.67

Mistral-7B-Instruct-v0.2

Full Cache 100% 32.13 24.15 26.81 50.75 76.14 39.32

StreamingLLM

40%

30.23 21.34 24.54 49.50 52.78 36.48
SnapKV 28.77 22.12 24.65 44.75 77.92 39.11

Ada SnapKV 27.73 22.37 24.53 44.15 77.10 39.10
PyramidKV 28.43 22.21 24.55 45.75 79.23 39.12

DuoAttention 23.79 20.35 23.04 24.62 72.36 35.08
OracleKV 30.28 23.38 25.35 44.05 78.06 38.80

Ada OracleKV 30.03 23.31 25.36 45.25 77.17 38.78

StreamingLLM

10%

24.72 20.25 19.00 34.50 45.69 35.49
SnapKV 24.39 20.04 20.86 31.75 78.81 37.99

Ada SnapKV 24.06 20.56 20.44 37.50 79.14 38.18
PyramidKV 23.97 20.05 20.64 31.75 78.93 36.82

DuoAttention 20.89 18.38 21.87 22.62 66.06 33.69
OracleKV 26.10 21.14 22.51 32.75 77.46 36.97

Ada OracleKV 26.04 21.74 22.74 31.50 75.68 37.61

Qwen2.5-7B-Instruct-1M

Full Cache 100% 35.45 24.59 25.97 69.50 86.53 37.21

StreamingLLM

40%

32.35 20.91 24.03 59.00 48.12 24.61
SnapKV 33.04 21.71 23.62 61.00 86.25 37.22

Ada SnapKV 32.50 21.98 23.81 64.50 86.45 36.54
PyramidKV 29.46 20.10 23.16 49.50 82.40 39.06
OracleKV 33.71 23.14 23.64 69.00 86.52 38.40

Ada OracleKV 33.51 23.50 23.84 72.00 86.88 36.44

StreamingLLM

10%

26.66 19.25 18.46 47.00 40.82 20.98
SnapKV 27.51 18.88 19.01 42.25 86.42 35.84

Ada SnapKV 27.65 18.63 19.37 45.50 85.97 36.09
PyramidKV 26.40 18.45 19.36 42.50 85.16 35.31
OracleKV 29.50 20.68 19.66 61.50 86.16 35.51

Ada OracleKV 29.43 20.58 19.81 58.25 85.68 35.46
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Table A7. Detailed results of LongBench (Bai et al., 2024), including Sythetic datasets(Passage Count, Passage Retrieval) and Code
Generation datasets(Lcc and RepoBench-P).

Method Budget Passage Count Passage Retrieval Lcc RepoBench-P

LLaMA-3.1-8B-Instruct

Full Cache 100% 11.20 100.00 54.09 47.28

StreamingLLM

40%

6.70 45.50 50.63 49.28
SnapKV 11.05 98.00 53.23 47.52

Ada SnapKV 11.55 97.00 48.21 42.85
PyramidKV 9.22 93.75 56.77 56.93

DuoAttention 6.00 99.50 55.09 53.09
OracleKV 12.65 99.50 48.35 43.89

Ada OracleKV 12.15 99.50 50.23 46.10

StreamingLLM

10%

4.00 16.00 52.29 52.88
SnapKV 5.00 54.00 51.04 48.78

Ada SnapKV 7.00 56.00 46.36 44.92
PyramidKV 7.50 46.75 51.40 52.26

DuoAttention 6.00 50.00 55.09 53.09
OracleKV 11.10 79.50 38.73 43.05

Ada OracleKV 9.50 89.00 36.76 43.72

Mistral-7B-Instruct-v0.2

Full Cache 100% 2.81 74.17 51.25 50.74

StreamingLLM

40%

2.14 31.01 43.95 46.21
SnapKV 3.37 72.40 48.54 48.49

Ada SnapKV 3.23 67.87 48.41 48.35
PyramidKV 3.36 64.54 51.56 50.83

DuoAttention 2.08 10.54 45.24 47.28
OracleKV 3.41 71.02 46.66 47.14

Ada OracleKV 2.63 72.93 45.93 48.21

StreamingLLM

10%

3.64 10.20 46.05 47.29
SnapKV 3.16 42.77 49.31 50.06

Ada SnapKV 3.26 50.02 47.24 48.35
PyramidKV 4.41 38.83 48.81 50.73

DuoAttention 1.88 8.64 42.78 48.46
OracleKV 3.87 49.93 37.99 47.92

Ada OracleKV 3.97 61.20 38.44 47.28

Qwen2.5-7B-Instruct-1M

Full Cache 100% 8.50 99.00 63.14 59.08

StreamingLLM

40%

5.00 34.00 56.46 54.51
SnapKV 8.50 98.00 62.13 57.71

Ada SnapKV 9.00 99.00 59.83 55.30
PyramidKV 8.50 63.00 61.76 58.54
OracleKV 9.50 98.00 55.64 56.65

Ada OracleKV 8.00 98.00 54.31 56.25

StreamingLLM

10%

2.50 10.50 55.10 54.96
SnapKV 4.50 40.50 57.98 56.39

Ada SnapKV 4.50 36.50 55.61 53.42
PyramidKV 4.50 31.00 57.92 56.47
OracleKV 9.00 71.00 43.89 55.60

Ada OracleKV 8.00 75.00 42.59 54.68
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40% budget. On Qwen2.5-7B-Instruct-1M, OracleKV surpasses most methods at 40% for both passage count and retrieval
tasks, and outperforms all baselines under the 10% KV cache budget for both tasks.

Table A7 highlights the side effect of OracleKV on code generation tasks, specifically on LCC and RepoBench-P. Notably,
OracleKV introduces significant performance degradation on these tasks, with the most pronounced drop observed on the
LCC dataset.

We hypothesize that this degradation stems from the oracle-guided attention redistribution, which may interfere with
the inherent structural and syntactic regularity of code. Unlike natural language, code relies heavily on precise token
dependencies and hierarchical structures. The intervention of OracleKV, though beneficial for semantic understanding tasks,
may distort these structural patterns, leading to suboptimal generation quality in code-oriented scenarios.

G.3.2. SUPPLEMENTARY RESULTS FOR RULER

We present the extended results on RULER(Hsieh et al., 2024) in TableA8, Table A9, Table A10, and Table A11. These
tables report performance across 8 tasks from 13 datasets, evaluated under varying KV cache budgets (from 100% down to
10%) using two models: LLaMA-3.1-8B-Instruct and Qwen2.5-7B-Instruct-1M.

As shown in Table A8 and Table A9, OracleKV achieves a favorable accuracy–memory trade-off on the single-key
Needle-in-a-Haystack (NIAH) task, demonstrating strong retrieval capabilities on both models. However, for multi-key
NIAH, OracleKV shows noticeable performance degradation when compared to Ada SnapKV(Feng et al., 2024) and
StreamingLLM(Xiao et al., 2024b). That said, the performance gap narrows as the KV cache budget decreases, indicating
OracleKV’s stronger adaptability under constrained memory conditions.

Table A9 and Table A11 further demonstrate OracleKV’s strength in multi-value and multi-query variants of the NIAH task,
as well as in variable tracing tasks. In these settings, OracleKV significantly outperforms all baselines across various KV
cache budgets. Notably, under a 10% KV cache budget, OracleKV achieves average scores of 72.7 on LLaMA and 34.1 on
Qwen, far surpassing the best-performing baselines (averaging 22.0 on LLaMA and 15.1 on Qwen). These results underscore
OracleKV’s effectiveness in complex retrieval and memory-intensive tasks, even under extreme memory constraints.

However, OracleKV also exhibits certain side effects on the RULER benchmark. Specifically, in word extraction (e.g.,
identifying the most frequently occurring words) and QA-style tasks, OracleKV underperforms relative to baseline methods,
as shown in Table A9 and Table A11. This degradation suggests that OracleKV struggles with counting-oriented tasks or
frequency-based reasoning. A possible explanation is that the general-purpose oracle guidance used by OracleKV does not
effectively capture the inductive biases required for such tasks—biases that are rarely emphasized in large scale dialogues.

G.4. Supplementary Ablation Results

We explore the design choices of OracleKV under a question-dependent setting. As shown in Table A12, OracleKV yields
small but consistent improvements over question-independent KV cache eviction when guided only by surface-level oracle
guidance. This suggests that OracleKV can introduce a useful inductive bias, even when the question is already known.
Additionally, as the KV cache budget decrease, OracleKV can enhance the average performance significantly (77.50 vs.
72.95 under 10% KV budget)

H. Supplementary Analysis
H.1. Visualization of Attention Distribution

Our main paper (Section 4) highlights the mismatch in attention distributions induced by the question and the pure context,
which leads to discrepancies in the indices of retained tokens. In this section, we further investigate the differences in
attention distribution and token retention across layers and tasks.

Layer-wise visualization. We observe a clear layer-wise pattern in the attention distributions. As shown in Figures A1–A14,
the distributions induced by the question and pure context exhibit substantial overlap in the first three layers (Layers 0, 1,
and 2) across various tasks. Notably, the attention distribution in the first layer appears relatively stable, and its attention
scores are significantly higher than those in other layers.

Task-wise visualization. We also observe clear task-specific patterns in the attention distributions. Figures A1–A14
demonstrate that the overlap between attention scores induced by the question and pure context are higher in tasks such as
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Table A8. Detailed results of RULER (Hsieh et al., 2024) on Llama-3.1-8B-Instruct, including the NIAH-Single and NIAH-MultiKey,
both of which consists of three datasets.

Method Budget NIAH-Single NIAH-MultiKey
S-1 S-2 S-3 MK-1 MK-2 MK-3

LLaMA-3.1-8B-Instruct

Full Cache 100% 100.00 100.00 100.00 99.80 100.00 99.80

H2O

90%

84.00 74.20 34.60 97.40 100.00 91.40
StreamingLLM 92.60 91.60 91.40 89.00 93.60 92.20

SnapKV 99.20 100.00 21.00 99.60 98.20 83.80
PyramidKV 70.20 100.00 21.40 99.20 96.60 83.00

Ada SnapKV 100.00 100.00 65.00 99.80 100.00 99.00
OracleKV 100.00 100.00 100.00 99.80 91.20 76.20

H2O

75%

76.60 47.80 18.00 86.60 94.00 48.60
StreamingLLM 75.20 75.20 75.00 77.40 78.20 74.40

SnapKV 99.60 99.80 11.20 99.00 84.20 55.20
PyramidKV 71.00 100.00 11.20 98.60 84.20 51.00

Ada SnapKV 99.80 100.00 18.80 99.80 99.20 91.60
OracleKV 100.00 100.00 98.40 99.80 68.00 24.00

H2O

50%

46.20 23.60 11.40 51.00 46.40 15.20
StreamingLLM 50.20 50.00 55.40 55.60 49.80 48.80

SnapKV 95.40 95.20 5.60 85.40 53.60 20.60
PyramidKV 74.80 98.00 4.20 83.40 55.80 17.20

Ada SnapKV 99.00 98.60 7.60 88.80 82.80 47.40
OracleKV 100.00 100.00 49.80 99.80 26.60 2.00

H2O

40%

34.00 16.20 8.80 33.60 28.00 9.40
StreamingLLM 40.80 41.80 43.40 46.80 38.80 39.20

SnapKV 90.60 83.00 3.80 68.40 39.80 9.60
PyramidKV 72.60 92.20 3.60 71.00 41.40 10.20

Ada SnapKV 97.80 90.40 4.60 71.60 67.00 31.20
OracleKV 100.00 100.00 14.80 99.80 14.80 1.00

H2O

30%

21.80 6.80 6.80 17.80 16.60 5.00
StreamingLLM 30.20 34.00 36.60 39.20 29.20 27.60

SnapKV 82.60 65.60 2.80 43.80 22.80 4.40
PyramidKV 83.80 65.80 2.80 43.60 23.40 4.00

Ada SnapKV 95.40 70.60 2.60 44.60 44.20 14.00
OracleKV 100.00 100.00 3.00 99.80 7.40 0.00

H2O

20%

13.40 2.00 4.00 7.60 8.80 2.20
StreamingLLM 19.60 22.40 23.20 27.00 19.00 17.60

SnapKV 73.40 41.40 2.40 27.20 12.00 1.00
PyramidKV 72.80 41.80 2.40 27.40 12.20 1.00

Ada SnapKV 91.80 38.80 2.40 24.80 21.60 3.60
OracleKV 100.00 100.00 0.60 96.00 4.60 0.00

H2O

10%

5.40 1.20 2.40 3.60 3.60 0.40
StreamingLLM 10.40 15.40 15.60 17.60 9.00 7.00

SnapKV 56.20 13.40 2.40 17.40 6.20 0.40
PyramidKV 56.40 13.40 2.40 17.40 6.20 0.40

Ada SnapKV 70.20 11.40 2.40 17.00 7.80 0.60
OracleKV 100.00 100.00 0.00 77.80 3.00 0.00
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Table A9. Detailed results of RULER (Hsieh et al., 2024) on LLama-3.1-8B-Instruct, including the NIAH-MultiValue(MV), NIAH-
MultiQuery(MQ), Varaiable Tracing(VT), Common Words Extraction(CWE), Frequent Words Extraction(FWE), Question Answering(QA-
1, QA-2).

Method Budget MV MQ VT Word Extraction QA
CWE FWE QA-1 QA-2

LLaMA-3.1-8B-Instruct

Full Cache 100% 99.90 99.90 99.88 99.62 94.80 87.80 62.80

H2O

90%

96.15 96.55 98.68 99.64 94.60 87.60 61.60
StreamingLLM 87.90 89.05 100.00 99.70 95.40 87.00 59.00

SnapKV 98.80 99.60 97.80 99.56 94.80 87.20 61.40
PyramidKV 99.70 99.20 97.96 99.78 94.40 80.60 54.40

Ada SnapKV 99.90 99.85 99.92 99.70 94.67 87.20 62.40
OracleKV 99.90 99.90 99.92 99.48 94.73 85.00 62.20

H2O

75%

82.70 81.75 97.40 99.66 94.27 86.80 59.80
StreamingLLM 75.35 76.20 94.68 99.62 94.07 87.00 55.00

SnapKV 90.35 96.05 93.36 99.42 94.27 83.20 58.80
PyramidKV 97.85 98.20 93.52 99.58 93.47 78.20 53.00

Ada SnapKV 98.95 99.45 99.92 99.58 94.27 84.80 59.00
OracleKV 99.85 99.90 99.92 99.00 93.47 78.60 60.00

H2O

50%

43.85 43.55 91.12 99.66 93.87 86.80 56.20
StreamingLLM 53.40 53.60 72.40 53.38 91.60 87.40 49.60

SnapKV 72.65 75.75 82.16 98.38 92.33 75.60 52.00
PyramidKV 76.80 75.85 80.68 90.26 88.93 67.20 43.80

Ada SnapKV 78.60 85.60 96.68 99.28 94.73 77.20 52.80
OracleKV 99.90 99.70 99.64 95.54 89.87 58.00 52.40

H2O

40%

23.80 25.10 85.16 99.58 93.33 85.80 52.60
StreamingLLM 43.00 43.25 62.28 26.86 91.93 87.40 47.00

SnapKV 56.15 57.85 75.12 96.34 90.87 69.20 48.60
PyramidKV 56.30 54.85 72.88 82.18 85.67 68.80 44.80

Ada SnapKV 59.65 60.55 93.28 99.06 94.47 73.20 47.20
OracleKV 98.35 99.60 98.76 91.50 87.40 49.80 47.20

H2O

30%

9.90 11.45 73.84 98.70 92.13 85.00 47.60
StreamingLLM 35.55 36.40 49.28 13.50 92.60 88.00 41.80

SnapKV 32.00 34.40 65.32 90.80 87.47 60.60 40.80
PyramidKV 31.55 34.75 65.56 90.22 87.47 60.60 40.60

Ada SnapKV 28.20 29.60 86.64 97.78 93.33 64.60 43.60
OracleKV 96.60 98.70 96.20 80.68 83.67 41.40 44.80

H2O

20%

2.30 4.90 46.28 95.46 89.60 79.00 40.80
StreamingLLM 22.85 23.25 35.96 1.60 92.80 88.60 36.40

SnapKV 20.65 21.45 51.72 73.02 81.60 48.60 34.60
PyramidKV 20.05 21.50 52.28 72.92 81.87 48.40 34.60

Ada SnapKV 17.15 19.30 67.44 93.44 90.20 55.60 36.80
OracleKV 90.55 95.05 90.68 60.62 78.27 31.20 36.40

H2O

10%

0.30 2.45 18.28 78.28 77.93 68.40 32.00
StreamingLLM 15.15 15.25 19.12 0.44 87.60 74.60 29.80

SnapKV 15.05 16.05 30.44 16.08 67.80 32.20 24.80
PyramidKV 15.00 16.20 30.68 16.40 67.67 32.00 25.00

Ada SnapKV 14.90 16.25 34.60 44.54 78.87 35.60 27.20
OracleKV 72.65 76.35 69.00 30.70 65.20 19.20 27.60
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Table A10. Detailed results of RULER (Hsieh et al., 2024) on Qwen2.5-7B-Instruct-1M, including the NIAH-Single and NIAH-MultiKey,
both of which consists of three datasets.

Method Budget NIAH-Single NIAH-MultiKey
S-1 S-2 S-3 MK-1 MK-2 MK-3

Qwen2.5-7B-Instruct-1M

Full Cache 100% 100.00 99.00 99.80 100.00 99.80 99.40

H2O

90%

39.00 98.00 13.80 86.80 80.40 84.00
StreamingLLM 32.00 96.40 9.60 77.00 73.20 70.80

SnapKV 92.00 86.40 88.60 89.00 92.40 89.60
PyramidKV 86.20 98.40 40.60 99.20 99.00 92.60

Ada SnapKV 18.00 9.60 0.20 25.40 30.40 1.20
OracleKV 100.00 98.80 96.40 99.80 22.40 44.20

H2O

75%

24.80 79.80 6.20 55.60 61.40 39.80
StreamingLLM 17.60 59.40 3.40 37.00 44.60 23.20

SnapKV 75.00 74.40 74.60 77.40 77.80 72.80
PyramidKV 66.80 96.40 11.40 81.20 90.20 54.60

Ada SnapKV 14.60 4.40 0.20 18.80 17.40 0.20
OracleKV 100.00 99.00 70.40 97.80 3.60 12.60

H2O

50%

15.00 38.40 2.80 25.20 29.40 8.80
StreamingLLM 9.40 11.80 2.40 13.40 10.40 1.40

SnapKV 49.40 49.40 55.20 55.20 49.60 48.60
PyramidKV 31.00 58.00 4.00 37.00 45.20 12.60

Ada SnapKV 10.20 1.80 0.00 8.00 6.20 0.00
OracleKV 100.00 99.20 12.20 87.00 1.40 2.60

H2O

40%

14.00 27.40 2.60 22.60 19.60 4.40
StreamingLLM 8.40 6.60 2.40 12.00 7.00 0.60

SnapKV 40.80 41.60 43.00 46.60 38.80 38.40
PyramidKV 22.00 41.00 2.80 25.40 29.60 6.20

Ada SnapKV 8.80 1.60 0.00 3.80 0.00 9.40
OracleKV 100.00 99.80 5.80 79.20 1.20 1.40

H2O

30%

11.80 18.40 2.40 17.20 13.80 1.60
StreamingLLM 12.00 18.40 2.40 17.40 4.40 1.60

SnapKV 30.20 33.60 36.20 39.00 29.00 26.40
PyramidKV 15.60 23.00 2.60 19.40 18.40 4.60

Ada SnapKV 6.00 1.20 0.00 4.60 2.60 0.00
OracleKV 100.00 99.80 0.60 65.20 1.00 0.00

H2O

20%

11.00 10.00 2.40 12.40 7.60 0.40
StreamingLLM 10.80 10.00 2.40 12.40 7.60 0.40

SnapKV 19.60 22.20 21.60 26.80 19.00 17.40
PyramidKV 12.40 11.20 2.40 13.60 10.20 1.00

Ada SnapKV 4.00 1.00 0.00 2.40 2.00 0.00
OracleKV 100.00 99.00 0.40 46.60 1.00 0.00

H2O

10%

8.40 3.20 2.40 10.40 2.40 0.00
StreamingLLM 8.40 3.20 2.40 10.40 2.40 0.00

SnapKV 10.40 15.40 13.00 16.20 9.00 7.00
PyramidKV 7.60 2.80 2.40 10.20 3.60 0.00

Ada SnapKV 1.40 0.60 0.00 1.00 0.60 0.00
OracleKV 99.40 89.00 0.00 25.20 0.60 0.00
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Table A11. Detailed results of RULER (Hsieh et al., 2024) on Qwen2.5-7B-Instruct-1M, including the NIAH-MultiValue(MV), NIAH-
MultiQuery(MQ), Varaiable Tracing(VT), Common Words Extraction(CWE), Frequent Words Extraction(FWE), Question Answering(QA-
1, QA-2).

Method Budget MV MQ VT Word Extraction QA
CWE FWE QA-1 QA-2

Qwen2.5-7B-Instruct-1M

Full Cache 100% 99.30 99.60 99.92 95.24 85.87 85.80 60.40

H2O

90%

64.65 80.75 86.32 95.40 85.93 85.60 58.60
StreamingLLM 47.10 63.95 81.00 95.94 87.80 84.40 57.40

SnapKV 89.25 88.75 77.32 95.82 89.60 86.20 60.20
PyramidKV 91.00 96.70 98.60 95.06 85.93 85.60 58.60

Ada SnapKV 22.35 23.40 53.28 84.34 83.87 83.40 55.80
OracleKV 98.80 99.50 99.92 95.18 84.60 84.40 58.80

H2O

75%

32.90 45.85 66.76 94.98 86.33 82.80 58.20
StreamingLLM 20.40 27.10 57.96 95.20 87.20 80.20 52.80

SnapKV 75.75 75.95 78.36 94.12 88.60 86.20 55.20
PyramidKV 53.60 71.00 90.92 95.16 86.20 84.20 57.40

Ada SnapKV 14.80 16.20 49.84 83.28 83.73 82.20 53.80
OracleKV 96.60 98.25 99.92 94.40 82.27 77.60 55.40

H2O

50%

17.90 21.60 43.16 92.42 85.33 73.00 48.00
StreamingLLM 11.00 12.05 12.48 45.52 79.00 50.20 33.00

SnapKV 53.00 52.85 61.96 88.60 85.93 86.60 49.40
PyramidKV 21.95 30.40 61.24 93.70 85.67 75.80 50.80

Ada SnapKV 4.60 6.25 30.24 82.54 85.20 79.00 49.40
OracleKV 78.00 84.50 99.84 89.42 78.00 61.40 50.80

H2O

40%

14.70 17.65 39.72 89.28 84.00 68.40 46.60
StreamingLLM 10.05 10.80 10.32 42.86 77.33 64.20 36.00

SnapKV 42.70 43.10 52.12 87.62 85.93 87.40 47.00
PyramidKV 17.50 23.70 46.72 92.54 85.60 69.40 48.00

Ada SnapKV 2.70 4.50 21.56 81.34 84.07 79.20 46.20
OracleKV 68.60 74.45 99.32 84.04 76.27 55.40 48.20

H2O

30%

12.45 14.95 30.68 84.44 82.27 59.00 43.80
StreamingLLM 12.60 15.05 30.64 38.64 82.33 58.80 43.40

SnapKV 35.50 36.30 40.76 84.50 83.53 86.60 44.40
PyramidKV 13.60 16.35 32.72 88.86 84.67 61.20 43.60

Ada SnapKV 1.40 2.75 12.44 77.02 82.07 73.80 44.00
OracleKV 57.85 61.45 97.68 74.80 75.00 45.60 42.80

H2O

20%

11.25 12.65 22.44 73.58 80.33 52.00 37.00
StreamingLLM 11.25 12.60 22.08 73.80 80.40 52.20 37.20

SnapKV 22.65 23.10 29.04 80.10 83.87 87.60 37.20
PyramidKV 12.05 13.80 20.84 81.44 82.13 53.80 37.60

Ada SnapKV 0.70 1.85 9.04 69.70 77.60 72.40 40.20
OracleKV 43.10 44.75 91.56 56.32 69.40 36.60 39.00

H2O

10%

9.60 9.90 11.80 54.48 72.73 35.20 25.80
StreamingLLM 9.60 9.90 11.68 54.62 72.60 35.20 26.60

SnapKV 14.55 14.90 15.80 65.90 76.87 73.20 28.80
PyramidKV 9.55 9.90 11.52 62.22 76.93 36.20 27.60

Ada SnapKV 0.90 0.90 5.00 45.86 69.40 58.60 32.60
OracleKV 24.55 23.00 54.76 30.60 60.73 27.80 28.60
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Method Budget Avg.Performance

SnapKV 50% 94.78
OracleKV 50% 95.26
SnapKV 20% 92.98

OracleKV 20% 93.97
SnapKV 10% 72.95

OracleKV 10% 77.50

Table A12. Question-dependent performance of OracleKV on RULER (Hsieh et al., 2024) benchmark. We use general surface-level
oracle guidance.

word extraction, variable tracing, and question answering, compared to NIAH tasks.

H.2. Side Effects of OracleKV

We observe side effects of OracleKV on certain datasets across benchmarks (e.g., code generation in LongBench (Bai et al.,
2024), and word extraction and QA in RULER (Hsieh et al., 2024)). However, consistent with the no-free-lunch principle,
OracleKV generally performs well across a majority of tasks, serving as an effective approach for KV cache eviction.
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Figure A19. Attention distribution of first three layers in Common Words Extraction (CWE) task.
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Figure A20. Attention distribution of layer 15, 23, 30 in Common Words Extraction (CWE) task.
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Figure A21. Attention distribution of first three layers in multi-key needle in a haystack (NIAH) task.
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Figure A22. Attention distribution of first layer 15, 23, 30 in multi-key needle in a haystack (NIAH) task.
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Figure A23. Attention distribution of first three layers in multi-query needle in a haystack (NIAH) task.
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Figure A24. Attention distribution of first layer 15, 23, 30 in multi-query needle in a haystack (NIAH) task.
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Figure A25. Attention distribution of first three layers in multi-value needle in a haystack (NIAH) task.
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Figure A26. Attention distribution of first layer 15, 23, 30 in multi-value needle in a haystack (NIAH) task.
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Figure A27. Attention distribution of first three layers in single needle in a haystack (NIAH) task.
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Figure A28. Attention distribution of first layer 15, 23, 30 in single needle in a haystack (NIAH) task.
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Figure A29. Attention distribution of first three layers in question-answering (QA) task.
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Figure A30. Attention distribution of first layer 15, 23, 30 in question-answering (QA) task.
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Figure A31. Attention distribution of first three layers in variable tracing (VT) task.
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Figure A32. Attention distribution of first layer 15, 23, 30 in variable tracing (VT) task.
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I. More Related Work
I.1. KV Cache Eviction

Previous research has highlighted the inherent sparsity in the self-attention mechanisms of large language models (LLMs).
Leveraging this property, early studies (Liu et al., 2024b; Zhang et al., 2023) propose maintaining a queue with a pre-
allocated budget and progressively evicting unimportant cache entries during the inference. Subsequent works focus on
exploiting fixed attention patterns within the input sequence. StreamingLLM (Xiao et al., 2024b) and LM-Infinite (Han
et al., 2024) utilize the attention sink phenomenon to retain both initial and most recent tokens. Recently, SnapKV (Li et al.,
2024a) introduces an attention-based strategy that uses attention scores with recent tokens to estimate importance. Building
on this foundation, several approaches (Hao et al., 2025; Qin et al., 2025; Cai et al., 2024; Yang et al., 2024c) incorporate
layer-wise cache budget allocation. PyramidKV (Cai et al., 2024) and PyramidInfer (Yang et al., 2024c) discard more KV
entries from deeper layers, motivated by the pyramidal information funneling hypothesis. Similarly, CAKE (Qin et al.,
2025) analyzes layer-wise preferences using spatial and temporal attention dynamics to optimize cache retention. In parallel,
the discovery of retrieval heads in attention mechanisms (Wu et al., 2024) fuel a new line of research in head-level cache
eviction (Fu et al., 2024; Xiao et al., 2024a; Feng et al., 2024). DuoAttention (Xiao et al., 2024a) employs a learning-based
method to identify compression-insensitive attention heads (i.e., streaming heads), while HeadKV (Fu et al., 2024) classifies
heads based on their retrieval and reasoning utility (R2 heads).

Most recent research has introduced a variety of strategies for managing the Key-Value (KV) cache in large language models
(LLMs), focusing on eviction and compression techniques to enhance memory efficiency without compromising performance.
Eviction methods like NaCl (Chen et al., 2024) combine attention-based statistics with randomized strategies to retain
crucial tokens, achieving significant cache reduction while maintaining high performance. HashEvict (Liu et al., 2024a)
employs locality-sensitive hashing to identify and replace tokens with low relevance, reducing computational overhead.
Compression approaches have also evolved; GEAR (Kang et al., 2024) integrates ultra-low precision quantization, low-rank
approximation, and sparse matrices to achieve near-lossless 4-bit compression, enhancing throughput. RazorAttention (Tang
et al., 2024) differentiates between retrieval and non-retrieval heads, maintaining full cache for the former while discarding
distant tokens for the latter. FastGen (Jacobs et al., 2023) introduces a plug-and-play adaptive compression method that
profiles attention modules to selectively retain or discard tokens based on their contextual importance, significantly reducing
GPU memory usage. Additionally, methods like BalanceKV (Han et al., 2025) utilize vector balancing theory for geometric
sampling, and LoRC (Zhang et al., 2024) applies low-rank approximations with progressive compression strategies. These
methodologies collectively advance the efficiency of LLM inference by intelligently managing KV cache resources.

Despite these approaches achieve impressive performance on several long-context benchmarks, most existing methods
(e.g. (Li et al., 2024a; Cai et al., 2024; Yang et al., 2024c; Qin et al., 2025; Feng et al., 2024; Fu et al., 2024; Hao et al., 2025))
rely heavily on importance metrics derived from the attention scores with the current question, limiting their robustness
and applicability in real-world scenarios without question. In contrast, our approach operates at the data level, leveraging
surface-level statistical regularities in the question distribution, making it compatible with existing methods and easily
integrable into a broader range of applications.

I.2. In-Context Learning

Early studies (Devlin et al., 2019; Liu et al., 2019) observed that language models can ”learn” to perform a task from a
few shot input-output examples provided in context at inference. (Xie et al., 2021) interprets the emergence of in-context
learning by inferring the shared latent concept among demonstration examples. Based on these, OracleKV affects the
attention behavior through in-context data manipulation, aiming to select instruction-correlated tokens.

Recently, (Bai et al., 2023) provided theoretical evidence that transformers can implement a broad class of machine learning
algorithms in-context, including least squares and Lasso, and can adaptively select among them based on input sequences.
Further empirical analysis (Kossen et al., 2023) revealed that ICL predictions are heavily influenced by in-context labels and
that models can learn novel tasks in-context, although they may retain biases from pre-training data. For the algorithmic
reasoning, (Zhou et al., 2022) introduced algorithmic prompting, teaching LLMs to perform multi-step reasoning tasks by
formulating algorithms as composable skills, leading to significant performance improvements. Additionally, (Kirsch et al.,
2022) explored meta-learning approaches, showing that transformers can be trained to act as general-purpose in-context
learners, capable of adapting to diverse tasks without explicit training loss definitions.
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