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ABSTRACT

Traffic flow forecasting is inherently challenging due to the continuous evolu-
tion of spatial dependencies and the coexistence of heterogeneous temporal pat-
terns. Most existing pre-training methods either rely on static graphs or employ
generic masking strategies that overlook the dynamic nature of road networks,
limiting their robustness and transferability. To overcome these limitations, we
propose GEMFlow (Graph Evolution-aware Masking for traffic Flow forecast-
ing), a novel pre-training framework that unifies masked representation learn-
ing with adaptive graph evolution modeling. Specifically, GEMFlow introduces
a curriculum-style dynamic masking strategy that operates on temporal patches
while conditioning the masking process on the evolution of graph structures. This
design allows the model to emphasize informative temporal segments and adapt
to structural drift across time, going beyond prior decoupled masking approaches.
The learned graph evolution-aware representations can be seamlessly transferred
to diverse downstream forecasting models without modifying their architectures.
Extensive experiments on four real-world PeMS datasets demonstrate that GEM-
Flow achieves state-of-the-art performance, consistently improving accuracy, ef-
ficiency, and robustness. Moreover, qualitative analysis of the learned dynamic
graphs reveals interpretable evolution patterns, highlighting the potential of GEM-
Flow as a versatile pre-training paradigm for spatiotemporal forecasting.

1 INTRODUCTION

Traffic flow is a typical form of spatiotemporal data, capturing how vehicle movements evolve across
road networks over time. As a fundamental element of intelligent transportation systems, traffic flow
analysis plays a vital role in applications such as congestion management, route planning, and ur-
ban mobility optimization. Similar to other spatiotemporal phenomena—such as weather dynamics
or epidemic spread—traffic flow exhibits complex spatial interactions and temporal variations that
demand careful modeling. Effective analysis of traffic flow can uncover underlying dynamics, sup-
port accurate forecasting, and ultimately enable data-driven decision-making for resource allocation,
infrastructure planning, and sustainable urban development.

Traffic flow inherently reflects dependencies across both spatial and temporal dimensions, yet these
relationships are rarely stable. A central challenge is spatiotemporal inconsistency, where spatially
or temporally adjacent observations exhibit shifting or irregular correlations. As illustrated in Fig-
ure 1(a), the traffic sensors located at A (Sensor 20) and C (Sensor 301) display similar flow patterns
during Period 1 (gray region in Figure 1(b)), primarily due to their geographic proximity. However,
in Period 2 (yellow region), Sensor 20 becomes more correlated with Sensor 23 at Location B, while
its similarity with Sensor 301 weakens. This dynamic reconfiguration highlights how external fac-
tors—such as variations in travel demand, road conditions, or infrastructure adjustments—can alter
correlation structures over time, underscoring the necessity of modeling graph evolution rather than
assuming static spatial dependencies.relationships over time.

Another fundamental property of traffic flow is its multiscale nature, where patterns emerge at
multiple temporal resolutions. In traffic flow analysis, this manifests in both fine-grained variations
(e.g., hourly rush hours) and coarse-grained periodicities (e.g., daily or weekly cycles). As shown

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

in Figure 1(c), sensor readings on January 3rd and January 31st capture not only consistent short-
term fluctuations but also evolving long-term trends. The shaded regions highlight peak (gray) and
trough (yellow) periods, demonstrating how local dynamics persist while global patterns shift due
to seasonal changes, infrastructure updates, or collective behavioral adaptation. These hierarchical
structures are widely present across domains—from climate modeling to urban mobility—and must
be effectively captured to achieve accurate forecasting, robust anomaly detection, and informed
decision-making in intelligent systems.
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Figure 1: Examples of dynamic traffic flow in city

Previous research has explored various approaches to traffic flow forecasting. Statistical mod-
els Fang et al. (2021); Song et al. (2020) assume linearity and stationarity, offering interpretable
yet limited frameworks for dynamic traffic systems. Hybrid architectures such as GCN+RNN Li
et al. (2018) capture spatial dependencies through graph convolutions and temporal patterns via
recurrent units, while GCN+TCN methods Yu et al. (2018); Wu et al. (2019); Guo et al. (2019)
enhance temporal modeling using convolutional structures. More recently, GNN-based pre-training
techniques Gao et al. (2024) have been proposed to learn transferable traffic representations from
large-scale datasets, improving downstream forecasting performance. Despite these advancements,
existing methods still struggle with the complex nature of traffic flow dynamics. Temporal cor-
relations are often inadequately modeled, particularly across varying time intervals such as peak
and off-peak hours. Spatial relationships—such as the evolving influence of nearby road segments
or sensors—are frequently underutilized. Moreover, capturing spatiotemporal interactions remains
challenging, leading to oversimplified representations of traffic dynamics. Finally, most models fail
to simultaneously account for fine-grained local fluctuations and long-term global trends, thereby
limiting both predictive accuracy and generalizability.

In this study, we propose GEMFlow, a pre-training framework for traffic flow forecasting that
captures dynamic spatial interactions and multi-scale temporal patterns. Inspired by masked pre-
training Vaswani et al. (2017), GEMFlow reconstructs masked traffic segments under evolving graph
structures, enabling robustness to structural drift and adaptive modeling of traffic dependencies. The
learned representations transfer seamlessly to diverse forecasting backbones, improving accuracy,
efficiency, and interpretability. Our contributions are:

• We design GEMFlow, a plug-and-play pre-training framework that learns transferable traf-
fic representations, enhancing diverse forecasting models without architectural changes.

• We introduce a graph evolution-aware masking strategy, which effectively models dy-
namic spatial dependencies and multi-scale temporal patterns in traffic networks.

• We validate GEMFlow on four real-world PeMS datasets, demonstrating consistent im-
provements over strong baselines and uncovering interpretable patterns of traffic graph
evolution.
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2 RELATED WORK

2.1 TRAFFIC FLOW FORECASTING

Traffic flow forecasting aims to predict future traffic states by leveraging historical observations
and road network structures Gao et al. (2024). Early approaches based on recurrent and convolu-
tional networks captured temporal dynamics and local spatial features but struggled with long-range
dependencies and complex non-Euclidean structures. To address these challenges, Graph Neural
Networks (GNNs) were introduced Yu et al. (2018), leading to a series of Spatio-Temporal Graph
Neural Networks (STGNNs) Wu et al. (2019); Han et al. (2021); Jiang et al. (2023b) that signifi-
cantly improved the modeling of spatial–temporal correlations. Building on this foundation, recent
works have advanced along multiple directions: decomposition-based models such as STDN Cao
et al. (2025), D2STGNN Jiang et al. (2023b), and STWave Fang et al. (2023) disentangle traffic
signals into components like trend, seasonal, diffusion, inherent, or event patterns to better cap-
ture dynamics; node- and heterogeneity-aware approaches including STPGNN Kong et al. (2024)
and HimNet Dong et al. (2024) emphasize pivotal nodes or adapt parameters from heterogeneity-
informed meta-pools; and frequency- or dynamic graph-based methods such as DFDGCN Li et al.
(2024) leverage Fourier transform, identity/time embeddings, and hybrid graph structures to en-
hance robustness. Despite these advances, most existing models remain constrained by short input
horizons, static or simplified spatial graphs, and limited capacity to capture evolving correlations,
which motivates the development of new pre-training paradigms that can learn transferable traffic
representations while explicitly modeling graph evolution and multi-scale temporal dynamics.

2.2 SPATIOTEMPORAL-AWARE MASKED PRE-TRAINING

Masked pre-training has proven highly effective as a self-supervised strategy in natural language
processing (NLP) and computer vision (CV). In NLP, models such as BERT Devlin et al. (2019) and
ALBERT Lan et al. (2020) learn contextualized representations by predicting masked tokens from
bidirectional context. In CV, methods like BEiT Bao et al. (2022) and MAE He et al. (2022) recon-
struct masked image patches to capture meaningful visual features. Motivated by these successes,
researchers have recently extended masked pre-training to time series forecasting Shao et al. (2022);
Li et al. (2023); Gao et al. (2024). Nevertheless, most existing approaches either ignore spatial
dependencies or process channels independently, which limits their ability to model complex spa-
tiotemporal correlations. Meanwhile, alternative directions such as BigST Han et al. (2024) focus
on scalability with linear-complexity architectures, but do not exploit masked pre-training to capture
fine-grained spatiotemporal heterogeneity. We propose GEMFlow, a graph-enhanced masked pre-
training framework that learns long-range spatiotemporal dependencies and dynamic correlations in
traffic networks, offering plug-and-play transfer to diverse forecasting models.

3 PRELIMINARIES

Spatiotemporal Traffic Data. Traffic flow forecasting is typically based on spatiotemporal data
collected from sensor networks deployed across road systems. Formally, the data is denoted as
X ∈ RN×T×F , where N is the number of sensors (nodes), T is the number of time steps, and F is
the feature dimension (e.g., traffic speed, flow, or occupancy). Each entry Xi,t,: records the traffic
state of sensor i at time step t.

Graph Representation and Evolution. The spatial structure of the road network is commonly
modeled as a graph Gt = (V, Et,At), where V is the set ofN sensors, Et is the set of dynamic edges
at time t, and At ∈ RN×N is the adjacency matrix encoding spatial dependencies. Unlike static
graphs, real-world traffic networks evolve over time due to factors such as congestion, road condi-
tions, or external interventions, making graph evolution modeling essential for accurate forecasting.

Pre-training Paradigm. To capture transferable spatiotemporal representations, GEMFlow adopts
a masked autoencoding (MAE) objective. Given a subsequence Xt:t+k−1 of length k, a binary
mask M is applied to hide part of the data. The encoder f(·) is trained to reconstruct the masked
information from the visible context:

Lpre = L
(
(1−M)⊙Xt:t+k−1, f(M⊙Xt:t+k−1,At:t+k−1)

)
, (1)
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where At:t+k−1 provides the evolving graph structure within the pre-training window. This enables
the encoder to learn both temporal dependencies and dynamic spatial correlations.

Forecasting Paradigm. In the downstream stage, given past Th steps X ∈ RN×Th×F , the model
predicts the next Tf steps Y ∈ RN×Tf×C :

Lfore = L
(
Y, g(f(Xt:t+k−1,At:t+k−1),XTh

)
)
, (2)

where f(·) is the pre-trained encoder and g(·) is the forecasting head. This paradigm bridges dy-
namic graph evolution-aware masked pre-training with traffic flow forecasting, ensuring both scala-
bility and transferability.

4 METHODOLOGY

This section delves into the technical specifics of our GEMFlow, as delineated in Figure 2.
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Figure 2: The framework of GEMFlow.

4.1 DYNAMIC GRAPH EVOLUTION MODELING

Parameterized dynamic adjacency. Traffic correlations are inherently time-varying: static adja-
cency matrices predefined by distance cannot capture fluctuations caused by demand shifts, road
conditions, or external events. We therefore parameterize the adjacency and allow it to evolve over
time, so that Ât can adaptively reflect dynamic correlations. This design combines node similar-
ity (capturing flexible data-driven relationships), temporal context (modeling lag-dependent effects
such as decay and periodicity), and structural priors (preserving stable long-term connectivity). Such
a hybrid formulation yields adjacency matrices that are adaptive yet regularized, enabling robust
modeling of evolving spatial dependencies.

St =
ϕ(Ut)ϕ(Ut)

⊤
√
d

+ ψ(∆t) + ηAstatic, (3)

where the three terms correspond to complementary components: (1)
ϕ(Ut)ϕ(Ut)

⊤
√
d

is a similarity-

based score that captures pairwise relationships between node embeddings at time t. Here, Ut ∈
RN×d denotes the temporal node embeddings, ϕ(·) is a learnable projection, and the scaling factor√
d stabilizes attention scores. (2) ψ(∆t) encodes temporal bias as a function of the time lag ∆t,

incorporating effects such as decay and periodicity. This term modulates edge strengths according
to temporal distance. (3) ηAstatic introduces a static prior adjacency matrix that reflects long-term
invariant connectivity patterns (e.g., geographical distance or predefined road network links), with
η controlling its relative importance. The final dynamic adjacency matrix is obtained by applying a
non-linear transformation and normalization to St, followed by sparse selection:

Ât = Top -k
(
RowSoftMax

(
σ(St)

))
, (4)

where σ(·) denotes an activation function (e.g., ReLU), RowSoftMax(·) normalizes each row into
a probability distribution, and Top -k(·) retains only the k strongest connections per node to ensure
sparsity and interpretability.
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Temporal Encoding via Causal Transformer. To capture long-range temporal dependencies with-
out information leakage, we employ a causal Transformer encoder over a sliding historical window
Xt−w+1:t ∈ RN×w×C .

First, node-wise temporal tokens are obtained via linear projection and positional encoding:

Zt = Proj(Xt−w+1:t) +Etime ∈ RN×w×d, (5)

where Etime is a learnable temporal positional encoding.

Then, causal self-attention is applied along the temporal dimension:

Attn(Q,K,V) = softmax

(
QK⊤
√
d

+Mcausal

)
V, (6)

where Q = ZtWQ, K = ZtWK , V = ZtWV are the query, key and value matrices, and
Mcausal(i, j) = −∞ if j > i ensures that each step i only attends to its past and current positions.

The temporal encoder output is

Ht = TransformerEnccausal(Zt) ∈ RN×w×d, (7)

and the embedding for the current step t is obtained by selecting the last hidden state:

Ut = Ht[:, w, :] ∈ RN×d. (8)

Temporal bias. We modulate temporal distances with a lightweight yet expressive bias:

ψ(∆t) = wb(∆t) + α e−β∆t +
∑
p∈P

[
ap cos

(
2π∆t

p

)
+ bp sin

(
2π∆t

p

) ]
, (9)

where wb(∆t) is a learnable bucketed scalar (log-bucketed lags), α, β > 0 are learnable decay pa-
rameters for exponential attenuation, and (ap, bp) are Fourier coefficients capturing periodic patterns
(e.g., p = 288 for daily, p = 144 for half-daily periodicities at 5-minute resolution). This design
distinguishes short vs. long lags, imposes monotonic decay, and embeds diurnal seasonality while
keeping computation negligible.

Graph-evolution-aware aggregation. Spatial dependencies in traffic networks evolve over time
due to demand shifts and external events, which are often overlooked by content-only attention.
Given a node embedding h

(t)
i ∈ Rdh , we obtain query, key, and value vectors via learnable projec-

tions: q
(t)
i = WQh

(t)
i , k

(t)
i = WKh

(t)
i , v

(t)
i = WV h

(t)
i , with WQ,WK ,WV ∈ Rdh×d. To

incorporate evolving structure, the dynamic adjacency Ât is injected into the attention weights:

α
(t)
ij = softmaxj

(
q
(t)
i · k(t)

j√
d

+ γ log
(
ϵ+ Ât(i, j)

))
, h

(t+1)
i = σ

 N∑
j=1

α
(t)
ij v

(t)
j

 . (10)

This design fuses feature similarity with structural priors, enabling representations that adapt to

graph evolution. The attention weight α(t)
ij combines a content similarity score

q
(t)
i ·k(t)

j√
d

, which
measures the semantic correlation between nodes i and j at time t, with a log-adjusted adjacency
prior log(ϵ+ Ât(i, j)) scaled by a tunable coefficient γ. This design encourages the model to attend
more to neighbors with strong structural correlation in Ât, while still preserving flexibility through
content-based attention. The aggregated representation ht

i therefore captures both feature-driven
and structure-aware signals, enabling more faithful modeling of graph evolution in dynamic traffic
flow forecasting.

4.2 GRAPH EVOLUTION-AWARE MASKED PRE-TRAINING

Patch Embedding with Spatiotemporal Structure Preservation Given an input sequence
X′

t:t+k−1 ∈ RN×K×C , we employ hierarchical 2D convolutions to extract multi-scale represen-
tations:

X(l)
p = Conv2D(l)(X′) ∈ RN×Pl×dl , l = 1, . . . , L, (11)

5
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where Pl is the number of patches at level l and dl the embedding dimension. To preserve spatiotem-
poral positions, we augment embeddings as

Z(l)
p = X(l)

p +P
(l)
spatial ⊗P

(l)
temporal +E

(l)
scale, (12)

where P
(l)
spatial ∈ RN×dl and P

(l)
temporal ∈ RPl×dl encode positional priors, and E

(l)
scale captures hierar-

chical level.

Adaptive Masking Strategy with Graph-Aware Constraints Instead of uniform masking, we
design a graph-aware stochastic masking scheme that incorporates structural priors:

Mij ∼ Bernoulli
(
ρ · exp

(
− γD(i, j)

))
, (13)

where D(i, j) denotes graph-based distance, γ controls decay, and ρ is the base mask ratio (sched-
uled by curriculum rs). This encourages masking tokens from structurally correlated regions, forc-
ing the model to leverage graph evolution for reconstruction.

4.2.1 REGULARIZED GRAPH EVOLUTION OBJECTIVE

To prevent the learned dynamic adjacency Ât from overfitting, we constrain it with multiple regu-
larizers:

Lgraph = λevoLevo + λsp∥Ât∥1 + λstr∥Ât −Astatic∥2F , (14)

where Levo enforces temporal smoothness across Ât, the ℓ1 term encourages sparsity, and the Frobe-
nius penalty anchors the dynamic graph to a static prior Astatic.

Pre-training Loss with Structural Alignment The overall pre-training loss consists of reconstruc-
tion, structural alignment, and regularization terms. For each masked window {Xt}τ+k−1

t=τ , with
masks {Mt}, we reconstruct hidden tokens:

Lrec =

τ+k−1∑
t=τ

∥∥(1−Mt)⊙Xt − X̂t

∥∥
1
, (15)

Lstr =

τ+k−1∑
t=τ

∥∥Ât − StopGrad
(
Gpseudo

t

)∥∥2
F
, Gpseudo

t (i, j) ∝ exp
(
− ∥xi,t−xj,t∥2

2

τg

)
, (16)

where Gpseudo
t is a pseudo-affinity graph computed only from visible tokens to avoid leakage.

The final pre-training objective is:

Lpre = Lrec + λstr Lstr + λsp
∑
t

∥Ât∥1 + λtv
∑
t

∥Ât − Ât−1∥2F . (17)

This objective enforces that reconstructions rely on evolving spatial structures rather than static
correlations, while regularization ensures sparsity, smoothness, and structural alignment.

4.3 UNIFIED FINE-TUNING PARADIGM

GEMFlow enables seamless integration with diverse spatiotemporal predictors by providing graph-
evolution-aware representations that complement downstream hidden states. Specifically, we adopt
GWNet Wu et al. (2019) as a representative backbone due to its strong performance, while also
validating generality on DCRNN Li et al. (2018), MTGNN Wu et al. (2020), STID Shao et al.
(2022), and STAEformer Liu et al. (2023). During fine-tuning, we input long-range sequences of
Tlong steps into the pre-trained GEMFlow encoder, obtaining the representation Ẑ. To align with
the forecasting horizon, the last P patches are truncated and reshaped into Z′ ∈ RN×kD. These
graph-evolution-aware embeddings are fused with the hidden states of the predictor (e.g., GWNet)
through a lightweight MLP, producing the prediction representation Ŷ ∈ RTf×N×C . Finally, given
the ground truth Y ∈ RTf×N×C , the regression objective is defined as:

Lregression =
1

TfNC

Tf∑
j=1

N∑
i=1

C∑
k=1

∣∣∣Ŷijk − Yijk

∣∣∣ , (18)

which enforces accurate forecasting while verifying that GEMFlow representations can universally
enhance heterogeneous downstream architectures.

6
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5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Datasets.

To evaluate the effectiveness of our method, we conducted experiments on four public datasets from
the Performance Measurement System (PeMS) Cao et al. (2020). PEMS03, PEMS04, PEMS07, and
PEMS08 are traffic flow datasets collected by CalTrans PeMS Song et al. (2020).

Figure 3: Statistics of datasets.

Datasets #Sensors #Time Steps #Time Interval
PEMS03 358 26208 5min
PEMS04 307 16992 5min
PEMS07 883 28224 5min
PEMS08 170 17856 5min

The statistical information is summarized in Ta-
ble 3. The datasets cover different geograph-
ical areas and time periods, providing a com-
prehensive testbed for evaluating spatiotempo-
ral forecasting models. PEMS03 contains data
from 358 sensors over 26,208 time steps, while
PEMS04 includes 307 sensors with 16,992 ob-
servations. PEMS07 is the largest dataset
with 883 sensors and 28,224 time steps, and
PEMS08 consists of 170 sensors with 17,856
recordings. All datasets use a 5-minute time interval, ensuring consistent temporal resolution across
experiments.

This diverse set of datasets allows us to thoroughly assess the scalability and generalization capa-
bility of our proposed method under various conditions, including different network sizes, temporal
durations, and geographical distributions. Baselines. We compare GEMFlow with baselines, includ-
ing Transformer Vaswani et al. (2017), DCRNN Li et al. (2018), STGCN Yu et al. (2018), ASTGCN
Guo et al. (2019), GWNet Wu et al. (2019), STSGCN Song et al. (2020), STFGNN Li & Zhu (2021),
STGODE Fang et al. (2021), DSTAGNN Yu et al. (2018), ST-WA Cirstea et al. (2022), ASTGNN
Guo et al. (2022), EnhanceNet Cirstea et al. (2021), AGCRN Bai et al. (2020), Z-GCNETs Chen
et al. (2021), STEP Shao et al. (2022), PDFormer Jiang et al. (2023a), STAEformer Liu et al. (2023)
and STD-MAE Gao et al. (2024).
Settings. We divide the PEMS03, PEMS04, PEMS07, and PEMS08 datasets into training, valida-
tion, and test sets according to a 6:2:2 ratio according to the previous baselines Song et al. (2020);
Li & Zhu (2021); Fang et al. (2021); Jiang et al. (2023a); Guo et al. (2019). In the pre-training
phase, we followed the setup Gao et al. (2024) and set the long time series of the four datasets as
864 time steps, respectively. The output length of forcasting is 12. The encoder have 2 GNN layers
and 4 transformer layers while the decoder have 2 GNN layers and 1 transformer layer. The number
of multi-attention heads in transformer layer is set to 4. We use a patch size L of 12 to align with
the forecasting input.The hidden dimension of the latent representations of GNNs and TSFormer
d is set to 96 and 32, respectively. The masking ratio r is set to 0.25. The loss function is mean
absolute error (MAE). For evaluation, we use MAE, root mean squared error (RMSE), and mean ab-
solute percentage error (MAPE(%)). (Our environment: CPU: Intel(R) Xeon(R) Silver 4210 CPU @
2.20GHz, GPU: NVIDIA RTX 4090@24GB, Memory: 128GB. The implementation of our model
and all baselines are based on Pytorch 1.9.0 and Python 3.9)

5.2 MAIN RESULTS

Across the PEMS03, PEMS04, PEMS07, and PEMS08 datasets, our proposed GEMFlow frame-
work consistently achieves superior performance over a range of state-of-the-art baseline models,
as presented in Table 1. The baseline results are directly taken from the original literature, which is
widely cited and recognized within the spatiotemporal forecasting community, thereby ensuring the
fairness and credibility of the comparison.GEMFlow demonstrates substantial improvements across
all evaluation metrics, including MAE, RMSE, and MAPE, underscoring its robustness and gener-
alization capability in modeling complex spatiotemporal dependencies. The consistent performance
gains affirm GEMFlow’s ability to capture both spatial and temporal structures more effectively than
traditional methods. Notably, models that integrate spatiotemporal representations—such as GEM-
Flow—consistently outperform conventional time series models, owing to their enhanced capacity
to learn intricate interactions across both spatial and temporal dimensions.

7
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Table 1: Performance comparison on four datasets.

Model PEMS03 PEMS04 PEMS07 PEMS08
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Transformer 17.50 30.24 16.80 23.83 37.19 15.57 26.80 42.95 12.11 18.52 28.68 13.66
DCRNN 18.18 30.31 18.91 24.70 38.12 17.12 25.30 38.58 11.66 17.86 27.83 11.45
STGCN 17.49 30.12 17.15 22.70 35.55 14.59 25.38 38.78 11.08 18.02 27.83 11.40

ASTGCN 17.69 29.66 19.40 22.93 35.22 16.56 28.05 42.57 13.92 18.61 28.16 13.08
GWNet 19.85 32.94 19.31 25.45 39.70 17.29 26.85 42.78 12.12 19.13 31.05 12.68

STSGCN 17.48 29.21 16.78 21.19 33.65 13.90 24.26 39.03 10.21 17.13 26.80 10.96
STFGNN 16.77 28.34 16.30 19.83 31.88 13.02 22.07 35.80 9.21 16.64 26.22 10.60
STGODE 16.50 27.84 16.69 20.84 32.82 13.77 22.99 37.54 10.14 16.81 25.97 10.62

DSTAGNN 15.57 27.21 14.68 19.30 31.46 12.70 21.42 34.51 9.01 15.67 24.77 9.94
ST-WA 15.17 26.63 15.83 19.06 31.02 12.52 20.74 34.05 8.77 15.41 24.62 9.94

ASTGNN 15.07 26.88 15.80 19.26 31.16 12.65 22.23 35.95 9.25 15.98 25.67 9.97
EnhanceNet 16.05 28.33 15.83 20.44 32.37 13.58 21.87 35.57 9.13 16.33 25.46 10.39

AGCRN 16.06 28.49 15.85 19.83 32.26 12.97 21.29 35.12 8.97 15.95 25.22 10.09
Z-GCNETs 16.64 28.15 16.39 19.50 31.61 12.78 21.77 35.17 9.25 15.76 25.11 10.01

STNorm 15.32 25.93 14.37 19.21 32.30 13.05 20.59 34.86 8.61 15.39 24.80 9.91
STEP 14.22 24.55 14.42 18.20 29.71 12.48 19.32 32.19 8.12 14.00 23.41 9.50

PDFormer 14.94 25.39 15.82 18.32 29.97 12.10 19.83 32.87 8.53 13.58 23.51 9.05
STAEformer 15.35 27.55 15.18 18.22 30.18 11.98 19.14 32.60 8.01 13.46 23.25 8.88
STD-MAE 13.80 24.43 13.96 17.80 29.25 11.97 18.65 31.44 7.84 13.44 22.47 8.76

GEMFlow 13.61 23.91 13.10 16.73 28.39 11.10 17.78 30.78 7.24 12.97 22.13 7.91

5.3 ABLATION STUDY

Table 2: Performance drop (↑: worse performance) of framework ablation.

Variants Metric PEMS03 PEMS04 PEMS07 PEMS08

NoDAM
MAE +1.37 +1.48 +1.33 +1.13

RMSE +1.20 +1.52 +1.33 +1.74
MAPE +1.77 +2.07 +1.75 +1.34

NoGNN
MAE +1.50 +2.65 +1.12 +1.15

RMSE +2.81 +2.42 +3.07 +2.59
MAPE +2.21 +4.83 +3.24 +2.47

NoM
MAE +2.01 +1.66 +1.01 +1.40

RMSE +1.96 +2.54 +2.50 +2.68
MAPE +2.81 +3.77 +2.93 +2.40

Framework Ablation. To assess the contribution of each component in GEMFlow, we design
three ablated variants. (1) NoDAM. Without utilizing dyanamic adjacency matrix. (2) NoGNN.
Replaceing GNN module with MLP. (3) NoM. Without applying masking during spatiotemporal
pre-training. As shown in Table 2, removing the dynamic adjacency matrix results in a clear perfor-
mance drop, demonstrating the importance of modeling evolving spatial dependencies. Replacing
the GNN with an MLP leads to further degradation, confirming the GNN’s strength in capturing
complex spatiotemporal structures. Without the masking mechanism, the model fails to learn rich
representations, significantly weakening downstream performance. Overall, GEMFlow achieves the
best results when all components are jointly applied, validating the complementary roles of dynamic
graph modeling, GNN-based representation learning, and masked pre-training.

5.4 HYPER-PARAMETER ANALYSIS

In our hyper-parameter study, we investigated the impact of pre-training length k and mask ratio on
GEMFlow’s performance. As shown in Figure 4, setting k = 864 yields the best results, offering
a good trade-off between contextual richness and training cost. This length provides sufficient tem-
poral scope to capture complex spatiotemporal patterns. Importantly, GEMFlow remains robust to
variations in k, maintaining strong performance even with shorter or longer sequences.

We also evaluated different mask ratios, as shown in Figure 5. A ratio of 0.25 was found opti-
mal—masking enough information to encourage meaningful representation learning, without overly
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Figure 4: Hyper-parameter study on pre-training length k
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Figure 5: Hyper-parameter study on mask ratio r

5.5 EFFICIENCY ANALYSIS

Table 3: Efficiency comparison with pre-training
models.

Datasets STEP STD-MAE GEMFlow

PEMS03 108ms 50ms 31ms
PEMS04 73ms 34ms 27ms
PEMS07 516ms 142ms 99ms
PEMS08 62ms 48ms 35ms

As shown in Table 3, GEMFlow significantly
reduces computational time compared to other
pre-training models (STEP and STD-MAE)
across all datasets. This efficiency stems from
GEMFlow’s adaptive graph neural network and
optimized pre-training strategy, which enable
faster convergence and more efficient resource
use. Achieving superior speed while main-
taining high accuracy makes GEMFlow par-
ticularly suitable for large-scale spatiotemporal
forecasting tasks.

6 CONCLUSION

This paper presents GEMFlow, an Adaptive Graph Neural Network enhanced pre-training frame-
work tailored for spatiotemporal forecasting. By integrating dynamic adjacency matrices with
transformer-based architectures, GEMFlow effectively captures complex spatial and temporal de-
pendencies inherent in spatiotemporal data. Extensive experiments on multiple benchmark datasets
demonstrate that GEMFlow consistently outperforms existing methods, showcasing strong robust-
ness and generalization across diverse downstream tasks. Our framework not only advances the state
of the art but also establishes a new benchmark for versatile and efficient spatiotemporal modeling.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: BERT pre-training of image transformers.
In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
p-BhZSz59o4.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, and Qi Zhang. Spectral temporal graph neural network for multivari-
ate time-series forecasting. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

Lingxiao Cao, Bin Wang, Guiyuan Jiang, Yanwei Yu, and Junyu Dong. Spatiotemporal-aware
trend-seasonality decomposition network for traffic flow forecasting. In Toby Walsh, Julie Shah,
and Zico Kolter (eds.), AAAI-25, Sponsored by the Association for the Advancement of Arti-
ficial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA, pp. 11463–11471.
AAAI Press, 2025. doi: 10.1609/AAAI.V39I11.33247. URL https://doi.org/10.1609/
aaai.v39i11.33247.

Yuzhou Chen, Ignacio Segovia-Dominguez, and Yulia R. Gel. Z-gcnets: Time zigzags at graph
convolutional networks for time series forecasting. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pp. 1684–1694. PMLR, 2021.

Razvan-Gabriel Cirstea, Tung Kieu, Chenjuan Guo, Bin Yang, and Sinno Jialin Pan. Enhancenet:
Plugin neural networks for enhancing correlated time series forecasting. In 37th IEEE Interna-
tional Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021, pp.
1739–1750. IEEE, 2021.

Razvan-Gabriel Cirstea, Bin Yang, Chenjuan Guo, Tung Kieu, and Shirui Pan. Towards spatio-
temporal aware traffic time series forecasting. In 38th IEEE International Conference on Data
Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022, pp. 2900–2913. IEEE, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pp. 4171–4186. Association for Computational Linguistics, 2019.

Zheng Dong, Renhe Jiang, Haotian Gao, Hangchen Liu, Jinliang Deng, Qingsong Wen, and
Xuan Song. Heterogeneity-informed meta-parameter learning for spatiotemporal time series
forecasting. In Ricardo Baeza-Yates and Francesco Bonchi (eds.), Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024, Barcelona,
Spain, August 25-29, 2024, pp. 631–641. ACM, 2024. doi: 10.1145/3637528.3671961. URL
https://doi.org/10.1145/3637528.3671961.

Yuchen Fang, Yanjun Qin, Haiyong Luo, Fang Zhao, Bingbing Xu, Liang Zeng, and Chenxing
Wang. When spatio-temporal meet wavelets: Disentangled traffic forecasting via efficient spectral
graph attention networks. In 39th IEEE International Conference on Data Engineering, ICDE
2023, Anaheim, CA, USA, April 3-7, 2023, pp. 517–529. IEEE, 2023. doi: 10.1109/ICDE55515.
2023.00046. URL https://doi.org/10.1109/ICDE55515.2023.00046.

Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ODE networks
for traffic flow forecasting. In KDD ’21: The 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021, pp. 364–373. ACM,
2021.

10

https://openreview.net/forum?id=p-BhZSz59o4
https://openreview.net/forum?id=p-BhZSz59o4
https://doi.org/10.1609/aaai.v39i11.33247
https://doi.org/10.1609/aaai.v39i11.33247
https://doi.org/10.1145/3637528.3671961
https://doi.org/10.1109/ICDE55515.2023.00046


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haotian Gao, Renhe Jiang, Zheng Dong, Jinliang Deng, Yuxin Ma, and Xuan Song. Spatial-
temporal-decoupled masked pre-training for spatiotemporal forecasting. In Proceedings of the
33rd International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju Island, South
Korea, August 3-9, 2024, 2024.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp.
922–929. AAAI Press, 2019.

Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learning dynamics and
heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data
Eng., 34(11):5415–5428, 2022.

Jindong Han, Weijia Zhang, Hao Liu, Tao Tao, Naiqiang Tan, and Hui Xiong. Bigst: Linear
complexity spatio-temporal graph neural network for traffic forecasting on large-scale road net-
works. Proc. VLDB Endow., 17(5):1081–1090, 2024. doi: 10.14778/3641204.3641217. URL
https://www.vldb.org/pvldb/vol17/p1081-han.pdf.

Liangzhe Han, Bowen Du, Leilei Sun, Yanjie Fu, Yisheng Lv, and Hui Xiong. Dynamic and multi-
faceted spatio-temporal deep learning for traffic speed forecasting. In KDD ’21: The 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, Au-
gust 14-18, 2021, pp. 547–555. ACM, 2021.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked
autoencoders are scalable vision learners. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988.
IEEE, 2022.

Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-
aware dynamic long-range transformer for traffic flow prediction. In Thirty-Seventh AAAI Con-
ference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pp. 4365–4373. AAAI
Press, 2023a.

Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi, Xuan
Song, Shintaro Fukushima, and Toyotaro Suzumura. Spatio-temporal meta-graph learning for
traffic forecasting. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023,
Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thir-
teenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington,
DC, USA, February 7-14, 2023, pp. 8078–8086. AAAI Press, 2023b.

Weiyang Kong, Ziyu Guo, and Yubao Liu. Spatio-temporal pivotal graph neural networks for
traffic flow forecasting. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan
(eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Con-
ference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Van-
couver, Canada, pp. 8627–8635. AAAI Press, 2024. doi: 10.1609/AAAI.V38I8.28707. URL
https://doi.org/10.1609/aaai.v38i8.28707.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. ALBERT: A lite BERT for self-supervised learning of language representations. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020.

Mengzhang Li and Zhanxing Zhu. Spatial-temporal fusion graph neural networks for traffic flow
forecasting. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9,
2021, pp. 4189–4196. AAAI Press, 2021.

11

https://www.vldb.org/pvldb/vol17/p1081-han.pdf
https://doi.org/10.1609/aaai.v38i8.28707


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net, 2018.

Yujie Li, Zezhi Shao, Yongjun Xu, Qiang Qiu, Zhaogang Cao, and Fei Wang. Dynamic frequency
domain graph convolutional network for traffic forecasting. In IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2024, Seoul, Republic of Korea, April 14-19,
2024, pp. 5245–5249. IEEE, 2024. doi: 10.1109/ICASSP48485.2024.10446144. URL https:
//doi.org/10.1109/ICASSP48485.2024.10446144.

Zhonghang Li, Lianghao Xia, Yong Xu, and Chao Huang. GPT-ST: generative pre-training of
spatio-temporal graph neural networks. In Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

Hangchen Liu, Zheng Dong, Renhe Jiang, Jiewen Deng, Jinliang Deng, Quanjun Chen, and Xuan
Song. Spatio-temporal adaptive embedding makes vanilla transformer SOTA for traffic forecast-
ing. In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, CIKM 2023, Birmingham, United Kingdom, October 21-25, 2023, pp. 4125–4129.
ACM, 2023.

Zezhi Shao, Zhao Zhang, Fei Wang, and Yongjun Xu. Pre-training enhanced spatial-temporal graph
neural network for multivariate time series forecasting. In KDD ’22: The 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18,
2022, pp. 1567–1577. ACM, 2022.

Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous graph
convolutional networks: A new framework for spatial-temporal network data forecasting. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020, pp. 914–921. AAAI Press, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for
deep spatial-temporal graph modeling. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 1907–
1913. ijcai.org, 2019.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Ra-
jesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (eds.), KDD ’20: The 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, Au-
gust 23-27, 2020, pp. 753–763. ACM, 2020. doi: 10.1145/3394486.3403118. URL https:
//doi.org/10.1145/3394486.3403118.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pp. 3634–3640. ijcai.org, 2018.

A APPENDIX

You may include other additional sections here.

12

https://doi.org/10.1109/ICASSP48485.2024.10446144
https://doi.org/10.1109/ICASSP48485.2024.10446144
https://doi.org/10.1145/3394486.3403118
https://doi.org/10.1145/3394486.3403118

	Introduction
	Related Work
	Traffic Flow Forecasting
	Spatiotemporal-Aware Masked Pre-training

	Preliminaries
	Methodology
	Dynamic Graph Evolution Modeling
	Graph Evolution-Aware Masked Pre-training
	Regularized Graph Evolution Objective

	Unified Fine-tuning Paradigm

	Experiment
	Experimental Setups
	Main Results
	Ablation Study
	Hyper-parameter Analysis
	Efficiency Analysis

	Conclusion
	Appendix

