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Abstract

Existing diversity metrics like Fréchet Inception Distance (FID) and Recall re-1

quire reference images and are generally not reliable. Evaluating the diversity of2

text-to-image (T2I) model outputs remains a challenge, especially in capturing3

fine-grained variations essential for creativity and bias mitigation. We propose4

Granular Attribute Diversity Evaluation (GRADE), a descriptive and fine-grained5

method for assessing sample diversity in T2I models without requiring reference6

images. GRADE estimates the distribution of attributes within generated images7

of a concept, such as the shape or flavor distribution of the concept “cookie”,8

and computes its normalized entropy, providing interpretable insights into model9

behavior and a diversity score. We show GRADE achieves over 90% agreement10

with human evaluation while having weak correlation to FID and Recall, indicating11

it captures new, fine-grained forms of diversity.12

We use GRADE to measure and compare the diversity of 12 T2I models and reveal13

that the most advanced models are the least diverse, scoring just 0.47 entropy and14

defaulting to depicting concepts with the same attributes (e.g., cookies are round)15

88% of the time, despite varied prompts. We observe an inherent trade-off between16

diversity and prompt adherence, akin to the Precision-Recall trade-off and negative17

correlation between diversity and model size. We identify that underspecified18

captions in training data contribute significantly to low sample diversity, leading19

models to depicting concepts with the same attributes. GRADE serves as a valuable20

tool for benchmarking and guiding the development of more diverse T2I models.21

1 Introduction22

Text-to-image (T2I) models have the remarkable ability to generate realistic images based on textual23

descriptions. However, textual prompts are inherently underspecified [1, 2], meaning they cannot24

fully describe all visual attributes that appear in the resulting image. Often, we aim for our T2I models25

to produce diverse outputs that represent the full spectrum of possible visual attributes. For example,26

when sampling generations of “a cookie”, we expect to see cookies with different ingredients, colors,27

and backgrounds, among other variations. But are current T2I models truly capable of generating28

diverse outputs? Evaluating diversity is inherently challenging because the set of possible visual29

attributes—the support set—is virtually infinite. Standard metrics, such as Fréchet Inception Distance30

(FID) [3] and Recall [4, 5], are limited in their ability to capture a human-like understanding of31

diversity. In this paper, we introduce a novel method for evaluating diversity. Our approach leverages32

language models (LMs) and visual question-answering (VQA) models to approximate the support33

set of visual attributes for a given concept. Once this set is established, we use the VQA model to34

automatically quantify the frequency of each visual attribute, and we assess diversity using entropy35

or other diversity measures.36
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Figure 1: A random sample of 4 images from each prompt for the concept “cookie” by FLUX.1-dev.
The prompt does not describe the cookie in a particular way, yet, all cookies are round with the vast
majority having chocolate chip on top.

We propose Granular Attribute Diversity Evaluation (GRADE), a fully automated method for37

measuring sample diversity in T2I models at a fine-grained level, focusing on attributes of concepts,38

such as the shape attribute of the concept cookie. Existing diversity evaluation methods predominantly39

rely on comparing the generated output to a set of reference images, which are assumed to represent40

the diversity inherent in the concept of interest. However, this approach has two key limitations. First,41

reference images are often unavailable. More critically, the set of possible visual attributes for any42

concept is virtually infinite. While diversity can be measured in terms of pixel color distribution,43

a human understanding of diversity is rooted in the semantics of the image: the relevant attributes44

are highly specific to each concept, and identifying them requires extensive world knowledge. For45

example, when generating an image of a parachute, we might be interested in attributes such as its46

color, orientation, or whether it is open or closed. Other potential details, like the exact number47

of clouds in the background, may be irrelevant. Existing diversity metrics fail to capture the set48

of meaningful visual attributes for each concept. In contrast, we leverage the world knowledge49

embedded in visual question-answering (VQA) models to approximate this set, offering a scalable50

approach that generalizes well to new concepts.51

Our approach (Fig. 4) involves using an LM to generate prompts to elicit diverse outputs from T2I52

models and questions pertaining to visual attributes of each concept. We then use a VQA to extract53

information about the visual attributes using the images and questions. We translate the answers to a54

categorical distribution by using an LM to generate plausible categorical answers to each question55

and map the answers to categories. Each category expressed in natural language, and its diversity56

quantifiable using normalized entropy. For instance, the shape distribution of cookie by FLUX.1-dev57

[6] is {round: 0.983, flower: 0.015, star: 0.0016}) and its normalized entropy is 0.03 bits.58

Using GRADE, we show T2I models exhibit default behaviors, consistently generating certain59

attributes for given concepts. For instance, the prompt “a cookie in a bakery” results in round cookies60

for over 98% of the time for the models we tested, neglecting other possible shapes like square or61

rectangular, as shown in Fig. 1. This bias can stem from imbalanced training data or the models’62

tendency to optimize for the most probable outputs.63

Our contributions are threefold:64
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• A Novel Diversity Evaluation Method: We introduce GRADE, a fine-grained and descrip-65

tive method for evaluating sample diversity in T2I models without the need for reference66

images. We show GRADE measures diversity better than FID and Recall, even with the67

presence of reference images.68

• Comprehensive Diversity Analysis: Using GRADE, we conduct an extensive study com-69

paring the diversity of 12 T2I models, revealing that even the most diverse ones do not70

achieve high diversity. Our analysis uncovers hints of a trade-off between prompt adherence71

and diversity, akin to the Precision-Recall trade-off [5] and negative correlation between72

model size and diversity.73

• Insights into Training Data Influence: We demonstrate that underspecified captions in74

training data contribute to low diversity.75

2 Related Work76

We provide background on previous metrics like Fréchet Inception Distance (FID) [3] and Precision-77

and-Recall [4, 5] in Appendix A.1.78

Most evaluation use-cases fall into one of three: (1) to gauge how well the model learned the training79

set; (2) to compare model performance; and (3) to evaluate a model on a particular concept.80

Existing approaches, like FID, Precision-and-Recall, and others compare a distribution of generated81

images to a distribution of reference images–a set of images that exhibits the desired level of diversity.82

This can be the model’s training data, to measure how well it covers it, or an established dataset, like83

ImageNet [7], which models can then use to compare.84

However, testing performance on a new class is non-trivial. Especially if the class is fine-grained,85

such as an attribute of a concept. For example, to evaluate the model’s ability to generate the shape86

attribute for the cookie concept, we would need to collect images that depict cookies in various87

shapes and ensure the style of images is consistent with the style in the model’s training set, as this88

can affect the diversity score. This approach is not designed to measure the diversity of specific89

concepts within the images evaluation, but overall similarity between two distributions. In general,90

distribution-comparison metrics do not directly evaluate the diversity of the model, but its fit to some91

data.92

We take a different approach: we define diversity over the attributes of concepts, use GRADE to93

estimate categorical distributions of concepts’ attributes, and compare them to uniform behavior94

using entropy. Our approach covers the three popular use-cases: (1) GRADE naturally works with95

new concepts and attributes, without collecting data, as we detail in Section 3; (2) GRADE can96

compare the diversity between models, as we demonstrate in Section 4; and (3) GRADE can estimate97

distributions from the dataset and compare them to distributions in inference time, as we show in98

Appendix G.99

3 GRADE: Measuring T2I Diversity100

Approach. We measure diversity in T2I models by measuring the relation between concepts (e.g.,101

“cookie” or “helmet”) and their attributes (e.g., “shape” or “color”). Each concept c, is an object that102

can be described textually and visualized graphically, and an attribute Ac is a set of characteristics or103

states of c that can vary among different images. We analyze the relation between them over prompts104

that are underspecified, i.e., that mention c but not Ac. We model their relation as a categorical105

distribution, such that every value a ∈ Ac (e.g., round ∈ Ashape) is a possible category in Ac. The106

distribution can then be estimated on prompts that do not specify the attribute (e.g., “a cookie in107

a bakery” does not specify a shape). We show a sample of concepts, attributes, and categories in108

Table 1.109

After estimating the distribution, we can quantify its entropy. We use normalized entropy, henceforth110

referred to as entropy: HN (X) = H(X)
log2(|Ac|) , where H is the entropy of the distribution, |Ac| is the111

support size of the distribution, and its range is from 0 to 1. When close to 1, the attribute is almost112

uniform, and when close to 0, it is almost always the same category.113
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Figure 2: An overview of GRADE with “cookie” as the input concept c and the output is distributions
P (c,Ac). The figure shows four steps: (a) the prompt and image generation. (b) Question and
category generation. Questions dictate the attributes we test for diversity (Ac). Each question defines
a distribution P (c,Ac). For convenience, the figure shows the workflow with a single distribution.
(c) Attribute extraction. Questions are first answered with a VQA. Then, an LLM maps the answers
to matching categories. (d) Estimate the diversity with entropy.

Each distribution P (c,Ac) is estimated using several prompts that mention c but not its attribute Ac.114

We say that this is a concept distribution, as it models the relation between c and Ac across more115

than one prompt. While these are our primary subject in this work, we also report results on each116

prompt distribution P (pc,Ac), which models the relation between c and Ac over the prompt p that117

mentions c but not Ac.118

We arrive at a representative measure of the overall diversity of the model by measuring the entropy119

over various distributions across different concepts and attributes, and compute the mean entropy.120

3.1 Method121

We measure the diversity of T2I models over concepts, we design GRADE, a pipeline that estimates122

the diversity of a concept c from end-to-end: It generates various prompts for each concept c, to123

invoke varied responses from a T2I model, which are then processed to estimate P (c,Ac). Fig. 4124

illustrates GRADE, Appendix D details each step.125

4 Comparing Diversity of T2I Models126

Having GRADE at our disposal, we turn to measure and compare the diversity ability of T2I models127

to generate diverse instances of concepts. To achieve our goal, we use GRADE to estimate attribute128

distributions of concepts to measure the diversity of T2I models. We first provide an overview of our129

concepts and distributions, then describe the models, and finally the results.130

Table 1: Concepts, attributes, and categories. Each (concept, attribute) pair makes for a distribution.
For readability, we show only one attribute per concept with more examples in Appendix C.
Concept Question (Attribute) Categories
Bin What material is the bin

made from?
mesh, cardboard, carbon fiber, rubber, wood,
bamboo, wicker, plastic, ceramic, stainless steel,
fiberglass, metal, aluminum, steel, fabric, glass

Person Does the person appear to be
alone or with others?

alone, with others

Suitcase Is this a vintage suitcase? yes, no
Cake What flavor is the cake? tiramisu, cheesecake, carrot, chocolate, strawberry,

vanilla
Pool Is the pool indoor or

outdoor?
indoor pool, outdoor pool
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4.1 Experimental Setup131

Data and distributions overview. For each model, we estimate distributions over 100 common132

concepts such as “cake” and “suitcase”. Each concept is linked to 4 questions on average. In total,133

there are 400 concept distributions and 2400 prompt distributions, consisting a total of 60,000 images134

per model.135

T2I models. We measure the diversity of the 12 models shown in Table 2. All models were used136

with the default hyperparameters.137

Table 2: The 12 T2I Models grouped by family ygmove citations to model column.
Family Model
Stable Diffusion SD-1.1, SD-1.4, and SD-2.1 [8], SDXL [9], SDXL-Turbo [10],

SDXL-LCM [11], SD-3 (2B) [12]
IF-DeepFloyd DeepFloyd-M, DeepFloyd-L, and DeepFloyd-XL [13]
FLUX FLUX.1-schnell [14], FLUX.1-dev [15]

4.2 Results138

Table 3 shows the mean entropy of models across all concept and prompt distributions. No model139

exhibits high diversity scores. As expected, the diversity of prompt distributions is even lower140

compared to concept distributions, since the images were only generated from a single prompt.141

Surprisingly, FLUX.1-dev is the least diverse model, despite its impressive capabilities and the142

statements that the model was trained with output diversity in mind [6]. One explanation for this143

disparity is that some concepts were targeted for data variation while others received less attention.144

Appendix I illustrates the diversity.145

Diversity in relation to model scale. Entropy over both concept and prompt distributions demon-146

strate decline almost in tandem with increased model size, especially within each family of models147

we test, as shown in Appendix E. This hints toward an inverse-scale law [16] between model size and148

entropy. However, this is not to claim that more parameters results in lower diversity, but that they149

are correlated. An alternative hypothesis is that larger models are fine-tuned for prompt adherence150

on top of their pretraining. Fig. 3 demonstrates a tradeoff between prompt adherence and sample151

diversity, reminiscent to the tradeoff between Recall and Precision [5]. Plots based on the prompt152

distributions are included in Appendix E.153

Default behaviors. The outputs of GRADE are naturally descriptive. Both the outputs by the VQA154

and the categories are in natural language and can be used to explain the resulting entropy. Here, we155

focus on the latter and observe that the distributions we approximate are often heavily skewed toward156

a certain category. When a single category is 80% likely, it is a default behavior of the model, but any157

value indicating a single category the majority of the time is appropriate. We define this phenomenon158

over both types of distributions. In Appendix F we show a sample of the phenomenon and that almost159

all models exhibit at least one default behavior over every concept, with SD-1.1 exhibiting 87.13%160

prompt distributions, with a similar trend over the concept distributions.161

5 Conclusion162

We introduced GRADE, a fully automated fine-grained evaluation method for measuring sample163

diversity in T2I models, based on concepts and their attributes. We achieve over 90% agreement164

with human evaluations while showing weak correlation with traditional metrics like FID and Recall,165

indicating that we capture fine-grained forms of diversity not reflected by existing measures.166

Using GRADE, we conduct a comprehensive analysis of 12 state-of-the-art T2I models and uncovered167

a prevalent limitation: these models default to generating images with the same attributes for a concept168

on anywhere from 78% to 90% of the concepts we tested, with an increasing trend as models scale and169

improve in prompt adherence. This default behavior highlights a significant gap in current models’170
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Figure 3: The mean concept entropy of the models plotted against the % of “none of the above”. The
plot shows there is strong negative correlation between diversity and prompt-adherence, which hints
at a tradeoff. The x-axis accounts for cases where the concept c is not depicted in the prompt that
mentions it (low prompt adherence) or there is no category in Ac that matches the answer. In practice,
around 80% of the cases indicate the latter.

Table 3: Entropy in concept- and prompt-level distributions. The mean entropy over all distri-
butions for each model in both setups. Values close to 1 indicate highly diverse behavior (uniform)
while values close to 0 indicate highly repetitive categories. The most diverse models are in bold.

Mean Entropy ↑
Model Concept-level Prompt-level
DeepFloyd-M 0.64 0.49
DeepFloyd-L 0.62 0.47
DeepFloyd-XL 0.61 0.46
SD-1.1 0.64 0.54
SD-1.4 0.64 0.53
SD-2.1 0.63 0.51
SDXL 0.59 0.46
SDXL-Turbo 0.52 0.36
SDXL-LCM 0.58 0.45
SD-3 (2B) 0.47 0.34
FLUX.1-schnell 0.48 0.36
FLUX.1-dev 0.47 0.32

ability to capture the rich diversity inherent in visual concepts and suggests that specialized prompt171

adherence fine-tuning is at odds with sample diversity.172

Our investigation into training data reveals that underspecified captions contribute significantly to low173

sample diversity, leading models to adopt default behaviors. This finding underscores the importance174

of detailed and representative training data in enhancing diversity.175

By offering a descriptive metric for diversity, GRADE serves as a valuable tool for benchmarking T2I176

models and guiding their development toward greater diversity. Future work could explore methods to177

enrich training data, incorporate diversity-promoting mechanisms during model training, and extend178

GRADE to evaluate relationships between different attributes of a concept (e.g., the relationship179

between the shape and suggested flavor distributions of “cookie”). Ultimately, we hope that our work180

will inspire more nuanced evaluations and drive advancements in generating diverse visual content181

from textual descriptions.182
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A Appendix285

Compute. All the experiments detailed in this paper can be run on a single A100-80GB. We used286

up to 4 at a time.287

GPT-4. We use gpt-4-turbo-2024-04-09 with max tokens set to 512 and temperature set to 0.288
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GPT-4o. We use gpt-4o-2024-08-06 with the structured ouputs setting, max tokens set to 1, 000,289

and temperature set to 0.290

A.1 Related Work: Extended291

Background. Fréchet Inception Distance (FID) [3] measures fidelity and diversity by calculating292

the distance between them. The result is a score that represents both fidelity and diversity, but does293

not reflect the trade-off between them. Precision-and-Recall is designed to separate them [4] and [5]294

proposed a variation that makes the trade-off between them explicit. Recently, [17] proposed two295

methods to measure similarity between generated images to images from a training set over predefined296

attributes. Both assume a training set of images and a predefined set of text-based attributes reflected297

in them. The first measures the difference in density for each attribute and the second extends this298

measurement to joint-attribute relationships (e.g., is the correlation between “male” and “sunglasses”299

similarly strong as in the training set?).300

B LM Prompting301

B.1 Concept Collection302

To collect a list of diverse concepts, we prompt GPT-4 [18] with the following:303

Provide a CSV of 100 unique concepts, like the example below.
concept_id is an enumeration that begins from 0.
Choose concepts that are easy to visually verify for a VQA model.

concept_id,concept
0, an ice cream
1, a cake
2, a suitcase
3, a clock

304

B.2 Prompt generation305

We generate our prompts using the following template. The following prompt was used to generate306

typical prompts:307

Please suggest three typical settings for the concept below.
Note that the output should be a list of strings.

Here's an example:
Concept: a cake
Prompts: [
"a cake in a bakery,
"a cake at a birthday party",
"a cake at a swimming pool"
]

Concept: {concept}
308

While this one was used to generate atypical prompts:309

Please suggest three atypical settings for the concept below.
Note that the output should be a list of strings.

Here's an example:
Concept: a cake
Prompts: [
"a cake on a weight loss clinic,

310
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"a cake at a gym",
"a cake at a swimming pool"
]

Concept: {concept}
311

B.3 Question generation312

To extract attribute values, we collect questions automatically and in an unsupervised fashion. We313

prompt GPT-4 to analyze the attributes of the concept provided in the prompt and use it as context to314

generate questions.315

Help me ask questions about images that depict certain concepts.

I will provide you a concept.
Your job is to analyze the concept's typical attributes
and ask simple questions that can be answered by viewing the image.

Here's an example:

concept:
a cake
attributes:
cakes can be made in different flavors, shapes,
and can have multiple tiers.

questions:
1. Is the cake eaten?
2. Does the cake have multiple tiers?
3. In what flavor is the cake?
4. What is the shape of the cake?
5. Does the cake show any signs of fruit on the outside or
suggest a fruit flavor?

Now that you understand, let's begin.

concept: {c}
316

B.4 Category generation317

To define Ac and generate categories, we provide GPT-4 [18] with a concept, a question, and a318

prompt. GPT-4 then outputs a list of categories that can match the question. The process is performed319

for all prompts associated with the concept. The sets are then unified with similar answers removed320

(e.g., “motorbike helmets” is removed, because “motorcycle helmets” already exists). The result of321

the unification is Ac.322

I have a question that is asked about an image.
I will provide you with the question and a caption of the image.
Your job is to analyze the description of the image and the question,
hypothesize plausible answers that can surface from viewing the image.
Then, I need you to list the plausible answers.

For example,
Caption: a helmet in a bike
Question: What type of helmet is depicted in the image?

Plausible answers:
answers = ["motorcycle helmets",

"bicycle helmets",
323
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"football helmets",
"construction helmets",
"military helmets",
"firefighter helmets",
"rock climbing helmets",
"hockey helmets"]

Now your turn.
Caption: {c}
Question: {q}
Plausible answers:

324

B.5 Generating answers325

We use GPT-4o to answer the generated questions with 1, 000 as max tokens and temperature 0. Our326

prompt is straightforward:327

Answer the following question with one of the categories. To come up with the
correct answer, carefully analyze the image and think step-by-step before
providing the final answer.

↪→
↪→

Question: {question}
Categories:{categories}
Selection:

328

C Extended Data Overview329

Table 4: Concepts and their attributes with detailed distributions.
Concept Question (Attribute) Attribute Values
Bin What shape is the bin? circular, octagonal, square, cylindrical, triangular,

rectangular, round, oval, hexagonal
Bin Does the bin have a lid? yes, no
Person Is the person male or

female?
male, female

Person Does the image show the
person from up-close?

yes, no

Suitcase Is the suitcase open or
closed?

open, closed

Suitcase Is the suitcase soft-shell or
hard-shell?

soft-shell suitcase, hard-shell suitcase

Cake Does the cake have multiple
tiers?

yes, no

Cake Is the cake eaten? yes, no
Pool Is there anyone swimming in

the pool?
yes, no

Pool What color is the water in
the pool?

reflective like a mirror, black, clear, green, blue,
brown

D GRADE: Measuring T2I Diversity Extended330

D.1 Method331

We measure the diversity of T2I models over concepts, we design GRADE, a pipeline that estimates332

the diversity of a concept c from end-to-end: It generates various prompts for each concept c, to333

invoke varied responses from a T2I model, which are then processed to estimate P (c,Ac). Fig. 4334

illustrates GRADE, below we detail each step.335
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Table 5: A random sample of generated prompts, their type (typical or atypical), Nouns, and the
number of captions that include all nouns in LAION-2B.
Prompt Type Nouns Frequency
a drawer in an office typical “drawer”, “office” 51,560
hiking boots a mountain trail typical “hiking”, “boots”,

“mountain”, “trail”
327

a clown in a circus typical “clown”, “circus” 39,950
a crown in a costume shop typical “crown”, “costume”, “shop” 66
a mailbox outside a house typical “mailbox”, “house” 6,188
a banana in a blimp atypical “banana”, “blimp” 2
a hat in a jewelry store atypical “hat”, “jewelry”, “store” 156
a bin on a mountain peak atypical “bin”, “mountain”, “peak” 5
a cow in a desert oasis atypical “cow”, “desert”, “oasis” 0
popcorn in a refrigerator atypical “popcorn”, “refrigerator” 64

Generate 3 common and 3 uncommon scenes for 
“cookie”

T2I

LLM

Generate questions about 
“cookie”

(a) Generating Prompts and Images (b) Generating Question and Categories (c) Extracting and mapping attributes

“a cookie fresh out of the oven”

“a cookie at a bakery”

“a cookie in an operating room”

“a cookie during a scuba dive”

VQALLM

Is the cookie intact?

LLM

round

(d) Estimated Distributions

Match “The cookie is round” to 
the closest category: 

round, triangular, square, animal-shaped, 
star, heart, rectangular, flower, 

christmas tree, gingerbread man

“a cookie in a school lunchroom”

“a cookie in a volcano crater”

Normalized Entropy
Does the cookie have chocolate chips?

What shape is the cookie?

What could the shape of 
the cake be?

What could the shape of 
the cake be?

What could the shape of 
the cake be?

Round, triangular, square, animal-shaped, 
star, heart, rectangular, flower, Christmas 

tree, gingerbread man

What is the shape of the cake?

The cake is round
The cake is round
The cookie is round

round
round

0.03

Normalized Entropy

0.99

LLM

Round, triangular, square, animal-shaped, 
star, heart, rectangular, flower, Christmas 

tree, gingerbread man

round, triangular, square, animal-shaped, 
star, heart, rectangular, flower, 

christmas tree, gingerbread man

What is the shape of the cake?
What is the shape of the cake?

Figure 4: An overview of GRADE with “cookie” as the input concept c and the output is distributions
P (c,Ac). The figure shows four steps: (a) the prompt and image generation. (b) Question and
category generation. Questions dictate the attributes we test for diversity (Ac). Each question defines
a distribution P (c,Ac). For convenience, the figure shows the workflow with a single distribution.
(c) Attribute extraction. Questions are first answered with a VQA. Then, an LLM maps the answers
to matching categories. (d) Estimate the diversity with entropy.

(a) Generating images of c. To measure the model’s ability to generate attributes of c, GRADE336

generates two types of prompts for each concept: (1) prompts describing the concept in common337

contexts, like “a cookie fresh out of the oven” (common prompts); (2) prompts describing the concept338

in uncommon contexts, such as “a cookie in an operating room” (uncommon prompts). The former is339

likely congruent with the training data, and may surface prevalent associations between the concept340

and certain categories that mesh the prompt. The latter places the concept in a scene that it is less341

likely to have been observed in the training set. This creates a disentangling effect from associations to342

categories the prompt might introduce. If a category is common across both common and uncommon343

prompts it is ingrained to the concept, independent from a specific prompt. For example, cookies are344

often generated round.345

(b) Generating attributes and categories. After generating prompts and images, GRADE gen-346

erates questions that probe for information about attributes of concepts. Each question pertains to347

an attribute Ac. We provide an LM with a concept and instruct it to first outline its attributes, then348

generate questions that can be answered simply by viewing an image of the concept. For example,349

upon receiving the input “cookie”, our LM noted that cookies can be made in different shapes, and350

proposed the question “What is the shape of the cookie?”. Next, we need categories to map the351

natural language answers returning from the VQA. We use an LM to generate plausible categories to352

the questions given the prompts. The categories are then unified to a set. For example, the question353

“What is the shape of the cookie?” is paired with the set Acookie = {rectangular, round, square, ...}.354
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(c) Extracting attributes. To analyze images for attributes, GRADE pairs all images and questions355

associated with the same concept and feeds it to a VQA, which outputs an answer in natural language.356

GRADE then provides an LLM with an answer and the set of categories pertaining to the distribution357

and instructs it to select the closest matching category (e.g., “The cookie is round” will be mapped to358

the “round” category). Answers that are mapped to “none of the above” are discarded. We end up359

with frequency distributions and normalize each to cumulatively sum to 1.360

(d) Estimated distributions. GRADE outputs discrete probability distributions. Every (concept,361

attribute) pair results in a concept distribution. Every (prompt, attribute) pair results in a prompt362

distribution. We use the probability structure to compute the entropy and output a diversity score363

from 0 to 1.364

Implementation details. In step (a) we generate 3 prompts from each type and 100 images using365

each prompt. In step (b) we generate an average of 4 questions (which represent attributes) per366

concept. We note that these values can be modified. The exact hyperparameters and prompts are367

detailed in Appendix A and Appendix B.368

Throughout the steps above, we use GPT-4 [18] as our LLM, and while we present the question369

answering and category mapping as separate steps, we do them in one-shot using GPT-4o and the370

Structured Outputs feature [19]. We validate GRADE with human evaluation in Appendix D.2 and371

compare GRADE to previous metrics in Appendix D.3372

D.2 Validating GRADE373

GRADE is a modular system; as such, we validate the quality of each module separately.374

Prompt generation. We review the generated prompts to ensure they reflect their categories, common375

or uncommon. We extract the nouns from each prompt and check their co-occurrence in LAION-5B376

[20] using WIMBD [21], a tool that allows to count and search large datasets efficiently. We find that377

on average, the co-occurrence of the common categories is 30,655, while for the uncommon, it is 956.378

Question generation. We validate that indeed all questions can be answered just from viewing an379

image that faithfully depicts the generated prompts.380

VQA alignment with human evaluation. We validate the quality of GPT-4o using Amazon381

Mechanical Turk (AMT). Each example includes a question, an image, and the plausible categories382

(including the “none of the above” option). The workers are requested to select the category that best383

matches the question and image. We take the majority decision over three submissions. Visuals of384

the task with further detail on the task are provided in Appendix H.385

We run this evaluation twice. First to test the overall quality of GPT-4o, using a sample of 1,000386

images generated by our models and a second time to demonstrate we can recreate the distributions387

estimated with GRADE by replacing GPT-4o with workers. Specifically, we run the task with all388

600 images of the “what is the shape of the cookie?” concept distribution for three models: SD-1.4,389

SDXL-Turbo, and FLUX.1-dev.390

In the first scenario, GPT-4o aligns with the majority decision for 90.2% of the time and in the second,391

GPT-4o aligns with the majority decision 92.8% of the time: SD-1.4 88% of the time, FLUX.1-dev392

91.2%, and SDXL-Turbo 99.5%.393

Plausible category generation. We verify the coverage of the categories we generate by examining394

“none of the above” selections by either majority decisions or the VQA for the 1,000 examples we395

uploaded to AMT. In total, there are 115 selections. Out of these, only 3 are because the answer is not396

reflected in one of the categories. In 92 times, the T2I model did not include the concept mentioned397

in the prompt, and in the other 20, the VQA or workers did not answer the question correctly. We398

provide a sample of cases in Appendix H.399

D.3 GRADE Compared to Previous Metrics400

FID [3] and Recall [5] are two of the most popular diversity measurements, however, they suffer from401

many issues, such as ... []. We demonstrate that GRADE is weakly correlated to them, which taken402
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Table 6: PCC between distribution-based metrics. Each SD model is compared against its dataset.
FID and Recall show low to moderate degrees of correlation across models, while the TVD based on
the distributions from GRADE exhibits weak correlations with both. This indicates the distributions
estimated by GRADE capture diversity existing metrics do not.

Model Dataset FID vs Recall TVD vs FID TVD vs Recall
SD-1.1 LAION-2B -0.41 +0.14 +0.04
SD-1.4 LAION-2B -0.48 +0.18 -0.10
SD-2.1 LAION-5B -0.12 -0.16 -0.15

together with the 90% VQA-human agreement reported in Appendix D.2, indicates GRADE captures403

forms of diversity these metrics do not.404

To measure the correlation, we compare images from the LAION datasets to images generated by405

Stable Diffusion (SD) models, which were trained on LAION. Specifically, we use the setup in406

Appendix G, where we estimate the same 50 random concept distributions twice. Once by sampling407

relevant images from LAION and once by generating images using the captions linked to the images408

we sampled from LAION. For example, if an image we sampled from LAION in a is linked to the409

caption “Unicorn Cookie”, the second distribution will contain an image that was generated using410

that caption as a prompt. Each caption is used to generate an image. We end up with 50 pairs of411

training-set and generated images distributions that should closely match. Each distribution consisting412

of 115 images.413

We compute the FID and Recall, using Inception v3 [22] for feature extraction (64 dimensions), and414

k = 3 for Recall.415

We compare GRADE with these metrics, using Total Variation Distance (TVD) instead of entropy, as416

it naturally matches the requirement of FID and Recall for reference images and thus allows for a fair417

comparison.418

The Pearson Correlation Coefficient (PCC) between FID, Recall, and TVD is shown in Table 6.419

Both metrics are weakly correlated to GRADE, which achieved over 90% agreement with human420

evaluation in Appendix D.2. The results imply that FID and Recall do not accurately capture421

fine-grained similarities such as the attributes of a concept.422

E Extended Results423

The figures showing plots of diversity against model scale can be viewed in Fig. 5 and the plots of424

diversity against non-answerable questions in Fig. 6.425
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Figure 5: (a) The mean concept entropy of the models plotted against the denoiser’s parameter size.
(b) The mean prompt entropy of the models plotted against the denoiser’s parameter size. Models
marked with U denote U-Net-based models, T denotes transformer-based models. UD and TD denote
distilled models. To a degree, diversity deteriorates in tandem with parameter size. This phenomenon
effect is most apparent within every model family.
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(b) The mean prompt entropy of the models plotted against the % of “none of the above”.

Figure 6: (a) The mean concept entropy of the models plotted against the % of “none of the above”.
(b) The mean prompt entropy of the models plotted against the % of “none of the above”. This plot
shows there is strong negative correlation between diversity and prompt adherence, which hints at
a tradeoff. The x-axis accounts for cases where the concept c is not depicted in the prompt that
mentions it (low prompt adherence) or there is no category in Ac that matches the answer. In practice,
around 80% of the cases (see Appendix D.2) indicate the latter.
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Table 7: Percentage of at least one default behavior. Almost all concepts are associated with at
least one default behavior in prompt distributions, with a similar trend in concept distributions.

Model % of Default Behavior ↓
Concept-level Prompt-level

SD-1.1 78 87.13
SD-1.4 82 87.11
SD-2.1 76 89.11
SDXL 81 90.76

SD-3 (2B) 88 94.88
FLUX.1-schnell 90 96.53

FLUX.1-dev 88 95.71
SDXL-Turbo 86 95.21
SDXL-LCM 82 92.24

DeepFloyd-M 83 91.72
DeepFloyd-L 81 91.75

DeepFloyd-XL 80 91.42

F Default Behaviors: Extended Results426

In Section 4.2 we define default behaviors and mention that almost all concepts are associated with at427

least one default behavior, with SD-1.1 exhibiting 87.13% prompt distributions, with a similar trend428

over the concept distributions, as shown in Table 7. In Table 8, we report the total number of default429

behaviors for both types of distributions. Table 9 shows a sample of default behaviors detected in430

concept distributions and Fig. 7 images of these behaviors.431

Table 8: Percentage of all default behaviors. There are 100 concept and 2400 prompt distributions
in total. The table quantifies the total percentage of default behaviors observed. The most diverse
models are in bold.

Model % of Default Behavior ↓
Concept-level Prompt-level

SD-1.1 38.67 49.36
SD-1.4 40.15 50.51
SD-2.1 39.66 51.89
SDXL 44.09 56.97

SD-3 (2B) 55.67 69.41
FLUX.1-schnell 55.17 67.10

FLUX.1-dev 55.67 70.17
SDXL-Turbo 49.75 67.34
SDXL-LCM 43.60 57.10

DeepFloyd-M 38.92 54.07
DeepFloyd-L 39.41 56.10

DeepFloyd-XL 39.90 55.68

17



Table 9: A random sample of default behaviors. The concept is underlined in the question column.
Images corresponding to the behaviors in the table can be viewed in Fig. 7.

Model Question (Attribute) Category Percentage
SD-1.1 Is the brick alone or in a stack with others? stacked 97.4
SD-1.4 Is there a frame around the mirror? yes 92.9
SD-2.1 Is the suitcase soft-shell or hard-shell? hard-shell 88.3
SDXL Is the detective female or male? male 99.6
SD-3 (2B) Is the tie a necktie or a bowtie? necktie 100
FLUX.1-schnell Is the clock analog or digital? analog 100

Brick 
(SD-1.1)

Mirror 
(SD-1.4)

Suitcase 
(SD-2.1)

Detective 
(SDXL)

Tie 
(SD-3)

Clock
(FLUX-schnell)

Figure 7: A sample of images depicting the default behaviors in Table 9. The concept is shown in
the left column with the model directly below it. Images were sampled randomly from all prompts.
The default behaviors, top down: (1) stacked bricks; (2) framed mirrors; (3) hard-shell suitcase; (3)
male detective; (4) neckties; and (5) analog clocks.
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Table 10: Similarities between images by SD and its training set. The LAION datasets exhibit
moderate diversity based on entropy values. Generating images using prompts from LAION results in
comparable entropy and high PCC (strong correlation). Additionally, the small TVD values suggest
that the distributions are structurally similar. This pattern remains largely consistent when using
generated prompts, with only a slight reduction in correlation and distribution similarity.

Model Dataset Source of Prompts Model Entropy Dataset Entropy PCC TVD

SD-1.1 LAION-2B LAION-2B 0.62 0.64 0.86 0.11
Generated 0.58 0.71 0.18

SD-1.4 LAION-2B LAION-2B 0.62 0.64 0.88 0.10
Generated 0.60 0.72 0.17

SD-2.1 LAION-5B LAION-5B 0.68 0.65 0.73 0.13
Generated 0.68 0.61 0.18

G Is Low Diversity Rooted in the Training Data?432

In the previous section we show that all T2I models we experiment with exhibit low diversity scores433

when attributes are underspecified in the prompt. We hypothesize this behavior can be explained434

from the pretraining data used to train these models. In this section we explore this hypothesis.435

We hypothesize that lack of diversity originates from reporting bias [23]: the phenomenon where the436

obvious is rarely stated. In our case, we hypothesize that captions mentioning concepts seldom specify437

their common attributes, although they are depicted in the image. For example, it learned to predict438

“round cookie” by training on images that mention only “cookie”, but show it round. Using LAION,439

the only open-source model that also released its training data, we estimate 50 under-specified concept440

distributions and compare them to those generated by models trained on LAION. We compare SD-1.1441

and SD-1.4 to LAION-2B and SD-2.1 to LAION-5B [20].442

Estimating Distributions from LAION We are interested in estimating the diversity of training443

images whose captions satisfy two conditions: (1) mention the concept and not its periphery (e.g., it444

should mention a cookie and not cookie cutter) and (2) do not imply the attribute of interest–if the445

question is “what is the shape of the cookie?”, any caption that describes or alludes to a shape should446

be discarded. We query LAION using WIMBD [21] and sample 500 captions for each concept. In a447

few-shot setup, we provide GPT-4o with the caption, concept, and question, and instruct it to reply448

with “yes” if both conditions are met, otherwise “no”. We download the images associated with the449

relevant captions. We use AMT crowdsourcing to evaluate the quality of filtering and find our F1 is450

90.3% over 1,000 evenly-classified captions. We provide more details in Appendix H.451

We compute the distributions based on the images and questions using GRADE. We only use the452

attribute extraction step, as the image generation step is swapped in favor of sampling images from453

LAION, and the questions and categories were already generated when we compared the diversity of454

models. The final result is a total of 100 distributions, each with at least 150 images.455

Did the model learn its low diversity from the training set? We use the relevant captions to456

generate images, and then compare the corresponding distributions. We sample 150 captions from457

each distribution and use each one to generate 20 images, such that each distribution consists of458

approximately 3,000 images. We then use GRADE to estimate the distributions and compute the459

mean entropy, as discussed in Section 4.1.460

Did the model generalize its behavior? We compare the distributions from LAION to the corre-461

sponding distributions from Section 4.1. We note that this time, while the distributions are defined462

exactly the same, i.e., the concepts, questions, and categories are the same, the prompts used to463

generate images are different from the captions in LAION.464

Results for both experiments are shown in Table 10. The first experiment provides two evidence. (1)465

the models closely align with their training data, indicated by the close entropy values, strong positive466

correlation, and low TVD. (2) the entropy values based on images with underspecified captions in467

LAION are indeed in par with the entropy values in Section 4.2, which indicates it is a factor in the468

models’ low diversity. The second experiment shows that the models generalize over the training469
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data, as the trend is similar, albeit to a lesser extent. Together, we pinpoint underspecified captions in470

the training data as a primary source of low diversity.471

Caption filtering. For each concept-level distribution, we use GPT-4o to collect captions that472

mention the concept but do not indicate the answer to the question. Concretely, we use the prompt473

below. 400474

In this task, you are provided with a caption associated with an image, a
concept, and a question. You need to find relevant captions that do not indicate
the answer to the question. Your role is two-part. First, determine whether the
caption explicitly mentions the concept as a tangible thing, and not an
accessory or an item related to the concept. Second, determine if that question
can be answered only by reading the caption. If the answer is yes for the first
and no for the second, reply with "yes", otherwise reply with "no".

Here are some examples to guide your understanding:

Caption: teapot, glass teapot, Chinese teapot, herbal teapot, teaware
Concept: teapot
Question: What material is the teapot made of (ceramic, metal, glass, etc.)?
Reasoning: The first part is to determine if teapot is mentioned in the prompt.
It is the first word in the caption, so it is. The second part is to determine
if the question is answerable from the prompt or not. We want to find captions
that are not answerable. Since there are mentions of materials in the caption,
it is answerable and the answer is no.
Answer: no

Caption: My Sweet Angel Book Store Hyatt Book Store Amazon Books eBay Book Book
Store Book Fair Book Exhibition Sell your Book Book Copyright Book Royalty Book
ISBN Book Barcode How to Self Book
Concept: book
Question: Is the book dirty or clean?
Reasoning: The caption mentions items related to a book, but not an actual book.
The answer is no.
Answer: no

Caption: Perfect reading chair, cozy reading chair, nest chair, my favorite
chair, Nest Chair, Cozy Chair, Chair Cushions, Big Chair, Cuddle Chair, Swivel
Chair, Relax Chair, Big Comfy Chair, Chaise Chair
Concept: chair
Question: What color is the chair?
Reasoning: The first part is to identify if the caption mentions a chair. It
does mention a chair, with various adjectives. The second part is to determine
if the question is answerable from the caption. If the question is answerable,
my final answer is no, if it is not answerable, I answer yes. The question asks
about the color of the chair, and there is no mention of a chairs color. The
answer is yes.
Answer: yes

Caption: JIX motorcycle helmet, cross helmet, full helmet, safety helmet
Concept: helmet
Question: Does the helmet have any logos or graphics on it?
Reasoning: The first part is to determine if the caption mentions a helmet. The
caption indeed mentions a variety of helmets. The second part is to determine if
the question can be answered from the caption alone. There is no information
about logos or graphics in the caption, so it is not answerable from the caption
alone. The final answer is yes because the answer to the first is yes and the
second is no.
Answer: yes

Caption: dust bin, garbage container, recycle bin, trash icon
Concept: bin

475
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Question: What shape is the bin?
Reasoning: The first part is to determine if the caption mentions a bin. The
caption mentions a bin, but it also mentions trash icon. This indicates this is
not an actual bin, but an icon of a bin. The answer is no.
Answer: no

Caption: Cookie Policy - Cookie Law Compliance [MultiLang..
Concept: cookie
Question: What shape is the cookie?
Reasoning: The first part is to determine if the caption mentions a cookie. The
caption mentions cookie policy and cookie law compliance, but not an actual
edible cookie, that has a shape. The answer is no.
Answer: no

Caption: Best Cookie Presses - Cookie Press 150PCS Cookie Press Gun with 16
Review
Concept: cookie
Question: Does the cookie have chocolate chips?
Reasoning: The first part is to determine if the caption mentions a cookie or
something else. The caption is about cookie press and not actual cookie. The
answer is no.
Answer: no

476

H Human Evaluation477

Worker selection. Workers were chosen based on their performance records, requiring them to478

have a minimum of 5,000 approved HITs and an approval rate above 98%. They had to achieve a479

perfect score on a qualification exam before being granted access to the task. An hourly wage of $15480

was provided, ensuring they were fairly compensated for their efforts.481

Validating GRADE. To validate the VQA Appendix D.2, we run an AMT task where the worker482

is provided with a question, concept, image, and categories, and is requested to select the category483

that best matches the question and image. The UI for this task can be viewed in Fig. 8 with examples484

in Fig. 9. A sample of cases from our category coverage validation is available in Fig. 10 and Fig. 11.485

Validating caption filtering. We run an AMT task to evaluate the caption filtering of GPT-4o from486

Appendix G. We instruct workers to identify if our conditions are met: (1) the caption mentions the487

concept itself not something peripheral to it (e.g., a cookie and not cookie cutter); and (2) the caption488

does not indicate an answer to the question (attribute) of the distribution e.g., “what is the shape of489

the cookie?”. We sample 1,000 captions, 500 from each class (relevant and not relevant). We use490

three workers per HIT and select the majority decision. We find that GPT-4o scores 85.8% recall and491

95.4% precision, making it a reliable automated filtering method. The UI for this task can be viewed492

in Fig. 12 and a sample of example cases can be viewed in Fig. 13.493

Figure 8: A screenshot of the VQA validation task. Workers are provided a question, concept, image,
and a set of categories, including “none of the above” (options here). Their task is to select the option
that answers the question.
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Figure 9: 3 out of 10 examples provided to workers as aid to complete their visual question answering
task.
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An apple in a 
submarine

A frisbee in a library A tie in an insect 
breeding facility

A clothes iron in a 
nightclub

A tiara in a pawn 
shop

A crown inside a 
volcano

A banana at a car 
race

A mirror on a sports 
field

A pacifier in a baby 
store

SD
-1
.1

SD
XL

FL
UX

-d
ev

Figure 10: A sample of images marked with “none of the above”, as a result of not including the
concept (underlined) in the image.
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Popcorn at a 
cinema

Q: is the popcorn in 
a bowl or a bucket?

Ac = {bucket, bowl}

A person in a city 
square

Q: Is the person 
male or female?

Ac = {male, female}

a toy at a children’s 
playroom

Q: Does the toy 
appear to be 
mechanical or 
electronic?

Ac = {mechanical, 
electronic}

a tie in an office

Q: Is the tie worn 
with a formal or 
casual outfit?

Ac= {casual, formal}

SD
XL

SD
XL

SD
-1
.1

FL
UX

-d
ev

Figure 11: A sample of images marked with “none of the above”. The top row exhibits cases where
the category is not in Ac. The bottom row exhibits cases where the question cannot be answered just
from viewing the image.
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Figure 12: A screenshot of the caption filtering validation task. Workers are provided a caption, two
questions, and a concept. Their task is to read the caption and answer the questions.

Figure 13: 3 out of 10 examples provided to workers as aid to complete their caption filtering task.
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I Examples of low diversity494

Figure 14: 100 images of “a princess at a children’s party” using FLUX.1-dev. All depictions of
princess are of a Caucasian child wearing a pink dress (except two). The background is similar in all
of them, often including another princess wearing a blue dress.
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