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Abstract

The current trend in deep learning models for semantic segmentation are ever increasing
model sizes. These large models need huge data-sets to be trained properly. However
medical applications often offer only small data-sets available and require smaller models.
A large part of these models’ parameters is due to their multi-resolution approach for
increasing the receptive field, i.e. alternating convolution and pooling layers for feature
extraction. In this work an alternative parameter free approach is proposed to increase
the receptive field. This significantly reduces the number of parameters needed in semantic
segmentation models and allows them to be trained on smaller data-sets.

1. Introduction

In recent years convolutional neural networks (CNN) have become the number one tool for
pattern recognition. One big part of their success lies in the translation invariance. The
other part, which we are going to elaborate on, is the fact that through a clever choice of
architecture the network is able to make decisions considering the whole image.

The convolution operation is the core of CNN architectures. The number of parameters
for a convolution grow with the square of the convolution kernel size, thus most architectures
use 3×3 kernels with 9 parameters per feature map. But how to achieve a sensible prediction
for an entire image, if a single convolution “sees” only a 3× 3 neighborhood? The solution
is stacking of convolutional layers. With two layers following each other, the last one can
“see” a 4 × 4 neighborhood. This notion of which part of the input image the output
convolution “sees” is called the receptive field. By stacking 3 × 3 layers, it increases
by one per convolution. Which means a lot of convolutions must be stacked to have a
receptive field as large as a reasonable input image. The increase in receptive field per
convolution can be drastically higher when the image is sub-sampled to a lower resolution
between two convolution operations. A popular choice for the sub-sampling operation is the
maximum pooling (Ranzato et al., 2007) with a stride of 2. This stride effectively halves
the image resolution. But any convolution or pooling operation with a stride larger than
one can be used for sub-sampling (Springenberg et al., 2014). Figure 1 illustrates the effect
of alternating convolution and strided pooling layers on the receptive field. It creates a
pyramid of sequentially lower resolutions until only one output neuron remains. With such
a pyramidal structure of sufficient depth the last convolution will have access to a down-
sampled version of the entire image. For image segmentation tasks this down-sampled image
is once again up-sampled to the original size in an inverse pyramid pattern. This concept
has been known for a long time (LeCun et al., 1989) and is widely applied in today’s CNNs
(Lin et al., 2016).
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Figure 1: The combination of convolution and pooling layers allows for a receptive field
which is exponentially growing with the depth of the network. This example
illustrates why such multi-resolution structures are called pyramidal structures:
all 18 pixels of the input on the bottom are in the receptive field of the neuron
on top.

Feature extraction pyramids are the common way to increase the receptive field. Fully
connected layers could also do this but have too many parameters and are not translation
invariant (Kauderer-Abrams, 2017). The à trous, or dilated, convolution (Starck et al.,
1998) can also increase the receptive field while maintaining a low number of parameters
(Chen et al., 2017). Deformable convolutions (Dai et al., 2017) are similar but learn the
position of the holes instead of using a static pattern. Both convolution variants allow to
reduce the number of layers but still require a pyramidal structure. A breakout from that
structure can be achieved with parallel convolutions like in the inception module (Szegedy
et al., 2015) or à trous spatial pyramid pooling (ASPP) (Chen et al., 2018) which were
combined later by (Liu et al., 2018). While this idea is worthwhile, it does not offer a lower
parameter number compared to pyramidal structures

Due to the usual method for increasing the receptive field contemporary CNN models
have several ten million parameters. We propose a method for increasing the receptive field
to the whole image in a parameter free manner in only one layer. In the following our
method is first described and then validated on a synthetic and a real data-set (BraTS 2017
(Menze et al., 2015)) .

2. Extending the Receptive Field

The expansion of the receptive field is made possible thanks to the introduction of an
original module called the transfer block which uses much less parameters than the usual
pyramidal feature extractors and does not modify the resolution of the previous feature
map.

The transfer block (figure 2) consists of three layers. The core part is the transfer layer
which is enclosed by two convolution layers. This transfer layer builds upon the idea that
information needs to be transferred across the feature map in order to have a maximum
receptive field for the final neuron. This is achieved through parallel maximum pooling
operations with different window sizes.

At first the input is passed through a initial w×w convolution layer with zero padding
which yields n feature maps of the same size as the input. Then each feature map is passed
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Figure 2: An example of the whole transfer block where m = 3 and with only two window
sizes. The input image is passed through a convolution layer which produces 6
feature maps. Each of the 6 feature maps is then subject to a maximum pooling
operation with stride one, where 3 are processed with the first window size and
the other 3 are processed with the second window size. After concatenation the
final convolution layer produces the output feature maps

through a maximum pooling with stride one (the transfer layer). What makes this pooling
step special is that k different window sizes l1× l1, l2× l2, . . . , lk× lk are used. Each window
size is used on m feature maps, with km = n. The resulting feature maps are then input
to a final convolution layer with n2 feature maps as output. The feature maps all have the
same size as the input image, i.e. no down-sampling occurs.

The transfer layer is responsible for the increase of the receptive field. The largest
window size lk determines the size of the receptive field. For an input of size s × s it is
necessary that lk = 2s to ensure the receptive field is as large as the input image. The other
window sizes determine the scales for which information is collected. The initial convolution
ensures that the features are relevant for each scale. The multiplicity m allows to collect
multiple features per scale. Maximum pooling looses the spatial orientation of the features.
The final convolution layer recovers this information from the neighboring pixels.

For our experiments we chose m = 10 and l1 = 1, li = 2i−1 + 1 with k = blog2(s) + 2c.
This is a good trade off between the network size and performance.

The transfer block may seem similar to the ASPP (Chen et al., 2018) at first glance but
there are fundamental differences. ASPP uses à trous convolutions to increase the receptive
field. This always considers only 9 pixels in the convolution kernel, which looses too much
information for large dilation rates. The transfer block does not have blind spots and the
full image information is always available. Also the convolutions cost parameters while the
maximum pooling is parameter free. Then the number of parameters in the transfer block
can be arbitrarily tuned with m and n2 whereas ASPP does not have this option.

These properties make the transfer block a lightweight replacement for feature extraction
pyramids.
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Figure 3: The U-Net architecture with its encoder and decoder structure. Arrows represent
operations and cubes represent feature maps where the height of the cube stands
for the number of feature maps and the width and depth of the cubes for the
size of the feature maps. The original U-Net uses 5 different resolutions, thus we
call it U-Net 5. A variant with 4 resolutions (U-Net 4) is also included in our
experiments.
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Figure 4: (a) Transfer-Net (T-Net): transfer block with n2 = k plus a 1 × 1 convolution
layer (b) Double Transfer-Net (DT-Net): chains together transfer blocks. (c) The
ASPP module increases the receptive field with dilated convolutions. Each dilated
convolution produces 64 feature maps in our configuration. (d) CNN reference:
the most basic CNN architecture. It serves as a reference that demonstrate the
effects of an insufficient receptive field.

3. Experiments

Two experiments validate that the transfer block is working and compare it to a U-Net model
(Ronneberger et al., 2015). The U-Net was chosen because it is the archetype of modern
convolutional networks used for bio-medical image segmentation tasks and achieved good
performance in many applications. Note that we do not expect to beat the U-Net with a
model that has less than 1% of its parameters. We simply want to demonstrate that the
transfer block is a working feature extractor and can be a building block to decrease the
number of parameters of larger models in the future.
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Figure 5: One example of the circles validation-set. The binary image (a) had to be seg-
mented according to the ground truth (b). The U-Nets and the Transfer-Nets
perfectly segmented the image and delivered exactly (b). The result of the R-Net
is shown in (c). As the receptive field of the R-Net is not large enough to capture
the largest circles entirely it has trouble discerning the corners of the large and
middle circles as they are identical. The ASPP module is inapt for the task d).

As common in medical segmentation task we use the Dice coefficient (Dice Lee R., 1945)
to measure the segmentation quality. The Dice of two sets A and B is

Dice =
2A ∩B

|A|+ |B| (1)

3.1. Architectures

The tested network architectures are outlined in figures 3 and 4. They are all followed
by a softmax layer and trained with Adam (Kingma and Ba, 2014) using cross entropy as
loss function. The networks are trained in parallel, i.e. all networks receive the identical
mini-batches in the same order, on 64×64 input batches. Training was continued long after
convergence to see if over-fitting would occur.

Table 1: Network configurations for the circles experiment and their final dice score which
is identical for training and validation-set.

Model Kernel Size Parameters Learning Rate m Dice

U-Net 5 3 31030788 0.001 - 1.0
U-Net 4 3 7696388 0.002 - 1.0
DT-Net 5 136679 0.0005 10 1.0
T-Net 5 14109 0.002 10 1.0
R-Net 5 14109 0.005 10 0.92
ASPP 3 106260 0.005 - 0.24
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Figure 6: Development of the loss (a), (c) and the dice coefficient (b), (d) on the training
and validation set for the circles data-set. The curves have been smoothed with
a low pass filter. This smoothing was applied to the learning curves in figure 7
as well.

3.2. Synthetic Data

As a simple example of multi class segmentation binary images of size 64× 64 with circles
with a radius of 3, 4 and 5 pixels are generated. The circles are placed randomly and do
not overlap but may touch each other. Each circle size is a class for segmentation. The
training-set contained 20 images and the validation-set 10 images. The small number of
samples was chosen to show that the architectures can learn with few examples, as we
target bio-medical applications where data-sets tend to be very small. The point is that the
circles are larger than the convolution kernels. Thus the models needs to have a working
enlargement of the receptive field. The R-Net does not have this and has problems with the
larger circles (figure 5, (c)). The à trous convolutions of ASPP prevent it from gathering
the necessary local information of the circle and it fails the task (figure 5, (d)). The U-Net
learns the task with ease and the T-Net shows that the increase of the receptive field works,
albeit with a slightly longer time to convergence (figure 6).

3.3. BraTS

For the second experiment we chose a real data set which is renowned for its difficulty. The
brain tumor segmentation (BraTS) (Menze et al., 2015) challenge is a recurring challenge
attached to the MICCAI Conference. Each year the segmentation results become better,
but the problem is an ongoing research. For this experiment we use the high grade glioma
part of the BraTS 2017 data-set1. It contains multi-modal MRI of 210 patients which were
manually segmented by experts, i.e. a ground truth is available. On these images three
different classes have to be segmented from the background: the enhancing tumor, the
necrotic and non-enhancing tumor and as a third class the peritumoral edema. This makes
it an ideal real data-set for supervised learning of a multi-class segmentation task.

The networks are trained on 64× 64 patches using all 4 available MRI modalities, i.e. 4
input channels. Each mini-batch is forced to have 50% of the patches showing a tumour to
counter class imbalance. The patches are sampled such that the center is inside the brain.
For the training-set 100 patients were randomly chosen and 4 different patients for the

1. www.med.upenn.edu/sbia/brats2017.html
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Figure 7: Development of the loss (a), (c) and the dice coefficient (b), (d) on the training
and validation set of the BraTS data-set. They represent the best performance
for each architecture. Remarkable is that the validation loss does not seem to
correspond to the validation dice. The reason is that the Dice is calculated from
a thresholded confidentiality map and fluctuations below the threshold have no
effect on the Dice.
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a) U-Net 5 b) DT-Net

Figure 8: Validation Dice for multiple runs for the U-Net 5 a) and the DT-Net b). The net-
work configurations are identical between runs. The U-Net is unstable, different
models trained in the same configuration converge to largely different solutions.
With a bit of bad luck we would have never seen a well performing U-Net and
the conclusion would be that the U-Net 5 is outperformed by the DT-Net. This
actually happened in the first version of this work. The DT-Net however always
converges to similar solutions and is therefore more reliable.

Table 2: Network configurations for the BraTS experiment and their final dice score on the
training and validation set.

Model U-Net 5 U-Net 4 DT-Net T-Net R-Net

Kernel Size 3 3 5 5 5
Parameters 31032516 7698116 141929 19359 19359
Learning Rate 0.001 0.002 0.0005 0.002 0.002
m - - 10 10 -
Training Dice 0.96 0.82 0.87 0.80 0.64
Validation Dice 0.89 0.51 0.77 0.51 0.49

7



Poolability and Transferability in CNN. A Thrifty Approach

validation-set. As the validation set is not used to stop the training it is truly independent
from the training set. Our goal is to observe the networks’ training behavior and not the
segmentation performance, so the test-set is omitted here.

During the training of these models we noticed that the U-Net would converge to very
different solutions in the same training configuration, often not reaching its potential. The
convergence of the U-Net and the DT-Net are compared in figure 8. In contrast to the
transfer block based networks, the U-Net seems to be inherently unstable. The figure shows
only the validation Dice, but the training loss and Dice show the same behavior. For the
moment we assume that this is an effect of the network size, but it would be interesting to
investigate this further.

This real data-set is way more difficult than segmenting circles, which allows to see a
real difference in the capabilities of the different network architectures. Looking at the loss
values the networks are well separated (figure 7). But a look at the dice score shows a lower
loss value does not necessarily indicate a better segmentation performance. The networks
based on the transfer block perform well. Of course we cannot expect to beat the U-Net 5
with a network which has only 0.44% of the parameters. But the DT-Net comes remarkably
close in terms of performance and clearly beats the U-Net 4 which still has 56 times more
parameters. Even the T-Net beats the U-Net 4 on the validation set while having less than
twenty thousand parameters compared to more than seven million of the U-Net 4.

This proves that the transfer block works, and that it delivers performance at an aston-
ishingly low parameter cost.

4. Conclusion

We challenged the concept for feature extraction which has been uncontested for three
decades, the feature extraction pyramid. Our method translates the series of resolutions to
parallel maximum pooling with different window sizes. The receptive field of our method
can be modified freely through the pooling window sizes without affecting the parame-
ter number, whereas traditional feature extraction pyramids have a high parameter cost
associated with an increase of the receptive Field.

In two experiments it was shown that our transfer block can master the same tasks as
a feature extraction pyramids. Not only the transfer block is a drop in replacement for a
feature extraction pyramid, i.e. another way to do things, it also has advantages over feature
extraction pyramids. It provides comparable performance while using an astonishing less
than 1% of the parameters of a proven segmentation method, the U-Net. And as a smaller
network it is more robust and converges reliably to the same result from different random
initializations.

In the future our method for increasing the receptive field will lead to much smaller
and faster networks while maintaining the known CNN performance. This is interesting for
applications where computational resources are limited, like autonomous driving or real-
time bio-medical applications.
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