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Abstract

We present a simple yet effective generative model for time series, based on a Recurrent
Variational Autoencoder that we refer to as RVAE-ST. Recurrent layers often struggle with
unstable optimization and poor convergence when modeling long sequences. To address
these limitations, we introduce a progressive training scheme that gradually increases the
sequence length, stabilizing optimization and enabling consistent learning over extended
horizons. By composing known components into a recurrent, approximately time-shift-
equivariant topology, our model introduces an inductive bias that aligns with the structure of
quasi-periodic and nearly stationary time series. Across several benchmark datasets, RVAE-
ST matches or surpasses state-of-the-art generative models, particularly on quasi-periodic
data, while remaining competitive on more irregular signals. Performance is evaluated
through ELBO, Fréchet Distance, discriminative metrics, and visualizations of the learned
latent embeddings.

1 Introduction

Time series data, particularly sensor data, plays a crucial role in science, industry, energy, and health. With
the increasing digitization of companies and other institutions, the demand for advanced methods to handle
and analyze time series sensor data continues to grow. Sensor data often exhibits distinct characteristics: it
is frequently multivariate, capturing several measurements simultaneously, and may involve high temporal
resolutions, where certain anomalies or patterns of interest only become detectable in sufficiently long se-
quences. Furthermore, such data commonly displays quasi-periodic behavior, reflecting repetitive patterns
influenced by the underlying processes. For generative models, this raises the challenge of how to embed
inductive biases that emphasize relative temporal dynamics over absolute time, encouraging the model to
treat repeating structures consistently regardless of their position in the sequence. These unique properties
present both opportunities and challenges in the development of methods for efficient data synthesis and
analysis, which are essential for a wide range of applications. Time series data analysis spans tasks such as
forecasting (Siami-Namini et al., 2019), imputation (Tashiro et al., 2021; Luo et al., 2018), anomaly detection
(Hammerbacher et al., 2021), and data generation. Of these, data generation stands out as the most general
task, as advances in generative methods often yield improvements across the entire spectrum of time series
applications (Murphy, 2022).

Recurrent neural networks, particularly Long Short-Term Memory (LSTM) networks (Hochreiter & Schmid-
huber, 1997), are well-known for their ability to model temporal dynamics and capture dependencies in
sequential data. However, their effectiveness tends to diminish with increasing sequence length, as main-
taining long-term dependencies can become challenging (Zhu et al., 2023) where in contrast, convolutional
neural networks (CNNs) (LeCun et al., 1998) demonstrate superior scalability for longer sequences (Bai
et al., 2018). For instance, TimeGAN (Yoon et al., 2019) represents a state-of-the-art approach for gen-
erating synthetic time series data, particularly effective for short sequence lengths. In its original paper,
TimeGAN demonstrates its capabilities on samples with sequence lengths of l = 24, showcasing limitations
of LSTM-based architectures. By contrast, a model like WaveGAN (Donahue et al., 2019), which is built on
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a convolutional architecture, is trained on significantly longer sequence lengths, with l = 16384 at minimum.
This contrast highlights the fundamental differences and capabilities between recurrent and convolutional
networks.

The limitations of LSTMs in modeling long-term dependencies are not restricted to time series data but also
impact their performance in other domains, such as natural language processing (NLP). Early applications of
attention mechanisms integrated with recurrent neural networks like LSTMs (Bahdanau, 2014) have largely
been replaced by Transformer architectures (Vaswani et al., 2017), which excel in data-rich tasks due to their
parallel processing capabilities and expressive attention mechanisms. While Transformer architectures have
shown exceptional results in NLP (Radford et al., 2019), their application to time series data remains chal-
lenging. This is due in part to the self-attention mechanism’s quadratic scaling in memory and computation
with sequence length (Katharopoulos et al., 2020), which makes them less practical for very long sequences.
Additionally, the inductive bias of Transformers differs from that of recurrent models: Transformers rely on
positional encodings to model temporal structure, whereas recurrent architectures such as LSTMs process
data sequentially by design, which inherently embeds a sense of temporal order into the model dynamics.
This sequential processing makes recurrent models particularly well-suited for long, approximately stationary
time series, where preserving temporal continuity over extended horizons can be highly beneficial.

Among the primary approaches for generative modeling of time series, three dominant frameworks have
emerged: Generative Adversarial Networks (GANs) (Goodfellow et al., 2020), Variational Autoencoders
(VAEs) (Kingma & Welling, 2014; Fabius & Van Amersfoort, 2014), and, more recently, Diffusion Models
(Ho et al., 2020). Diffusion Models have demonstrated impressive capabilities in modeling complex data
distributions, but their significant computational demands, high latency, and complexity make them less
practical for many applications (Yang et al., 2024). Moreover, in terms of practical applications, there
are often constraints in both time and computational resources, which limit the feasibility of performing
extensive fine-tuning for each individual dataset. A general, well-performing approach that is both simple
and efficient is therefore more desirable. In this context, VAEs still stand out for their simplicity and direct
approach to probabilistic modeling. In our work, we focus on VAEs and propose a method for training VAEs
with recurrent layers to handle longer sequence lengths. We argue that VAEs are particularly suited for
generation of time series data, as they explicitly learn the underlying data distribution, making them robust,
interpretable, and straightforward to implement.

Our major contributions are:

• We introduce a novel combination of inductive biases, network topology, and training scheme in a
recurrent variational autoencoder architecture. Our model integrates approximate time-shift equiv-
ariance into a recurrent structure, encouraging invariance to absolute time and thereby providing an
inductive bias toward quasi-periodic time series. Unlike existing recurrent or convolutional genera-
tive models, our architecture maintains a fixed number of parameters, independent of the sequence
length. We further analyze this behavior through the Echo State Property (ESP), which serves as
a diagnostic lens to quantify how strongly the model forgets arbitrary initializations and aligns its
dynamics with the input structure.

• We propose a simple yet effective training procedure—Recurrent Variational Autoencoder Subse-
quent Train (RVAE-ST) that progressively increases the sequence length during training. This
scheme leverages the model’s sequence-length-invariant parameterization and mitigates the typical
limitations of recurrent layers in capturing long-range dependencies. It is particularly suited for
quasi-periodic datasets and contributes significantly to our model’s performance.

• We conduct extensive experiments on five benchmark datasets and compare our method against
a broad range of strong baselines, including models based on GANs, VAEs, diffusion processes,
convolutions, and Transformers. This diverse set covers the most prominent architectural families
in time-series generation and ensures a fair and comprehensive evaluation.

• To evaluate generative quality of the long generated sequences, we employ a comprehensive set of
evaluation metrics, including Contextualized Fréchet Inception Distance (Context FID), Discrimi-
native Score, and visualizations via PCA and t-SNE.
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Our implementation, including preprocessing and model training scripts, is available in branches: main, sine,
inductive bias.

(a) Original data (b) Diffusion-TS (c) RVAE-ST (ours)

Figure 1: This figure shows three excerpts from samples of the electric motor dataset (5.1), each with a
sequence length of l = 1000. Sample (a) is taken from the original dataset. Sample (b) is generated using
Diffusion-TS (Yuan & Qiao, 2024), a transformer-based state-of-the-art approach in time series generation.
Sample (c) is generated using our model, trained with the proposed subsequent training scheme. The first row
in the figure displays the voltage of one of the three phases. In the original sample (a), the extremities of the
voltage waveform exhibit pronounced volatility, particularly at peak and trough points. This characteristic
remains clearly visible in the output of model (c), whereas it is notably reduced in model (b). The second
row shows the DC-bus voltage. The signal is characterized by a distinctive sawtooth-like pattern, where
three gradual drops are each followed by an abrupt upward jump. Model (c) reproduces this pattern well,
although the waveform appears slightly smoothed compared to the original. Model (b) captures the general
frequency of the signal but fails to replicate the sawtooth-like structure. The third row shows the effective
motor current in the fixed coordinates of the stator. This channel exhibits both a high-frequency component,
which gives the signal a noisy appearance, and a low-frequency oscillation reflecting the long-term behavior.
Model (c) closely resembles the original (a), capturing both components. Model (b) approximates the low-
frequency trend but deviates significantly in the high-frequency range.

2 Prerequisites

2.1 Variational Autoencoder

Given the input dataset X, the goal is to find a probability density pθ with high marginal likelihood (or
evidence) pθ(x) for x ∈ X. By introducing z = z1:m latent variables and assuming the joint density
pθ(x, z) = pθ(z)pθ(x|z), we obtain the intractable integral pθ(x) =

∫
pθ(z)pθ(x|z)dz. The evidence pθ(x)

cannot be evaluated in closed form, so we maximise the evidence lower bound (ELBO) instead and use its
negation, the negative ELBO, as the loss function to be minimised:

Lθ,ϕ(x) = −Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
LE

+ DKL(qϕ(z|x) ∥ pθ(z))︸ ︷︷ ︸
LR

. (1)

LE is the reconstruction loss (negative log likelihood) and LR is the KL-Divergence loss (Murphy, 2022) and
pθ(z) is the prior distribution, which is usually chosen as N (0, I).

Because the KL-divergence is always non-negative, we have
ELBO(x) ≤ log pθ(x) =⇒ Lθ,ϕ(x) = −ELBO(x) ≥ − log pθ(x).
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Thus, the negative ELBO provides an upper bound on the negative log-likelihood (NLL). Minimising Lθ,ϕ(x)
is therefore equivalent to maximising the ELBO, which in turn improves the marginal likelihood log pθ(x).

To optimise the ELBO, a variational autoencoder implements both the inference model qϕ(z | x) and the
generative model pθ(x | z) as neural networks. A VAE maps an input sample x ∈ X to a latent distribution
qϕ(z | x) using an encoder network. This distribution is parameterised as a multivariate normal distribution

qϕ(z | x) = N
(
z | µ, diag(exp(log σ))

)
,

where (µ, log σ) = eϕ(x) is the encoder output.

The latent variable is sampled via the reparameterisation trick:

z = µ + σ ⊙ ϵ, ϵ ∼ N (0, I),

where ⊙ denotes elementwise multiplication.

The sampled z is passed through the decoder network pθ(x | z) to produce the reconstruction x̃. To generate
new samples, one draws z ∼ pθ(z) = N (0, I) from the prior and passes it through the decoder pθ(x | z).

3 Related Work

3.1 Deep Generative Models for Time Series

Time-series generation has been explored across various deep generative paradigms, including GANs, VAEs,
Transformers, and diffusion models. Early approaches focused on recurrent structures: C-RNN-GAN ((Mo-
gren, 2016)) used LSTM-based generators and discriminators, while RCGAN(Esteban et al., 2017) introduced
label-conditioning for medical time series. TimeGAN(Yoon et al., 2019) combined adversarial training, su-
pervised learning, and a temporal embedding module to better capture temporal dynamics. Around the
same time, WaveGAN(Donahue et al., 2019) introduced a convolutional GAN architecture for raw audio
synthesis, illustrating that convolutional models can also be effective for generative tasks in the time do-
main. TimeVAE(Desai et al., 2021b) further explored this direction by proposing a convolutional variational
autoencoder tailored to time-series data. PSA-GAN (Paul et al., 2022) employed progressive growing (Kar-
ras et al., 2018), incrementally increasing temporal resolution during training by adding blocks composed of
convolution and residual self-attention to both the generator and discriminator. This fundamentally differs
from our approach, which extends sequence length rather than resolution.

Recent advances in time-series generation have explored diffusion-based and hybrid Transformer architec-
tures. Diffusion-TS (Yuan & Qiao, 2024) introduces a denoising diffusion probabilistic model (DDPM)
tailored for multivariate time series generation. It employs an encoder-decoder Transformer architecture
with disentangled temporal representations, incorporating trend and seasonal components through inter-
pretable layers. Unlike traditional DDPMs, Diffusion-TS reconstructs the sample directly at each diffusion
step and integrates a Fourier-based loss term. Time-Transformer (Liu et al., 2024) presents a hybrid ar-
chitecture combining Temporal Convolutional Networks (TCNs) and Transformers in a parallel design to
simultaneously capture local and global features. A bidirectional cross-attention mechanism fuses these fea-
tures within an adversarial autoencoder framework (Makhzani et al., 2016). This design aims to improve
the quality of generated time series by effectively modeling complex temporal dependencies.

A common limitation across all these approaches is their focus on relatively short sequence lengths. Many
models, including TimeGAN, TimeVAE, and Time-Transformer, are evaluated at l = 24. Only the
transformer-based Diffusion-TS and PSA-GAN extend this slightly, with ablations up to l = 256, leaving
the performance on significantly longer sequences largely unexplored.

3.2 Recurrent Variational Autoencoders

The Recurrent Variational Autoencoder (RVAE) was introduced by Fabius & Van Amersfoort (2014), com-
bining variational inference with basic RNNs for sequence modeling. In this architecture, the latent space
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is connected to the decoder via a linear layer, and the sequence is reconstructed by applying a sigmoid acti-
vation to each RNN hidden state.1 We build on this framework by replacing the basic RNNs with LSTMs
(or GRUs) and using a repeat-vector mechanism that injects the same latent vector at every time step of
the decoder. This design encourages the latent code to encode global sequence properties, while the LSTM
handles temporal dependencies. Instead of a sigmoid, we apply a time-distributed linear layer, preserving
approximate time-translation equivariance (see Section 4.1).

Unlike dynamic VAEs (dVAE) that use a sequence of latent variables to increase flexibility (Girin et al.,
2021), we opt for a single latent vector of fixed size across the entire sequence. This choice reflects our
focus on the inductive bias of translational equivariance and stationarity, where the latent code is meant to
capture global properties of the sequence while allowing the decoder to model local temporal dynamics. This
distinction means that, unlike in dVAE models, the latent code does not change over time, aligning with the
assumptions of our model and the goal of preserving global structure while modeling temporal relationships.

4 Methods

4.1 Stationarity, Time-Shift Equivariance, and ESP

A central challenge in generative modeling of time series is how models handle temporal invariances. Real-
world sensor data rarely satisfies strict stationarity. Instead, it often exhibits quasi-periodicity, characterized
by similar repeating patterns whose amplitude or frequency may vary slowly over time. Such data can be
viewed as approximately stationary over limited horizons, since its statistical properties remain relatively
stable under small temporal shifts. This raises the question of time-shift equivariance: whether a model’s
predictive distribution treats the same local pattern consistently, independent of its absolute position within
the sequence.

Recurrent architectures such as LSTMs naturally encourage this behavior through their sequential update
mechanism, but in practice true equivariance does not hold, as hidden states may retain information about
initial conditions or absolute position. This effect can be studied through the Echo State Property (ESP),
which describes the ability of recurrent networks to forget their initialization and converge to a state deter-
mined solely by the input sequence.

While ESP is not equivalent to stationarity, it facilitates approximate shift equivariance by removing spurious
dependencies on the initial hidden state. After a sufficient washout period, the network state is determined
primarily by the recent input sequence rather than by absolute position.

To avoid confusion, we briefly summarize the concepts used in this work:

• Stationarity (data property):
A process (xt) is strictly stationary if the joint distributions of any two windows xt:t+ℓ and
xt+∆:t+ℓ+∆ are identical for all shifts ∆. In practice, however, most real-world time series are only
approximately stationary. A common and practically relevant case is quasi-periodicity, where
the data exhibit recurring but not perfectly regular patterns, such as oscillations with slowly vary-
ing amplitude, phase, or frequency, that give rise to long-term statistical regularities without strict
invariance.

• Time-shift equivariance (model property):
A model is time-shift equivariant if it treats the same local pattern equivalently, regardless of its
absolute position in the sequence. Formally, for strictly stationary data and small shifts ∆, the
predictive distributions should satisfy

D(pθ(xt+1 | x1:t), pθ(xt+1+∆ | x∆+1:t+∆)) ≈ 0,

where D denotes a divergence such as Kullback–Leibler or Jensen–Shannon.
1https://github.com/arunesh-mittal/VariationalRecurrentAutoEncoder/blob/master/vrae.py
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• Echo State Property (ESP, dynamical property of recurrent models):
ESP states that the influence of the initial hidden state vanishes over time: for any input sequence
(xt) and any two initializations (h0, c0) and (h′

0, c′
0),

∥Ft(x1:t; h0, c0) − Ft(x1:t; h′
0, c′

0)∥ → 0 as t → ∞,

where Ft denotes the unrolled recurrence. ESP provides a mechanism for approximate time-shift
equivariance, since after a sufficient washout period the hidden state depends only on the input
sequence and not on absolute position.

To illustrate this relation more concretely, consider the recurrent transition of an LSTM cell,

(hi+1, ci+1) = f̂(xi, hi, ci),

which defines a discrete-time dynamical system on the hidden state. Now consider two partially overlapping
input sequences X = [x0, . . . , xn] and X ′ = [x1, . . . , xn], where X ′ starts one step later but otherwise
shares the same continuation. When both sequences are propagated through the recurrence f̂ , their hidden
trajectories initially differ due to the additional update step in X. However, under stable dynamics this
difference diminishes over time, and

f̂(xk, f̂(xk−1, . . . , f̂(x1, f̂(x0, h, c)))) ≈ f̂(xk, f̂(xk−1, . . . , f̂(x1, h, c))), (2)

for sufficiently long sequences. This convergence of hidden trajectories, often referred to as state forgetting, is
the operational manifestation of the Echo State Property and underlies approximate time-shift equivariance
in recurrent models.

4.2 Architectural Considerations for Quasi-Periodic Time Series

Given that our focus is on time series data with quasi-periodic behavior, other architectures such as con-
volutional layers and transformers face specific limitations. Convolutional layers are widely used to build
translation-equivariant networks, which makes them highly effective in domains like image processing where
pattern recognition should be invariant to position. However, in the context of time series, convolution alone
is not inherently designed for sequence generation: upscaling typically increases the resolution of a fixed
time window rather than extending the sequence length itself (Paul et al., 2022). This distinction limits the
ability of convolutional architectures to generate variable-length time series.

Transformers, on the other hand, excel at capturing long-range dependencies, but their self-attention mech-
anism scales quadratically with sequence length (Katharopoulos et al., 2020), which makes them computa-
tionally demanding for very long series. Moreover, transformers are not inherently translation-equivariant.
Instead, they are permutation-equivariant and therefore require explicit positional encodings to represent
temporal order. While this flexibility is powerful for text or other symbolic sequences, it contrasts with
the requirements of time series generation, where a consistent sense of order and time-shift equivariance are
central.

By comparison, recurrent architectures such as LSTMs embed temporal order directly into their model
dynamics. They maintain an internal state that evolves sequentially with the data, naturally supporting the
kind of approximate time-shift equivariance discussed above.

4.3 RVAE-ST

The inference network qϕ(z|x) is implemented using stacked LSTM layers. Given the final point in time of a
sequence, the output of the last LSTM layer is passed through two linear layers to determine µ and log(σ),
which are then used to sample the latent variable z. Next, the generative network pθ(x|z) reconstructs the
data from the latent variable z. To achieve this, the latent variable z is repeated across all time steps (using
a repeat vector), ensuring that z remains constant at each time step and is shared throughout the entire
sequence. Mathematically, this can be expressed as:

zt = z for all t ∈ {1, 2, . . . , n}
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Figure 2: This figure illustrates the architecture of our model. Both the encoder and decoder are based on
stacked LSTM layers. The encoder’s final hidden states, denoted as hn, are used to compute the parameters
µ and log(σ), from which the latent variable z is sampled. The latent variable z is then repeated across
all time steps and used as the input to the decoder. The decoder generates the sequence step-by-step,
with each individual output passed through a time-distributed linear layer. This time-distributed layer
applies the same linear transformation at each time step to the LSTM states, ensuring parameter sharing
across the entire sequence during this transformation. Throughout the network, approximate equivariance
is maintained with respect to time translation, and the number of trainable parameters remains constant
regardless of the sequence length.

where n denotes the total number of time steps in the sequence. The repeat vector is followed by stacked
LSTM layers. Finally, a time-distributed linear layer is applied in the output. This layer operates indepen-
dently at each time step, applying the same linear transformation to the LSTM output at every time step,
which can be viewed as a 1 × 1 convolution across the time dimension, with shared weights across all time
steps.

The time-distributed layer is inherently equivariant with respect to time-translation, preserving temporal
structure and shifts over time. Together with our LSTM-based approach and the repeat-vector mechanism,
this design ensures that the number of trainable parameters remains independent of the sequence length,
while also enabling an adapted training scheme that can accommodate increasing sequence lengths. Details
and hyperparameters are provided in Appendix A.2.

4.4 Training scheme for sequence lengths

Building on the principles of time-shift equivariance and state forgetting discussed in Section 4.1, we adopt
a progressive training scheme that incrementally increases the sequence length during training. While the
recurrent architecture introduced in Section 4.3 provides the necessary structural inductive bias, training on
long sequences from the beginning often leads to unstable gradients and poor convergence. Our approach
mitigates this by first training on short sequences and gradually extending the sequence length, allowing the
model to incrementally adapt to longer temporal dependencies without sacrificing training stability.

Subsequent sequence length training. Training a recurrent model such as an LSTM to generate con-
sistent long sequences is challenging, as recurrent layers have a limited capacity to preserve information over
extended temporal ranges. To facilitate learning over longer horizons and to encourage stable hidden-state
dynamics, we employ a progressive training scheme for the RVAE-ST model, illustrated in Figure 2. The
dataset is initially divided into short sequences on which the model is first trained, stabilizing optimization
and accelerating convergence. After this initial phase, we subsequently increase the sequence length: the
dataset is rebuilt into longer chunks, and training continues until the validation loss saturates. This process
is repeated iteratively, enabling stable training over increasingly long horizons. Empirically, we find that
this scheme improves both convergence stability and final performance compared to training directly on long
sequences.
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Probabilistic motivation. Formally, for a time series x of length l, hidden features h of length l, and a
latent vector z, we assume a recurrent generative structure

p(x, h, z) = p(z)
l∏

i=1
p(hi | z, hi−1, . . . , h1) p(xi | hi).

This process can be approximated by restricting dependencies to a finite memory of t steps:

p(x, h | z) =
l∏

i=1
p(hi | z, hi−1, . . . , h1) p(xi | hi)

≈
l∏

i=1
p(hi | z, hi−1, . . . , hmax(1,i−t)) p(xi | hi). (3)

Training on shorter sequences therefore corresponds to learning a truncated approximation of the full gener-
ative process. Subsequently extending the sequence length during training relaxes this truncation and allows
the model to gradually approximate the full time-shift invariant distribution pθ(x). We do not provide fixed
recommendations for the initial sequence length or increment values, as these are dataset-dependent and
were selected heuristically in our experiments.

This progressive extension of the training horizon operationalizes the approximate time-shift equivariance
discussed earlier, allowing the model to learn stable long-term dynamics in quasi-periodic data.

5 Experiments

In our experiments, we compare the performance of RVAE-ST to comparison models. We emphasize that,
to ensure better comparability, we did not perform extensive hyperparameter tuning in our experiments.
In all experiments, including different datasets and varying sequence lengths, we used exactly the same
hyperparameters on the model. For the training procedure, we started with a sequence length of 100 and
progressively increased it by 100 in each subsequent training phase, until reaching a maximum sequence
length of 1000. In our experiments, we compare the performance of the models at sequence lengths of 100,
300, 500, and 1000.

To evaluate performance, we employ a combination of short-term consistency measures based on indepen-
dently generated ELBOs, the discriminative score, and the contextual FID score. Additionally, we perform
visual comparisons between the training and generated data distributions using dimensionality reduction
techniques such as PCA and t-SNE. All reported results were tested for statistical significance using the
Wilcoxon rank-sum test (Wilcoxon, 1992). In cases where the difference was not statistically significant,
multiple values are highlighted in bold.

5.1 Data Sets

For our experiments we use three multivariate sensor datasets with it’s typical semi-stationary behavior.
We specifically selected datasets with a minimum size, as this is necessary for training generative models
effectively, while still ensuring adequate diversity and the ability to robustly capture underlying patterns
and structures.

Electric motor (EM)(Wißbrock & Müller, 2025; Mueller, 2024): This dataset was collected from a
three-phase motor operating under constant speed and load conditions, with different combinations stored in
separate files. We use only the file H1.5, selected arbitrarily among them. It exhibits periodic behavior with
similar, repeating patterns. The data was recorded at a sampling rate of 16 kHz. Out of the twelve initially
available channels, four were removed due to discrete behavior or abrupt changes, leaving only smooth,
continuous signals suitable for learning. The resulting dataset contains approximately 250,000 datapoints
and represents a highly quasi-periodic real-world time series as can be seen in.
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Ecg data (ECG)2 Goldberger et al. (2000): This dataset contains a two-channel electrocardiogram
recording from the MIT-BIH Long-Term ECG Database. It has nearly 10 million time steps of which we
use the first 500,000 for training. The signals exhibit clear periodic structure corresponding to cardiac
cycles, yet show natural variability in frequency and morphology, including occasional irregularities such as
arrhythmias. While ECG data serves as a suitable example in generating long sequences, our objective is
not to produce medically usable data. We acknowledge that specialized models are likely more appropriate
for medical applications, e.g. (Neifar et al., 2023).

ETTm2 (ETT)3: The ETTm2 dataset contains sensor measurements such as load and oil temperature
from electricity transformers, recorded over a two-year period at a coarse sampling rate of four points per
hour. While originally proposed for long-term forecasting and described as containing both short- and long-
term seasonal patterns (Zhou et al., 2021), our analysis suggests that its temporal dynamics are weakly
quasi-periodic at best. This is primarily due to the limited temporal resolution, the short analysis horizon
relative to the seasonal cycles, and the overall small size of the dataset (69,680 samples).

Synthetic Sine: This dataset consists of five independent sine waves, each generated with randomly sampled
frequencies and initial phases drawn from normal distributions with mean 0 and standard deviation 0.1. The
resulting signals are smooth, noise-free, and exhibit strictly periodic oscillations with minimal variation across
sequences. Although minor differences in phase and frequency introduce small deviations between samples,
the overall process is nearly stationary and serves as a canonical example of a highly regular, quasi-periodic
time series. It is widely used as a benchmark for evaluating generative time-series models (Yoon et al., 2019;
Desai et al., 2021b; Yuan & Qiao, 2024).

MetroPT3 (Davari et al. (2021)): The MetroPT3 dataset is used for predictive maintenance, anomaly
detection, and remaining useful life (RUL) prediction in compressors. It consists of multivariate time-series
data from several analogue and digital sensors installed on a compressor, including signals such as pressures,
motor current, oil temperature, and electrical signals from air intake valves. The data were logged at a
frequency of 1 Hz. Similar to the Electric Motor dataset, we removed non-continuous or discrete signals,
leaving only smooth, continuous signals suitable for learning. Out of the original 1.5 million time steps, we
only used the first 500,000 for our experiments. While the dataset contains recurring patterns, it is the least
quasi-periodic dataset in our study, as these patterns are frequently interrupted by phases of flat signals,
leading to irregular temporal dynamics.

5.2 Baseline Models

Ich finde das erwähnen der Equivarianz bei den Baseline Models mittlerweile unpassend, habe es aber noch
drin gelassen. Bitte deine Meinung dazu Ist schon durchaus ok, wie es ist. Was etwas merkwürdig auffällt
ist, dass die equivarianz hier fast genauso lang ist wie bei unserem Modell oben. In this subsection, we
describe the baseline models selected for comparison in our experiments. These models are chosen for their
relevance to time series generation and their established use in similar contexts.

TimeGAN(Yoon et al., 2019): A GAN-based model that is considered state-of-the-art in generation of
times series data. TimeGAN’s generator has a recurrent structure like RVAE-ST. A key difference is that
it’s latent dimension is equal to the sequence length. Notably, equivariance on this model is lost on the
output layer of the generator which maps all hidden states at once through a linear layer to a sequence. On
its initial paper release, TimeGAN was tested and compared to other models on a small sequence length of
l = 24.

WaveGAN (Donahue et al., 2019): A GAN-based model developed for generation of raw audio waveforms.
WaveGAN’s generator is based on convolutional layers. It doesn’t rely on typical audio processing techniques
like spectrogram representations and is instead directly working in the time domain, making it also suitable
for learning time series data. It is designed to exclusively support sequence lengths in powers of 2, specifically
214 to 216. Notably, WaveGAN loses it’s equivariance on a dense layer between the latent dimension and the
generator, however the generator itself completely maintains equivariance with its upscaling approach. In

2https://physionet.org/content/ltdb/1.0.0/14157.dat
3https://github.com/zhouhaoyi/ETDataset
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our experiments, it was trained with the lowest possible sequence length of 214, and the generated samples
were subsequently split to match the required sequence length. In (Yoon et al., 2019), WaveGAN was
outperformed by TimeGAN on low sequence length.

TimeVAE (Desai et al., 2021b): A VAE-based model designed for time series generation using convolutional
layers. Analogous to WaveGAN, it loses equivariance between the latent dimension and the decoder and
additionally it loses equivariance on the output layer where a flattened convolutional output is passed through
a linare layer. It has demonstrated performance comparable to that of TimeGAN.

Diffusion-TS (Yuan & Qiao, 2024): A generative model for time series based on the diffusion process
framework. It combines trend and seasonal decomposition with a Transformer-based architecture. A Fourier
basis is used to model seasonal components, while a low-degree polynomial models trends. Samples are
generated by reversing a learned noise-injection process. While the model leverages the global structure of
sequences, it lacks time-translation equivariance: this is due both to the use of position embeddings in the
Transformer component and to the fixed basis decomposition, which breaks shift-invariance.

Time-Transformer (Liu et al., 2024): An adversarial autoencoder (AAE) model tailored for time series
generation, integrating a novel Time-Transformer module within its decoder. The Time-Transformer employs
a layer-wise parallel design, combining Temporal Convolutional Networks (TCNs) for local feature extraction
and Transformers for capturing global dependencies. A bidirectional cross-attention mechanism facilitates
effective fusion of local and global features. While TCNs are inherently translation-equivariant, this property
is overridden by the Transformer’s positional encoding and attention structure, making the overall model
not equivariant.

5.3 Emphasizing Inductive Bias with ESP

The Echo State Property (ESP) provides a useful lens to analyze inductive bias in recurrent generative
models. Formally, ESP states that when driven by the same input sequence, hidden states forget arbitrary
initial conditions and converge to a unique input determined trajectory (Jaeger, 2001; Manjunath & Jaeger,
2013). Note that standard LSTMs do not guarantee ESP in general. Our measurements are empirical
indicators of contraction rather than a formal guarantee (Yildiz et al., 2012; Buehner & Young, 2006).

Interpreting ESP in our setting leads to three important insights:

1. ESP as forgetting irrelevant information. Strong ESP does not mean that the network in-
discriminately forgets all information, but specifically that it suppresses dependence on arbitrary
initializations. Once washout has occurred, the hidden states become determined primarily by the
input. This aligns well with nearly stationary or quasi-periodic data, where invariance to absolute
time is desirable.

2. ESP versus meaningful long-term memory. A model without ESP may appear to “retain”
information longer, but what is retained is often dependence on the random initialization rather
than useful structure in the input sequence. Conversely, moderate ESP allows the model to forget
initialization artifacts while still preserving long-term dependencies driven by the input. Thus, ESP
should not be interpreted as the opposite of memory capacity, but rather as the ability to separate
meaningful input-driven memory from spurious initialization effects.

3. Inductive bias for stationarity. In generative modeling of time series, ESP encourages the net-
work to emphasize relative temporal patterns over absolute time indices. This induces an inductive
bias toward stationarity-like behavior: repeated patterns are treated consistently regardless of where
they occur in the sequence. At the same time, the property is only approximate in our trained mod-
els, allowing flexibility to retain non-stationary structure (e.g., trends or irregular variations) when
present in the data.

In our evaluation we quantify contraction via the normalized distance r(t) = d(t)/d(0), where d(t) =
Ez, (h⊤

0 ),(h⊤′
0 )
[
∥ h⊤

t − h⊤′
t ∥2

]
. Here h⊤

t denotes the hidden state of the top LSTM layer only (no cell states
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Figure 3: Echo State Property (ESP) analysis across datasets (log scale). The x-axis shows sequence length t
and the y-axis the normalized hidden-state distance r(t) = d(t)/d(0), where d(t) = Ez, (h⊤

0 ),(h⊤′
0 )[∥ h⊤

t −h⊤′
t ∥2].

Here h⊤
t denotes the hidden state of the top LSTM layer only (no cell states are used). Random initializations

are applied only to the top layer; all lower layers use identical fixed initializations across runs. By construction
we set r(0) = 1 (the curve is normalized to the initial distance). The expectation is approximated by sampling
10 latent vectors z; for each z one input sequence is generated and d(t) is averaged over 20 independent pairs
of random top-layer initial states (h⊤

0 , h⊤′
0 ). On the logarithmic scale, exponential contraction appears as

straight lines. The untrained model indeed shows such monotonic exponential decay, with r(t) converging
into the range of 10−9 and remaining stable thereafter, reflecting trivial washout due to random initialization.
In contrast, trained models display weaker contraction with residual variability in the curves. ETTm2 reaches
about 10−7, the synthetic sine dataset around 10−3, while ECG, EM, and MetroPT3 remain higher. This
illustrates how training balances ESP with the preservation of long-term temporal structure. All hidden
states are calculated based on the weights of the models with l = 1000.

are used). Random initializations are applied only to the top layer; all lower layers use identical fixed ini-
tializations across runs. For the expectation we sample 10 latent vectors z; for each sampled z we generate
one input sequence and, using that same input, average d(t) over 20 independent pairs of random top-layer
initial states (h⊤

0 , h⊤′
0 ). By construction we set r(0) = 1. See Fig. 3 for the resulting contraction curves.

Our experiments confirm this perspective. We observe contraction across all datasets, though with varying
strength. For the untrained model, contraction is strong and nearly monotonic, with r(t) decaying into the
range of 10−9. This reflects rapid washout consistent with ESP-like behavior induced by the architecture and
initialization. Trained models, in contrast, exhibit weaker and noisier contraction: on ETTm2, r(t) decays
to about 10−7, for the synthetic sine dataset to below 10−3, while ECG, EM, and MetroPT3 remain higher.
This illustrates how training counterbalances the architectural bias by preserving input-driven dependencies
and long-term temporal structure where useful, rather than enforcing unconditional washout.

The particularly strong contraction observed on ETTm2 requires further discussion. We attribute this effect
to three main factors:

11
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1. The coarse temporal resolution of four samples per hour inherently smooths out fine-grained temporal
dynamics.

2. The analyzed horizons of 1000 steps (≈ 10 days) are too short to capture seasonalities unfolding
over weeks or months.

3. The dataset itself spans only about two years, offering too little data to robustly learn such long-term
seasonal patterns.

As a result, the model cannot establish meaningful dependencies at this scale and instead forgets initial
states rapidly, producing the appearance of strong ESP.

5.4 Evaluation by Context-FID Score

To evaluate the distributional similarity between real and generated time series, we use the Context-FID score
(Paul et al., 2022), a variant of the Fréchet Inception Distance (FID) commonly used in image generation.
In this adaptation, the original Inception network is replaced by TS2Vec (Yue et al., 2022), a self-supervised
representation learning method for time series. The score is computed by encoding both real and generated
sequences with a pretrained TS2Vec model and calculating the Fréchet distance between the resulting feature
distributions. Lower scores indicate that the synthetic data better matches the distribution of the real data.

Table 1 reports the Context-FID scores across different sequence lengths and datasets.

Across the different sequence lengths, RVAE-ST consistently outperforms all comparison models on the
Electric Motor, ECG, and especially the Sine datasets starting from l = 300. These datasets exhibit high
quasi-periodicity, which aligns well with the inductive biases of our approach. On the lesser quasi-periodic
datasets MetroPT3 and ETT, our model remains competitive, with TimeVAE surpassing it at l = 1000 for
both datasets. Additionally, for MetroPT3, Diffusion-TS outperforms our model at l = 500.

5.5 Evaluations by Discriminative Score

The discriminative score D was introduced by (Yoon et al., 2019) as a metric for quality evaluation of
synthetic time series data. For the discriminative score a simple 2-layer RNN for binary classification is
trained to distinguish between original and synthetic data. Implementation details are in the appendix A.7.
It is defined as D = |0.5 − a|, where a represents the classification accuracy between the original test dataset
and the synthetic test dataset that were not used during training. The best possible score of 0 means that
the classification network cannot distinguish original from synthetic data, whereas the worst score of 0.5
means that the network can easily do so.

The discriminative score provides particularly meaningful insights when it allows for clear distinctions be-
tween models, which is best achieved by avoiding scenarios where the score consistently reaches its best or
worst possible values across different models. To ensure consistency, we used the same fixed number of sam-
ples for training the discriminator across all experiments, regardless of sequence length. This fixed sample
size was found to be suitable for our experimental setup.

As shown in Table 2, the Discriminative Score yields a less clear-cut picture compared to other evaluation
metrics. The Wilcoxon rank-sum test reveals that in several cases, performance differences between models
are not statistically significant.

On the Electric Motor dataset, RVAE-ST achieves the best performance from l = 300 onwards. For the
ECG dataset, RVAE-ST outperforms all other models at l = 1000, while for shorter sequence lengths, its
performance is comparable to that of Diffusion-TS. On the ETT dataset, RVAE-ST, TimeVAE, and Diffusion-
TS perform similarly well across all sequence lengths, with no statistically significant differences. The Sine
dataset exhibits more nuanced behavior: Diffusion-TS performs best at l = 100; at l = 300, RVAE-ST,
TimeVAE, and Diffusion-TS perform comparably; and from l = 500 onwards, RVAE-ST achieves the best
results. For the MetroPT3 dataset, RVAE-ST is best at l = 100, while Diffusion-TS slightly outperforms all
other models at longer sequence lengths.

12
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Table 1: FID score of synthetic time series for six models (see 5.2), computed on the five datasets (see 5.1)
at sequence lengths l = 100, l = 300, l = 500, and l = 1000. Lower scores indicate better performance.
Each score is based on 5000 generated samples, each evaluated (trained) 15 times, and reported with 1-
sigma confidence intervals. RVAE-ST consistently outperforms all baselines on the highly periodical Electric
Motor, ECG, and Sine datasets starting from l = 300. On the less periodical MetroPT3 and ETT datasets,
performance is more competitive, with TimeVAE and Diffusion-TS outperforming our model at certain
sequence lengths.

Sequence lengths
Dataset Model 100 300 500 1000

Electric
Motor

RVAE-ST (ours) 0.35±0.04 0.12±0.01 0.10±0.01 0.24±0.02
TimeGAN 1.03±0.07 3.77±0.30 3.07±0.24 33.7±1.69
WaveGAN 0.55±0.04 0.75±0.07 0.87±0.14 1.41±0.24
TimeVAE 0.16±0.01 0.97±0.11 1.06±0.14 1.19±0.09
Diffusion-TS 0.04±0.00 0.69±0.06 1.10±0.11 1.93±0.13
Time-Transformer 2.19±0.16 45.4±1.57 44.5±2.67 65.7±2.86

ECG

RVAE-ST (ours) 0.08±0.01 0.09±0.02 0.14±0.02 0.46±0.06
TimeGAN 26.8±6.89 48.0±6.26 47.2±5.91 34.0±3.43
WaveGAN 1.54±0.19 1.56±0.14 1.54±0.13 1.51±0.16
TimeVAE 0.26±0.02 0.89±0.07 1.07±0.10 1.30±0.08
Diffusion-TS 0.16±0.01 0.28±0.03 0.52±0.03 3.74±0.22
Time-Transformer 1.34±0.11 29.7±1.78 33.0±2.28 40.3±2.44

ETT

RVAE-ST (ours) 0.58±0.05 0.65±0.07 0.79±0.07 1.82±0.16
TimeGAN 1.51±0.19 5.76±0.43 13.7±1.28 17.7±1.57
WaveGAN 3.49±0.22 3.90±0.37 4.38±0.39 4.94±0.42
TimeVAE 0.66±0.08 0.72±0.08 0.97±0.10 1.56±0.14
Diffusion-TS 0.90±0.11 1.18±0.18 2.16±0.17 2.55±0.27
Time-Transformer 1.28±0.14 20.1±1.22 22.1±1.96 47.9±5.28

Sine

RVAE-ST (ours) 0.33±0.04 0.34±0.02 0.46±0.03 0.42±0.03
TimeGAN 7.70±0.32 6.01±0.34 7.96±0.37 21.8±1.25
WaveGAN 1.87±0.10 2.09±0.13 2.81±0.22 3.36±0.27
TimeVAE 0.24±0.02 0.55±0.05 1.26±0.14 3.03±1.00
Diffusion-TS 0.06±0.00 1.52±0.13 0.74±0.04 2.66±0.20
Time-Transformer 0.31±0.02 4.10±0.21 51.2±1.94 74.5±3.85

MetroPT3

RVAE-ST (ours) 0.26±0.04 0.65±0.07 2.81±0.37 2.84±0.22
TimeGAN 5.79±0.32 10.1±0.79 18.6±1.06 35.1±3.74
WaveGAN 1.14±0.09 1.82±0.12 2.04±0.16 2.43±0.18
TimeVAE 0.67±0.05 1.32±0.13 2.02±0.29 2.08±0.31
Diffusion-TS 1.07±0.06 1.17±0.12 1.82±0.09 6.97±0.75
Time-Transformer 2.28±0.24 5.25±0.46 22.9±1.45 352±66.1

5.6 Evaluation by PCA and t-SNE

In this section, we evaluate the quality of the generated time series using dimensionality reduction techniques
such as PCA (Hotelling, 1933) and t-SNE (Hinton & Van Der Maaten, 2008). The idea is to first train these
methods on the original data, project the data into a lower-dimensional space, and visualize the resulting
patterns. Subsequently, the same transformations are applied to the synthetic data to assess how well
they align with the distribution of the original data. While these techniques are widely used and helpful for
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Table 2: Discriminative score of synthetic time series for six models (see 5.2), computed on the five datasets
(see 5.1) at sequence lengths l = 100, l = 300, l = 500, and l = 1000. A lower score indicates better
performance. Each score is based on 15 independent discriminator runs and reported with 1-sigma confidence
intervals. RVAE-ST performs best on the Electric Motor dataset from l = 300 onward and significantly
outperforms all models on ECG at l = 1000, while showing comparable performance to Diffusion-TS at
shorter lengths. For the ETT and Sine datasets, multiple models perform similarly depending on the sequence
length. On MetroPT3, RVAE-ST is best at l = 100, while Diffusion-TS dominates for longer sequences. In
cases without statistically significant differences (Wilcoxon rank-sum test), multiple scores are highlighted
in bold.

Sequence lengths
Dataset Model 100 300 500 1000

Electric
Motor (EM)

RVAE-ST (ours) .121±.021 .032±.018 .038±.018 .085±.015
TimeGAN .338±.030 .477±.018 .486±.013 .500±.000
WaveGAN .352±.009 .416±.009 .425±.011 .444±.011
TimeVAE .268±.214 .226±.176 .185±.083 .152±.047
Diffusion-TS .112±.056 .327±.130 .396±.085 .434±.084
Time-Transformer .334±.098 .500±.000 .500±.000 .500±.000

ECG

RVAE-ST (ours) .012±.011 .009±.008 .016±.014 .009±.010
TimeGAN .466±.125 .500±000 .500±.000 .500±000
WaveGAN .306±.155 .300±.201 .402±.153 .298±.217
TimeVAE .034±.066 .058±.120 .131±.181 .153±.177
Diffusion-TS .007±.007 .016±.016 .010±.015 .382±.145
Time-Transformer .216±.107 .500±.000 .496±.014 .499±.002

ETT

RVAE-ST (ours) .179±.034 .172±.105 .189±.049 .132±.147
TimeGAN .107±.075 .160±.113 .270±.106 .320±.120
WaveGAN .362±.080 .345±.113 .377±.099 .385±.060
TimeVAE .118±.110 .140±.053 .167±.040 .068±.051
Diffusion-TS .204±.086 .173±.063 .151±.055 .122±.051
Time-Transformer .198±.169 .179±.116 .408±.137 .500±.000

Sine

RVAE-ST (ours) .069±.015 .113±.059 .080±.044 .021±.013
TimeGAN .465±.130 .457±.050 .491±.005 .497±.005
WaveGAN .187±.036 .367±.073 .449±.025 .449±.034
TimeVAE .161±.092 .160±.124 .272±.129 .347±.144
Diffusion-TS .035±.014 .182±.163 .294±.109 .428±.105
Time-Transformer .173±.019 .491±.004 .499±.001 .500±.000

MetroPT3

RVAE-ST .098±.066 .367±.109 .423±.074 .496±.004
TimeGAN .428±.041 .498±.002 .499±.001 .499±.001
WaveGAN .432±.042 .494±.005 .497±.002 .497±.003
TimeVAE .279±.103 .438±.070 .488±.024 .495±.004
Diffusion-TS .139±.025 .251±.022 .319±.015 .486±.012
Time-Transformer .473±.007 .493±.005 .500±.000 .500±.000

identifying structural similarities, it is important to note that they do not account for temporal dependencies
within the sequences.

These common techniques complement earlier methods that primarily assessed the sample quality of the
models. For brevity, we present the results of four selected experiments in the main paper, as all experiments
consistently yield the same findings. These four experiments include PCA plots on the EM dataset and on the
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ECG dataset, each with sequence lengths of l = 100 and l = 1000 (see figure 4). The full set of experiments
is provided in Appendix A.9.

RVAE-ST
(ours)

TimeGAN

WaveGAN

TimeVAE

Diffusion-TS

Time-
Transformer

EM, l=100 EM, l=1000 ECG, l=100 ECG, l=1000

Figure 4: PCA plots for the EM and ECG datasets at sequence lengths of l = 100 and l = 1000. The higher
the overlap between original and synthetic points, the better. For the EM dataset, at l = 100, no significant
differences are observed in the distributions of the models, with Time-Transformer showing a slightly less
pronounced overlap. At l = 1000, the circular pattern of the data becomes more apparent, with RVAE-ST
demonstrating the best performance, closely followed by Diffusion-TS. WaveGAN and TimeVAE show a few
outliers and deviations, while TimeGAN exhibits almost no overlap. For the ECG dataset, at l = 100,
RVAE-ST, TimeVAE, and Diffusion-TS show strong overlap with the original data, while WaveGAN and
Time-Transformer exhibit less overlap, and TimeGAN shows almost no overlap. At l = 1000, RVAE-ST
performs best, followed by WaveGAN and TimeVAE, with Diffusion-TS performing worse and TimeGAN
and Time-Transformer showing minimal variability and no significant overlap.

The visual inspection of the PCA plots for the EM dataset with a sequence length of l = 100 reveals no
significant differences in the distributions of the models, with Time-Transformer showing a slightly less
pronounced overlap compared to the other models. However, as the sequence length increases to l = 1000,
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the performance differences between the models become clearly visible. Interestingly, the PCA at this length
exhibits a circular pattern, indicating the periodic characteristics of the dataset. Among the models, RVAE-
ST demonstrates the highest degree of overlap between the original and synthetic data, fitting the circular
pattern without outliers. Diffusion-TS performs almost equally well, with slightly less overlap compared
to RVAE-ST (see figure 1 for visual comparison of the models). WaveGAN shows only a few outliers near
the circular pattern. TimeVAE synthetic points further fill the circle, leading to greater deviation from the
original data distribution.

The PCA plots for the ECG dataset provide a detailed view of models’ performances. At l = 100, RVAE-ST,
TimeVAE, and Diffusion-TS perform equally well, showing a strong overlap with the original data. WaveGAN
and Time-Transformer show less overlap, and TimeGAN demonstrates almost no overlap at all. At l = 1000,
RVAE-ST achieves the best performance, with the original data being very well represented. This is followed
by WaveGAN and TimeVAE, where the synthetic data points cluster together, but with less coverage of the
original distribution. Diffusion-TS performs noticeably worse, while TimeGAN and Time-Transformer show
almost no overlap, with the generated data exhibiting minimal variability.

5.7 Training scheme ablations

In this experiment, we compare the effectiveness of our proposed training approach against the conventional
training method on the same network topology. Our comparison metric is the Evidence Lower Bound
(ELBO), calculated for the original dataset X ∈ Rns×l×c where ns represents the numbers of samples, l
denotes the sequence length, and c the number of channels. We calculate it as

E(X) = 1
ns

ns−1∑
i=0

ELBOnorm (Lθ,ϕ(Xi)) , (4)

where Lθ,ϕ is the loss of the trained model itself. Simply speaking, it is the typical model evaluation on a
dataset, but converted to ELBOnorm (see Appendix A.3). We run this comparison on all datasets with a
sequence length of 1000, which is particularly long and challenging. It is the maximum sequence length used
in any of the previous experiments. For each of the following training schemes, we do 10 repetitions:

(i) Conventional train: One trains the model for a predefined sequence length of l = 1000

(ii) Subsequent train: The training procedure begins with a sequence length of l = 100 and continues
until the stopping criteria are met. Afterward, we increase the sequence length by 100 and retrain
the model, repeating this process until we complete training with a sequence length of l = 1000.

Table 3: Comparison of the effectiveness of our proposed training approach versus the conventional method.
The performance metric is the ELBOnorm as described in Appendix A.3. On each dataset and model we
repeated the experiments n = 10 times. The 1-sigma confidence intervals describe the results between the
independently trained models.

Train method EM ECG ETTm2 Sine MetroPT3
conventional train 0.094±0.004 0.103±0.000 0.174±0.016 -0.837±0.566 -0.140±0.061
subsequent train 0.218±0.004 0.201±0.004 0.217±0.012 0.194±0.010 0.142±0.019

As shown in Table 3, the subsequent training scheme (ii) consistently outperforms the conventional training
scheme (i) across all datasets, with statistically significant improvements (p < 0.002). The largest perfor-
mance gain is observed on the Sine dataset, where the model’s ability to capture sinusoidal patterns improves
substantially. In Figure 5, representative samples for each model are shown for a sequence length of l = 1000
on the sine dataset. RVAE-ST is the only model that can generate proper and consistent sine curves, which
are characteristic of the dataset. The Sine dataset, as a clear example of a periodic and almost stationary
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time series, supports our hypothesis that the RVAE-ST model benefits from an inductive bias towards pe-
riodicity that enables the model effectively generate consistent, high-quality long-range sequences in such
scenarios.

(a) RVAE-ST (b) TimeGAN (c) WaveGAN

(d) TimeVAE (e) Diffusion-TS (f) Time-Transformer

Figure 5: Representative samples for each model at a sequence length of l = 1000 on the sine dataset . RVAE-
ST is the only model capable of consistently generating accurate sinusoidal trajectories, demonstrating its
ability to capture the strictly periodic characteristics of the data. For additional samples generated by our
model on this dataset, we refer the reader to Figure 9 in the appendix.

6 Discussion

In this paper, we present a hypothesis-driven examination of modeling long time series using approximately
time-shift-equivariant architectures. Our central hypothesis is that quasi-periodic time series benefit from
an inductive bias that promotes temporal consistency and invariance to absolute time. Approximate time-
shift equivariance enables a model to recognize and reproduce recurring temporal patterns across different
positions in a sequence, which is particularly important for data with oscillatory or repeating structures.

While the recurrent layers in our model provide only partial shift equivariance, the overall architecture
maintains a consistent transformation behavior across time, leading to two main advantages: (1) an inductive
bias that aligns with the characteristics of quasi-periodic and slowly varying temporal dynamics, and (2) a
parameterization independent of sequence length, which allows the model to scale efficiently to longer time
horizons.

These properties allow the model to exploit temporal regularities more effectively during training and support
our interpretation that approximately equivariant recurrent architectures provide a suitable inductive bias
for modeling quasi-periodic time series.

In our experiments, we compared RVAE-ST with several state-of-the-art generative models across five bench-
mark datasets. Three of these (Electric Motor, ECG, and Sine) exhibit strong quasi-periodicity, while ETT
and MetroPT3 show greater temporal variability, though still containing recurring signal components typi-
cal of sensor-based data. On the quasi-periodic datasets, our model consistently outperformed all baselines,
especially as sequence length increased, as reflected by the Context-FID and Discriminative Score. On the
more irregular datasets, it remained competitive across most configurations. Latent-space visualizations
using PCA and t-SNE further confirmed that our model captures the global structure of the data more
faithfully than the baselines.

In Section A.1, we demonstrate that a model trained on sequences of length l = 1000 can generate coherent
samples of arbitrary length, illustrated for l = 5000. Together with the results on the Echo State Property
(ESP) and state forgetting, these findings lend further support to our theoretical assumption (see Equation 2)
that, for sufficiently long sequences, the hidden and cell states converge toward trajectories determined by
the input dynamics rather than by initial conditions.
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Our findings confirm the effectiveness of the proposed approach and open several promising directions for fu-
ture research. The methodology could be extended to other model classes, such as diffusion-based generative
architectures. Moreover, the progressive sequence-length training schedule used in this work was determined
heuristically. Optimizing this scheme in a more principled way could further improve model stability and
efficiency.
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A Appendix

A.1 Extended Time Series

In this section, we provide qualitative examples of generated time series by our model for each of the
five datasets used in our evaluation: Electric Motor, ECG, ETT, Sine, and MetroPT3. All samples were
generated with a fixed sequence length of l = 5000, using model weights trained on sequences up to l = 1000.
This allows us to assess the model’s ability to generalize and synthesize plausible data beyond the training
horizon.

The results illustrate how well the model maintains the structure of the original data when generating
extended sequences:
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• For time series with higher quasi-periodicity (Electric Motor, ECG, and Sine), the key patterns
continue to be synthesized plausibly beyond the training length. In these cases, a stable state
emerges, characterized by repeating, but not identical, patterns (see Figures 6, 7, and 9).

• In the Sine dataset, sinusoidal curves are extended effectively, with only a slight reduction in ampli-
tude observable in some channels. (Figure 9).

• For the less quasi-periodic time series (ETT and MetroPT3), a clear degradation in synthesis quality
is observed beyond the trained length. In both cases, the model produces repetitive, flatline-like
patterns with low variation, and characteristic structures are no longer preserved (Figures 8 and 10).

These qualitative results support the quantitative findings and further highlight the model’s ability to gen-
eralize well on quasi-periodical data, while revealing its limitations on more dynamic datasets.

Figure 6: Example of a generated time series sample of length l = 5000 from the Electric Motor dataset.
The model was trained on sequences up to l = 1000. The main characteristics of the dataset continue to be
well synthesized in the extended sample. During generation, the model reaches a stable state in which the
output patterns kind of repeat. As a result, slower trends, especially visible in the leff motorcurr stator fxd
coord channel, are not fully reflected in the synthesis.

Figure 7: Example of a generated time series sample of length l = 5000 from the two-channel ECG dataset.
The model was trained on sequences up to l = 1000. The key characteristics of the data, particularly the
heartbeat-like patterns across both channels, continue to be well synthesized in the extended sequence. Still,
a stable state emerges, with periodic patterns that, while not identical, remain strongly similar over time.
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Figure 8: Example of a generated time series sample of length l = 5000 from the ETT dataset. The model
was trained on sequences up to l = 1000. Up to this length, the synthesis closely follows the patterns present
in the original data. Beyond this point, a stable state emerges. Most channels no longer reflect the dataset’s
characteristic patterns, though the “OT” channel still produces plausible structures.

Figure 9: Example of a generated time series sample of length l = 5000 from the Sine dataset. The model
was trained on sequences up to l = 1000. The sine curves are extended very consistently beyond the trained
length, maintaining the dataset’s structure. Upon closer inspection, a slight decrease in amplitude can be
observed in channels 2 and 4 compared to the initial segment (up to l = 1000).
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Figure 10: Example of a generated time series sample of length l = 5000 from the MetroPT3 dataset. The
model was trained on sequences up to l = 1000. While the generation follows the original data up to this
length, no meaningful structure is preserved in the extended part. Still, a stable state emerges, with the
model settling into repetitive, low-variation patterns resembling noisy flatlines across all channels. This
behavior is expected, as the MetroPT3 dataset exhibits low quasi-periodicity.

A.2 Hyperparameters and Loss Function

In all experiments, for the encoder aswell as the decoder, we stack 4 LSTM-layers each with 256 hidden
units. The latent dimension is z = 20. We use Adam optimizer with learning rate α = 10−4, β1 = 0.9,
β2 = 0.999, ϵ = 10−7. We perform min-max scaling with (−1, 1). After scaling we do a train/validation split
with a ratio of 9:1.

We use the loss function

Lθ,ϕ = α · SSE + β · DKL, (5)

where the reconstruction loss, SSE, represents the sum of squared errors, computed for each individual
sample within a batch:

SSE =
∑

T

∑
C

(ytc − ŷtc)2, (6)

where T is the sequence length and C is the number of channels. We then average the SSE over the entire
batch. In our experiments we set α = 500

T and β = 0.1.

The parameter β was introduced with the β-VAE (Higgins et al., 2017). For 0 < β < 1 the VAE stores more
bits about each input and the reconstructed sample is less smoothed out. If β > 1 the VAE is encouraged
to learn a latent representation that is disentangled (Burgess et al., 2018). We adjust α antiproportional to
the sequence length to retain the ratio between the reconstruction loss and the KL-Divergence.

A.3 Loss to ELBO conversion

Transforming the VAE loss function into the Evidence Lower Bound (ELBO) is essential to connect the
optimization process to a well-established probabilistic framework. The ELBO arises from the variational
inference approach, which allows us to approximate the intractable posterior distribution of latent variables
by optimizing a lower bound to the marginal likelihood of the observed data. By expressing the VAE loss as
the ELBO, we clarify that the model’s objective is twofold: maximizing the likelihood of the data through
reconstruction and simultaneously regularizing the latent space by minimizing the divergence between the
approximate posterior and the prior distribution. This dual objective ensures that the learned latent space
reflects meaningful, structured representations while maintaining the ability to reconstruct the input data.
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Using the ELBO as the loss function thus ties the VAE training to a coherent probabilistic theory, enhancing
both its interpretability and its ability to generate diverse and realistic data.

Given the likelihood,

likelihood =
∏
T

∏
C

1√
2πσ2

exp
(

−1
2

(ytc − ŷtc)2

σ2

)
, (7)

we compute the log-likelihood, which can then be reformulated in terms of the SSE:

log-likelihood = log
(∏

T

∏
C

1√
2πσ2

exp
(

−1
2

(ytc − ŷtc)2

σ2

))

=
∑

T

∑
C

log
(

1√
2πσ2

exp
(

−1
2

(ytc − ŷtc)2

σ2

))
=
∑

T

∑
C

(
log
(

1√
2πσ2

)
+ log

(
exp

(
−1

2
(ytc − ŷtc)2

σ2

)))
=
∑

T

∑
C

(
log
(

1√
2πσ2

)
− 1

2
(ytc − ŷtc)2

σ2

)
=
∑

T

∑
C

(
−1

2 log(2πσ2) − 1
2

(ytc − ŷtc)2

σ2

)
= −1

2 log
(
2πσ2) · T · C − 1

2σ2

∑
T

∑
C

(ytc − ŷtc)2

= −1
2 log

(
2πσ2) · T · C − 1

2σ2 SSE

⇐⇒ − 1
2σ2 SSE = log-likelihood + 1

2 log
(
2πσ2) · T · C

⇐⇒ SSE = −2σ2 · log-likelihood − σ2 log
(
2πσ2) · T · C. (8)

The ELBO is defined as the log-likelihood minus the kl-divergence (Murphy, 2022):

ELBO = log-likelihood − DKL. (9)

Given (5), (8) and σ2 = 0.5 · β
α , we can derive the conversion to the ELBO:

Lθ,ϕ

β
= α

β
· SSE + DKL

= α

β

(
−2σ2 · log-likelihood − σ2 · log

(
2πσ2) · T · C

)
+ DKL

= −2σ2 · α

β
· log-likelihood − σ2 · α

β
· log

(
2πσ2) · T · C + DKL

= −2 · 0.5 · β

α
· α

β
· log-likelihood − 0.5 · β

α
· α

β
· log

(
2π · 0.5 · β

α

)
· T · C + DKL

= −log-likelihood − 0.5 · log
(

π · β

α

)
· T · C + DKL

⇐⇒ log-likelihood − DKL = −Lθ,ϕ

β
− 0.5 · log

(
π · β

α

)
· T · C

=⇒ ELBO(Lθ,ϕ, α, β, T, C) = −Lθ,ϕ

β
− 0.5 · log

(
π · β

α

)
· T · C. (10)

In our experiments, we normalize the ELBO by dividing it by the product of the number of channels and
the sequence length. This normalization allows for a fairer comparison of model performance across datasets
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with different dimensionalities, such as varying sequence lengths or numbers of channels. Without this
adjustment, the ELBO would scale with the size of the data, potentially biasing the evaluation in favor of
datasets with larger sequences or more channels. By normalizing, we make the ELBO more independent
of the specific data structure, enabling a more consistent comparison of the underlying model’s ability to
capture data patterns.

Although this normalization provides a useful heuristic for comparing different datasets, it should be noted
that it does not guarantee perfect comparability in all cases. In some situations, larger datasets with
more channels or longer sequences may introduce additional complexity, which could influence the model’s
performance. Therefore, while the normalized ELBO serves as a practical and interpretable metric.

We denote the normalized version of the ELBO as

ELBOnorm(Lθ,ϕ, α, β, T, C) = ELBO(Lθ,ϕ, α, β, T, C)
T · C

. (11)

A.4 Evaluation by Average ELBO

For completeness, we evaluate the average Evidence Lower Bound (ELBO) on a synthetic dataset X̃ ∈
Rns×l×c where ns represents the numbers of samples, l denotes the sequence length, and c the number of
channels. We refer to this metric as Eavg(X̃). In detail, we first train a VAE model on shorter sequence
lengths ℓ ≪ l, which facilitates easier training. Since this metric reflects short-term reconstruction quality
only, it is not used for model ranking in our main evaluation.

We then calculate the average ELBO:

Eavg(X̃) = 1
ns(l − ℓ)

ns−1∑
i=0

l−ℓ−1∑
t=0

ELBOnorm
(
Lθ,ϕ(X̃i,t:t+ℓ,·)

)
, (12)

where Lθ,ϕ is the loss of the ELBO Model and ELBOnorm = ELBO · (cl)−1 is a normalized ELBO, as
explained in Appendix A.3. By normalizing the ELBO, we get a fairer comparison of datasets with different
dimensionalities and varying sequence lengths.

Eavg(X̃) gives us information about short term consistency over the whole synthetic dataset. We chose
ℓ = 50 which is half of the lowest sequence length in the experiments. A well trained ELBO model (An &
Cho, 2015) allows us to evaluate the (relative) short term consistency of synthetic data in high accuracy
and low variance. To ensure reliable assessment of sample quality, we prevented overfitting of the ELBO
model by applying early stopping after 50 epochs without improvement and restoring the best weights. In
our experiments, we employed two distinct ELBO models for calculating Eavg(X̃). The first model is based
on the RVAE-ST architecture, while the second utilizes the TimeVAE framework (Desai et al., 2021a). The
use of a TimeVAE-based ELBO model provides an additional evaluation to ensure that the RVAE-ST-based
model is not biased toward our own generated samples. As detailed in Appendix A.5, the results obtained
using TimeVAE are highly similar to those produced by the RVAE-ST-based model.

The average ELBO measures short-term consistency on subwindows of length ℓ and can therefore overesti-
mate models that reproduce local statistics while failing to capture global dynamics. This effect is visible for
the Time-Transformer on Sine, ECG and ETT datasets and also on for TimeGAN on the MetroPT3 dataset:
Both models produce flat segments that, when evaluated on short windows, appear locally consistent with
the training data and therefore inflate Eavg, yet they do not reflect the characteristic dynamics of the dataset.
The mismatch is evident in our other scores and in the PCA and t-SNE embeddings, where these samples
cluster away from the real data. Interpreted with this caveat, RVAE-ST produces the best samples on all
datasets starting at l = 300, with the exception of MetroPT3, where Diffusion-TS is performing best.

A.5 Average Elbo with TimeVAE Elbo-Model

Table 5 shows the results for the average ELBO score E(X̃) using the base of TimeVAE as the ELBO model.
However, instead of using the original loss function of TimeVAE, we utilized the loss function of RVAE-ST
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Table 4: Average ELBO score Eavg(X̃) of synthetic time series for six models (see 5.2), computed on the
five datasets (see 5.1) at sequence lengths l = 100, l = 300, l = 500, and l = 1000. Higher scores indicate
better performance. Each score is based on 1000 generated samples evaluated with an ELBO model using
the RVAE-ST architecture, with 1-sigma confidence intervals. Note that while the ELBO score is generally
informative, it can overestimate quality on certain datasets such as Sine and ECG, where implausible outputs
may go undetected. For the Sine dataset in particular, uncorrelated channels and high sensitivity to local
artifacts limit the reliability of this metric. † Overestimated due to local consistency effects (flat lines).

Sequence lengths
Dataset Model 100 300 500 1000

Electric
Motor

RVAE-ST(ours) 1.62±0.69 1.65±0.60 1.66±0.03 1.65±0.03
TimeGAN 1.20±0.59 1.33±0.48 1.13±0.56 -4.05±2.41
WaveGAN 1.54±0.11 1.54±0.16 1.54±0.14 1.53±0.37
TimeVAE 1.49±0.88 1.38±1.34 1.09±2.21 0.31±3.24
Diffusion-TS 1.58±0.06 1.36±0.26 1.38±0.24 1.30±0.25
Time-Transformer 0.98±2.46 -28.9±3.33 -21.7±0.91 -28.4±4.12

ECG

RVAE-ST(ours) 1.64±0.13 1.64±0.18 1.63±0.20 1.59±0.27
TimeGAN -14.6±1.87 -14.6±1.41 -13.7±6.67 -15.3±2.57
WaveGAN 1.12±0.81 1.11±0.87 1.10±0.86 1.10±0.83
TimeVAE 1.55±0.37 1.37±0.65 1.26±0.70 0.87±0.92
Diffusion-TS 1.65±0.07 1.64±0.19 1.60±0.29 1.29±1.00
Time-Transformer 1.07±0.85† 1.68±0.05† 1.68±0.05† 1.68±0.05†

ETT

RVAE-ST(ours) 1.49±0.52 1.50±0.40 1.52±0.35 1.53±0.63
TimeGAN 1.39±0.70 0.85±3.36 -4.29±9.66 -0.38±0.65
WaveGAN 1.40±0.53 1.39±0.70 1.42±0.51 1.42±0.48
TimeVAE 1.47±0.94 1.20±1.54 0.89±1.99 0.42±2.45
Diffusion-TS 1.50±0.18 1.49±0.26 1.50±0.27 1.50±0.17
Time-Transformer 1.07±1.93† 1.38±0.86† 1.49±0.14† -39.9±5.84†

Sine

RVAE-ST(ours) 1.42±0.25 1.19±0.55 1.28±0.48 1.41±0.27
TimeGAN -0.59±2.47 -1.25±2.72 -2.33±3.21 -4.73±5.64
WaveGAN -1.28±2.20 -1.04±1.76 -0.97±1.72 -0.94±1.75
TimeVAE 1.06±0.66 -3.55±8.18 -6.21±9.38 -8.81±12.1
Diffusion-TS 1.50±0.06 1.14±0.53 0.56±1.09 -0.30±1.60
Time-Transformer 1.23±0.49† -0.12±1.45† 1.18±0.87† 1.34±0.65†

MetroPT3

RVAE-ST(ours) 1.41±1.74 0.76±3.49 0.57±3.78 0.60±3.75
TimeGAN 1.25±1.38 0.61±4.39† 1.46±1.36† -11.1±18.2†

WaveGAN -1.71±4.85 -1.62±4.90 -1.64±4.83 -1.68±4.91
TimeVAE -0.07±3.96 -2.06±5.91 -5.64±7.29 -9.03±7.38
Diffusion-TS 1.63±0.92 1.43±2.21 1.36±2.53 0.77±3.50
Time-Transformer -2.30±5.81 -3.05±6.55 -2.97±0.55 -302±14.4

as it simplifies the conversion to the ELBO score as shown in (10). Analogous to Table 4, our model is
outperforming all other models from l = 300 with the exception of the ECG dataset where our model is
outperforming from l = 500. On the other side, our model is outperforming Diffusion-TS on the MetroPT3
dataset on l = 1000.
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Table 5: Average ELBO score E(X̃) of synthetic time series for six models (see 5.2), computed on the five
datasets (see 5.1) at sequence lengths of l = 100, l = 300, l = 500, and l = 1000. A higher score indicates
better performance. For each score, 1000 generated samples were evaluated by an ELBO model (based on the
TimeVAE architecture) and the results are reported with 1-sigma confidence intervals. The interpretation
must follow analogously to the explanation provided in Section A.4 of the main paper, where the specifics
and limitations of the ELBO score are discussed in detail. † Overestimated due to local consistency effects
(flat lines).

Sequence lengths
Dataset Model 100 300 500 1000

Electric
Motor

RVAE-ST (ours) 1.61±0.69 1.64±0.12 1.64±0.01 1.64±0.02
TimeGAN 1.29±0.39 1.33±0.17 1.21±0.10 -2.14±0.82
WaveGAN 1.52±0.14 1.47±1.05 1.52±0.22 1.52±0.15
TimeVAE 1.52±0.87 1.44±1.28 1.01±2.35 0.10±3.58
Diffusion-TS 1.56±0.45 1.35±0.36 1.39±0.21 1.30±0.29
Time-Transformer 1.25±1.88 -22.9±7.52 -85.4±18161 -22.7±8.05

ECG

RVAE-ST (ours) 1.62±0.07 1.62±0.07 1.62±0.06 1.59±0.06
TimeGAN -2.57±0.22 -2.26±0.22 -2.67±1.92 -2.58±0.49
WaveGAN 1.32±0.29 1.33±0.18 1.32±0.16 1.32±0.15
TimeVAE 1.57±0.15 1.46±0.16 1.39±0.15 1.08±0.28
Diffusion-TS 1.63±0.06 1.63±0.08 1.60±0.18 1.16±25.2
Time-Transformer 1.22±0.50 1.67±0.04† 1.67±0.04† 1.67±0.04†

ETT

RVAE-ST (ours) 1.56±0.24 1.57±0.09 1.59±0.05 1.60±0.13
TimeGAN 1.49±0.17 1.20±1.49 0.83±0.91 -0.00±0.28
WaveGAN 1.50±0.50 1.50±0.41 1.47±0.64 1.49±0.43
TimeVAE 1.56±0.45 1.41±0.81 1.15±1.05 0.40±2.06
Diffusion-TS 1.53±0.07 1.52±0.13 1.52±0.13 1.52±0.16
Time-Transformer 1.43±0.52 1.57±0.11† 1.48±0.04† -39.6±5.63

Sine

RVAE-ST(ours) 1.46±0.07 1.44±0.09 1.45±0.06 1.47±0.04
TimeGAN 0.66±1.04 0.39±1.18 -0.19±1.59 -2.16±3.70
WaveGAN 0.29±0.86 0.50±0.70 0.55±0.66 0.60±0.66
TimeVAE 1.42±0.12 0.66±2.38 0.04±3.04 -0.81±4.20
Diffusion-TS 1.48±0.02 1.44±0.10 1.33±0.16 1.23±0.19
Time-Transformer 1.44±0.09† 1.27±0.22† 1.44±0.13† 1.46±0.10†

MetroPT3

RVAE-ST (ours) 1.49±0.64 1.38±0.77 1.39±0.74 1.36±0.81
TimeGAN 1.33±0.77 0.95±1.83† 1.42±0.84† -0.07±2.94†

WaveGAN 0.35±1.57 0.18±1.67 0.23±1.64 0.22±1.64
TimeVAE 1.06±1.14 -0.07±2.07 -2.81±3.43 -5.61±3.36
Diffusion-TS 1.63±0.24 1.58±0.49 1.59±0.41 1.04±2.08
Time-Transformer 0.06±1.73 -0.97±2.21 -1.29±0.63 -331±26.2

A.6 Implementation details of comparison models

A.6.1 Global hyperparameters

To balance data diversity and computational efficiency, we used a dataset-specific step size when splitting
time series into training sequences. This step size determines the offset between starting points of consecutive
sequences, thereby influencing both the number of training samples and the memory requirements during
training.
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For the Electric Motor, ECG, and MetroPT3 datasets, we chose a step size of 0.1 · l, where l is the sequence
length. For the ETT dataset, which exhibits more complex and longer-range temporal dependencies, we
used a smaller step size of 0.04 · l to increase the number of training samples. In contrast, for the synthetic
Sine dataset, we fixed the number of training samples to 10,000 for each sequence length.

This approach reflects a practical trade-off: while smaller step sizes increase training data diversity, they
also lead to higher memory usage. Particularly for long sequences, using very small step sizes (e.g., step size
= 1) can cause GPU memory overflow or even exceed system RAM, depending on the model architecture,
implementation and dataset.

A.6.2 TimeGAN

We did all experiments with the same hyperparameters. Num layers=3, hidden dim=100, num iterations
= 25000. The clockwise computation time on these hyperparameters were the highest of all models. We
use the authors original implementation4 on a Nvidia DGX A100 server in the 19.12-tf1-py3 container5. On
sequence length l = 1000 , the training took about 3 weeks wall-clock time.

A.6.3 WaveGAN

For WaveGan needed special preperation to be usable for training. First we min maxed scaled the dataset file,
split it into training and validation parts and then converted each into a n-dimensional .wav file. WaveGan
is limited in configurability. In terms of sequence length the user can decide between 214, 215 and 216. We
chose 214 = 16384 because it is the smallest possible length. When we generate samples, we cut them into
equal parts which correspond to the desired sequence length l. The rest of the hyperparameters were set to
default. On the sine dataset training, wie used created 10,000 samples with a length of 16,384. We used the
ported pytorch implementation6.

A.6.4 TimeVAE

We use TimeVAE with default parameters. We integrated components of the original TimeVAE implementa-
tion7, such as the encoder, decoder, and loss function, into our own program framework. The reconstruction
loss of TimeVAE is

∑
T

∑
C

(ytc − ŷtc)2 + 1
C

∑
C

(ȳc − ¯̂yc)2. (13)

TimeVAE includes a hyperparameter a, which acts as a weighting factor for the reconstruction loss. The
authors of the original paper recommend using a value for a in the range of 0.5 to 3.5 to balance the trade-off
between reconstruction accuracy and latent space regularization. In all of our experiments, we set a = 3.

A.6.5 Time-Transformer

We used the official implementation of the Time Transformer model8 with default parameters. The encoder
is a 1D convolutional network with three layers of filter sizes [64, 128, 256], kernel size 4, and dropout rate
0.2. The decoder is a TimeSformer-based architecture with attention head size 64, 3 attention heads, and
two transposed convolution layers with filter sizes [128, 64], kernel size 4, dilations [1, 4], and dropout rate
0.2. The discriminator is a simple MLP with hidden dimension 32 applied to the latent space.

Separate learning rate schedules are used for the autoencoder, discriminator, and generator, all based on
polynomial decay:

4https://github.com/jsyoon0823/TimeGAN
5https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/rel_19.12.html
6https://github.com/mostafaelaraby/wavegan-pytorch
7https://github.com/abudesai/timeVAE
8https://github.com/Lysarthas/Time-Transformer
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• Autoencoder: initial LR 0.005 → 0.0025 over 300 steps (power 0.5),

• Discriminator: initial LR 0.001 → 0.0001 over 300 steps (power 0.5),

• Generator: initial LR 0.001 → 0.0001 over 300 steps (power 0.5).

A.6.6 Diffusion-TS

We use the official implementation of Diffusion-TS9. For all datasets except Sine, we adopted a unified
configuration inspired by the model’s official presets:

• Encoder layers: 3, Decoder layers: 2, Model dimension d = 64,

• Diffusion timesteps: 500 for both training and sampling,

• Attention heads: 4, MLP expansion factor: 4,

• Kernel size: 1, Padding size: 0,

• Positional dropout: 0.0, Residual dropout: 0.0,

• Loss type: L1, Beta schedule: cosine.

For the Sine dataset, we use the exact configuration provided by the authors for this case.

A.7 Discriminative Score

The 2-layer RNN for binary classification consists of a GRU layer, where the hidden dimension is set to
⌊nc/2⌋, where nc is the number of channels. This is followed by a linear layer with an output dimension of
one. To prevent overfitting, early stopping with a patience of 50 is applied. We each discriminative score we
repeated 15 training procedures. On each procedure, 2000 random samples were used as the train dataset
and 500 samples were used as the validation dataset for early stopping monitoring. The discriminative score
is then determined by validating further independent 500 samples.

A.8 PyTorch vs TensorFlow

The experiments were conducted using a TensorFlow implementation of our model. Additionally, we per-
formed tests with a PyTorch reimplementation (which is not part of this paper). In these tests, we found
that the performance in PyTorch was significantly worse compared to the TensorFlow implementation.

Upon investigation, we identified the cause of the performance difference. The weight initialization in
both the LSTM and Dense layers differs between TensorFlow and PyTorch. Specifically, TensorFlow uses
a uniform distribution for the initialization of both LSTM and Dense weights, while PyTorch employs
different initialization methods by default. To align the behavior between both frameworks, we modified
the PyTorch implementation to use the same uniform weight initialization for both LSTM and Dense layers
as in TensorFlow. After making these adjustments, we were able to achieve consistent results across both
frameworks.

A.9 PCA and t-SNE Results

The following section presents the PCA and t-SNE plots for all experiments, including each dataset, model,
and sequence length. Since RCGAN consistently underperforms, and the performance of TimeGAN and
WaveGAN remains unchanged across sequence lengths within a given dataset, these points will not be
explicitly mentioned in each figure to maintain clarity and readability.

9https://github.com/Y-debug-sys/Diffusion-TS
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RVAE-ST
(ours)

TimeGAN
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TimeVAE

Diffusion-TS

Time-
Transformer

EM, l=100 EM, l=300 EM, l=500 EM, l=1000

Figure 11: PCA plots for all sequence lengths on the Electric Motor dataset. At l = 100, all models perform
similarly, though Time-Transformer already shows slightly weaker results. From l = 300 onward, TimeGAN
and TimeVAE both degrade consistently with increasing sequence length, with TimeGAN showing reduced
variance. Time-Transformer fails to generate coherent samples beyond this point. At l = 1000, RVAE-ST
and Diffusion-TS produce the most consistent results, followed by WaveGAN.
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Figure 12: t-SNE plots for all sequence lengths on the Electric Motor dataset. At l = 100, TimeGAN already
performs worse than the other models, similarly to Time-Transformer. From l = 300 onward, TimeGAN
shows further deterioration, while TimeVAE also degrades but to a lesser extent. Time-Transformer fails to
generate coherent samples at longer sequence lengths. At all sequence lengths, WaveGAN, RVAE-ST, and
Diffusion-TS perform similarly.
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Figure 13: PCA plots for all sequence lengths on the ECG dataset. At l = 100, TimeVAE performs similarly
to RVAE-ST and Diffusion-TS. RVAE-ST shows the best performance at l = 1000. Diffusion-TS performs
as well as RVAE-ST up to l = 500. WaveGAN consistently performs worse than the best models but still
significantly outperforms TimeGAN and Time-Transformer , which fail to generate coherent samples starting
from l = 300.
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Figure 14: t-SNE plots for all sequence lengths on the ECG dataset. At l = 100, TimeVAE performs
similarly to RVAE-ST and Diffusion-TS. RVAE-ST shows the best performance at l = 1000. Diffusion-TS
performs as well as RVAE-ST up to l = 500. WaveGAN consistently performs worse than the best models
but still outperforms TimeGAN and Time-Transformer , which fail to generate coherent samples starting
from l = 300.
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Figure 15: PCA plots for all sequence lengths on the ETT dataset. RVAE-ST and Diffusion-TS consistently
perform the best across all sequence lengths. WaveGAN fails to capture the full variance of the dataset.
TimeVAE performs similarly to RVAE-ST and Diffusion-TS at l = 100, but its performance degrades with
increasing sequence length. TimeGAN and Time-Transformer perform reasonably well at l = 100, though
already worse than the other models, and their performance significantly drops starting from l = 300.
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Figure 16: t-SNE plots for all sequence lengths on the ETT dataset. RVAE-ST and Diffusion-TS consistently
perform the best across all sequence lengths. WaveGAN fails to capture the full variance of the dataset.
TimeVAE performs similarly to RVAE-ST and Diffusion-TS at l = 100, but its performance degrades with
increasing sequence length. TimeGAN and Time-Transformer perform reasonably well at l = 100, though
already worse than the other models, and their performance significantly drops starting from l = 300.
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Figure 17: PCA plots for all sequence lengths on the MetroPT3 dataset. RVAE-ST, TimeVAE and Diffusion-
TS perform similarly and the best across all sequence lengths. WaveGAN performs slightly worse, as it does
not capture the entire distribution of the dataset (with a minimal difference). Time-Transformer performs
reasonably well at l = 100 and l = 300, but its performance degrades at longer sequence lengths. TimeGAN
consistently performs the worst, failing to generate plausible samples.
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Figure 18: t-SNE plots for all sequence lengths on the MetroPT3 dataset. RVAE-ST and Diffusion-TS
perform the best across all sequence lengths, with RVAE-ST slightly outperforming at l = 1000. TimeVAE
and WaveGAN perform similarly, but exhibit more outliers in the plots. TimeGAN and Time-Transformer
perform similarly to the PCA results, showing significant degradation as the sequence length increases.
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Figure 19: PCA plots for all sequence lengths on the Sine dataset. At l = 100, all models perform similarly
well, except TimeGAN which consistently performs less effectively. From l = 500 onward, Time-Transformer
also shows a decline in performance. RVAE-ST, Diffusion-TS, WaveGAN and TimeVAE perform equally
well throughout all sequence lengths. However, when looking at Figure 5, this does not fully reflect the
models performance, as the limitations in accounting for temporal dependencies lead to significantly reduced
effectiveness.
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Figure 20: t-SNE plots for all sequence lengths on the Sine dataset. At l = 100, all models perform similarly
well, except TimeGAN which consistently performs less effectively. From l = 500 onward, Time-Transformer
also shows a decline in performance. RVAE-ST, Diffusion-TS, WaveGAN and TimeVAE perform equally
well throughout all sequence lengths. However, when looking at Figure 5, this does not fully reflect the
models performance, as the limitations in accounting for temporal dependencies lead to significantly reduced
effectiveness.
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