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Abstract

This paper introduces Chain-of-Sight, a vision-language bridge module that ac-
celerates the pre-training of Multimodal Large Language Models (MLLMs). Our
approach employs a sequence of visual resamplers that capture visual details at
various spacial scales. This architecture not only leverages global and local vi-
sual contexts effectively, but also facilitates the flexible extension of visual tokens
through a compound token scaling strategy, allowing up to a 16× increase in the
token count post pre-training. Consequently, Chain-of-Sight requires significantly
fewer visual tokens in the pre-training phase compared to the fine-tuning phase.
This intentional reduction of visual tokens during pre-training notably accelerates
the pre-training process, cutting down the wall-clock training time by ∼73%. Em-
pirical results on a series of vision-language benchmarks reveal that the pre-train
acceleration through Chain-of-Sight is achieved without sacrificing performance,
matching or surpassing the standard pipeline of utilizing all visual tokens through-
out the entire training process. Further scaling up the number of visual tokens for
pre-training leads to stronger performances, competitive to existing approaches in
a series of benchmarks.

1 Introduction

Recently, Large Language Models [70, 6, 80, 5, 3] have received unprecedented attention, owing to
their remarkable capabilities in text comprehension and generation. Riding on the success of LLMs,
Multimodal Large Language Models (MLLMs) [74, 90, 63, 56, 26, 88, 73] demonstrate impressive
zero-shot transferability across a wide range of vision-language tasks, such as image captioning,
visual question answering, and visual grounding.

The exceptional generalization ability exhibited by the contemporary MLLMs can be largely attributed
to their extensive pre-training on a massive amount of data [16, 14, 69, 31, 18]. However, as the
volume of data escalates, so does the wall-clock training time, which has become a major obstackle
in further explorations. According to [63], 60,000 GPU hours are needed for training a 7B model on
just 96 million image-text pairs. This intensive computational demand is not only prohibitive to many
researchers, but also leads to a significant carbon footprint.

One of the key reasons for the prolonged training time is the extensive length of visual tokens
Typically, the image-text pairs in the pre-training phase involve around 23 text tokens (see Table 1). In
contrast, most MLLMs handle substantially more visual tokens during pre-training, e.g., 144 [10, 11],
256 [4, 50, 97], or even higher [63, 16, 55, 56, 64, 48]. Reducing the number of visual tokens presents
a straightforward way to speed up training, as it allows for an increase in batch size and a concurrent
decrease in step time. Meanwhile, the reduced memory consumption allows for better optimization
stages [81], further reducing time requirements. However, training with fewer visual tokens often
results in compromised performance for existing vision-language models.
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Figure 1: Chain-of-Sight concept overview. Recent current MLLMs maintain a constant set of
visual tokens in both pre-training and fine-tuning. These tokens typically represent visual contents at
a single visual scale. In contrast, our Chain-of-Sight approach leverages the idea of visual hierarchy,
producing multi-scale visual tokens. Moreover, the token scaling strategy enabled by our multi-scale
visual resamplers allow us to start with a small pool of visual tokens for pre-training, before increasing
the number of tokens during fine-tuning. This considerably accelerates the pre-training phase.

To resolve this dilemma, this work introduces Chain-of-Sight, a vision-language bridging module
for efficient pre-training of MLLMs. Unlike existing approaches that maintain a constant token
count throughout both pre-training and fine-tuning, Chain-of-Sight allows for a marked increase
in the number of tokens after the pre-training stage, thereby reducing the tokens needed during
pre-training. The core mechanism is our multi-scale visual resampler, which produces visual tokens
of multiple visual scales. Inspired by the classical concept of multi-scale feature hierarchy in visual
understanding [106, 42, 33, 107, 83, 53], we partition the visual features produced by the visual
backbone using windows of multiple sizes. For each window size, a visual resampler is implemented
to produce a specified number of visual tokens per window. Subsequently, the visual tokens from
various window sizes are gathered and linked in a global-to-local manner, forming a chain of reasoning
steps from coarse views gradually to fine-grained perspectives.

On top of this, we propose a post-pretrain token scaling strategy, which compounds the elements of
input resolution and window size manipulation to enable a significant escalation in the token count
for our Chain-of-Sight, reaching up to 16× increase during fine-tuning. Such adaptability allows for
the fine-tuning of the model with a flexible granularity or complexity as required, without the the
necessity for an additional pre-training phase.

By intentionally reducing the number of visual token by ∼90% in the pre-training, a 2.5× batch
size is allowed with a step time reduction of 30%, leading to a 3.7× faster pre-training in terms of
wall-clock time (∼73% less) for the same amount of data, when compared with using all visual
tokens during pre-training. Meanwhile, our observations indicate that this acceleration does not come
at the expense of performance. The results achieved by our Chain-of-Sight model pre-trained with 32
tokens match or surpass those obtained using 336 visual tokens throughout the training process, when
both models use the same tokens during fine-tuning. Further scaling up the tokens in the fine-tuning
stage leads to enhanced performance at small additional training costs. This scaling showcases the
potential of Chain-of-Sight to capitalize on the initial efficiency gains and adapt its framework to
achieve even greater levels of accuracy and effectiveness in visual understanding for MLLMs.

2 Method

Our objective is to accelerate the pre-training of MLLMs. To this end, we resort to reducing
the number of visual tokens inputted into the language model. To mitigate the performance drop
associated with fewer visual tokens, we introduce a versatile bridge module within our framework,
named Chain-of-Sight. This module is designed to enable the increase in the token count on demand
after pre-training. With this capability, we are able to substantially lower the number of visual tokens
during the pre-training phase, while retaining the ability to scale up and capture a rich level of visual
detail during fine-tuning. The concept of Chain-of-Sight is illustrated in Fig. 1.

2.1 Re-examining the efficiency bottleneck in MLLM pre-training

Modern MLLMs are typically constructed by three core components: (1) a visual encoder, (2) a
vision-language bridge module, and (3) a language model. Given that the language models often
have a much larger size than the visual encoder, they account for the majority of computation during
pre-training [90, 4, 73, 19, 58]. Consequently, the number of input tokens processed by the language
model is a crucial factor determining the total computational workload.

2



LxL

W1

W2

LxL

LxL

Windowed X-Attn

X-Attn

…

Text tokens(b) Chain-of-Sight Pre-training phase

Large Language M
odel

Large Language M
odel

LxL

W1

W3

LxL

LxL

Windowed X-Attn

LxL

W4 Windowed X-Attn

……

……

… ………

LxL

W2
Initialize

Windowed X-Attn

… …

……

(c) Chain-of-Sight Fine-tuning phase

…
…

…
…

Text tokens

Initialize

…

X-Attn

Learnable queries
Path for extended queries (optional)

Resampler for PT and SFT Linear for PT and SFT
(a) Existing methods

LxL

X-Attn

… LxL
Linear

× L2

Feature patches
Partitioning window

Figure 2: The Chain-of-Sight framework. Through partitioning visual features into windows
and restricting cross-attention to the windowed features associated with the learnable tokens, our
Chain-of-Sight approach produces visual tokens that encompass multiple scales. Thanks to the
post-pretrain token scaling strategy, Chain-of-Sight reduces the required number of visual tokens
in pre-training, thus accelerating the process. In contrast, the number of visual tokens remains
constant in resampler-based methods [44, 2, 4, 99] for pre-training and fine-tuning, and the linear-
layer [56, 63, 97, 15] produce a large number of visual tokens, incurring a high cost for pre-training.

As detailed in Table 1, the pre-training data predominantly comprise image-text pairs that contain
fewer than 50 text tokens. In contrast, existing MLLMs are designed to handle 2× more visual tokens,
often requiring such as 144 [10, 11], 256 [4, 50, 97], or even more visual tokens [63, 16, 55, 56, 64, 48].
The imbalance between the visual tokens and text tokens means that processing these visual tokens
has become the main efficiency bottleneck in MLLM pre-training. This prompts our exploration for
more efficient vision-language bridging structures, which is capable of reducing the number of visual
tokens in pre-training without compromising performance.

2.2 Multi-scale visual resamplers

The multi-scale visual resamplers serve as the foundational mechanism enabling the flexible extension
of visual tokens after the pre-training phase. This subsection focuses on the architectural details of
the multi-scale visual resamplers, as visualized in Fig. 2(b), while the the extension of visual tokens
is discussed in the subsequent subsection.

Essentially, the idea of exploiting multi-scale or pyramid structures to handle natural hierarchy of
visual contents has been long established as a standard practice [30, 42], proving effective in countless
visual tasks [33, 61, 83, 53]. Despite this, the potential for harnessing multi-scale visual hierarchies
remains under-explored in the context of MLLMs.

Visual resampler. Visual resampler is a Perceiver [36]-like structure that introduces a set of learnable
queries and uses cross-attention to condense visual knowledge into a predetermined set of visual
tokens [4, 2, 95, 99]. We construct Chain-of-Sight with visual resamplers due to their flexibility in
selecting the token count for a specified feature, independent of the features’ dimensionality.

Multi-scale visual resamplers. One of the effective strategies for building multi-scale features within
a network involves combining operations that spans diverse fields of views [13, 45, 101, 21]. Given
that the resampler structure inherently gathers visual cues on a global scale across the entire feature
map, our strategy focuses on enhancing the perception of the fine-details in the image.

To this end, we partition the visual features into non-overlapping local windows of various sizes.
More precisely, given a visual feature X ∈ RL×L×C extracted by the visual encoder, where L and C
denote the feature size and channel, respectively, we define a set of window sizes, denoted as W =
[W1, ...,Wm]. This setup leads to a collection of windowed visual features Xwin = [X1, ...,Xm].
Each Xi represent a set of L2/W 2

i windowed features obtained by applying the partition operation
on the original visual feature maps with a corresponding window size Wi. This naturally forms
features of multiple visual scales.
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Figure 3: Detailed illustration of our post-pretrain token scaling strategy.
At every scale level, each windowed feature is allocated with Ni learnable queries. These learnable
queries are then utilized within the visual resampler to perform cross-attention solely on their
corresponding windowed feature. This yields N tokens, where the N can be calculated as follows:

N =
∑
i

L2/W 2
i ∗Ni. (1)

The learnable queries within the same scale share the parameters of the visual resampler, despite their
different spatial locations. However, because the queries at various scales are intended to capture
features from varying fields of view, distinct sets of parameters are used for each scale. This results in
a group of visual resamplers operating across multiple scales. On top of this, we enable the resamplers
to aggregate visual features from multiple feature levels, as in [8] (see Appendix for details).

Coarse-to-fine integration. Upon acquiring a series of multi-scale visual tokens from the multi-scale
visual resamplers, our method integrates these prompts in a structured coarse-to-fine fashion. The
final token sequence fed to the language model begins with tokens derived from larger windows,
which presents an overall view of the image, and proceeds with tokens obtained from smaller windows
that contains fine-grained details. Our priliminary experiments reveal a substantial difference in the
overall performance between the coarse-to-fine and the reversed order.

2.3 Post-pretrain token scaling strategy

Reducing the number of visual tokens can effectively accelerate pre-training, but typically at the
expense of performance. To address this dilemma, we enhance the token count after pre-training,
which allows accelerated pre-training with fewer visual tokens, while a subsequent increase in tokens
ensures the final performance after fine-tuning, as demonstrated in Fig. 2(c). Specifically, based on
the multi-scale visual resamplers, the increase in the token count is accomplished via our compound
token scaling strategy that integrates two core mechanisms: resolution scaling and window scaling.

Resolution scaling. Enhancing the input resolution stands as the most direct way to augment the
number of visual tokens. At the cost of additional computation overhead in the visual backbone,
it allows for a quadratic rise of the token count with the resolution enhancement. The concept of
resolution scaling is investigated in many existing approaches based on linear projectors [55, 69, 26]
or visual resamplers [50]. They can broadly be viewed as particular instances within our Chain-of-
Sight framework, which regards the window size as a fixed factor. In this context, linear projectors
use the smallest possible window size for visual token generation, whereas visual resamplers employ
the resolution in the pre-training phase as their window size.

Window scaling. The windowing mechanism in our multi-scale visual resamplers enable scaling up
token numbers by manipulating the window sizes. As in Eq. 1, reducing the window sizes can further
produce a quadratic increase in the number of visual tokens on top of the resolution enhancement.

Compound scaling. Combining the above token scaling strategies, our compound scaling is capable
of producing a 16× increase in the tokens during fine-tuning, as in Fig. 3. This allows us to fine-tune
the scale at which visual features are represented and sampled, improving the model’s capability
of leveraging varying levels of detail and abstraction inherent in the visual content. Consequently,
the Chain-of-Sight framework significantly boosts the visual comprehension capability of the model
during the fine-tuning stage, effectively compensating for the performance drop incurred by the low
number of visual tokens during pre-training.

Initialization. Inspired by [9], we initialize the parameters of the newly introduced visual resamplers
by simply inflating the pre-trained parameters, as in Fig. 2. As for the new visual queries, we apply a
nearest neighbor strategy to initialize them based on the pre-trained queries.
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Figure 4: Pre-train acceleration by Chain-of-Sight,
in comparison with standard resamplers. The average
performance is computed over the reported benchmarks
in Table 2. Our method achieves a pre-train acceleration
of 73% without compromising performance.

In this section, we provide our experimen-
tal setup, empirical results, and the compar-
isons with existing methods.

3.1 Experimental setup

Model details. We instantiate our MLLM
with CLIP-ViT-L/14 [78] as the visual en-
coder and Vicuna [20] as the language
model. For efficiency, we adapt Vicuna
with LoRA [34] during all training stages,
instead of fully fine-tuning the language
model. For the number of visual tokens, we
experimented with 32, 48, and 80 during
pre-training for our Chain-of-Sight model,
where 16 tokens are global tokens (with a
window size of 16 for an input resolution
of 224) and the rest are local tokens (with
a window size of 4 by default). These mod-
els are configured to be extended to at most
528, 784, and 1296 visual tokens during
fine-tuning using compound token scaling.

Training settings. The training of Chain-of-Sight is divided into two stages. For the first stage,
we sample around 65M image-text data involving multiple tasks, as detailed in Table 1. The multi-
scale visual resamplers and the LoRA paramters [34] are unlockded for training. For the first
120,000 iterations, we use the input resolution of 224 and unlock the resamplers and the LoRA
parameters [34] for training. During the last 30,000 iterations, the input resolution is raised to 448,
where the parameters in the visual backbone is further activated and the tokens are scaled up through
our compound scaling. The second stage of the Chain-of-Sight model is supervised fine-tuning,
where we remove all the captioning datasets except for COCO.

Evaluation benchmarks. The evaluation of our approach involves various tasks including image
captioning, visual question answering, text recognition, as well as the tasks defined in popular
vision-language benchmarks. Details can be seen in Table A2.

3.2 Ablations

We first ablate the Chain-of-Sight (CoS) design for accelerating the pre-training of MLLMs. For the
ablations, we omit the high resolution tuning in the first stage unless otherwise specified.

Pre-train acceleration by Chain-of-Sight. Fig. 4 shows the cost for pre-training and supervised-
finetuning with various number of visual tokens, as well as the corresponding average performance
over 12 benchmarks. We make several key findings. (a) Though reducing visual tokens for the
resampler from 336 to 80 significantly reduces the training time, the average performance drops from
86.8 to 84.4. (b) Using an identical number of tokens, i.e., 80 visual tokens, Chain-of-Sight notably
outperforms the standard resamplers, which can be mainly accredited to the multi-scale visual tokens
generated by our method. (c) Using the pre-trained model with 80 visual tokens, Chain-of-Sight can
be fine-tuned with higher token counts. Using 336 tokens for fine-tuning, our method achieve an
average improvement of 1.8pt over the standard resampler with 336 tokens. (d) Notably, Chain-of-
Sight with 32 tokens can save up to 73% of the pre-training time, and maintain the same performance
as the standard resampler with 336 tokens. (e) Taking fine-tuning into consideration, our method is
capable of saving 65% of the total wall-clock time for training a MLLM with improved performance.
Note that the percentage is based on a 65M pre-training dataset, and the overall gains in efficiency
are expected to grow with the increase of the pre-training dataset scale.

Image captioning, visual question answering, and text recognition. Table 2 compares the perfor-
mance of Chain-of-Sight with its baselines. Overall, our method delivers competitive performance
against pre-training with a full set of visual tokens, while substantially accelerating training speed.
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Table 1: Multitask pretraining data for pre-training Chain-of-Sight. MeanL., 50%L., and 90%L.
indicates the mean length, the 50 percentile, and the 90 percentile length of the input text tokens. We
use the tokenizer from Vicuna [20], which is the same tokenizer we use for pre-training.

Task MeanL. 50%L. 90%L. Dataset

Caption 23.87 19 43 COYO [7], CC3M&12M [85], COCO [54], VG Cap [39], SBU [75]
General VQA 12.17 11 17 VQAv2 [32], GQA [35]
KB QA 38.67 39 48 OK-VQA [68], AOK-VQA [84], ScienceQA [65]
Text 15.32 13 25 TextVQA [87], OCRVQA [71], TextCaps [86]
REC 12.65 16 19 RefCOCO [38], RefCOCO+ [103], RefCOCOg [67]

Total 23.32 19 42

Table 2: Image captioning, visual question answering, text recognition, and vision-language
benchmarks, compared with our baselines. † indicates fine-tuning with 224×224 resolution. ∗
denotes token extended through existing strategies [57, 50, 55]. S-I denotes the image subset of
SEEDBench [43]. The best and second-best performances are marked bold and underlined.

pre-train FT Captioning VQA Text VLM-Bench

Bridge tokens time tokens COCO Flickr NoCaps v2 OK GQA SQA Caps VQA MMB POPE S-I

224 resolution fine-tuning
Linear 256 0.82× 256† 140.1 78.6 116.7 79.7 57.3 62.2 90.2 120.0 48.7 67.9 83.2 66.3

CoS 80 0.42× 80† 139.6 78.0 115.8 79.0 58.0 61.6 90.4 120.8 48.3 68.6 84.4 64.6
80 0.42× 336† 140.8 80.0 117.2 79.8 58.4 62.3 90.0 122.6 50.2 69.2 84.8 65.9

448 resolution fine-tuning

Resamp.
336 1.00× 336 141.2 81.9 117.2 81.0 58.4 61.9 84.3 135.5 61.3 66.9 85.3 66.2
80 0.42× 80 138.8 81.4 115.8 80.3 58.0 61.6 84.5 115.8 59.0 68.1 84.5 64.4
80 0.42× 400* 139.8 84.2 117.3 81.3 58.3 61.9 87.3 135.7 61.9 68.6 86.0 66.3

CoS

336 1.00× 336 141.4 83.4 116.8 80.9 58.4 62.8 88.6 133.9 60.3 68.7 84.2 66.9
80 0.42× 80 140.7 82.6 118.0 80.7 58.4 61.6 89.6 134.5 60.4 69.0 84.5 65.0
80 0.42× 336 141.3 85.8 119.2 81.7 58.9 62.1 90.5 137.8 63.8 70.2 85.9 66.4
80 0.42× 1296 142.8 84.9 119.3 82.5 59.4 62.5 91.5 137.5 65.0 70.3 86.4 67.5

further accelerations

CoS
48 0.35× 784 142.7 83.4 119.1 82.3 59.1 62.7 91.0 138.4 64.7 69.7 84.3 67.3
32 0.27× 336 141.4 83.5 118.1 80.7 57.8 61.1 89.3 133.7 59.5 66.8 84.0 65.1
32 0.27× 528 141.7 83.1 117.1 81.6 58.3 62.4 91.1 136.4 61.8 69.4 85.3 66.7

Compared to the linear projection, we fine-tune the visual backbone at a resolution of 224x224.
Pre-trained with 80 tokens, CoS slightly falls behind when we use 80 tokens for fine-tuning, while
achieving stronger performance when we scale up the tokens to 336. In this case, the total time for
pre-training can be saved by 50% when compared to using linear projections with 256 visual tokens.

Compared with visual resamplers, when a high number of visual tokens are used during pre-training,
Chain-of-Sight performs similarly. However, when pre-trained with fewer visual tokens, Chain-
of-Sight have notable advantages on captioning and text recognition for 80 tokens, outperforming
resamplers by 1.8 for captioning and 10.1 for text recognition. Further scaling up tokens pushes our
model to have a performance stronger than the model pre-trained with 336 tokens. In addition, our
compound scaling proves more effective than existing resolution scaling methods [57, 50, 69].

We also try further reducing the number of tokens for pre-training. The performance drop is mainly
observed in vision-language benchmarks and question answering capabilities, with minor affect on
the captioning task. Nevertheless, we observe that our model pre-trained with 32 tokens achieve a
similar or stronger overall performance with resamplers pre-trained with 336 tokens, while taking
only 0.27× wall-clock training time (achieving a 3.7× pre-train acceleration).

Vision-language benchmarks. We find the performances on vision-language benchmarks more
heaviliy affected by the number of tokens used in the supervised fine-tuning stages than the ones
used in the pre-training stage, especially for the question answering task with multiple choices, as in
Table 2. This provides a strong support for using a small set of visual tokens in the pre-training stage
for acceleration, and a large set of visual tokens for optimal performance.
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Table 3: Ablations on referring expression comprehension compared with our baselines. † indicates
fine-tuning with 224×224 resolution. ∗ denotes token extended through existing strategies [57, 50, 55].
The best and second-best performances are marked bold and underlined.

pre-train FT RefCOCO RefCOCO+ RefCOCOg

Bridge tokens time tokens val test-A test-B val test-A test-B val test Avg.

224 resolution fine-tuning
Linear 256 0.82× 256† 88.37 92.38 82.36 82.81 88.82 74.31 83.37 84.82 84.66

CoS 80 0.42× 80† 85.54 90.60 79.31 79.81 87.43 71.83 81.78 82.08 82.30
80 0.42× 336† 88.43 92.58 83.45 82.79 89.07 75.91 83.66 85.14 85.10

448 resolution fine-tuning

Resamp.
336 1.00× 336 86.46 90.84 79.82 80.66 87.74 71.63 82.25 82.64 82.76
80 0.42× 80 83.59 89.27 76.19 77.28 84.77 67.11 78.84 79.57 79.58
80 0.42× 400* 88.02 92.19 83.08 82.09 89.12 74.82 84.17 84.62 84.76

CoS

336 1.00× 336 89.20 92.96 84.73 83.83 90.57 76.97 85.48 86.26 86.25
80 0.42× 80 86.32 91.06 81.43 80.47 87.72 74.29 82.95 82.97 83.40
80 0.42× 336 89.37 93.21 83.96 84.21 90.22 76.58 86.05 85.89 86.19
80 0.42× 1296 89.20 93.02 85.46 83.72 90.17 77.40 85.78 86.47 86.40

further accelerations

CoS
48 0.35× 784 89.61 93.51 84.93 84.65 90.85 77.79 85.80 86.87 86.75
32 0.27× 336 86.97 91.11 81.18 81.30 87.83 73.72 82.58 82.84 83.44
32 0.27× 528 88.11 92.35 83.51 83.23 89.45 75.99 84.23 84.84 85.21

Table 4: Ablations on post-pretrain compound scaling of visual tokens. G./L. denotes scaling
strategy over global tokens (window size=16) and local tokens (window size=4). We report the
average performance of captioning, VQA, and text recognition. S-I denotes the image subset of
SEEDBench [43]. The best and second-best performances are marked bold and underlined.

G. L. res. win. sizes tokens
∑

tokens Caps VQA Text MMB POPE S-I

baseline - - 224 [16, 4] [16, 64] 80 111.1 66.2 84.5 68.6 84.4 64.6
- - 448 [32, 8] [16, 64] 80 113.8 67.0 97.4 69.0 84.5 65.0

Win. Scale
✓ ×

224
[16, 8, 4] [16, 64, 64] 144 111.3 66.0 84.8 67.9 83.6 64.8

× ✓ [16, 2] [16, 256] 272 112.4 67.0 86.5 68.0 84.7 66.0
✓ ✓ [16, 8, 2] [16, 64, 256] 336 112.7 66.9 86.4 69.2 84.8 65.9

Res. Scale
✓ ×

448
[32, 16, 8] [16, 64, 64] 144 114.6 67.0 97.7 68.4 84.8 64.9

× ✓ [32, 4] [16, 256] 272 115.0 67.4 100.4 69.9 86.0 66.5
✓ ✓ [32, 16, 4] [16, 64, 256] 336 115.5 67.8 100.8 70.2 85.9 66.4

Com. Scale
✓ ×

448
[32, 8, 4] [16, 256, 256] 528 115.4 67.8 100.2 69.7 86.2 67.0

× ✓ [32, 16, 2] [16, 64, 1024] 1104 114.6 68.0 101.2 70.8 86.0 67.5
✓ ✓ [32, 8, 2] [16, 256, 1024] 1296 115.6 68.1 101.3 70.3 86.4 67.5

Visual grounding. Table 3 shows the comparison between Chain-of-Sight and its baselines on
referring expression comprehension (REC). The conclusions are consistent with the above findings.
Since Chain-of-Sight incorporates both global and local contexts, using our method notably boost
the performance of visual resamplers, achieving an improvement of 3.82 and 3.49 on the average
performance when using 80 and 336 visual tokens, respectively. Notably, for the REC task, when
compared with Chain-of-Sight model pretrained with 336 tokens, we can achieve at most a 2.85×
acceleration (reducing the wall-clock training time to 0.35× using 48 tokens for pre-training) without
performance loss. Against the standard visual resampler pre-trained with 336 tokens, our 32-token-
variant perform favourably, while reducing the training cost by 73%.

Post-pre-train compound scaling of visual tokens. In Table 4, we ablate our token scaling strategy.
The experiment share the same pre-training, where the baselines are models fine-tuned with 80 visual
tokens at 2242 and 4482 resolutions. For scaling up the number of tokens, we separate the ablations
on global and local tokens. Notably, we find scaling up the global tokens alone has negligible effects
on the average performances, while scaling up local tokens brings notable improvement on various
benchmarks. Combining both further brings slight improvements over the model with up-scaled local
tokens on almost all benchmarks. Hence, we use 1296 tokens for fine-tuning our final model.
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Table 5: Comparison with SoTA methods on 10 benchmarks. Despite that we have only employed
LoRA to fine-tune the language model, our model achieves a competitive performance against existing
approaches in many benchmarks. PT tks. indicates the number of visual tokens used for pre-training
and Parm. indicates the trainable parameters for the whole model. * indicates at least part of the
training set is observed during training. Best performance is marked bold. Gray fonts indicate models
of larger sizes than ours.

Model LLM PT tks. Parm. VQAv2 GQA VizWiz SQAI VQAT POPE MME MMB SEEDI

InstructBLIP-13B [22] Vicuna-13B 32 188M - 49.5 33.4 63.1 50.7 78.9 1212.8 - -
LLaVA-1.5-13B [56] Vicuna-13B 576 13B 80.0* 63.3* 53.6 71.6 61.3 85.9 1531.3 67.7 68.1
CogVLM-17B [97] Vicuna-7B 256 10B 82.3* - - 91.2* 70.4 87.9 - 77.6 72.5
VILA-13B [52] Vicuna-13B 576 13B 80.8* 63.3* 60.6 73.7 66.6 84.2 1570.1 70.3 -
Honeybee-13B [10] Vicuna-13B 256 13B - - - - - 85.5 1629/315 73.2 68.2
Mini-Gemini-13B [48] Vicuna-13B 576 13B - - - - 65.9 - 1565/322 68.5 -

InstructBLIP-7B [22] Vicuna-7B 32 188M - 49.2 34.5 60.5 50.1 - - 36.0 58.8
Shikra [12] Vicuna-7B - 7B 77.4* - - - - - - 58.8 -
IDEFICS-9B [41] - 64 9B 50.9 38.4 35.5 - 25.9 - - 48.2 -
Qwen-VL [4] Qwen-7B 256 8B 78.8* 59.3* 35.2 67.1 63.8 - - 38.2 62.3
LLaVA-1.5-7B [56] Vicuna-7B 576 7B 78.5* 62.0* 50.0 66.8 58.2 85.9 1510.7 64.3 -
mPLUG-Owl2 [99] LLaMA2-7B 64 7B 79.4* 56.1 54.5 68.7 58.2 85.8 1450.2 64.5 57.8
Honeybee-7B [10] Vicuna-7B 144 7B - - - - - 83.2 1584/307 70.1 64.5
VILA-7B [52] Vicuna-7B 576 7B 79.9* 62.3* 57.8 68.2 64.4 85.5 1533.0 68.9 -
Mini-Gemini-7B [48] Vicuna-7B 576 7B - - - - 65.2 - 1523/316 69.3 -

CoS-7B Vicuna-7B 80 532M 82.9* 64.0* 50.7 93.9* 65.1 85.9 1549/301 72.8 68.9
CoS-8B LLaMA3-8B 80 540M 84.3* 65.3* - 95.7* 67.6 86.9 1598/308 76.6 73.1

In terms of training efficiency in the fine-tuning stage, the fastest model (resolution 224 with 80
tokens) is twice as fast as the medium model (resolution 448 with 336 tokens), and uses around 25%
of the time spent on training the model with the 1296 visual tokens. However, since the wall-clock
time required for supervised fine-tuning is substantially smaller than the pre-training stage, such an
increment on the training time during fine-tuning is acceptable.

3.3 Comparison with existing approaches

Visual question answering and vision-language benchmarks. Table 5 compare the performance
of our model with existing approaches. Since the majority of them fine-tunes the whole language
model during fine-tuning, the trainable parameters of existing approaches are substantially larger
than our approach. Nevertheless, our Chain-of-Sight has achieved competitive performance against
existing approaches on many benchmarks, reaching top performance on visual question answering
and MMBench among models of the same scale with less than 10% of the trainable parameters. Since
the model did not go through an instruction tuning stage, the performance on MME and Vizwiz is not
satisfactory. We include the results for more benchmarks in the appendix.

Visual grounding. We compare our model with the existing approaches on visual grounding in
Table 6. Despite that the only data source of object localization for training our Chain-of-Sight model
is the RefCOCO datasets [38, 67, 103], and that our language model is adapted with LoRA [34],
our model achieves a leading performance on these three benchmarks, when compared to existing
approaches of a similar scale.

4 Related work

Multi-modal large language models. Since the introduction of the Transformer arhictecture [94] and
large-scale pre-training [25, 79], language models have been advancing rapidly [91, 92, 108, 80, 70, 5,
3]. Recently, they are shown to be able to handle various types of data, such as vision [72, 58, 44, 2]
and audio [66, 89], leading to a series of multi-modal language models (MLLMs) [4, 12, 99, 109].
The visual capabilities of MLLMs are mainly enabled through transforming visual features into visual
tokens, which can be roughly categorized into two types. One uses linear projection to feed image
patches into LLMs [58, 11, 16, 93, 97], and the other uses learnable prompts and cross-attentions to
aggregate information from the whole feature map [44, 4, 2, 99, 50]. Alternatively, Honeybee [10]
proposes a convolutional model for combining the benefit of both. Most existing approaches use
an identical number of visual tokens throughout pre-training and fine-tuning. Though some of the
recent works have exploited raising the visual tokens during fine-tuning with increased resolution to
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Table 6: Performance comparison on referring expression comprehension compared with existing
approaches. † indicates models fine-tuned with LoRA. Best performance is marked bold. Gray fonts
indicate models of larger sizes than ours.

RefCOCO RefCOCO+ RefCOCOg

Model LLM val test-A test-B val test-A test-B val test Avg.

Shikra-13B [12] Vicuna-13B 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16 83.95
Ferret-13B [100] Vicuna-13B 89.48 92.41 84.36 82.81 88.14 75.17 85.83 86.34 85.57
Griffon v2 [105] LLaMA2-13B 89.60 91.80 86.50 81.90 85.50 76.20 85.90 86.00 85.42
CogVLM-17B [97] Vicuna-7B 92.76 94.75 88.99 88.68 92.91 83.39 89.75 90.79 90.25

MAttNet [102] - 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01 68.87
OFA-L [96] - 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58 72.65
UNITER [17] - 81.41 87.04 74.17 75.90 81.45 66.70 74.02 68.67 76.17
MDETR [37] - 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89 81.81

Shikra-7B [12] Vicuna-7B 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 82.93
Ferret-7B [100] Vicuna-7B 87.49 91.35 82.45 80.78 87.38 73.14 83.93 84.76 83.91
MiniGPTv2† [11] LLaMA2-7B 88.69 91.65 85.33 79.97 85.12 74.45 84.44 84.66 84.29
Qwen-VL-7B [4] Vicuna-7B 89.36 92.26 85.34 83.12 88.25 77.21 85.58 85.48 85.83

CoS-7B † Vicuna-7B 90.72 93.83 85.83 86.03 91.02 78.63 87.46 87.94 87.68
CoS-8B † LLaMA3-8B 92.67 95.14 88.89 89.12 93.63 83.25 89.56 90.42 90.33

enhance downstream performance [50, 55, 57, 69], the large set of visual tokens for each image still
presents a major bottleneck for the pre-training stage.

Efficient model pre-training. As the model size consistently expands, the efficiency of training
large models has become increasingly important. Beyond efforts in the system optimizations [81,
82, 24, 23], the pre-training of large models can be accelerated by sparse computation, such as
masking [46, 77] or mixture of experts [28, 51]. Our approach presents a novel perspective for
accelerating pre-training for MLLMs by reducing visual tokens required.

Multi-scale hierarchy in vision. Multi-scale hierarchy is a fundamental property in vision, which
has led to the introduction and evolution of convolutional networks [30, 42, 40, 33] as well as its
application in various vision problems [61, 83, 53, 13]. Recently, transformers are also shown to
benefit from multi-scale hierarchy [98, 60, 27, 47]. This work extends multi-scale hierarchy to
language models for stronger visual capabilities and higher training efficiency.

5 Discussions

Limitations. Despite the strong performance and the notable acceleration achieved by Chain-of-
Sight, our approach leverages parameter efficient fine-tuning (PEFT) for adapting language models.
Hence, the generality of the final model might be limited, compared to approaches that fine-tunes the
whole language model during supervised fine-tuning process [57, 10, 52] or even the pre-training
stage [63, 4, 26]. This is mainly due to the limited training resources and is exactly what motivates
us to explore efficient pre-training methods. We believe the pre-train acceleration achieved by the
presented approach has stronger potentials beyond our results.

Conclusions. In this work, we set out to accelerate the pre-training phase of MLLMs. Motivated
by the unbalance between the number of visual and text tokens during pre-training, we present
Chain-of-Sight to reduce the number of token required for pre-training. Chain-of-Sight produces
visual tokens of multiple visual scales, providing various level of granularity for the MLLMs to
have better perception capabilities. The proposed compound token scaling strategy in the fine-tuning
stage can substantially increase the number of tokens post pre-train, such that the model can achieve
competitive performance despite the low token count during pre-training. Empirical results have
shown that our Chain-of-Sight is capable of achieving a 3.7× speed up in the pre-training process with
on-par or better downstream performances. We hope our research can facilitate further investigations
in efficient pre-training of MLLMs.
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A Broader impact

The Chain-of-Sight model employs off-the-shelf pre-trained language models. As such, all CoS
models inherits the shortcomings from the language model, including certain model biases or
hallucinations. While to some extent CoS enhances the visual capabilities of language models, proper
assessment and safety precautions are still required before deploying our model.

B Details on multi-level feature aggregation

Our multi-scale visual resamplers consider visual hierarchy in two aspects. In addition to the multiple
spatial scales detailed in the manuscript, we also enable the visual resamplers to aggregate from
multiple feature levels in the visual backbone, which is useful in a wide range of visual tasks [47, 53]
but often neglected in current MLLMs.

In Fig. A1, we demonstrate the structure for the multi-level feature aggregation. Essentially, we
exploit features from multiple layers in the visual backbone, and the learnable queries aggregate
sequentially from lower level to higher level features.
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Figure A1: Multi-level feature aggregation in the multi-scale visual resamplers of Chain-of-Sight.

C Details on training data and evaluation benchmarks

Here, we provide details on the training data and the evaluation benchmarks.

Table A1: Dataset statistics used for Chain-of-Sight pre-training. MeanL., 50%L., and 90%L.
indicates the mean length, the 50 percentile, and the 90 percentile length of the input text tokens.

Task Dataset MeanL. 50%L. 90%L. Statistical count

Captioning

COYO [7] 24.8 20 44 46M
CC3M&CC12M [85] 22.5 17 43 10M
COCO [54] 13.4 14 19 0.6M
VG Caption [39] 7.9 7 11 1M
SBU [75] 18.2 19 43 0.8M

General VQA VQAv2 [32] 10.6 10 14 0.6M
GQA [35] 13.3 13 19 0.9M

Knowledge-based VQA
OK-VQA [68] 13.4 13 18 9k
AOK-VQA [84] 40.1 40 46 68k
ScienceQA [65] 45.5 38 77 19k

Text
TextVQA [87] 13.1 13 17 35k
OCRVQA [71] 15.1 13 25 1M
TextCaps [86] 18.2 17 25 0.1M

REC/REG
RefCOCO [38]

18.0/7.3 18/6 19/13 321kRefCOCO+ [103]
RefCOCOg [67]
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Table A1 shows per-dataset length distributions of our training data. The majority of the data used in
the pre-training stage have an average length lower than 25, which provides strong motivation for our
approach that reduces the number of visual tokens for pre-training acceleration.

Table A2 shows the detailed description on the benchmarks we use to evaluate our model.

Table A2: Summary of the evaluation benchmarks.

Task Dataset Description Split Metrics

Captioning
NoCaps [1] Captioning of natural images. val CIDEr (↑)
Flickr [76] Captioning of natural images. karpathy-test CIDEr (↑)
COCO [54] Captioning of natural images. karpathy-test CIDEr (↑)

General VQA

VQAv2 [32] VQA on natural images. test-dev VQA Score(↑)
GQA [35] VQA on scene understanding and reasoning test-balanced VQA Score (↑)
OK-VQA [68] VQA on natural images requiring outside knowledge. val VQA Score (↑)
ScienceQA-Img [65] Multi-choice VQA on a diverse set of science topics test Accuracy (↑)

Text-rich benchmarks TextVQA [87] VQA on natural images containing text. val VQA Score (↑)
TextCaps [86] Captioning of natural images containing text. test CIDEr (↑)

LVLM Benchmarks

SEED-Bench [43] Multi-choice VQA on a diverse set of topics IMG Accuracy (↑)
MMBench [59] Multi-choice VQA on a diverse set of topics test Accuracy (↑)
MME [29] Open-ended VL Benchmark by yes/no questions Perception & Cognition Accuracy (↑)
POPE [49] Multi-choice VQA for testing hallucinations overall F1-Score (↑)
MMMU [104] VQA on a diverse set of topics val Accuracy (↑)

Grounding
RefCOCO [38] Refer grounding on natural images. overall Accuracy (↑)
RefCOCO+ [103] Refer grounding on natural images. overall Accuracy (↑)
RefCOCOg [67] Refer grounding on natural images. overall Accuracy (↑)

D Detailed training settings

We include the detailed parameters for training Chain-of-Sight in Table A3.

Table A3: Training hyperparameters of the chain-of-sight models.

Configuration Multi-task pre-training Supervised fine-tuning

Image resolution 2242 | 4482 4482

ViT initialization CLIP ViT-L/14 CLIP ViT-L/14
ViT freeze yes | no no
LLM adaptation LoRA (r=64) LoRA (r=64)

Optimizer AdamW [62]
Optimizer hyperparameter β1 = 0.9, β2 = 0.98
Peak learning rate 2e−4 | 3e−5 3e−5

Minimum learning rate 1e−6 1e−6

ViT learning rate decay - | 0.9 0.9
ViT Drop path rate 0
Learning rate schedule cosine decay
Weight decay 0.1
Training steps 120000 | 30000 20000
Warm-up steps 2000 2000
Global batch size 512 256
Numerical precision bfloat16

E Further results

We provide further empirical results for CoS-7B and CoS-8B in Table A4.
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Table A4: Further empirical results. LR: Logic Reasoning, AR: Attribute Reasoning, RR: Relation
Reasoning, FP-S: Fine-grained Perception (Single-instance), FP-C: Fine-grained Perception (Cross-
instance), CP: Coarse Perception.

Regular MMBench Other

Model OK COCO NoCaps Flickr LR AR RR FP-S FP-C CP Total MMMUv

CoS-7B 60.3 143.0 119.7 86.0 46.6 80.9 69.5 74.1 62.2 82.7 72.8 35.4
CoS-8B 62.7 142.5 119.7 85.0 46.6 82.9 80.0 77.8 71.3 84.1 76.6 39.7
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We do not plan to release any data. For the model, we currently do not have
safeguards for releasing it. We will make sure that the guidelines and instructions are in
place when we release the model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we have.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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