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Abstract—Deep unfolding networks (DUNs) have proven to be
a viable approach to compressive sensing (CS). In this work,
we propose a DUN called low-rank CS network (LR-CSNet)
for natural image CS. Real-world image patches are often well-
represented by low-rank approximations. LR-CSNet exploits this
property by adding a low-rank prior to the CS optimization
task. We derive a corresponding iterative optimization procedure
using variable splitting, which is then translated to a new
DUN architecture. The architecture uses low-rank generation
modules (LRGMs), which learn low-rank matrix factorizations,
as well as gradient descent and proximal mappings (GDPMs),
which are proposed to extract high-frequency features to refine
image details. In addition, the deep features generated at each
reconstruction stage in the DUN are transferred between stages
to boost the performance. Our extensive experiments on three
widely considered datasets demonstrate the promising perfor-
mance of LR-CSNet compared to state-of-the-art methods in
natural image CS.

Index Terms—Image Compressive Sensing, Deep Learning,
Deep Unfolding Network, Low-Rank Prior, Image Restoration

I. INTRODUCTION

Compressive sensing (CS) has become an important tool
in modern signal processing. It allows to identify sparse
solutions of underdetermined linear systems [4]. Under the
assumption that the original signal is sparse in some transform
domain [17], CS requires fewer measurements to reconstruct
the original signal than expected by the Nyquist sampling theo-
rem [4]. Compressive sensing methods have successfully been
applied in various fields, including single-pixel cameras [5],
magnetic resonance imaging [16], and seismic imaging [8].

Mathematically, for an original signal x̄ ∈ RN , the obser-
vation y = Φx̄ ∈ RM is obtained after sampling through a
measurement matrix Φ ∈ RM×N , where M ≪ N .1 Here, M

N
is denoted as the so-called CS ratio. Given a matrix Φ and
y, the goal of compressed sensing is to reconstruct x̄ under
some sparseness assumptions, such as structural sparsity [23],
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1Note that for x̄ ∈ R
√
N×

√
N and vec(x̄) ∈ RN being the vectorization

of x̄ we have ∥x̄∥F = ∥ vec(x̄)∥2.

Fig. 1. Illustration of the low-rank prior in the images patches. As DUNs
operate on image patches, large images are divided into multiple image
patches of size 33×33 (red boxes). A singular value decomposition (SVD)
is then performed on all patches per image and the corresponding singular
values are plotted into the second row. It can be clearly seen that the singular
values quickly decrease, which indicates the low-rank nature of the images.

dictionary sparsity [20], and low-rankness [21]. We can write
CS as an optimization problem of the form

x̂ = arg min
x∈RN

[
1

2
∥Φx − y∥2F + λG(x)

]
(1)

for y = Φx̄, where ∥·∥F is the Frobenius-norm, G a sparseness
constraint function, and λ controls the penalty strength.

In recent years, with the advancement of neural net-
works, data-driven CS reconstruction methods have made great
progress. In general, they can be divided into two categories:
deep non-unfolding networks (DNUNs) and deep unfolding
networks (DUNs). DNUNs learn the mapping between the ob-
served signal y and the original signal x̄ directly from training
examples [22]. In contrast, DUNs consider the optimization
problem given by Eq. (1) and map the iterative optimization
algorithm used to solve Eq. (1) to a deep neural network
architecture. Usually, K optimization steps are mimicked by
means of K sequential blocks (reconstruction stages) in the
network [34]. DUNs learn the matrix Φ, the regularization



function G, and parameters of the underlying optimization
process simultaneously end-to-end by minimizing an objective
function of the form

1

2ℓ

ℓ∑
i=1

∥x̄i − fDUN(Φx̄i)∥2F , (2)

where fDUN denotes the neural network and {x̄i}ℓi=1 are ℓ
training instances. The architecture of fDUN(x̄i) results from
unfolding the iterative optimization of Eq. (1), the parameters
of the network that encode (among others) ΦT as well as G
(in our case, ∇G). Thus, in contrast to model-based CS, the
measurement matrix as well as the sparsity regularization are
not given a priori but are learned from data. Because of their
excellent reconstruction performance [29], [30], DUNs have
become state of the art in image CS.

However, DUNs usually constrain the signals x to be sparse
in some transform domain, ignoring other intrinsic properties,
such as low-rankness. The manipulation of image patches
in CS has become a common practice making the low-rank
property more prominent. The singular value curves of several
image patches are shown in Fig. 1. The trend indicated in the
graph and the convergence of the singular values to 0 indicate
the low-rankness property of the images at hand. We extend
Eq. (1) by an additional term that reflects the low-rankness of
the input signals, i.e.,

x̂ = arg min
x∈RN

[
1

2
∥Φx − y∥2F + λG(x) + µR(x)

]
, (3)

where R(x) is the function increasing in the rank of the signal
x and µ controls the penalty degree.

In this paper, we propose an optimization-based deep un-
folding network for image compressive sensing, dubbed LR-
CSNet, by exploring the low-rank prior of the input images
from the perspective of neural networks. Our main contribu-
tions can be summarized as follows:

1) For the problem formulation, we establish an achievable
constraint on the low-rank component and demonstrate
its iterative optimization process by variable splitting.

2) We propose LR-CSNet to simulate the iterative opti-
mization process into multiple reconstruction stages and
learn an end-to-end mapping between observations and
original signal.

3) We design a low-rank generation modul (LRGM) to
learn the low-rank components as well as gradient
descent and proximal mapping (GDPM) to refine details
of the reconstructed image. Furthermore, we enhance the
network representation by feature transmission.

4) We demonstrate via extensive experiments that LR-
CSNet exhibits a superior performance on natural image
datasets compared to state-of-the-art approaches.

II. RELATED WORK

A. Deep Unfolding Networks

DUNs emulate iterative optimization methods through neu-
ral networks and have been successfully applied to image

inverse problems [14]. For CS, neural networks were combined
with the alternating direction method of multipliers (ADMM)
for efficient MRI reconstruction [26]. [1] learn the sparse linear
inverse problem from the perspective of approximate message
passing (AMP) and follow-up work showed intensive stud-
ies [34] on image CS. The ISTA-Net+ [29] focuses on mod-
elling the iterative shrinkage thresholding algorithm (ISTA)
with neural networks, whereas the OPINE-Net [30] obtained
satisfactory results using a binary trainable sampling matrix.
While the other models were trained with a fixed CS ratio, the
ISTA-Net++ [27] model trains at multiple CS ratios, reducing
computational cost. Finally, COAST [28] is able to handle
arbitrary sampling matrices and achieves promising results.

B. Low-Rank Representation

Low-rank representations characterize high-dimensional
data with fewer vectors and effectively reveal the overall data
structure [11], [13]. They are widely applied in the fields
such as image restoration [6], [7], background modelling [25],
infrared small target detection [24], [31], [32], and image
compressive sensing [21]. Whereas, due to the non-convex
nature, its optimal convex approximation is widely adopted,
i.e. the nuclear norm ∥x∥∗ =

∑
i σi, where σ is the singular

value. Even though low-rank representations helped model-
driven approaches to achieve great sucess, the necessity of the
singular value decomposition (SVD) greatly limits computa-
tional efficiency. The SVD also complicates the integration of
the low-rankness condition into a neural network. [2] consider
the low-rank term to be the product of two sub-matrices.
Inspired by the tensor CP (CANDECOMP/PARAFAC) de-
composition, Chen et.al [3] treats a tensor of rank r as the
sum of multiple rank unit tensors and apply it as attention
to semantic segmentation. Although this problem has been
partially studied, it remains a challenging task to learn low-
rank priors more efficiently and mapping them into DUNs
reasonably.

III. PROPOSED LR-CSNET

In this section, we first define the low rank constrained
CS problem and then present our specific update process in
terms of optimization. Thereafter, we describe the process of
mapping the optimization into neural networks and give details
on the LR-CSNet. Finally, the training parameters and loss
function are described in general.

We use the following notation. Plain font ρ indicates scalars,
bold lowercase x indicates matrices and vectors, bold capital
F indicates deep features, and calligraphic font G indicates
functions.

A. Problem Formulation

We constrain the L2 norm of the low-rank component l and
signal x, rather than using the nuclear norm directly, in order to
circumvent the costly SVD, i.e. R(x) = 1

2 ∥x − l∥2F. Then we
perform variable splitting to reduce the complex operations
during optimization, specifically, we introduce an auxiliary
variable z as follows:



Fig. 2. Illustration of the LR-CSNet network architecture and modules, which includes K reconstruction stages in total. From top to bottom is the overall
network architecture, LRGM as well as GDPM in the kth reconstruction stage, with the legend and dense block (DB) in GDPM on the right. Specifically,
vk = ρk1xk−1 + ρk2zk−1 +

(
1− ρk1 − ρk2

)
lk . + and − indicates the positive and negative sign of the branch when adding up.

min
x,z

[
1

2
∥Φz − y∥2F + λG(x) + µ

2
∥z − l∥2F

]
s.t. x = z

(4)

Subsequently, we optimize the unconstrained cost function in
Eq. (5), where µ and β are the penalty parameters

L (x, z) =
1

2
∥Φz − y∥2F + λG(x) + µ

2
∥z − l∥2F +

β

2
∥x − z∥2F

(5)
For a differentiable function f(x) with ∇f(x) being l-

Lipschitz continuous (i.e. ∀x1, x2 : ∥∇f(x1)−∇f(x2)∥ ≤
l ∥x1 − x2∥, where l is a constant), the Taylor expansion at
x0 leads to an upper bound f(x) ≤ f̂(x, x0) = f(x0) +
⟨∇f(x0), x − x0⟩+ l

2 ∥x − x0∥2 = l
2

∥∥x − x0 +
1
l∇f (x0)

∥∥2
2
+

C, where C = − 1
2l ∥∇f(x0)∥2 + f(x0).

Further, we optimize the variables z and x separately. The
low-rank component lk is hypothesised to be independent of
z, x and is generated by LRGM.

a) Updating zk:: The optimization objective is given by

zk = argmin
z

[
1

2
∥Φz − y∥2F +

µ

2

∥∥z − lk
∥∥2

F +
β

2

∥∥xk−1 − z
∥∥2

F

]
. (6)

In order to avoid the complex operations such as matrix inver-
sion that occur in the update process, we perform the Taylor
expansion at zk−1 for the first term in Eq. (6), i.e. we replace
1
2 ∥Φz − y∥2F by l1

4

∥∥∥z − zk−1 + 1
l1
Φ⊤ (

Φzk−1 − y
)∥∥∥ + C1,

which as a linear function is l1-Lipschitz continuous and get
the update step using s = l1 + 2µ+ 2β:

zk =
1

s

(
2βxk−1 + l1zk−1 + 2µlk −Φ⊤Φzk−1 +Φ⊤y

)
(7)

b) Updating xk:: The optimization objective is given by

xk = argmin
x

[
λG(x) + β

2

∥∥x − zk
∥∥2

F

]
. (8)

As a function of enforcing the signal to be sparse in some
transform domain, G(x) is not specifically mathematically
constrained. Similarly, we perform a Taylor expansion of G(x)
at xk−1, which is converted into the ∇G(x) form with L2 norm
constraints and arrive at

xk =
λl2

λl2 + β
xk−1+

β

λl2 + β
zk− λ

λl2 + β
∇G

(
xk−1

)
. (9)

We replace the unknown function ∇G(x) with convolutional
layers in LR-CSNet, which also satisfies that ∇G(x) is l2-
Lipschitz continuous.



c) Overall:: In end-to-end learning, we can set complex
penalty parameters as learnable variables, so the overall opti-
mization steps are

zk =ρk1xk−1 + ρk2zk−1 +
(
1− ρk1 − ρk2

)
lk

− ηkΦ⊤Φzk−1 + ηkΦ⊤y
xk =αkxk−1 +

(
1− αk

)
zk − γk∇G

(
xk−1

)
,

(10)

where ρ1 = 2β
l1+2µ+2β , ρ2 = l1

l1+2µ+2β , η = 1
l1+2µ+2β ,

α = λl2
λl2+β and γ = λ

λl2+β . These parameters are trained
independently in each reconstruction stage.

B. Network Architecture

In this section we elaborate on the network architecture
and module design of LR-CSNet based on the optimization
process of Eq. (10). As shown in Fig. 2, given an original
signal x̄ ∈ R

√
N×

√
N , we perform sampling and end-to-end

image reconstruction through the network.
During sampling, the original image x̄ passes through a

convolutional layer with a kernel size and step size of 33,
where the input and output channels are 1 and M , respectively.
In this way, the sampling process for y = Φx̄ is simulated and
the observation y ∈ R1×1×M is obtained.

In the reconstruction phase, y is passed through convo-
lutional layers with kernel size and stride of 1, where the
input and output channels are M and 33 × 33 respectively.
This operation is used to simulate x0 = Φ⊤y, where the
convolutional layer share weights with the one in the sampling
process. Then the reconstructed signal is reshaped to x0 ∈
R

√
N×

√
N by PixelShuffle(33) [30]. The reconstructed image

is then passed through K reconstruction stages to simulate
the iterative updates. Each reconstruction stage consists of two
modules: LRGM and GDPM.

1) Low-Rank Generation Module (LRGM): LRGM is used
to generate the low-rank matrix lk of the current stage, which
contains the majority of the information in the background. A
low-rank matrix can be considered as the result of multiplying
two sub-matrices together, i.e. l = pq, where p ∈ R

√
N×r, q ∈

Rr×
√
N , and r is the rank number. LRGM takes the updated

variables from the previous stage as input and concatenates it
with the transferred tensor Fk−1 after one convolutional layer,
as shown in Fig. 2. Subsequently, the deep feature is adaptively
pooled into two tensors of scale

√
N×r×C and r×

√
N×C

according to the rank number r respectively, where C is the
channel number. The two sub-matrices p and q are obtained
through two 1×1 convolutional layers for feature separation
and dimensionality reduction. Finally, these sub-matrices are
multiplied to obtain the updated low-rank matrix lk. In this
way LRGM is able to guarantee that rank(lk) ≤ r.

2) Gradient Descent and Proximal Mapping (GDPM):
GDPM is used to update the variables zk and xk according
to Eq. (10), whereby the scalars are learnable variables. In
Fig. 2, after obtaining zk, it is concatenated with the low-rank
matrix lk and passed through a convolution layer. lk contains
more structured image information and can provide guidance
for the neural network in learning image details. Then we

TABLE I
ABLATION STUDY ON THE EFFECTS OF OUR INTRODUCED MODEL

COMPONENTS WITH A FIXED CS RATIO OF 25%.

LRGM Dense Trans
PSNR/SSIM

Set11 BSD68
√

- - 35.12/0.9536 31.87/0.9127
-

√
- 35.27/0.9552 31.94/0.9136

- -
√

35.28/0.9547 31.95/0.9141

-
√ √

35.47/0.9565 32.09/0.9158
√

-
√

35.37/0.9556 32.02/0.9148
√ √

- 35.44/0.9561 32.00/0.9148
√ √ √

35.54/0.9567 32.12/0.9162

simulate the function ∇G with two dense blocks (DBs) [33].
Since ∇G is learning high-frequency details in the image, the
residual connections by [33] were not applied here. It is worth
mentioning that DB is essentially an accumulation of multiple
convolutional layers, which clearly satisfies Lipschitz continu-
ous, guaranteeing the validity of this module. In addition, the
last deep feature is concatenated with Fk−1 and the transferred
tensor Fk is updated through a 1x1 convolutional layer. Finally,
the transferred tensor Fk, the updated variables zk, and xk are
delivered to the next reconstruction stage.

C. Network Parameter and Loss Function

The trainable parameters in LR-CSNet consist of four
components: 1) the same measurement matrix Φ in each
reconstruction stage, 2) the auxiliary scalars ρ1, ρ2, η, α, γ,
3) the network weights Θl in LRGM, and 4) the weights Θg

in GDPM. Thus, all training parameters are denoted as Θ =
{Φ}∪{ρk1 , ρk2 , ηk, αk, γk}Kk=1∪{Θk

l ,Θ
k
g}Kk=1, where K is the

total reconstruction stages. Φ and Φ⊤ share weights [30].
The loss function of the network, as it is common prac-

tice [30], consists of two components for the given training
data {x̄i}ℓi=1: the fidelity loss Lfidelity to ensure that the
reconstruction result xKi closely approximates the input x̄i and
the orthogonal loss Lorth to impose an orthogonal constraint
on the measurement matrix. The combined loss function is

L(Θ) = Lfidelity + τLorth

=
1

Nℓ

ℓ∑
i=1

∥∥xK
i − x̄i

∥∥2
F +

τ

M2

∥∥∥ΦΦ⊤ − E
∥∥∥2

F
,

(11)

where ℓ is the total amount of training data, E the unit matrix,
and τ a constant (set to 0.01 for our experimental evaluation).

IV. EXPERIMENTS

In this section we first give details on the widely applied
datasets, the evaluation metrics, and the network implemen-
tation.Then, we demonstrate the validity of each module in
this paper through extensive ablation studies and investigate
the effect of key parameters. Finally, we compare LR-CSNet
with other state-of-the-art methods in both quantitative and
qualitative aspects to validate the performance of our approach.



TABLE II
QUANTITATIVE COMPARISON OF AVERAGE PSNR/SSIM FOR DIFFERENT CS RATIOS ON THE SET11, BSD68, AND URBAN100.

Dataset Ratio ISTA-Net+ CSNet+ AdapRecon OPINE-Net+ AMP-Net LR-CSNet

Set11

1% 17.42/0.4029 19.87/0.4977 19.63/0.4848 20.02/0.5362 20.04/0.5132 20.85/0.5583
4% 21.32/0.6037 23.93/0.7338 23.87/0.7279 25.69/0.7920 24.64/0.7527 26.16/0.8040
10% 26.64/0.8087 26.04/0.7971 27.39/0.8521 29.81/0.8884 28.84/0.8765 30.35/0.8987
25% 32.59/0.9254 29.98/0.8932 31.75/0.9257 34.86/0.9509 34.42/0.9513 35.64/0.9573
50% 38.11/0.9707 34.61/0.9435 35.87/0.9625 40.17/0.9797 40.12/0.9818 41.03/0.9826

BSD68

1% 19.14/0.4158 21.91/0.4958 21.50/0.4825 21.88/0.5162 21.97/0.5086 22.32/0.5282
4% 22.17/0.5486 24.63/0.6564 24.30/0.6491 25.20/0.6825 25.40/0.6985 25.53/0.6972
10% 25.32/0.7022 27.02/0.7864 26.72/0.7821 27.82/0.8045 27.41/0.8036 28.21/0.8159
25% 29.36/0.8525 30.22/0.8918 30.10/0.8901 31.51/0.9061 31.56/0.9121 32.12/0.9162
50% 34.04/0.9424 34.82/0.9590 33.60/0.9479 36.35/0.9660 36.64/0.9707 37.29/0.9720

Urban100

1% 16.90/0.3846 19.26/0.4632 19.14/0.4510 19.38/0.4872 19.62/0.4967 19.65/0.4971
4% 19.83/0.5377 21.96/0.6430 21.92/0.6390 23.36/0.7114 22.82/0.6963 23.41/0.7210
10% 24.04/0.7378 24.76/0.7899 24.55/0.7801 26.93/0.8397 26.05/0.8287 27.41/0.8547
25% 29.78/0.8954 28.13/0.8827 28.21/0.8841 31.86/0.9308 30.94/0.9273 32.50/0.9391
50% 35.24/0.9614 32.97/0.9503 31.88/0.9434 37.23/0.9741 36.54/0.9744 37.87/0.9776

Fig. 3. Experiments the number of reconstruction stages K and the rank
number r in LRGM with CS of 25% on Set11. We create a trade-off between
performance and computing efficiency by setting K = 9 and r = 8 (see
increased marker size for K and the dashed line for r).

A. Datasets and Evaluation Metrics

We test LR-CSNet on three natural image dataset bench-
marks that are widely used in CS: Set11 [12], BSD68 [18], and
Urban100 [9]. As training data, we use image patches {x̄i}ℓi=1

of size 33 × 33 as published in [29], where the total number
is ℓ = 88912. For fine-tuning, we train with an additional
36000 image patches of size 99 × 99 from BSD300 [18],
which is also publicly available. As evaluation metrics, we
choose peak signal-to-noise ratio (PSNR) and the structural
similarity index measure (SSIM), which are widely adopted in

Fig. 4. Illustration of intermediate results on Set11 ’Monarch’ with CS
ratio of 25%. The feature map is the output of ∇Gk (upper) and the
reconstruction result xk . The metrics of the corresponding stage (lower) are
shown respectively, where k ∈ {1, 3, 6, 9}.

image restoration, with higher values of both indicating better
reconstruction results.

B. Implementation Details

Our implementation is based on PyTorch [19] and all
experiments are performed on NVIDIA Titan RTX. We train
the network on a set of CS ratios {1%, 4%, 10%, 25%, 50%},
where we train 150 epochs using 33× 33 image patches with
batch size of 128, followed by a fine-tuning phase of 100
epochs using 99×99 image patches with batch size of 32. We
optimize the parameters using Adam [10] with a momentum
of 0.9 and weight decay of 0.999. The learning rate was set
to a constant 10−4.

C. Ablation Study and Parameter Setting

We present the ablation study in Fig. 3 4, and Table I to
explore the impact of each module and the changes in key
parameters.



Fig. 5. Visual comparison on ’img 011’ with CS ratio of 10% (upper) and on ’img 059’ with CS ratio of 50% (lower). The best performance is highlighted.

1) Impact of LRGM: Table I explores the effectiveness of
each module by comparing each possible combination. Re-
moving ’LRGM’ means removing the constraint on low-rank
from the problem formulation in Eq. (4), with the derivation
and settings remaining the same as before. The results show
that LRGM always contributes to the performance.

2) Impact of Dense: Removing ’Dense’ is to replace the
dense block in Fig. 2 with 6 convolutional layers, which
implies a reduction in network parameter number and feature
reuse capability. Again, the results demonstrate a degradation
in performance without ’Dense’.

3) Impact of Transmission: Transmission is the integration
of deep features from the previous reconstruction stages into
the current stage, which theoretically enables a more effective
aggregation of information. Removing ’Trans’ is removing the
F in Fig. 2. The experiments show that ’Trans’ does improve
the reconstruction accuracy of the network.

4) Rank Number r: From Table 3, we employ ranks r ∈
{4, 8, 12, 16, 24, 32} for the LRGM module to analyze their
impact. In general, a larger rank number indicates that more
information can potentially be learned. However, Fig. 3 shows
that r = 8 performs best. This indicates that larger ranks lead
to redundant information that does not help improve network
performance. We therefore set r = 8.

5) Stage Number K: We explore the performance gain
from the number of reconstruction stages K. As shown in
Fig. 3, we set K ∈ {1, 3, 6, 9, 12}. The process of making K
larger brings a significant gain and also increases the number
of network parameters. We found a trade-off at K = 9.

D. Comparison With State-of-the-Art

1) Quantitative Evaluation: We compare LR-CSNet
with five state-of-the-art methods, including two DNUNs:
CSNet+ [22], AdapRecon [15], and three DUNs: ISTA-
Net+ [29], OPINE-Net+ [30], and AMP-Net [34]. We sum-
marize the evaluation metrics of these methods on multiple
datasets in Table II. It can be seen that deep non-folding net-
works are stacking more convolutional layers which does not
increase performance. Whereas ISTA-Net+ operates directly
on deep features to simulate soft-thresholding, which limits
the representation capability, resulting in poor performance.
Meanwhile, OPINE-Net+ uses convolutional layers to simulate
the analytical solution of an optimization problem such as
the sum of L2 norm and L1 norm. AMP-Net focuses on
removing the boundary effects between image patches using
denoising techniques. These approaches ignore the low-rank
properties of the image patches, resulting in networks that
capture structural information only to a limited extent. As
shown in the table, LR-CSNet achieves the best reconstruction
results at multiple CS ratios.

2) Qualitative Evaluation: Fig. 4 visualizes the reconstruc-
tion results at each stage, where higher stages are recon-
structed more acculately and the information learnt by ∇Gk

becomes increasingly more detailed. In addition, to illustrate
the reconstruction effect of LR-CSNet more intuitively, we
show the reconstruction effect of state-of-the-art approaches
and LR-CSNet on two images as in Fig. 5, where the red-
boxed parts are enlarged and placed on the right side. The
corresponding method and evaluation metrics are listed below



and the best value is highlighted. Compared to the other
methods, LR-CSNet is better at capturing the overall structure
of the image and retains detailed information. This is due to
the network taking into account the low-rank attributes of the
image patches, together with ∇G to learn high-frequency in-
formation, leading to its ability to obtain better reconstruction
accuracy.

V. CONCLUSION

In this paper, we propose a deep unfolding network for
natural image compressive sensing (CS) called LR-CSNet. As
real-world image patches are often well- represented by low-
rank approximations, we add a low-rank prior to the CS recon-
struction. We unfold the corresponding iterative optimization
problem using variable splitting, leading to a neural network
for CS that can be trained end-to-end. Extensive experiments
support the effectiveness of our approach.
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