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ABSTRACT

Large language models (LLMs) have shown remarkable abilities in diverse nat-
ural language processing (NLP) tasks. The LLMs generally undergo supervised
fine-tuning (SFT) followed by preference alignment to be usable in downstream
applications. However, this sequential training pipeline leads to alignment tax that
degrades the LLM performance.
This paper introduces PAFT, a new PArallel training paradigm for effective LLM
Fine-Tuning, which independently performs SFT and preference alignment (e.g.,
DPO and ORPO, etc.) with the same pre-trained model on respective datasets.
The model produced by SFT and the model from preference alignment are then
merged into a final model by parameter fusing for use in downstream applications.
This work reveals important findings that preference alignment like DPO naturally
results in a sparse model while SFT leads to a natural dense model which needs
to be sparsified for effective model merging. This paper introduces an effective
interference resolution which reduces the redundancy by sparsifying the delta
parameters. The LLM resulted from the new training paradigm achieved Rank #1
on the HuggingFace Open LLM Leaderboard1. Comprehensive evaluation shows
the effectiveness of the parallel training paradigm.

1 INTRODUCTION

In recent years, large language models (LLMs) have emerged as the standard approach to addressing
natural language processing (NLP) tasks. The typical way of building an LLM for downstream
applications generally follows a sequential training pipeline consisting of two phases: 1. Supervised
Fine-tuning (SFT), where the pre-trained LLM is fine-tuned with the language modelling loss on
demonstrations of the desired behaviour. 2. Alignment with human preference, where the model
produced by the SFT phase is further fine-tuned with an alignment algorithm like Reinforcement
Learning from Human Feedback (RLHF) or Direct Preference Optimization (DPO), etc. While
this sequential pipeline has been used to seemingly great success, how the SFT and the preference
alignment work better with each other is underexplored.

Recent studies OpenAI (2023); Askell et al. (2021); Song et al. (2023) have found that the preference
alignment phase can cause the LLM to forget the diverse capabilities that it has acquired from
earlier phases, despite aligning the LLM with human expectation. This phenomenon, also known
as the alignment tax in the literature Ouyang et al. (2022), has accumulated substantial attention
from both academia and industry. The alignment tax inherently results from catastrophic forgetting
present in the staged training. To reduce catastrophic forgetting and thus alignment tax, this paper
introduces a new parallel training paradigm for LLM fine-tuning, named PAFT, which independently
performs SFT and preference alignment with the same pre-trained model on respective datasets,
instead of sequentially conducting SFT followed by preference alignment. The model from SFT and
the model from preference alignment are then merged into a final model by parameter fusing for use
in downstream applications.

As discovered by prior work Yadav et al. (2023); Yu et al. (2023), direct model merging causes the
parameter values to interfere across models, thereby harming the performance of the final model.

*These authors contributed equally to this work
1https://huggingface.co/spaces/open-llm-leaderboard-old/open llm leaderboard Uncheck

the Private or deleted option to make our private Rank #1 model visible.
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(a) Staged training

(b) Parallel training

Figure 1: Comparison of training paradigms

The interference, which reduces parameter magnitudes in the merged model and eliminates subtle
distinctions among values, can attribute to the redundant delta parameters, i.e., the differences in
values between fine-tuned and pre-trained parameters, resulted from fine-tuning. Previous studies on
model pruning Hoefler et al. (2021); Thimm & Fiesler (1995) have shown that during fine-tuning,
many model parameters can change over the course of fine-tuning but only have a small impact on
performance. However, when merging a parameter that is influential for one model but redundant
(i.e. not influential) for other models, the influential value may be obscured by the redundant
values, lowering the overall model performance. This work reveals the dense properties of the
delta parameters resulted from SFT. To mitigate the dense property of SFT, we propose an effective
interference resolution which reduces the redundancy by sparsifying the delta parameters by adding a
L1-norm penalty to the original SFT loss function. The existing findings indicate that the inclusion
of the L1 term enhances the sparsity of the SFT. This method of implicitly inducing sparsity has
been evaluated against a technique that introduces sparsity explicitly, i.e., DARE Yu et al. (2023),
demonstrating the advantages of employing the L1-norm on LLM’s performances in downstream
tasks.

Finally, the sparse delta parameters from SFT and preference alignment are merged into a sin-
gle stronger model. Different merging methods are assessed, and TIES and Task Arithmetic are
shown to be the best model merging methods, depending on base models. The method of Parallel
SFTsparse+DPO merged through TIES based on Mistral-7B sets a new benchmark for 7B models, i.e.,
0.6524 on average over the six tasks in HuggingFace Open LLM Leaderboard. Notably, Parallel
SFTsparse+DPO consistently outperforms Parallel SFT+DPO across all model merging methods,
showing the effectiveness and robustness of the PAFT training paradigm.

The contributions of this paper are threefold:

1. Evidence is presented that parallel training of SFT and preference alignment outperforms
sequential training, effectively reducing the alignment tax.

2. The significance of sparse model integration is highlighted as a mean to prevent model
conflict while preserving the full capability of each model. We demonstrate the superiority
of the L1-norm over DARE as a more effective and higher-quality method for promoting
sparsity in model training across various model merging techniques.

3. We conduct comprehensive evaluation of PAFT on well-known public benchmarks including
Open LLM Leaderboard and AlpacaEval. The PAFT-ed 7B model achieved Rank #1 in the
7B/8B model category on the Open LLM Leaderboard, and the PAFT-ed 70B model topped
the Leaderboard globally.
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2 METHODOLOGY

2.1 PROBLEM SETTING

Given a pre-trained LLM, such as Mistral and Llama, we aim to optimize the model for a wide range
of downstream tasks by fine-tuning it either fully or with parameter-efficient tuning such as LoRA
Hu et al. (2022), using SFT and preference alignment. Throughout this paper, θ denotes the trainable
parameters; θpre denotes the parameters of the pre-trained model; θsft denotes the parameters of the
model fine-tuned with SFT; θxpo denotes the parameters of the model fine-tuned with preference
alignment, such as PPO Schulman et al. (2017); Ziegler et al. (2020), DPO Rafailov et al. (2023) and
ORPO Hong et al. (2024), etc.; δsft = θsft − θpre denotes the delta parameters between the SFT-ed
model and the pre-trained model; and δxpo = θxpo − θpre denotes the delta parameters between the
preference-aligned model and the pre-trained model.

2.2 PARALLEL TRAINING

SFT and preference alignment are two distinct methodologies designed to enhance the capabilities of
pre-trained LLMs for specific applications. SFT focuses on boosting the performance of LLMs on
downstream tasks by fine-tuning them with datasets that closely resemble the target task. This process
tailors the model’s responses to be more accurate and relevant for a specific use-case. In contrast,
preference alignment, such as RLHF, DPO and ORPO, etc., is a methodology that refines a model’s
outputs based on human preferences. It generally fine-tunes the model on pairs of responses to an
input query, one of which is preferred over the other one. Preference alignment uses such feedback
signal to guide the model towards generating outputs that align with human expectation and ethical
standards. This approach is particularly valuable for addressing the ethical considerations that arise
when deploying LLMs in real-world scenarios.

Nowadays, researchers have applied SFT to enhance the performance of LLMs on targeted tasks, and
then employed preference alignment to further align the models with human preferences. However,
this sequential application of SFT followed by preference alignment has often led to a compromise in
task-specific performance - a phenomenon referred to as the alignment tax. This occurs because the
distinct objectives of SFT and preference alignment can sometimes be at odds, with the alignment
process potentially undoing some of the task-specific optimizations achieved through SFT.

We address the challenge of the alignment tax by a novel approach that involves SFT and preference
alignment concurrently using adapter training, such as LoRA Hu et al. (2022). This method takes full
advantages and strengths of both SFT and preference alignment without sacrificing performance in
either one, i.e., ensuring that the resulting model maintains high performance in downstream tasks
while also being aligned with human preferences, thus overcoming the limitations associated with
the alignment tax. During the training process specifically, based on the same pre-trained model
θpre, the two separate adapter parameters, denoted as δsft and δxpo, are learned in parallel from
downstream ground truth and human preferences, respectively. The proposed PAFT seeks to merge
the δsft and δxpo in an effective way of avoiding feature interference. Figure 1 compares the typical
staged training pipeline and our parallel training pipeline PAFT.

2.3 SPARSE MERGING

The integration of dense neural network models often results in a suboptimal combined model
due to the phenomenon of parameter interference. This challenge has led researchers to explore
alternative strategies. Our investigations reveal that by increasing sparsity of a fine-tuned adapter, the
performance of merging the adapter with the base model can be improved. Specifically, the parameter
δxpo, derived from adapter training like LoRA for preference alignment, demonstrates clear sparsity,
as depicted in Figure 2. We hypothesize that this sparsity results from the mode-seeking behavior
inherent in the constraint optimization objective of preference learning like DPO. For example, DPO
includes a KL divergence term, which has been associated with mode-seeking properties based on
the type of initialization in prior work on preference optimization Tajwar et al. (2024). Mode-seeking
objectives tend to concentrate probability mass on specific, high-reward outputs, potentially leading
to more focused and sparse parameter updates.
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Figure 2: Adapter sparsity for SFT and DPO. The sparsity levels are computed by first merging
the parameters from LoRA matrices δA and δB through matrix multiplication (δ = δB × δA), and
computing the percentage of elements within δ that are less than a threshold of 1× e−5, indicating
the proportion of weights approaching zero. The reported sparsity is the average across all layers.

.

In contrast, the sparsity in a SFT adapter, denoted by δsft, is not pronounced. This can be because
SFT’s maximum likelihood objective, similar to behavior cloning, attempts to increase the likelihood
of all positive examples, potentially resulting in more distributed and dense parameter updates across
the adapter. It aligns with the findings of Piao et al. (2022), which showed that maximum likelihood
training tends to produce dense representations. To increase the sparsity within δsft, we propose
the incorporation of an L1 regularization term during the SFT process. This modification to the
fine-tuning procedure is expressed mathematically as follows:

LSFTsparse = LSFT + λ · ∥δsft∥1 (1)

Here, LSFT represents the conventional cross-entropy loss function, and λ is a weighting factor that
controls the strength of the sparsity regularization. Our results indicate that this approach significantly
enhances the sparsity of δsft, with sparsity levels over 90%, as illustrated by the SFT sparse in Figure
2.

Given sparse representations for adapters of both SFT and preference alignment, the challenge is
to effectively merge these delta parameters, δsft and δxpo, with the original pre-trained model, θpre,
while preserving the performance benefits of SFT and preference alignment. The merging process
can be formalized by the equation:

θmerge = f(θpre, δdpo, δsft) (2)

In our study, we explore a variety of merging methods proposed in the literature, including SLERP,
Task Arithmetic, TIES, DARE TIES, and Linear. Detailed discussions of these merging methods are
provided in the Related Work section.

3 EXPERIMENTS

3.1 EVALUATION SETTINGS

In this study, we conduct comprehensive evaluation on both the Open LLM leaderboard provided
by HuggingFace and the AlpacaEval benchmark. The Open LLM Leaderboard benchmark suite
encompasses a diverse set of six benchmark tasks, namely ARC, HellaSwag, MMLU, TruthfulQA,
Winogrande, and GSM8K, along with their aggregated performance metrics.
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In our experiments, we employ two state-of-the-art pre-trained models: Mistral-7B Jiang et al. (2023)
and Llama-3-8B2. This section presents the experimental results of merging the delta parameters
obtained through SFT and DPO using the LoRA technique. We also study another preference
alignment method ORPO for PAFT, which results in the same observations and conclusions as those
from DPO. It shows the generalizability of PAFT to different preference alignment techniques. Due
to space limit, we put the experimental results for ORPO in the appendix.

Following the Zephyr work Tunstall et al. (2023), we use the UltraChat Ding et al. (2023) dataset
for SFT and the UltraFeedback Tunstall et al. (2023) dataset for DPO. UltraChat is a self-refinement
dataset consisting of 200K multi-turn dialogues generated by GPT-3.5-Turbo over 30 topics and 20
different types of text material. UltraFeedback consists of 64k prompts, each of which have four
LLM responses that are rated by GPT-4 according to criteria like instruction-following, honesty, and
helpfulness.

We meticulously explore a spectrum of merging methods, including SLERP, Task Arithmetic, TIES,
DARE-enhanced TIES, and Linear combination. Each of these merging strategies is scrutinized to
determine its efficacy in integrating the sparsity-induced parameters from LoRA with the original
pre-trained models. The goal is to ascertain which method most effectively preserves the performance
enhancements attributed to SFT and DPO, thereby contributing to the advancement of model merging
methods in LLM research. For training individual adapters, we have used the same settings as in the
zephyr-7b-beta development3. Our evaluation is conducted using the EleutherAI’s LM Evaluation
Harness framework Gao et al. (2023). We adhere to the same branch (b281b09) used by the
HuggingFace Open LLM Leaderboard Beeching et al. (2023), and evals are run with batch size 1 on
an A100 GPU.

The hyper parameter λ in Equation 1 controls the sparsity of δsft. Empirical values 0.0001 and 0.001
are validated in our experiments to achieve reasonable sparsity.

3.2 PARALLEL TRAINING VS. SEQUENTIAL TRAINING

To demonstrate the advantages of parallel training PAFT, we conducted empirical comparison of
parallel, sequential and standalone training approaches on the six benchmark tasks using the two
pre-trained models: Mistral-7B and Llama-3-8B. The results are given in Table 1. In the Mistral-7B
model section, training with DPO alone improves the average score over the base model, while
training with SFT alone doesn’t show an improvement. This result reveals that SFT, while focusing
on downstream tasks, inadvertently undermines performance due to a lack of alignment with human
preferences. Conversely, DPO aims to harmonize the outputs of LLMs with human preferences,
resulting in a noticeable improvement in the average score.

Furthermore, we evaluated the sequential training of SFT with L1 regularization followed by DPO,
which gave an average score of 0.6387. This score marginally surpasses that of standalone DPO,
setting the stage for a comparison with parallel training outcomes. This outcome aligns with our
initial hypothesis that during the DPO phase the model appears to discard much of the knowledge
acquired in the SFT stage, i.e., alignment tax. Consequently, its performance exhibits only a marginal
improvement over the training with DPO-alone.

Additionally, we performed side-by-side evaluations of SFTsparse+DPO training in both parallel and
sequential manners. The findings indicate that training SFT with L1 regularization alongside DPO
in parallel leads to a performance metric of 0.6524 when merging with the TIES method, over 2%
higher than the score achieved by either DPO alone or by training SFTsparse and DPO in sequence.
This outcome can be explained by a notable drawback of sequential training which is its tendency
to overlook much of the knowledge gained during the SFT stage, suggesting a suboptimal use of
SFT data. In contrast, parallel training effectively combines the benefits from SFT and DPO by
processing them concurrently. The benefits are mostly preserved during model merging, ensuring
efficient utilization of both SFT and DPO data. Our work underscores the enhanced efficacy of the

2Note that while the Llama 3 model is referenced in our work, the official documentation for this model
has not been released at the time of writing, and thus we cite its official GitHub site as a proxy: https:
//github.com/meta-llama/llama3

3https://github.com/huggingface/alignment-handbook/tree/main/recipes/zephyr-7b-beta
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Base Model: Mistral-7B-v0.1
Method ARC HellaSwag MMLU TruthfulQA Winograde GSM8K AVERAGE
PAFT (SFTsparse+DPO)
SLERP 0.6391 0.8464 0.63961 0.5123 0.794 0.4223 0.64228
Task Arithmetic 0.6519 0.8477 0.63325 0.563 0.794 0.4071 0.64949
TIES 0.6519 0.8551 0.63927 0.5453 0.7946 0.4284 0.65243
DARE TIES 0.6493 0.8526 0.63444 0.5454 0.7964 0.4094 0.64792
Linear 0.6348 0.8451 0.64275 0.505 0.7932 0.4246 0.64091
Parallel SFT+DPO
SLERP 0.6391 0.8479 0.63937 0.5031 0.7924 0.4124 0.63904
Task Arithmetic 0.651 0.851 0.62998 0.5397 0.8011 0.4117 0.64741
TIES 0.5956 0.8319 0.61651 0.3993 0.7853 0.3071 0.58928
DARE TIES 0.5922 0.8244 0.60471 0.3801 0.7577 0.2767 0.57263
Linear 0.6391 0.846 0.63935 0.4946 0.7995 0.4314 0.64166
Sequential
SFTsparse+DPO 0.6391 0.8464 0.63461 0.5103 0.7894 0.4123 0.63868
SFT+DPO 0.656 0.8459 0.62634 0.5079 0.7884 0.3836 0.63469
Individual
SFTsparse-alone 0.6126 0.8233 0.6421 0.4124 0.7711 0.3715 0.6055
SFT-alone 0.6101 0.8216 0.6263 0.4486 0.7798 0.3525 0.6065
DPO-alone 0.6314 0.8487 0.6423 0.4496 0.7932 0.4344 0.6333
Mistral-7B-v0.1 0.6049 0.8320 0.6369 0.4259 0.7814 0.37 0.6085

Base Model: Llama-3-8B
Method ARC HellaSwag MMLU TruthfulQA Winograde GSM8K AVERAGE
PAFT (SFTsparse+DPO)
SLERP 0.6067 0.8367 0.66995 0.5297 0.7837 0.5095 0.65604
Task Arithmetic 0.6118 0.8411 0.66858 0.5552 0.7806 0.5208 0.66301
TIES 0.6101 0.8414 0.67098 0.5313 0.7891 0.5185 0.66023
DARE TIES 0.6067 0.8398 0.66945 0.5232 0.7885 0.5163 0.65732
Linear 0.6049 0.8329 0.67059 0.5168 0.7837 0.5011 0.65166
Parallel SFT+DPO
SLERP 0.6152 0.8347 0.66248 0.5149 0.7869 0.5171 0.65521
Task Arithmetic 0.6254 0.837 0.66089 0.5266 0.7869 0.5133 0.65835
TIES 0.5879 0.8092 0.65863 0.4283 0.7545 0.4291 0.61127
DARE TIES 0.6007 0.8061 0.65702 0.4233 0.7609 0.4049 0.60882
Linear 0.6152 0.8331 0.66614 0.5082 0.7845 0.5095 0.65277
Sequential
SFTsparse+DPO 0.5648 0.7984 0.62204 0.4049 0.7766 0.3692 0.58932
SFT+DPO 0.5623 0.7976 0.62258 0.4057 0.7719 0.3662 0.58771
Individual
SFTsparse-alone 0.5862 0.8177 0.66328 0.4834 0.7719 0.4473 0.6283
SFT-alone 0.6084 0.8135 0.65325 0.4469 0.7648 0.4637 0.62509
DPO-alone 0.6152 0.8412 0.6682 0.5273 0.7845 0.4849 0.65355
Llama-3-8B 0.5947 0.8209 0.66603 0.4391 0.7719 0.4587 0.62522

Table 1: Results of compared methods on the six benchmark tasks

parallel training approach PAFT, which not only maintains the distinct advantages of SFT and DPO,
but also outperforms these techniques when they are used separately or sequentially.

3.3 SPARSE MERGING VS. DENSE MERGING

Our study has demonstrated the advantages of incorporating sparsity into fine-tuned models. In the
context of sequential training, the inclusion of L1 regularization has yielded a modest yet notable
improvement. Specifically, in Table 1, the average score for the sequential SFTsparse+DPO stands
at 0.6387, surpassing the sequential SFT+DPO without L1 regularization, with a score of 0.6347.
Although the improvement is marginal, it underscores the value of integrating the L1-norm to induce
sparsity.

The impact of sparsity becomes more pronounced when examining parallel training scenarios.
Across all considered model merging techniques, Parallel SFTsparse+DPO, i.e., PAFT, consistently
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LLM ARC HellaSwag MMLU TruthfulQA Winograde GSM8K AVERAGE
PAFT (Ein-70B) 0.7986 0.9149 0.7805 0.7514 0.8777 0.7544 0.8129
Mixtral-8x22B-Instruct 0.727 0.8908 0.7777 0.6814 0.8516 0.8203 0.7915
Llama-3-70B-Instruct 0.7142 0.8569 0.8006 0.6181 0.8287 0.8544 0.7788
PAFT (TextBase-7B) 0.7389 0.9027 0.6478 0.7813 0.8603 0.6793 0.7684
Cohere-Command-R+ 0.7099 0.8856 0.7573 0.563 0.854 0.7074 0.7462
DBRX-132B-Instruct 0.6783 0.8885 0.7372 0.6702 0.8208 0.6732 0.7447
OpenChat-3.5 0.6604 0.8293 0.6504 0.519 0.8177 0.6816 0.693
Llama-3-8B-Instruct 0.6075 0.7855 0.6707 0.5165 0.7451 0.6869 0.6687
Mistral-7B-Instruct-v0.2 0.6314 0.8488 0.6078 0.6826 0.7719 0.4003 0.6571
Gemma-7B 0.6109 0.8247 0.6603 0.4491 0.7845 0.5277 0.6429

Table 2: Comparison with state-of-the-art LLMs on Open LLM Leaderboard (All the scores are
obtained from the Leaderboard.)

outperforms its counterpart without L1 regularization, Parallel SFT+DPO, thereby highlighting the
efficacy of the sparsity induced by L1-norm. Notably, in the case of the TIES and DARE TIES
merging methods, the average score disparity is significant. With TIES, PAFT (SFTsparse+DPO)
achieves a score of 0.6524, while Parallel SFT+DPO without sparsification lags behind at 0.5893.
Similarly, for DARE TIES, PAFT (SFTsparse+DPO) scores 0.6479, outstripping Parallel SFT+DPO’s
0.5726. This substantial margin illustrates the robustness of L1-norm sparsity for various merging
methods.

The same insights as given in the Mistral-7B section can be gained from the Llama-3-8B section
in Table 1. PAFT on Llama-3-8B significantly outperforms Parallel SFT+DPO, sequential training
and standalone training. The experimental results confirm the generalizability of PAFT to various
pre-trained models.

When comparing different model merging strategies, TIES generally performs better than other
methods on both Mistral-7B and Llama-3-8B, exhibiting superior performance over DARE TIES.
DARE, which stands for ”Drop And REscale”, is a method that explicitly increases sparsity by
eliminating elements below a certain threshold and rescaling the remaining parameters. In contrast,
the L1-norm introduces sparsity implicitly by integrating it into the objective function. Consequently,
the impact of the eliminated terms is less pronounced in the final results compared to DARE. This
comparison reveals the advantages of the L1-norm’s explicit sparsity induction over the implicit
approach employed by DARE.

3.4 COMPARISON WITH STATE-OF-THE-ART LLMS

On the online Open LLM Leaderboard, we performed PAFT on the Neurotic-7B4 and MoMo-70B5

base models. The two PAFT-ed models significantly improved over the respective base models, and
achieved Rank #1 in the 7B/8B model category and globally on the online Open LLM Leaderboard6,
respectively, showing the effectiveness of PAFT on various base models. Table 2 gives the results of
our PAFT-ed models and the existing state-of-the-art models on the Leaderboard.

Additionally, we compared the two PAFT-ed models with existing state-of-the-art LLMs on the
AlpacaEval benchmark Li et al. (2023), where every model generates responses to 805 questions on
different topics, mostly focused on helpfulness. The models are judged by GPT-4, and the final metric
is the pairwise win-rate against GPT-4. As shown in Table 3, the PAFT-ed 70B model outperforms
existing state-of-the-art LLMs, except GPT-4 Preview and Claude 3 Opus in LC (Length-controlled)
Win-Rate. While the GPT-4 judge favors its own GPT model family, the PAFT-ed 70B model
performs better than GPT-4 (03/14) and GPT 3.5 Turbo do. On the other hand, the PAFT-ed 7B model
outperforms all the 7B/8B and smaller models on AlpacaEval. It even beats some larger models, such
as DBRX Instruct and Mixtral 8x7B.

4https://huggingface.co/liminerity/Neurotic-Jomainotrik-7b-slerp
5https://huggingface.co/leejunhyeok/MoMo-70B-LoRA-V1.2 1
6https://huggingface.co/spaces/open-llm-leaderboard-old/open llm leaderboard Uncheck

the Private or deleted option to make our private Rank #1 model visible.
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LLM LC WinRate WinRate
GPT-4 Preview 50.0% 50.0%
Claude 3 Opus 40.5% 29.1%
PAFT 70B 38.6% 26.5%
GPT-4 (03/14) 35.3% 22.1%
Claude 3 Sonnet 34.9% 25.6%
Llama 3 70B Instruct 34.4% 33.2%
Mixtral 8x22B v0.1 30.9% 22.2%
PAFT 7B 30.6% 22.8%
DBRX Instruct 25.4% 18.4%
Mixtral 8x7B v0.1 23.7% 18.3%
Llama 3 8B Instruct 22.9% 22.6%
GPT 3.5 Turbo 22.7% 14.1%
Mistral 7B v0.2 17.1% 14.7%

Table 3: Comparison with state-of-the-art LLMs on the AlpacaEval benchmark using GPT-4 as a
judge

4 RELATED WORK

4.1 SFT AND HUMAN PREFERENCE ALIGNMENT

The groundbreaking achievements of BERT Devlin et al. (2019) and GPT OpenAI (2023) have
underscored the significance of pretraining and supervised fine-tuning (SFT) techniques. To mitigate
ethical concerns and ensure such language model outputs are aligned with human values, a subsequent
alignment step employs human feedback to enhance the efficacy of pretraining Christiano et al. (2023),
fine-tuning Ziegler et al. (2020), and adaptability for scaling purposes Leike et al. (2018). Kreutzer
et al. (2018) found that implicit task feedback often outperforms explicit user feedback, leading to
other high-quality datasets of human-generated summaries to compare with those produced by LLMs,
resulting in superior quality outputs compared to SFT and human benchmarks Stiennon et al. (2022).
Recent advancements by models such as GPT OpenAI (2023), Claude Bai et al. (2022), Llama
Touvron et al. (2023), and Gemini Team (2024) have all leveraged human comparison feedback to
refine output quality through alignment, a method also known as reinforcement learning from human
feedback (RLHF).

RLHF models employ the Bradley-Terry model to develop a reward function that emulates human
preferences between two candidate responses Bradley & Terry (1952). This reward model lays
the groundwork for applying reinforcement learning to LLMs, drawing inspiration from Proximal
Policy Optimization (PPO) techniques Schulman et al. (2017). Direct Preference Optimization
(DPO) streamlines the alignment process by integrating reward training with LLM alignment, thereby
simplifying the training regimen through a direct relationship between the reward function and policy
in reinforcement learning Rafailov et al. (2023). However, the efficacy of DPO in practice remains
an area for further exploration Xu et al. (2024). Odds-ratio Preference Optimization (ORPO) Hong
et al. (2024) is an alternative alignment paradigm that aims to replace sequential SFT + DPO with a
single monolithic optimization algorithm. It directly optimizes for preferences between two candidate
generations by maximizing the ratio of odds of the winning generation w.r.t. losing generation to
simultaneously reward logits of desired tokens and penalize logits of undesired tokens.

SFT and Human Preference Alignment serve distinct objectives and should be approached as com-
ponents of a multi-objective optimization problem. SFT focused on enhancing the performance of
LLMs in downstream tasks, whereas alignment seeks to address ethical concerns. Prior research
on RLHF often treats alignment as a compromise that could potentially degrade the model’s output
quality while address ethical problems Ouyang et al. (2022). Consequently, SFT and alignment
are typically implemented in a sequential manner to ensure the safety of LLMs while accepting
some degree of capability loss Hou et al. (2024). In contrast, Bai et al. have claimed that ’Smaller
models experience severe ‘alignment taxes’ – their performance on a wide variety of evaluations
declines after RLHF training. However, we find a variety of alignment bonuses, with our 13B and
52B RLHF-trained models performing better at zero-shot NLP evaluations, and the same at few-shot
evaluations’ Bai et al. (2022). This divergence in findings motivates further exploration into the
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interplay between SFT and alignment. Specifically, there is a strong interest in devising a method to
integrate SFT and alignment in such a manner that yields an ’alignment bonus.’

4.2 SPARSITY FOR LLMS

As the size of LLMs continues to increase, the importance of compression becomes crucial for
deploying them on edge devices. This is done to reduce costs and improve inference speed Zhu et al.
(2023). Various compression strategies for LLMs exist, with a focus on pruning Han et al. (2015) and
Low Rank Adapters (LoRA) Hu et al. (2022). Pruning involves creating sparsity through pretraining,
magnitude-based pruning, and fine-tuning the remaining weights Han et al. (2015). LoRA suggests
representing a matrix as the product of two low-rank matrices to reduce memory storage requirements
Hu et al. (2022). Recent research has shown that the magnitudes of parameters trained by LoRA in
SFT process are relatively small. A strategy has been developed where random pruning is applied
to these small SFT parameters with a ratio p, followed by multiplying the remaining parameters by
1

1−p to enhance model performance Yu et al. (2023). Merging sparsity models trained on different
tasks has led to significant improvements in downstream tasks like AlpacaEval and GSM8K. This
method involves applying pruning to introduce more sparsity in SFT using LoRA. Other methods for
inducing sparsity in SFT parameters exist like incorporating the L1 norm in the loss function, similar
to techniques used in Lasso regression Santosa & Symes (1986) and compressed sensing Candes et al.
(2006). A Bayesian interpretation of the L1-norm on the weights amounts to assuming a standard
Laplacian prior on the parameters which is centered more closely around mean of zero. This concept
will guide the research in this paper.

4.3 MODEL MERGING

Combining skills learnt from different types of datasets in a single model provides multiple benefits
like better in-domain performance Poth et al. (2021), out-of-domain generalization Wang et al. (2020),
and a more parameter efficient model w.r.t. specialized models. Joint multi-task learning is one
way to achieve this, but it has several difficulties: it is costly to train a single model across all tasks
and it is non-trivial to find the correct task-mix to ensure a jointly optimal performance across all
tasks Fifty et al. (2021). A wide variety of model merging methods to combine specialized models
into a stronger merged model have emerged as an alternative to multi-task training. Wortsman et al.
(2022) introduced the paradigm of averaging model weights from separate fine-tuned models to
create a stronger merged model in ModelSoup, achieving SOTA in several different benchmarks.
Fisher merging from Matena & Raffel (2022) proposed to improve upon naively averaging all model
weights by instead using a weighted average of the parameters. They identified the importance of each
individual parameter based on its Fisher Information to use as the coefficient in the weighted average.
Ilharco et al. (2023) further showed that one could influence the merged model’s performance in
several ways via task-arithmetic on task-vectors (additive weight adaptors): forgetting undesired
traits via negation, learning tasks by addition, or learning entirely new tasks by analogies. Jin et al.
(2023) proposed RegMean where they solve a local closed-form linear-regression problem to estimate
the merged model parameters for each individual linear layer. Yadav et al. (2023) demonstrated that
the phenomenon of parameter interference during model-merging leads to performance degradation
in merged models. They cited this interference to two main sources - redundant parameter-updates,
i.e. updates not crucial to a model’s prediction, and sign disagreement between different parameter-
updates. To overcome such destructive interference, they proposed TIES-Merging which has two
filtering steps before model-merging. First, only the top-k% updates by magnitude are retained in
each task-vector. Next, the dominant sign is chosen as sgn(Σi(sgn(θi))) and only those updates
whose sign agrees with the dominant sign are finally averaged and merged.

5 CONCLUSIONS

LLM fine-tuning generally undergoes a two-stage training process, with SFT applied initially,
followed by preference alignment. Yet, research indicates that this sequential approach incurs
an ”alignment tax”, compromising the LLM’s overall performance. To counteract this, we advocate
for a parallel training strategy PAFT which preserves the advantages of both SFT and preference
alignment without incurring the alignment tax associated with sequential training. A significant
hurdle in parallel training is the potential for conflict during the model merging phase, where the
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merging of different adapters can lead to diminished performance. In this paper, we propose the
integration of an L1 regularization to the training loss during the SFT phase to induce sparsity, thereby
reducing interference between models.

Our experimental results demonstrate the efficacy of incorporating an L1-norm into the SFT process
for sparsification and utilizing a parallel training framework over the typical sequential approach.
When combining all of them together, i.e. Parallel SFTsparse+DPO achieves the state-of-art results on
both the LLM leaderboard by HuggingFace and the AlpacaEval benchmark. The ORPO experimental
results given in the appendix show the same patterns, demonstrating the generalizability of our PAFT
to various preference alignment methods. This comprehensive strategy highlights how the methods
of integrating SFT with preference alignment can greatly enhance LLM fine-tuning.
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A PAFT PERFORMANCE WITH A DIFFERENT PREFERENCE OPTIMIZATION
ALGORITHM

The stronger performance of PAFT is also confirmed with a different choice of preference alignment
algorithm. Table 4 shows experimental results with ORPO as the preference alignment method
alongside SFT with the Llama-3-8B base model. We observe a similar trend where finetuning the
LLM sequentially via SFT followed by ORPO underperforms all the parallelly trained variants.
Even simple model merging methods such as Task Arithmetic and Linear merging perform strongly,
outperforming more complicated methods like DARE TIES in both experiment settings.

Base Model: Meta-Llama-3-8B
Method ARC HellaSwag MMLU TruthfulQA Winograde GSM8K AVERAGE
PAFT (SFTsparse+ORPO)
SLERP 0.599 0.8217 0.665 0.4926 0.7845 0.4898 0.6421
Task Arithmetic 0.5964 0.8214 0.6655 0.4995 0.783 0.4814 0.6412
TIES 0.5947 0.8226 0.66358 0.4931 0.783 0.4852 0.64036
DARE TIES 0.593 0.8224 0.6637 0.4921 0.783 0.4738 0.638
Linear 0.5964 0.8206 0.6654 0.4923 0.7814 0.4905 0.6411
Parallel SFT+ORPO
SLERP 0.6049 0.8227 0.668 0.4905 0.783 0.4951 0.644
Task Arithmetic 0.6152 0.8209 0.6621 0.4908 0.7845 0.4989 0.6454
TIES 0.593 0.8139 0.6633 0.4446 0.768 0.467 0.6250
DARE TIES 0.5981 0.8101 0.66 0.4398 0.7632 0.4534 0.6208
Linear 0.6067 0.8222 0.6685 0.4868 0.783 0.4989 0.6444
Sequential
SFTsparse+ORPO 0.5563 0.8018 0.62116 0.4068 0.7719 0.3662 0.58736
SFT+ORPO 0.5589 0.8021 0.62142 0.4092 0.7711 0.3677 0.5884
Llama-3-8B 0.5947 0.8209 0.64854 0.4391 0.7719 0.4587 0.62231

Table 4: Results of compared methods with ORPO on the six benchmark tasks
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