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Abstract

Imitation learning enables an agent to learn from expert demonstrations when the
performance measure is unknown and the reward signal is not specified. Standard
imitation methods do not generally apply when the learner and the expert’s sen-
sory capabilities mismatch and demonstrations are contaminated with unobserved
confounding bias. To address these challenges, recent advancements in causal
imitation learning have been pursued. However, these methods often require access
to underlying causal structures that might not always be available, posing practical
challenges. In this paper, we investigate robust imitation learning within the frame-
work of canonical Markov Decision Processes (MDPs) using partial identification,
allowing the agent to achieve expert performance even when the system dynamics
are not uniquely determined from the confounded expert demonstrations. Specifi-
cally, first, we theoretically demonstrate that when unobserved confounders (UCs)
exist in an MDP, the learner is generally unable to imitate expert performance. We
then explore imitation learning in partially identifiable settings — either transi-
tion distribution or reward function is non-identifiable from the available data and
knowledge. Augmenting the celebrated GAIL method (Ho & Ermon, 2016), our
analysis leads to two novel causal imitation algorithms that can obtain effective
policies guaranteed to achieve expert performance.

1 Introduction

Children often learn how to behave in an unfamiliar environment by imitating adults. Imitation
learning (IL) enables a learning agent to behave in an unknown environment by observing expert
demonstrations. It provides a viable approach for policy learning from demonstrations when the
reward function is not fully known and reward signals are not specified [2, 30, 8, 20, 31]. Imitation
learning has been widely applied across disciplines, such as autonomous driving [13, 39], robotics
[18], natural language processing [10, 11, 40, 41], and chronic disease management [52, 44].
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Figure 1: A multi-armed bandit model.

It has been acknowledged in the literature that imitation
learning could face significant challenges when unob-
served confounding bias in expert demonstrations cannot
be ruled out a priori [17, 57, 27, 42]. For illustration with
simplicity, consider a Multi-Armed Bandit (MAB) model
[28] described in Fig. 1; X ∈ {0, 1} is a binary action, and
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Identifiable Reward Non-Identfiable Reward

Identifiable Transition Standard IRL (e.g., GAIL[19]) CAIL-R (Alg. 1 in Sec. 3.1)

Non-Identfiable Transition CAIL-T (Alg. 2 in Sec. 3.2) Inimitable (Thm. 1 in Sec. 2.1)

Table 1: Summary of main contributions in this paper, including the analysis and proposed algorithms.

Y is the reward; U is a latent covariate (to the imitator) uniformly drawn over a binary domain {0, 1}.
Values of the reward are decided by a reward function Y ← X ⊕ U where ⊕ is a “xor” operator.
An expert demonstrator, having access to covariate U , selecting action based on an expert policy
X ← ¬U . Evaluating the expert’s performance gives E[Y ] = E[¬U ⊕U ] = 1. On the other hand, an
imitator, mimicking the expert’s behavior, will follow a policy π(X) = P (X) = 0.5, selecting action
uniformly at random. Evaluating the imitator’s performance gives Eπ [Y ] =

∑
x π(x)E[x⊕U ] = 0.5,

far from the expert’s performance E[Y ] = 1.

Causal Inference (CI) addresses the challenges of unobserved confounding bias within the observa-
tional data [32, 47, 53]. It leverages causal knowledge integral to the data generation process, typically
represented as a causal diagram or potential outcomes [32, 43, 5]. More recently, incorporating
causal inference methods into the imitation learning paradigm, causal imitation learning has evolved
into a critical area of research [16, 57, 27, 7, 49, 42]. To compensate for the presence of unobserved
confounding bias, these methods rely on additional structural or parametric knowledge about causal
relationships among variables in the environment. By utilizing such domain knowledge, the imita-
tor is able to recover the underlying system dynamics (i.e., causal effect) from confounded expert
demonstrations and, in turn, obtain an imitating policy that can achieve the expert’s performance.

By and large, the combination of causal knowledge and observational data does not always allow one
to point-identify the causal effect, called the non-identifiable. That is, more than one parametrization
of the target effect is compatible with the same observational data and model assumptions [32,
Def. 3.2.2]. For instance, in the MAB environment described previously, the imitator’s performance
Eπ [Y ] is not identifiable from the confounded observational distribution P (X,Y ) [32, Thm. 3.4.1].
Partial identification methods concerned with inferring about target causal effects in non-identifiable
settings, and has been a target of growing interest in the domains of causal inference [3, 12, 37, 14, 58],
econometrics [21, 35, 38, 48], and more recently, in machine learning [25, 24, 23]. Among these
works, two approaches are often employed: (1) bounds are derived for the target effect under minimal
assumptions, or (2) additional untestable assumptions are invoked under which the causal effect is
identifiable, and then sensitivity analysis is conducted to assess how the target causal effect varies as
the untestable assumptions are changed. Despite their effectiveness in addressing data bias, partial
identification has still been rarely explored in the context of imitation learning.

This paper studies the partial identification for imitation learning in a generalized sequential decision-
making environment of Markov Decision Processes (MDPs, [36]). The imitator must determine a
sequence of actions, while unobserved confounders cannot be ruled out a priori in expert demon-
strations. We discuss the solutions case-by-case, depending on the identifiability of the underlying
system dynamics from the confounded data, including the reward function R and the transition
distribution T . Specifically, our contributions can be summarized as follows. (1) We theoretically
prove that when unobserved confounders generally exist, it is infeasible to learn a robust policy that is
guaranteed to achieve expert performance from the demonstration data. (2) When only the transition
distribution T is identifiable, we propose a novel imitation algorithm that leverages the bounds over
the non-identifiable rewardR; by matching the weighted occupancy measure, the imitator is able to
obtain a policy that can outperform the expert. (3) We propose an alternative algorithm when the
rewardR is identifiable, but there is unobserved confounding affecting the transition T . Our proposed
algorithms could be implemented by augmenting the celebrated generative adversarial imitation
learning framework (GAIL, [19]). Table 1 briefly summarizes this paper’s main contributions. Due to
space constraints, all proofs are provided in Appendices A and B.

1.1 Preliminaries

This section introduces the basic notations and definitions used throughout the paper. We use capital
letters to denote random variables (X), small letters for their values (x), and DX for the domain
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of X . For an arbitrary set X , let |X| be its cardinality. Fix indices i, j ∈ N. Let Xi:j stand for a
sequence of variables {Xi, Xi+1, . . . , Xj}; for consistency, the sequence Xi:j = ∅ if j < i. We
denote by P (X) represents a probability distribution over variables X , and will consistently use
P (x) as abbreviations for probabilities P (X = x). Finally, 1{Z = z} is an indicator function that
returns 1 if event Z = z holds true; otherwise, it returns 0.

The basic semantical framework of our analysis rests on structural causal models (SCMs) [32, 4].
An SCM M is a tuple ⟨V ,U ,F , P (U)⟩, where V is a set of endogenous variables and U is
a set of exogenous variables. F is a set of functions s.t. each fV ∈ F decides values of an
endogenous variable V ∈ V taking as argument a combination of other variables in the system.
That is, V ← fV (PAV ,UV ),PAV ⊆ V ,UV ⊆ U . Exogenous variables U ∈ U are mutually
independent, values of which are drawn from the exogenous distribution P (U). Naturally, M induces
a joint distribution P (V ) over endogenous variables V , called the observational distribution. An
intervention on a subset X ⊆ V , denoted by do(x), is an operation where values of X are set to
constants x, replacing the functions {fX : ∀X ∈ X} that would normally determine their values.
For an SCM M , let Mx be a submodel of M induced by intervention do(x). For a set Y ⊆ V , the
interventional distribution Px (Y ) induced by do(x) is defined as the joint distribution over Y in
the submodel Mx, i.e., Px (Y ;M) ≜ P (Y ;Mx). We leave M implicit when it is obvious from the
context. For a detailed survey on SCMs, we refer readers to [32, Ch. 7] and [4].

2 Challenges of Unobserved Confounding

We focus on the sequential decision-making setting of an agent operating in a MDP environment [36]
over a series of interventions t = 1, 2, . . . . At each time step t, the agent observes the current state
St, performs an action do(Xt), receives a subsequent reward Yt, and moves to the next observed
state St+1. Values of the action Xt are selected by sampling from a stationary policy π(x | s), which
is a function mapping from the domain of the observed state St to the probability space over the
domain of every action Xt. Let Ut be an unobserved noise independently drawn from an exogenous
distribution P (U). Values of the subsequent reward Yt and the next state St+1 are, respectively,
determined by structural functions yt ← fY (st, xt,ut) and st+1 ← fS(st, xt,ut), taking as input
the current state St, action Xt, and latent noise Ut. The initial state S1 is drawn from an initial
distribution P (S1). We will consistently use X , S, and Y to denote the domain of action Xt, state
St, and reward Yt. Like a standard discrete MDP, domains of actions X and states S are assumed to
be finite; rewards are bounded in a real interval Y ≜ [0, 1] ⊂ R. Naturally, the agent operating in this
environment defines an interventional distribution Pπ , summarizing the consequences of its actions.

Fig. 2a shows a graph describing this generative process; where nodes represent observed variables
and directed arrows represent the functional relationships between them. For every time step t > 1,
the current state St “blocks” all pathways from previous nodes (e.g., St−1) to the future nodes (e.g.,
St+1) [32, Def. 1.2.3]. Applying d-separation rules leads to the following independence.

Definition 1 (Markov Property [36]). For a joint distribution P∗ over sequences of states S1, S2, . . . ,
actions X1, X2, . . . , and rewards Y1, Y2, . . . , the Markov property holds with regard to distribution
P∗, if for every time step t = 1, 2, . . . ,

(
S̄1:t−1, X̄1:t−1, Ȳ1:t−1 ⊥⊥ X̄t:∞, S̄t+1:∞, Ȳt:∞ | St

)
.

It follows from Def. 1 that for any horizon T , the joint distribution Pπ

(
X̄1:T , S̄1:T , Ȳ1:T

)
generated

by a policy π(X | S) factorizes as follows,2

Pπ (x̄1:T , s̄1:T , ȳ1:T ) = P (s1)

T∏
t=1

π(xt | st)T (st, xt, st+1)R(st, xt, yt), (1)

where the transition distribution T and the reward distributionR are interventional queries given by

T (st, xt, st+1) = Pxt
(st+1 | st) =

∫
ut

1 {st+1 = fS(st, xt,ut)}P (ut) (2)

R(st, xt, yt) = Pxt
(yt | st) =

∫
ut

1 {y = fY (st, xt,ut)}P (ut) (3)

2The decomposition holds since state St blocks all backdoor paths from action Xt to nodes St+1 and
Yt, i.e., path starting with arrow Xt ← St. It follows from Rule 2 of do-calculus [32, Theorem 3.4.1] that
Pπ (yt | st, xt) = Pxt (st+1 | st) and Pπ (yt | st, xt) = Pxt (yt | st).
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Figure 2: Causal diagrams where St represents the state, Xt represents the action (shaded blue) and
Yt represents the latent reward (shaded red). (a) MDPexp describes the imitator’s interaction with the
environment; (b) MDPobs shows the data-generating process for the expert demonstrations.

For analytical clarity, we define reward functionR(s, x) as the expected value
∑

y yR(s, x, y). Fix
the discounted factor γ ∈ [0, 1]. A common objective for an agent to optimize is the cumulative
return Rt = Yt + γYt+1 + γ2Yt+2 + · · · =

∑∞
k=0 γ

kYt+k.

Imitation Learning. When a detailed parametrization of the transition distribution T and the reward
functionR is available, the agent can obtain an optimal policy using standard planning algorithms
[36, 6]. However, in many practical applications, complete knowledge of these parametrizations
is often unavailable, necessitating a learning process. In this paper, we consider the imitation
learning setting, where the agent has access to observed trajectories generated by the expert. More
specifically, at each time step t, the expert selects an action Xt ← fX(st,ut) based on the current
state St = st and latent noise Ut = ut. Fig. 2b shows the graphical representation of the data-
generating process of the expert; the highlighted bi-directed arrows, e.g., Xt ↔ Yt, indicate the
presence of an unobserved confounder U ∈ Ut affecting both the action Xt and outcome Yt. We
summarize the expert trajectories using the observational distribution P (X,S,Y ) over sequences
of variables X = {X1, X2, . . . }, S = {S1, S2, . . . }, and Y = {Y1, Y2, . . . }. It is verifiable from
Fig. 2b that Markov property holds with regard to distribution P (X,S,Y ). For any horizon T ,

P (x̄1:T , s̄1:T , ȳ1:T ) = P (s1)

T∏
t=1

P (xt | st)T̃ (st, xt, st+1)R̃(st, xt, yt) (4)

where T̃ and R̃ are the expert’s nominal transition distribution and reward function computed from
the observational distribution as follows:

T̃ (s, x, s′) = P (St+1 = s′ | St = s,Xt = x) , R̃ (s, x) = E [Yt | St = s,Xt = x] (5)

By convention in imitation learning, we assume the rewards Yt are generally unobserved to the learner;
instead, it has access to a parametric family R containing the expert’s nominal reward function
E [Yt | st, xt]. Given the expert demonstrations D sampled from P (X1, X2, . . . , S1, S2, . . . ) and
the parametric reward family R, the imitator attempts to learn policy π that can achieve expert
performance, i.e., Eπ

[∑∞
t=1 γ

t−1Yt
]
≥ E

[∑∞
t=1 γ

t−1Yt
]
. Standard imitation methods focus on the

identifiable setting where the imitator’s transition distribution T and reward functionR is consistent
with the expert’s nominal transition T̃ and reward R̃. Formally,
Definition 2 (Causal Consistency). For an interventional distribution Pπ and an observational
distribution P satisfying the Markov property (Def. 1), Causal Consistency is said to hold with
respect to Pπ and P if the following statement is true, for every time step t = 1, 2, . . . ,

Pxt (st+1 | st) = P (st+1 | st, xt) , and Pxt (yt | st) = P (yt | st, xt) (6)

When the invariances of Def. 2 hold, the learner could recover the parametrization of the transition
distribution T from observational data P (X,S) and infer about the reward function R from the
parametric family R. An imitating policy π is obtainable by solving the following minimax program,

ν∗ = min
π

max
R∈R

∑
s,x

R(s, x) (P (x | s)ρ(s)− π(x | s)ρπ(s)) (7)

where the imitator’s ρπ and the expert’s ρ occupancy measures are defined as, respectively, ρπ(s) =∑∞
t=0 γ

tPπ (St = s) and ρ(s) =
∑∞

t=0 γ
tP (St = s). The solution π is guaranteed to achieve expert
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performance when the gap ν∗ ≤ 0. This means that the imitator following policy π performs as
well as the expert, even in the worst-case environment instance compatible with the demonstration
data and model assumption. Several imitation learning algorithms have been proposed to solve the
optimization problem in Eq. (7), including [1, 50, 19].

Graphical criteria exist [33, 46, 34] to examine whether causal consistency (Def. 2) holds from causal
knowledge of the environment, including the celebrated backdoor condition [32, Def. 3.3.1],[15]. In
MDPs, this means that the causal links between the latent noise Ut and action Xt are not effective
- the graphical representation of the imitator’s (Fig. 2a) and the expert’s (Fig. 2b) data-generating
process coincide. However, in practice, causal consistency could be fragile and does not necessarily
hold due to the presence of unobserved confounders in the demonstration data [57, 39]. The remainder
of this paper studies imitation learning when violations occur in the invariance relationships of Eq. (6).

2.1 Imitation with Non-Identifiable Transition and Reward

We first consider the imitation setting described in Fig. 2b where unobserved confounders generally
exist in the expert demonstrations; both the transition distribution T and reward functionR are not
identifiable from Eq. (6). Here, we will show that expert performance is not imitable by constructing
worst-case MDP instances where the expert always outperforms the imitator.

The state value function Vπ(s) is defined as the expected return given the imitator’s starting state
St = s following a policy π, i.e., Vπ(s) = Eπ [Rt | St = s]. For any policy π, the imitator’s
performance can be written as Eπ [R1] =

∑
s1
P (s1)Vπ(s1). The value function of any state s can

thus be recursively defined using the celebrated Bellman Equation [6]:

Vπ(s) =
∑
x

π(x | s)
(
R(s, x) + γ

∑
s′

T (s, x, s′)Vπ(s′)
)

(8)

where γ denotes the discount factor. While the transition distribution T and the reward functionR
are not uniquely discernible from the observational distribution due to the unobserved confounding,
it is still possible to learn about them from demonstrations using partial identification. Without loss
of generality, the reward Yt is normalized in a real interval [0, 1]. Through rigorous adaptation of
the bounding strategies established in [29, 55], we successfully derive the bounds for the transition
distribution T and reward functionR, for every realization (s, x, s′) ∈ S × X × S,

T (s, x, s′) ∈
[
T̃ (s, x, s′)P (x | s), T̃ (s, x, s′)P (x | s) + P (¬x | s)

]
(9)

R (s, x) ∈
[
R̃ (s, x)P (x | s), R̃ (s, x)P (x | s) + P (¬x | s)

]
(10)

Among the above quantities, T̃ and R̃ are the expert’s nominal transition distribution and reward
function in Eq. (5); P (x | s) stands for the propensity score P (Xt = x | St = s) and P (¬x | s) =
1 − P (x | s). We can then construct a worst-case MDP for any policy π at state s by solving the
following optimization program: minimize the Bellman’s equation in Eq. (8) as the objective function,
subject to the observational constraints in Eqs. (9) and (10). Solving this program enables a valid
MDP construction since the transition distribution T and the reward function R are independent
components induced by the underlying model and can be optimized separately.
Theorem 1. Given any positive observational distribution P (X,S,Y ) > 0, there exists an MDP
model M̂ compatible with the causal graph of Fig. 2b such that P (X,S,Y ; M̂) = P (X,S,Y )
and for any policy π, any time step t = 1, 2, . . . , any state s ∈ S,

Vπ

(
s; M̂

)
< E

[
Rt | St = s; M̂

]
. (11)

In other words, there always exists a candidate MDP instance M̂ compatible with the demonstration
data such that an imitator is always unable to achieve expert performance (r.h.s. in Eq. (11)), regardless
of the deployed policy π. It follows from Thm. 1 that there is no policy π learnable from confounded
demonstrations that is guaranteed to perform at least as the expert in all possible scenarios. This
means that expert performance is not imitable when unobserved confounding generally exists. The
following example demonstrates the challenges of unobserved confounding in a single-stage MDP.
Example 1 (Single-Stage MDP). Consider a 1-stage MDP model with horizon T = 1. For any policy
π(X1 | S1), the imitator’s expected return is Eπ [Y1] =

∑
s1,x1

R(s1, x1)π(x1 | s1)P (s1). It follows
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Figure 3: (a) MDPobs-Y shows a data-generating process for expert demonstrations where only the
reward Yt is confounded with the action Xt; (b) MDPobs-S shows a data-generating process for expert
demonstrations where only the next state St+1 is confounded with the action Xt.

from the tight lower bound in Eq. (10) that there exists an worst-case MDP model M̂ compatible
with the observational distribution P (X1, S1, Y1) such thatR(s1, x1) = E [Y1 | s1, x1]P (x1 | s1).
In this MDP instance M̂ , the imitator’s expected return can be further written as

Eπ [Y1] =
∑
s1,x1

E[Y1 | s1, x1]P (x1|s1)π(x1|s1)P (s1) <
∑
s1,x1

E[Y1 | s1, x1]P (x1|s1)P (s1) (12)

The last step holds since probabilities of the policy π(x1 | s1) ∈ [0, 1] and
∑

x1
π(x1 | s1) = 1.

Marginalizing the above equation gives Eπ [Y1] < E[Y1] - the imitator is unable to achieve expert
performance regardless of the deployed policy π. This analysis applies analogously to the MAB
model in Fig. 1, which can be thought of as a 1-stage MDP with no initial state S1 = ∅. We refer the
readers to Appendix F for more examples about the 2-stage MDP.

3 Partial Identification for Robust Imitation
The impossibility results in Thm. 1 imply that robust imitation cannot be guaranteed when unobserved
confounders generally exist in the demonstration data. This means we must explore alternative
assumptions to learn an imitating policy guaranteed to achieve expert performance. Meanwhile,
standard imitation methods apply when causal consistency of Def. 2 holds, and no unobserved
confounder affects the transition or reward function. A natural question at this point arises: whether
robust imitation is feasible for settings between the unconfounded (Fig. 1b) and fully confounded
cases (Fig. 1a), where unobserved confounding bias affects only either the transition distribution or
reward function? This section aims to answer this question.

3.1 Imitation with Identifiable Transition and Non-Identifiable Reward

We first examine the setting graphically described in Fig. 3a where the reward function is confounded,
while the transition distribution is identifiable from the demonstration data. In this case, the first
equation of Def. 2 holds while the second one fails. To initiate the discussion, we write the expected
return of a candidate policy π in an MDP environment as follows [36],

Eπ [R1] =
∑
s,x

R (s, x)π(x | s)ρπ(s) (13)

Among quantities in the above equation, the state occupancy measure ρπ(s) =
∑∞

t=0 γ
tPπ (St = s)

is a function of the initial state distribution P (s) = P (S1 = s) and the transition distribution T .
Specifically, ρπ(s) can be recursively written as ρπ(s) = P (s)+γ

∑
s′,x T (s′, x, s)π(x | s′)ρπ(s′).

When the transition distribution is unconfounded (Fig. 3a), one could recover its parametrization
T (s, x, s′) following the first formula of Def. 1. Therefore, what remains undetermined in Eq. (13)
is the non-identifiable reward functionR. It follows from Eq. (10) that parametrization ofR(s, x)
can be bounded from the observational distribution. The imitator’s expected return could thus
be lower bounded as Eπ [R1] ≥

∑
s,x R̃ (s, x)P (x | s)π(x | s)ρπ(s), where R̃ is the nominal

reward function defined in Eq. (5). Similarly, the expert’s expected return could be decomposed as
E [R1] =

∑
x,s R̃(s, x)P (x | s)ρ(s), where ρ(s) =

∑∞
t=0 γ

tP (St = s) is the expert’s occupancy
measure. Optimizing the worst-case gap between the imitator Eπ [R1] and expert E [R1] leads to a
minimax optimization problem, the solution of which leads to a possible imitating policy.
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Algorithm 1: Causal GAIL with Confounded RewardR (CAIL-R)

1: Input: Expert demonstrations D = {(Si, Xi)}Ni=1
2: for iteration k = 0, 1, 2, . . . do
3: Collect expert trajectories from D
4: Collect imitator trajectories based on the policy πk(x | s)
5: Update the parameters w of discriminator Dk with gradient

Ê[∇w log(Dk(s, x))] + Êπk
[∇wP (x | s) log(1−Dk(s, x))] (15)

6: Update the policy πk+1 = argminπ Eπ[P (x | s) log(1−D(s, x))] using any forward RL
algorithm

7: end for

Algorithm 2: Causal GAIL with Confounded Transition T (CAIL-T )

1: Input: Expert demonstrations D = {(Si, Xi)}Ni=1
2: for iteration k = 0, 1, 2, . . . do
3: Collect expert trajectories from D
4: Collect imitator trajectories based on the policy πk(x | s) from the worst-case occupancy

measure by solving the optimization problem presented in Eq. (19) and Eq. (20)
5: Update the parameters w of discriminator Dk with gradient

Ê[∇w log(Dk(s, x))] + Êπk
[∇w log(1−Dk(s, x)); T ] (16)

6: Update the policy πk+1 = argminπ Eπ[log(1−D(s, x)); T ] with any forward RL algorithm
7: end for

Theorem 2. Given an MDP M compatible with the causal graph of Fig. 3a, let R be a parametric
family containing the conditional reward E[Yt | st, xt]. Consider the following optimization program,

ν∗ = min
π

max
R̃∈R

∑
s,x

R̃(s, x)P (x | s) (ρ(s)− π(x | s)ρπ(s)) (14)

When the gap ν∗ ≤ 0, the solution π∗ is an imitating policy satisfying Eπ∗ [R1] ≥ E[R1].

In other words, Thm. 2 computes an imitating policy within the environment depicted in Fig. 3a by
finding a policy maximizing the worst-case reward function compatible with the demonstration data
and the expert’s nominal reward. Later in Sec. 4, we will demonstrate that such a solution exists and
robust imitation learning is feasible in Fig. 3a.

The optimization program in Thm. 2 could be solved by augmenting some standard imitation learning
such as GAIL [19]. To make the argument more precise, let the parametric family R be a set of reward
functionR(s, x) taking values in the real space R. We penalize the complexity of a reward function
R by subtracting a convex regularization function ψ(R) from Eq. (14); the detailed definition of
ψ(R) is given by [19, Eq. 13]. Solving the optimization program of Eq. (14) is equivalent to matching
weighted occupancy measures between the imitator and the expert, shown in Appendix B,

ν∗ = min
π
ψ∗ (P (x | s)ρ(s)− P (x | s)π(x | s)ρπ(s)) (17)

= min
π

max
D∈(0,1)S×X

E[log(D(S,X))] + Eπ [P (x | s) log(1−D(S,X))] , (18)

where ψ∗ = maxR a⊤R− ψ(R) is a conjugate function of ψ; function D ∈ S × X 7→ (0, 1) is a
discriminator classifier (e.g, a neural network). The above optimization problem is in the form of
two neural networks competing against each other in a zero-sum game. The detailed implementation
of our proposed algorithm, called CAIL-R, is provided in Alg. 1. Compared to the standard GAIL
algorithm, Alg. 1 adds weight to the signal generated by the discriminator for the imitator and then
attempts to match the distribution between the weighted samples and expert demonstrations.
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3.2 Imitation with Non-Identifiable Transition and Identifiable Reward

In this section, we examine the MDPobs-S environment as graphically depicted in Fig. 3b, where the
reward function is unconfounded, but UCs affect the actionXt and the next state St+1 simultaneously.
In this setting, the second equation of Causal Consistency (Def. 2) is satisfied, aligning the reward
functionR with the expert’s nominal reward function. However, the first equation of Def. 2 does not
generally hold due to confounding bias, making the transition distribution T not identifiable from
demonstrations. Despite these challenges, we utilize partial identification techniques to bound the
transition function T , and subsequently estimate the imitator’s performance.

More precisely, consider again the expected return decomposition in Eq. (13). The identifiable
reward functionR must be contained in the parametric space of the expert’s nominal reward R. The
transition distribution T can be bounded from the demonstration data using Eq. (9). One could thus
obtain a lower bound over the imitator’s performance by reasoning about the worst-case occupancy
measure compatible with demonstrations. Formally, with the fixed reward functionR and the fixed
policy π, the imitator’s return Eπ [R1] is bounded by:

Eπ [R1] ≥ min
T ,ρπ

∑
s,x

R(s, x)π(x | s)ρπ(s) (19)

s.t.: ρπ(s) ≥ 0,
∑
s

ρπ(s) =
1

1− γ , and ρπ (s) = P (s) + γ
∑
s′,x

T (s′, x, s)π(x | s′)ρπ(s′)

Obs. Constraints T :

{∑
s T (s′, x, s) = 1, and T (s, x, s′) ≥ T̃ (s, x, s′)P (x | s)

T (s, x, s′) ≤ T̃ (s, x, s′)P (x | s) + P (¬x | s) (20)

The above optimization problem is similar to the classical linear program for planning in MDPs
[36]. The main difference is that the transition distribution T is no longer fixed but bounded in a
convex space T specified from the observational data. Therefore, we develop an imitating policy by
minimizing the performance gap between the imitator and the expert in the worst-case environment
compatible with the observational data and prior knowledge.
Theorem 3. Given an MDP M compatible with the causal graph of Fig. 3b, let R be a paramet-
ric family containing the conditional reward E[Yt | st, xt], and T be a parametric family over
conditional probabilities P (st+1 | st, xt) defined in Eq. (20). Consider the following program,

ν∗ = min
π

max
R∈R

max
T ∈T

∑
s,x

R(s, x) (P (x | s)ρ(s)− π(x | s)ρπ (s; T )) (21)

When the gap ν∗ ≤ 0, the solution π∗ is an imitating policy satisfying Eπ∗ [R1] ≥ E[R1].

We solve the optimization program in Thm. 3 by augmenting GAIL, a standard imitation method
[19]. By penalizing the complexity of a reward functionR using a convex regularization function
ψ(R) from Eq. (14), Eq. (21) is reducible to the following distribution matching problem,

ν∗ = min
π

max
D∈(0,1)S×X

max
T ∈T

E[log(D(S,X))] + Eπ [log(1−D(S,X)); T ] , (22)

We present the step-by-step implementation of our imitation method, CAIL-T , in Alg. 2. It is
similar to the standard GAIL [19]; however, a significant distinction arises at step 4, where the
imitator collects trajectories from the worst-case occupancy measure as presented in Eq. (19) and
Eq. (20), which is obtainable by iteratively solving a series of linear programs. We refer readers to
Appendix C for a more detailed discussion, where we propose an iterative algorithm designed to find
the worst-case occupancy measure efficiently.

4 Experiments

In this section, we validate the theoretical findings presented in Thm. 1 and illustrate the applications
of the proposed CAIL algorithms (Alg. 1 and Alg. 2) on various causal imitation learning tasks.
Such tasks range from synthetic causal models to real-world scenarios. To summarize, when
both the transition and the reward are confounded, there always exists a worst-case MDP instance
M̂ compatible with the expert demonstrations, but the imitator consistently fails to match expert
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Figure 4: Simulation results for our experiments. Fig. 4a illustrates the performance gap histogram for
the experiment MDPobs, where negative values indicate performance worse than expert performance.
Fig. 4b shows the convergence plot for CAIL, GAIL, and BC performance. Fig. 4c shows the final
performance, where y-axis represents the expected return.

performance, aligning with the proof provided in Sec. 2.1. When either the transition or the reward is
confounded, we systematically evaluate our algorithms against the standard BC and GAIL methods,
highlighting the importance of optimizing within the worst-case SCM. Standard BC mimics the
expert’s nominal behavior policy P (X|S) via supervised learning; standard GAIL learns a policy by
solving a min-max game [19]. We provide in Appendix D more details on the experiment setup.

MDPobs – Random Instances. This experiment aims to empirically validate the theoretical findings
discussed in Thm. 1. Consider SCM instances compatible with Fig. 2b including binary observed
variables St, Xt, Yt ∈ {0, 1}. 1000 random discrete MDPs are sampled, in other words, the reward
functions and the transition probabilities are generally different among these models. The expert is
able to observe the state St, the unobserved variable Ut. However, the imitator, lacking access to both
Ut or the reward Eπ[Yt], makes decisions solely on St. As shown in Fig. 4a, imitators consistently
failed to match expert performance. Specifically, prevalent negative performance gaps indicate that
most of imitators were consistently worse than experts; only in rare cases did the performance gaps
near −0.5, supporting our theoretical insights in Thm. 1. In summary, imitators fail to achieve the
expert’s performance when both the reward and the transition are confounded.

MDPobs-Y – Driving. To demonstrate the proposed framework, as outlined in Alg. 1, we consider a
scenario when an autonomous vehicle (‘ego vehicle’) aims to learn optimal driving strategies from
expert demonstrations. The state St contains some critical driving information, e.g., the velocities
of the ego vehicle and the leading vehicle and the spatial distance between them. The action Xt

represents acceleration or deceleration decisions the ego vehicle makes. The unobserved variable Ut

represents some information accessible to the expert but inaccessible to the imitator, e.g. slippery road
conditions [26]. The reward Yt is designed to reflect multiple realistic driving objectives, e.g., safety,
comfort, efficiency, and so on. Ut has an effect on the reward Yt. Unlike the scenarios described in
[39, 42], due to UCs betweenXt and Yt at each step t, it is impossible to find a π-backdoor admissible
set. BC, GAIL, and CAIL utilize the same policy space π(x | s). The major difference between
CAIL and GAIL lies in that CAIL optimizes the imitator by the weighted reward generated from
the discriminator – P (x | s) log(1−D(s, x)). As illustrated in Fig. 4b, where means and standard
deviations are computed over 100 trajectories, CAIL consistently outperforms BC and GAIL.

MDPobs-S – Medical Treatment. Consider the challenge of providing medical treatment to acutely
ill patients, where the primary goal is to learn a policy so that the morality rate can be decreased.
We utilize the real-world medical treatment dataset, i.e., Medical Information Mart for Intensive
Care III (MIMIC-III) dataset [22]. MIMIC-III consists trajectories of clinical information (e.g.,
heart rate, oxygen saturation, and so on) recorded at various time intervals. However, due to privacy
concerns, certain essential variables are masked or not properly recorded [45], e.g., socioeconomic
status or the experience levels of caregivers [9, 56]. Specifically, the state St encapsulates the
critical health information for the patients, e.g., prolonged elevated heart rate (peHR). The action Xt

represents whether to treat the medicine or not. The reward Yt is designed to represent the intent of
the doctor as much as possible, e.g., avoiding the patient’s mortality. The unobserved confounded
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Ut simultaneously affects the action Xt and the next state St+1. Simulation results are illustrated in
Fig. 4c, which shows that the proposed framework performs the best among all strategies. BC and
IRL fail to obtain an imitating policy that could match expert performance.

5 Conclusion

This paper investigates imitation learning in Markov Decision Processes where the unobserved
confounding bias cannot be ruled out a priori. We establish theoretically that when such unobserved
confounders generally exist, it is infeasible to obtain a robust imitating policy that can perform
at least as well as the expert across all possible environments compatible with the demonstration
data and prior knowledge. Departing from this critical realization, our research diverges into two
distinct problem settings – one where only the transition distribution is unconfounded, but the
reward function is non-identifiable due to unobserved confounding; and the other where the reward
function is unconfounded and the transition distribution is non-identifiable. We then propose novel
imitation learning algorithms using partial identification techniques, which allow the imitator to
obtain effective policies that can achieve expert performance for both problem settings. Through
extensive experiments, we empirically validate the theoretical findings and systematically evaluate
our algorithms on different scenarios, ranging from simulated causal models to real-world datasets.
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[34] E. Perković, J. Textor, M. Kalisch, and M. H. Maathuis. A complete generalized adjustment
criterion. arXiv preprint arXiv:1507.01524, 2015.

[35] D. J. Poirier. Revising beliefs in nonidentified models. Econometric theory, 14(4):483–509,
1998.

[36] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., 1994.

[37] A. Richardson, M. G. Hudgens, P. B. Gilbert, and J. P. Fine. Nonparametric bounds and
sensitivity analysis of treatment effects. Statistical science: a review journal of the Institute of
Mathematical Statistics, 29(4):596, 2014.

[38] J. P. Romano and A. M. Shaikh. Inference for identifiable parameters in partially identified
econometric models. Journal of Statistical Planning and Inference, 138(9):2786–2807, 2008.

[39] K. Ruan and X. Di. Learning human driving behaviors with sequential causal imitation learning.
Proceedings of the AAAI Conference on Artificial Intelligence, 36(4):4583–4592, 2022.

[40] K. Ruan, X. He, J. Wang, X. Zhou, H. Feng, and A. Kebarighotbi. S2e: Towards an end-to-end
entity resolution solution from acoustic signal. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 10441–10445. IEEE,
2024.

[41] K. Ruan, X. Wang, and X. Di. From twitter to reasoner: Understand mobility travel modes
and sentiment using large language models. In 2024 IEEE 27th International Conference on
Intelligent Transportation Systems (ITSC), 2024.

[42] K. Ruan, J. Zhang, X. Di, and E. Bareinboim. Causal imitation learning via inverse reinforcement
learning. In The Eleventh International Conference on Learning Representations, 2023.

[43] D. Rubin. Direct and indirect causal effects via potential outcomes. Scandinavian Journal of
Statistics, 31:161–170, 2004.

[44] S. I. H. Shah, A. Coronato, M. Naeem, and G. De Pietro. Learning and assessing optimal
dynamic treatment regimes through cooperative imitation learning. IEEE Access, 10:78148–
78158, 2022.

[45] Z. Shahn, N. I. Shapiro, P. D. Tyler, D. Talmor, and L.-w. H. Lehman. Fluid-limiting treatment
strategies among sepsis patients in the icu: a retrospective causal analysis. Critical Care, 24:1–9,
2020.

[46] I. Shpitser, T. VanderWeele, and J. Robins. On the validity of covariate adjustment for estimating
causal effects. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence, pages 527–536. AUAI, Corvallis, OR, 2010.

[47] P. Spirtes, C. N. Glymour, and R. Scheines. Causation, prediction, and search. MIT press,
2000.

12



[48] J. Stoye. More on confidence intervals for partially identified parameters. Econometrica,
77(4):1299–1315, 2009.

[49] G. Swamy, S. Choudhury, D. Bagnell, and S. Wu. Causal imitation learning under temporally
correlated noise. In International Conference on Machine Learning, pages 20877–20890.
PMLR, 2022.

[50] U. Syed and R. E. Schapire. A game-theoretic approach to apprenticeship learning. In Advances
in neural information processing systems, pages 1449–1456, 2008.

[51] J. Tian. Studies in Causal Reasoning and Learning. PhD thesis, Computer Science Department,
University of California, Los Angeles, CA, November 2002.

[52] L. Wang, W. Yu, X. He, W. Cheng, M. R. Ren, W. Wang, B. Zong, H. Chen, and H. Zha.
Adversarial cooperative imitation learning for dynamic treatment regimes. In Proceedings of
The Web Conference 2020, pages 1785–1795, 2020.

[53] T.-Z. Wang, T. Qin, and Z.-H. Zhou. Estimating possible causal effects with latent variables via
adjustment. In International Conference on Machine Learning, pages 36308–36335. PMLR,
2023.

[54] J. Zhang and E. Bareinboim. Markov decision processes with unobserved confounders: A causal
approach. Technical Report R-23, Colummbia Causal AI Lab, 2016, https://causalai.
net/mdp-causal.pdf.

[55] J. Zhang and E. Bareinboim. Near-optimal reinforcement learning in dynamic treatment regimes.
In Advances in Neural Information Processing Systems, pages 13401–13411, 2019.

[56] J. Zhang and E. Bareinboim. Can humans be out of the loop? Technical Report R-64,
Causal Artificial Intelligence Lab, Columbia University, 2020. Also, to appear: Proc. of the 1st
Conference on Causal Learning and Reasoning (CLeaR), 2022.

[57] J. Zhang, D. Kumor, and E. Bareinboim. Causal imitation learning with unobserved confounders.
Advances in Neural Information Processing Systems, 33:12263–12274, 2020.

[58] J. Zhang, J. Tian, and E. Bareinboim. Partial counterfactual identification from observational
and experimental data. In International Conference on Machine Learning, pages 26548–26558.
PMLR, 2022.

13

https://causalai.net/mdp-causal.pdf
https://causalai.net/mdp-causal.pdf


A Proofs

In this section, we provide proofs for the theoretical claims delineated in the paper. Throughout this
paper, it is important to note that detailed parametrizations of the underlying SCM are not known to
the agent. Instead, the agent has access to the expert’s demonstrations, which are summarized as the
observational distribution P (X,S,Y ).

We begin by revisiting the distribution of state visitation. Specifically, ρπ(s) can be calculated by:

ρπ (s) = P (s) + γ
∑
s′,x

T (s′, x, s)π(x | s′)ρπ(s′) (23)

where P (s) represents the initial state distribution, γ represents the discount factor, T represents the
transition probabilities for the imitator. Subsequently, we are able to develop the occupancy measure
for the policy π:

ρπ(s, x) = ρπ(s)π(x | s) (24)

It is important to note that, although the format of the occupancy measure ρπ(s, x) shares a formal
resemblance to the one presented in GAIL [19], ρπ(s, x) specifically represents an interventional
distribution with policy do(π). The identifiability of the transition T (s, x, s′) directly impacts the
identifiability of Pπ (st). If Pπ (st) is not identifiable, ρπ(s) and ρπ(s, x) are consequently not
identifiable.
Theorem 1. Given any positive observational distribution P (X,S,Y ) > 0, there exists an MDP
model M̂ compatible with the causal graph of Fig. 2b such that P (X,S,Y ; M̂) = P (X,S,Y )
and for any policy π, any time step t = 1, 2, . . . , any state s ∈ S,

Vπ

(
s; M̂

)
< E

[
Rt | St = s; M̂

]
. (11)

Proof. Without loss of generality, the reward Y is normalized so that it has a range of [0, 1] Based on
the value function defined in Eq. (8), we first show how to expand it into a recursive version:

Vπ(st) = Eπ

[ ∞∑
k=0

γkYt+k | st
]

(25)

= Eπ[Yt | st] + Eπ

[ ∞∑
k=1

γkYt+k | st
]

(26)

= Eπ[Yt | st] + γEπ

[ ∞∑
k=1

γk−1Yt+k | st
]

(27)

= Eπ[Yt | st] + γ
∑
st+1

Pπ(st+1 | st)Eπ

[ ∞∑
k=0

γkYt+1+k | st, st+1

]
(28)

= Eπ[Yt | st] + γ
∑
st+1

Pπ(st+1 | st)Vπ(st+1), (29)

where γ is the discount factor, Pπ(st+1 | st) denotes the transition probability when executing policy
π.

From the second last line to the last line is justified by the experimental markovian property, as
discussed in Sec. 2, following the graph Fig. 2a. More details could be found in [54]. Eπ[Yt |
st] = E[Yt | st, do(π)] denotes the expected reward received by the agent when executing policy π.
Similarly, the transition probability

Pπ(st+1 | st) =
∑
xt

Pxt(st+1 | st)π(xt | st), (30)

and Pxt
(st+1 | st) = P (st+1 | st, do(xt)) = T (st, xt, st+1). Generally speaking, when any

unobserved confounder exists between St+1 andXt, the causal query Pxt
(st+1 | st) is not identifiable
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[32, 43, 5, 51]. Building on the previous derivations, we arrive at the recursive formulation of the
value function under policy π:

Vπ(st) =
∑
xt

R (st, xt)π(xt | st) + γ
∑
st+1

T (st, xt, st+1)π(xt | st)Vπ(st+1) (31)

=
∑
xt

π(xt | st)

R (st, xt) + γ
∑
st+1

T (st, xt, st+1)Vπ(st+1)

 . (32)

Next, to establish the validity of the preceding claim, we proceed by applying the technique of
mathematical induction. Let |S| denote the number of distinct states for S.

Base case t = T . For the final timestep T , for each state index j where ∀j, 1 ≤ j ≤ |S|, the value
function Vπ(s(T,j)) cane be defined as follows:

Vπ(s(T,j)) = Eπ

[
YT | ST = s(T,j)

]
=
∑
xt

Ext

[
YT | ST = s(T,j))

]
π(xt | s(T,j))

(33)

where s(T,j) refers to the scenario where the state at the final timestep ST is equal the specific state j.

In order to obtain the worst-case SCM M̂ , we need to minimize Vπ(sT )− V (sT ) compatible with
the observational distribution, by establishing its lower bound. To this end, we directly employ the
natural bound [29], which has been discussed in Sec. 2.1:

min
M

Vπ(s(T,j);M)− V (s(T,j);M)

=
∑
xt

Ext

[
YT | ST = s(T,j);M

]
π(xt | s(T,j))− V (s(T,j);M)

=
∑
xt

E
[
YT | s(T,j), xt

]
P (xt | s(T,j))π(XT = xt | s(T,j))−

∑
xt

E
[
YT | s(T,j), xt

]
P (xt | s(T,j))

< 0
(34)

The last step is justified because P (X,S,Y ) > 0 and 0 ≤ π(XT = xt | s(T,j)) ≤ 1. Intuitive
examples illustrating this conclusion are provided in Sec. 2.1 and Appendix F. Therefore, this
confirms the validity of the inequality for the base case.

Specifically, in certain degenerate cases where there is only one possible action, the imitator has
no choice but to follow that single option. Consequently, unobserved confounders are less likely to
introduce significant effects in these scenarios. However, under such conditions, pursuing imitation
learning is not meaningful, as there is no variability in choice for the imitator to learn from. Therefore,
such cases are of limited relevance to the scope of this analysis.

Induction case. Suppose at t+ 1, Vπ(st+1) < V (st+1), we need to prove Vπ(st) < V (st).

Vπ(st) = Eπ[Yt | st] + γ
∑
j

Pπ(s(t+1,j) | st)Vπ(s(t+1,j))︸ ︷︷ ︸
<V (s(t+1,j))

(35)

Without loss of generality, we assume that the state with the minimal value at t + 1 is denoted as
s(t+1,|S|). Our approach is founded on the premise that in obtaining the worst-case SCM M̂ , it is
strategic to allocate the lowest possible transition probabilities to the state with the highest value,
while preferentially assigning higher probabilities to states demonstrating smaller values. Specifically,
one starts with the estimate P (St+1 = s(t+1,1), xt | St) for Pxt

(St+1 = s(t+1,1) | St). Following
this logic, we systematically allocate probability masses for indices 1 ≤ j ≤ |S| − 1 as follows:

Pxt(St+1 = s(t+1,j) | St)← P (St+1 = s(t+1,j), xt | St)
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In accordance with the established properties of probability distributions, it follows that:
|S|∑
j=1

Pxt
(St+1 = s(t+1,j) | St) = 1.

Considering the state s(t+1,|S|), the corresponding probability can be assigned as:

Pxt(St+1 = s(t+1,|S|) | St) = 1−
|S|−1∑
j=1

Pxt(St+1 = s(t+1,j) | St).

By substituting the assigned values, we are able to derive the following expression:
Pxt(St+1 = s(t+1,|S|) | St)← 1− P (s(t+1,1), xt | St)− P (s(t+1,2), xt | St) · · · − P (s(t+1,|S|−1), xt | St),

where the right-hand side simplifies to:(
P (s(t+1,1), xt | St) + P (s(t+1,2), xt | St) · · ·+ P (s(t+1,|S|−1), xt | St)

)
=

|S|−1∑
j=1

P
(
s(t+1,j), xt | St

)
= P (xt | St)− P (s(t+1,|S|), xt | St).

It is established that the expression 0 ≤ 1− P (xt | St) + P (s(t+1,|S|), xt | St) ≤ 1 holds true. This
inequality is supported by the following equation:

|S|∑
j=1

P (s(t+1,j), xt | St) = P (xt | St).

To further analyze the expert policy, the associated value function V (st) can be expanded as follows:

V (st) = E

[ ∞∑
k=0

γkYt+k | St = st

]
= E[Yt | st] + γ

∑
j

P (s(t+1,j) | st)V (s(t+1,j)),

(36)

where γ is the discount factor, P (s(t+1,j) | st) denotes the observational transition probability.
Notably, P (s(t+1,j) | st) and Pπ(s(t+1,j) | st) are generally different, because they reflect two
distinct probabilities: P (s(t+1,j) | st) corresponding to the observational distribution and the other,
Pπ(s(t+1,j) | st), representing the imitator’s transition dynamics.

In accordance with the established properties of probability distributions, it follows that:
|S|∑
j=1

P (St+1 = s(t+1,j) | St) = 1.

Without loss of generality, suppose the policy is a deterministic policy. Actually, the following proof
holds true regardless of the choice of xt. Subsequently, we analyze the gap between Vπ(st) and
V (st) as follows:

Vπ(st)− V (st)

=

Eπ[Yt | st] + γ

|S|∑
j=1

Pπ(s(t+1,j) | st)Vπ(s(t+1,j))


−

E[Yt | st] + γ

|S|∑
j=1

P (s(t+1,j) | st)V (s(t+1,j))


=

Eπ[Yt | st] + γ

|S|∑
j=1

∑
xt

Pxt
(s(t+1,j) | st)π(xt | st)Vπ(s(t+1,j))


−

E[Yt | st] + γ

|S|∑
j=1

P (s(t+1,j) | st)V (s(t+1,j))



(37)
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min
M

Vπ(st;M)− V (st;M)

= Eπ[Yt | st;M ]− E[Yt | st;M ] + γ

|S|−1∑
j=1

(
P (s(t+1,j), xt | st)− P (s(t+1,j) | st)

)
V (s(t+1,j))

+ γ

1−

|S|−1∑
j=1

P
(
s(t+1,j), xt | st

)− P (s(t+1,|S|) | st)

V (s(t+1,|S|))

= Eπ[Yt | st;M ]− E[Yt | st;M ]︸ ︷︷ ︸
<0

+ γ

|S|−1∑
j=1

(
P (s(t+1,j), xt | st)− P (s(t+1,j) | st)

)︸ ︷︷ ︸
<0

(
V (s(t+1,j))− V (s(t+1,|S|))

)︸ ︷︷ ︸
>0

< 0
(38)

where minM Eπ[Yt | st;M ]− E[Yt | st;M ] < 0 follows a similar logic as previously introduced in
the base case, and V (s(t+1,j))− V (s(t+1,|S|)) > 0 is consistent with the ordering assumption, where
the state s(t+1,|S|) represents the minimal value.

In some degenerated cases when Eπ[Yt | st] = 0 and E[Yt | st] = 0, it might coincidentally follow
that Vπ(st) = 0, which is equal to V (st) = 0. Another instance of degeneracy occurs when the value
function V (s(t+1,j)) remains the same across all states. Such occurrences are extremely unlikely in
practical scenarios, especially when P (X,S,Y ) > 0.

B Derivations for Causal GAIL Algorithms

Theorem 2. Given an MDP M compatible with the causal graph of Fig. 3a, let R be a parametric
family containing the conditional reward E[Yt | st, xt]. Consider the following optimization program,

ν∗ = min
π

max
R̃∈R

∑
s,x

R̃(s, x)P (x | s) (ρ(s)− π(x | s)ρπ(s)) (14)

When the gap ν∗ ≤ 0, the solution π∗ is an imitating policy satisfying Eπ∗ [R1] ≥ E[R1].

Proof. Based on Eq. (13), we have:

Eπ [R1] =
∑
s,x

R (s, x)π(x | s)ρπ(s)

It follows from Eq. (10) that parametrization of R(s, x) can be bound from the observational
distribution. The imitator’s expected return could thus be lower bounded as

Eπ [R1] ≥
∑
s,x

R̃ (s, x)P (x | s)π(x | s)ρπ(s)

Note that the expert’s expected return could be similarly decomposed as

E [R1] =
∑
x,s

R̃(s, x)P (x | s)ρ(s),

where ρ(s) =
∑∞

t=0 γ
tP (St = s) is the expert’s occupancy measure.

ν∗ = min
π

max
M

E [R1;M ]− Eπ [R1;M ] (39)

= min
π

max
R̃,R

∑
x,s

R̃(s, x)P (x | s)ρ(s)−
∑
s,x

R (s, x)π(x | s)ρπ(s) (40)

= min
π

max
R̃

∑
s,x

R̃(s, x)P (x | s) (ρ(s)− π(x | s)ρπ(s)) , (41)

which is the ultimate target expression.
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Next, we will show the derivation details for matching weighted occupancy measures between
the imitator and the expert. Suppose ψ∗ = maxR a⊤R − ψ(R) is a conjugate function of ψ.
Following a similar logic in [19], we utilize a smiliar cost regularizer ψGA, leading to the formulation
of Alg. 1. Basically, Alg. 1 minimizes Jensen-Shannon divergence between P (x | s)ρ(s) and
P (x | s)π(x | s)ρπ(s).
First, we reformulate the equation into state-action occupancy measures:

ψ∗ (P (x | s)ρ(s)− P (x | s)π(x | s)ρπ(s)) = ψ∗ (ρ(s, x)− P (x | s)ρπ(s, x)) (42)

Based on the definition of ψ∗, we have:

ψ∗ (ρ(s, x)− P (x | s)ρπ(s, x)) (43)

= max
R

∑
s,x

(ρ(s, x)− P (x | s)ρπ(s, x))R(s, x)−
∑
s,x

P (x | s)ρπ(s, x)gϕ(R(s, x)) (44)

=
∑
s,x

max
R

ρ(s, x)R− P (x | s)ρπ(s, x)ϕ
(
−ϕ−1(−R)

)
(45)

=
∑
s,x

max
R′

ρ(s, x)(−ϕ(R′))− P (x | s)ρπ(s, x)ϕ
(
−ϕ−1(ϕ(R′))

)
(46)

=
∑
s,x

max
R′

ρ(s, x)(−ϕ(R′))− P (x | s)ρπ(s, x)ϕ (−R′) (47)

where we make the change of variables R → −ϕ(R′). Suppose D ∈ S × X 7→ (0, 1) is a
discriminator classifier (e.g, a neural network). Using the logistic loss ϕ(x) = log (1 + e−x), we can
get:

ψ∗ (ρ(s, x)− P (x | s)ρπ(s, x)) (48)

=
∑
s,x

max
R′

ρ(s, x) log

(
1

1 + e−R′

)
+ P (x | s)ρπ(s, x) log

(
1− 1

1 + e−R′

)
(49)

= max
D∈(0,1)S×X

E[log(D(S,X))] + Eπ [P (x | s) log(1−D(S,X))] , (50)

which is the ultimate target expression.

Theorem 3. Given an MDP M compatible with the causal graph of Fig. 3b, let R be a paramet-
ric family containing the conditional reward E[Yt | st, xt], and T be a parametric family over
conditional probabilities P (st+1 | st, xt) defined in Eq. (20). Consider the following program,

ν∗ = min
π

max
R∈R

max
T ∈T

∑
s,x

R(s, x) (P (x | s)ρ(s)− π(x | s)ρπ (s; T )) (21)

When the gap ν∗ ≤ 0, the solution π∗ is an imitating policy satisfying Eπ∗ [R1] ≥ E[R1].

Proof. Based on Eq. (13), we have:

Eπ [R1] =
∑
s,x

R (s, x)π(x | s)ρπ(s)

=
∑
s,x

R (s, x) ρπ(s, x)︸ ︷︷ ︸
Non-ID

The reward functionR is identifiable and must be contained in the parametric space of the expert’s
nominal reward R. In other words,

R (s, x) = R̃ (s, x) . (51)
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The transition distribution T can be bounded from the demonstration data using Eq. (9). Therefore,
we get:

ν∗ = min
π

max
M

E [R1;M ]− Eπ [R1;M ] (52)

= min
π

max
T ,R̃,R

∑
s,x

R̃(s, x)P (x | s)ρ(s)−R (s, x) ρπ(s, x; T ) (53)

= min
π

max
T ,R

∑
s,x

R (s, x) (P (x | s)ρ(s)− ρπ(s, x; T )) (54)

= min
π

max
T ∈T ,R∈R

∑
s,x

R(s, x) (P (x | s)ρ(s)− π(x | s)ρπ (s; T )) (55)

which is the ultimate desired expression.

Consider again the expected return decomposition in Eq. (13). The reward functionR is identifiable
and must be contained in the parametric space of the expert’s nominal reward R. The transition
distribution T can be bounded from the demonstration data using Eq. (9). One could thus obtain a
lower bound over the imitator’s performance by reasoning about the worst-case occupancy measure
compatible with demonstrations. Formally, with the fixed reward functionR and the fixed policy π,
the imitator’s return is bounded by

Eπ [R1] ≥ min
T ,ρπ

∑
s,x

R(s, x)π(x | s)ρπ(s) (56)

subject to: ρπ(s) ≥ 0, and
∑
s

ρπ(s) =
1

1− γ

ρπ (s) = P (s) + γ
∑
s′,x

T (s′, x, s)π(x | s′)ρπ(s′)

Obs. Constraints T :

{∑
s T (s′, x, s) = 1, and T (s, x, s′) ≥ T̃ (s, x, s′)P (x | s)

T (s, x, s′) ≤ T̃ (s, x, s′)P (x | s) + P (¬x | s) (57)

The above optimization problem is similar to the classic linear program for planning in MDPs [36].
The main difference is that the transition distribution T is no longer fixed but bounded in a convex
space T specified from the observational data. Similar to the previous setting, we could solve an
imitating policy by minimizing the performance gap between the imitator and the expert in the
worst-case environment compatible with the observational data and prior knowledge.

Next, we will provide a heuristic algorithm to solve the optimization program presented in Eq. (19)
and Eq. (20). Specifically, as discussed in Eq. (9), we are able to bound the transition distribution T
by:

T (s, x, s′) ∈
[
T̃ (s, x, s′)P (x | s), T̃ (s, x, s′)P (x | s) + P (¬x | s)

]
. (58)

The intuition for Alg. 3 is: in order to find the worst case, we need to put as less transition probability
mass as possible to the state with maximal values, and allocate higher transition probabilities to states
with smaller values. Without loss of generality, suppose Vxt(s(t+1,|S|)) is found to have the smallest
relative value. For all other states j ̸= |S|, we need to allocate as less transition probability mass as
possible. Therefore, we take the lower bound:

Pxt(St+1 = s(t+1,j) | st) := P (St+1 = s(t+1,j), xt | st) (59)

:= P (St+1 = s(t+1,j) | st, xt)P (xt | st), (60)

where Pxt
(st+1 | st) = P (st+1 | st, do(xt)) = T (st, xt, st+1), and P (s(t+1) | st, xt) =

T̃ (st, xt, st+1). For the state s(t+1,|S|), we have:

Pxt(St+1 = s(t+1,|S|) | st) := 1−

|S|−1∑
j=1

P (St+1 = s(t+1,j), xt | st)

 . (61)
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Algorithm 3: Find Worst-Case Discounted Future Reward
1: Input: P (st+1, xt|st), the value function Vxt

(st)
2: Output: Probability mass assignments for non-ID transitions T
3: Let Vxt

(s(t+1,|S|)) is determined to have the minimal relative value
4: Set

Pxt
(St+1 = s(t+1,j) | st) := P (St+1 = s(t+1,j), xt | st),where j ̸= |S|

Pxt
(St+1 = s(t+1,|S|) | st) := 1−

|S|−1∑
j=1

P (St+1 = s(t+1,j), xt | st)


5: return

Following a similar logic in Alg. 1: we reformulate the equation into state-action occupancy measures:
ψ∗ (P (x | s)ρ(s)− π(x | s)ρπ(s; T )) = ψ∗ (ρ(s, x)− ρπ(s, x; T )) (62)

Based on the definition of ψ∗, we have:
ψ∗ (ρ(s, x)− ρπ(s, x; T )) (63)

= max
T ,R

∑
s,x

(ρ(s, x)− ρπ(s, x; T ))R(s, x)−
∑
s,x

ρπ(s, x; T )gϕ(R(s, x)) (64)

=
∑
s,x

max
T ,R

ρ(s, x)R− ρπ(s, x; T )ϕ
(
−ϕ−1(−R)

)
(65)

=
∑
s,x

max
T ,R′

ρ(s, x)(−ϕ(R′))− ρπ(s, x; T )ϕ
(
−ϕ−1(ϕ(R′))

)
(66)

=
∑
s,x

max
T ,R′

ρ(s, x)(−ϕ(R′))− ρπ(s, x; T )ϕ (−R′) (67)

Suppose D ∈ S × X 7→ (0, 1) is a discriminator classifier (e.g, a neural network). Using the logistic
loss ϕ(x) = log (1 + e−x), we can get:

ψ∗ (ρ(s, x)− ρπ(s, x; T )) (68)

=
∑
s,x

max
T ,R′

ρ(s, x) log

(
1

1 + e−R′

)
+ ρπ(s, x; T ) log

(
1− 1

1 + e−R′

)
(69)

= max
T ,D

E[log(D(S,X))] + Eπ [log(1−D(S,X)); T ] . (70)

Therefore, we are able to obtain the ultimate target expression:
ν∗ = min

π
max

T ∈T ,D∈(0,1)S×X
E[log(D(S,X))] + Eπ [log(1−D(S,X)); T ] . (71)

C Finding the Worst-Case Transition Distribution

In this section, we provide a practical algorithm, Alg. 3, designed to solve the optimization problem
formulated in Eq. (19) and Eq. (20). The underlying rationale of Alg. 3 is to search for the worst-case
scenario by allocating the minimal transition probability mass to the state with the highest value
while assigning greater transition probabilities to states with lower values. The resulting solution
should still adhere to a set of predefined observational constraints to ensure feasibility. This approach
ensures that the most “adversarial” outcome is prioritized during the optimization process.

To further clarify the approach above, consider the following numerical example. Suppose there
are only two states. The value function Vxt(st+1) takes on two values: Vxt(s(t+1,1)) = 0.8 and
Vxt

(s(t+1,2)) = 0.2. Because Vxt
(s(t+1,1)) > Vxt

(s(t+1,2)), the algorithm seeks the worst-case
discounted future reward by allocating Pxt(s(t+1,1) | st)← P (s(t+1,1), xt | st) and Pxt(s(t+1,2) |
st)← 1− P (s(t+1,1), xt | st)3. As such, we are able to collect trajectories from the imitator, even
though Pπ(st+1 | st) is not identifiable.

3In this case, although Pxt(s(t+1,2) | st) has a lower bound of P (s(t+1,2), xt | st), it cannot be set exactly
equal to this value. It is crucial to maintain the condition Pxt(s(t+1,1) | st) + Pxt(s(t+1,2) | st) = 1.
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D More Details for the Experiments

All experiments were conducted using Intel Cascade Lake processors, with 30 vCPUs and 120 GB
memory on a system running Ubuntu 18.04. Upon acceptance of this manuscript, we intend to make
the source code available in the camera-ready version of the paper.

MDPobs Previously, 1000 random discrete causal models are sampled and all the performance gaps
are less than 0. In other words, when both the reward and the transition are confounded, all imitators
fail to match expert performance.

Specifically, let’s take a look at one example instance of those randomly sampled SCM instances. Its
detailed parameterization is provided as follows:

P (s0) = 0.5, P (s1) = 0.5

P (x0, y0, s
′
0 | s0) = 0.1888, P (x0, y0, s

′
1 | s0) = 0.2099,

P (x0, y1, s
′
0 | s0) = 0.0294, P (x0, y1, s

′
1 | s0) = 0.2116,

P (x1, y0, s
′
0 | s0) = 0.1465, P (x1, y0, s

′
1 | s0) = 0.0226,

P (x1, y1, s
′
0 | s0) = 0.0645, P (x1, y1, s

′
1 | s0) = 0.1267,

P (x0, y0, s
′
0 | s1) = 0.1762, P (x0, y0, s

′
1 | s1) = 0.1775,

P (x0, y1, s
′
0 | s1) = 0.0290, P (x0, y1, s

′
1 | s1) = 0.1786,

P (x1, y0, s
′
0 | s1) = 0.1761, P (x1, y0, s

′
1 | s1) = 0.0893,

P (x1, y1, s
′
0 | s1) = 0.1472, P (x1, y1, s

′
1 | s1) = 0.0261,

(72)

where s′ denotes the next state; P (x0, y0, s′0 | s0) is the abbreviation format for P (Xt = x0, Yt =
y0, St+1 = s′0 | St = s0).

The expert is able to observe the state St, the unobserved variable Ut, and the reward Yt. However,
the imitator, lacking access to both Ut or the reward Eπ[Yt], makes decisions solely on St. In
other words, all methods utilize the same policy scope π(x | s). As shown in Fig. 4a, imitators
consistently failed to match expert performance. Prevalent negative performance gaps indicate that
most of imitators were significantly worse than experts; only in rare cases did the performance gaps
near −0.5, supporting our theoretical insights presented in Thm. 1. Furthermore, as depicted in
Fig. 5a, CAIL does not achieve expert-level performance, specifically, Eπ [Rt]− E [Rt] = −1.9019.
However, although CAIL performs worse than the expert, CAIL still consistently outperforms BC
and GAIL by effectively learning from the constructed worst-case MDP instances.

BC GAIL CAIL
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1

2

3

4

Expert

(a)

BC GAIL CAIL
0.0

0.5

1.0

1.5
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2.5

3.0
Expert

(b)

Figure 5: Simulation results for experiments that are not included in the main manuscript.

MDPobs-Y: Additional Experiment. Consider an SCM instance compatible with Fig. 3a including
binary observed variables St, Xt, Yt ∈ {0, 1}. St represents the state at each time step. Xt denotes
the action. The unobserved variable Ut represents some information accessible to the expert but
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inaccessible to the imitator. Additionally, the imitator lacks access to the reward Eπ[Yt]. Its detailed
parameterization is provided as follows:

P (s0) = 0.5, P (s1) = 0.5

P (x0, y0, s
′
0 | s0) = 0.1775, P (x0, y0, s

′
1 | s0) = 0.2029,

P (x0, y1, s
′
0 | s0) = 0.0001, P (x0, y1, s

′
1 | s0) = 0.0001,

P (x1, y0, s
′
0 | s0) = 0.0993, P (x1, y0, s

′
1 | s0) = 0.0199,

P (x1, y1, s
′
0 | s0) = 0.2001, P (x1, y1, s

′
1 | s0) = 0.3001,

P (x0, y0, s
′
0 | s1) = 0.2859, P (x0, y0, s

′
1 | s1) = 0.1359,

P (x0, y1, s
′
0 | s1) = 0.0001, P (x0, y1, s

′
1 | s1) = 0.0001,

P (x1, y0, s
′
0 | s1) = 0.2969, P (x1, y0, s

′
1 | s1) = 0.2809,

P (x1, y1, s
′
0 | s1) = 0.0001, P (x1, y1, s

′
1 | s1) = 0.0001,

(73)

where s′ denotes the next state; P (x0, y0, s′0 | s0) is the abbreviation format for P (Xt = x0, Yt =
y0, St+1 = s′0 | St = s0). As depicted in Fig. 5b, CAIL performs the best among all strategies. Both
BC and GAIL fail to match expert performance. Such result shows the effectiveness of Alg. 1.

E Broader Impacts

This paper investigates the theoretical framework of causal imitation learning from confounded
demonstrations. Our framework is versatile, applicable to various real-world domains such as
autonomous driving, robotics, industrial automation, and medical decisions modeling. One of the
positive impacts of this study is the exploration of the risks associated with training IRL algorithms
when demonstrations are generally contaminated by unobserved confounders. We theoretically prove
that when both the transition distribution T and reward functionR are not identifiable, there is no
policy π learnable from confounded demonstrations that is guaranteed to perform at least as the expert
in all possible scenarios. Such theoretical findings have been validated through extensive randomly
generated causal models. When either the reward function or the transition distribution is confounded,
we augment the GAIL framework by utilizing partial identification techniques, so that the imitator
is optimized within the worst-case scenarios. Specfically, the worst-case reward function in Alg. 1
and the worst-case occupancy measure in Alg. 2. By mitigating the risks associated with unobserved
confounders in expert demonstrations, our framework supports the development of more transparent
and accountable AI systems. This transparency is crucial in high-stakes areas such as healthcare and
transportation, where decision-making errors can have significant repercussions. More broadly, our
framework significantly enhances the reliability and safety of autonomous systems in various fields,
which prioritize safety and robustness during their decision-making processes. They are increasingly
important because black-box AI systems, – whose internal workings remain opaque – become more
and more prevalent, and our understandings of their potential implications remain limited.

F Impossibility Result in Two-Stage MDPs

In this extension of the MAB model introduced in Sec. 1, we explore a two-stage framework (see
Fig. 2b). Our previous discussions demonstrated that in MAB settings affected by unobserved
confounders, the expert consistently outperforms the imitator; that is, i.e., Ex [Y ] < E[Y ].

We now extend our analysis to the two-stage MDPs. Specifically, the agent first observes the state S1,
selects an action X1, and subsequently, it receives a reward Y1. The process then progresses to the
second stage, where the agent transitions to state S2. It chooses an action X2, and then it receives a
further reward Y2. A pivotal distinction between this scenario and prior examples lies in the transition
probability Pπ1

(S2 | S1). Therefore, we investigate their cumulative reward:

Eπ1,π2
[Y1 + Y2] and E[Y1 + Y2]. (74)

As a motivating example, we assume that all variables are binary. Our analysis begins by comparing
the performance at the final stage, specifically, Eπ1,π2

[Y2].

Suppose f(S2) = E[Y2 | S2, X2]P (X2 | S2). Without loss of generality, we assume an ordering
in the functional values associated with different states: f(S2 = 0) > f(S2 = 1). To address the
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non-identifiability issue caused by the transition distribution Pπ1(S2 | S1), as discussed in Eq. (9), we
formulate the worst-case SCM by allocating f(S2 = 0) with probability mass P (S2 = 0, X1 | S1).
In other words, we assign the lower bound P (S2 = 0, x1 | Z1) to the non-identifiable query
Px1

(S2 = 0 | Z1). As such, we are able to rewrite the expert’s rewards as follows:

E[Y2] = f(S2 = 0) ∗ P (S2 = 0, X1 = 0|Z1)P (Z1) (75)
+ f(S2 = 0) ∗ P (S2 = 0, X1 = 1|Z1)P (Z1) (76)
+ f(S2 = 1) ∗ P (S2 = 1, X1 = 0|Z1)P (Z1) (77)
+ f(S2 = 1) ∗ P (S2 = 1, X1 = 1|Z1)P (Z1) (78)

and the imitator’s reward can be written as

Eπ1,π2 [Y2] = π1(X1 = 0|Z1) ·A+ π1(X1 = 1|Z1) ·B (79)
A = f(S2 = 0) ∗ P (S2 = 0, X1 = 0|Z1)P (Z1) (80)
+ f(S2 = 1) ∗ (1− P (S2 = 0, X1 = 0|Z1))P (Z1) (81)
B = f(S2 = 0) ∗ P (S2 = 0, X1 = 1|Z1)P (Z1) (82)
+ f(S2 = 1) ∗ (1− P (S2 = 0, X1 = 1|Z1))P (Z1) (83)

where is Eπ1,π2
[Y2] a convex combination of the quantities A and B. Therefore, Eπ1,π2

[Y2] ≤
max{A,B}. Given that f(S2 = 0) > f(S2 = 1), we are able to establish that A < E[Y2] and
B < E[Y2]. Therefore, Eπ1,π2

[Y2] < E[Y2]. Using a similar rationale introduced in Sec. 1, we get
Eπ1

[Y1] < E[Y1]. Consequently,

Eπ1,π2
[Y1 + Y2] < E[Y1 + Y2]. (84)

In other words, the imitator is unable to learn a policy that can obtain the expert’s performance in the
worst-case 2-stage MDP compatible with the observational distribution P (X1, X2, S1, S2, Y1, Y2).
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the requirements and limitations of the work in Sec. 1
and Sec. 2. To address infinite horizon decision-making challenges, we utilize the Markov
Property, as outlined in Def. 1. However, our study generalizes standard imitation methods
by focusing on scenarios where causal consistency does not universally hold true.

23



Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions and problem settings can be found in Sec. 2. Due to space
constraints, all detailed proofs are provided in Appendices A and B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the important details to reproduce the major experimental results in this
paper can be found Sec. 4 and Appendix D. Proposed algorithms are provided in Alg. 1 and
Alg. 2.
Guidelines:

24



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: If the paper is accepted, we intend to make the source code available in
the camera-ready version of the paper. During the meantime, all the important details
to reproduce the major experimental results in this paper can be found in Sec. 4 and
Appendix D.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the important training and test details in this paper can be found Sec. 4 and
Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars and other appropriate information about the statistical significance
the experiments could be found in Sec. 4 and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed information on the computer resources can be found in Sec. 4 and
Appendix D.

26



Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper introduces novel causal imitation learning algorithms that adapt to
confounded expert demonstrations within MDPs by using partial identification techniques.
The research conducted in this conform with paper NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Societal impacts are discussed in Sec. 1 and Appendix E. Our framework can
be applied to various fields in reality, including autonomous driving, robotics, industrial
automation, medical decisions modeling and so on. One of positive impacts of this work
is that we discuss the potential risk of training IRL algorithms when demonstrations are
contaminated by unobserved confounders, and how to utilize partial identification techniques
to make the imitator robust.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

27

https://neurips.cc/public/EthicsGuidelines


• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]

Justification: Please check Sec. 4 and Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Please check Sec. 4 and Appendix D.

Guidelines:

• The answer NA means that the paper does not release new assets.

28

paperswithcode.com/datasets
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