
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPEN SET OPPONENT MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

In multi-agent systems, opponent modeling aims to reduce environmental uncer-
tainty by modeling other agents. Existing research has utilized opponent infor-
mation to enhance decision-making capabilities based on various methodologies.
However, they generally lack good generalization when opponents adopt an open
set of policies. In particular, no work has managed to effectively identify never-
before-seen opponents. To address these issues, we propose an end-to-end Open
Set Opponent Modeling (OSOM) training approach, which for the first time en-
ables explicit identification and response to open set opponents. First, OSOM
overcomes the challenges of partial observability by distilling opponent policies
into information encodings of controlled agent through representation learning.
Second, using randomly generated opponent type embeddings as prompts, OSOM
achieves identification of opponent types with variable numbers and semantics by
maximizing the probability of selecting the true opponent type embedding via con-
trastive learning. Finally, with the aggregated opponent type embeddings selected
from recent history as context, OSOM learns to best respond to sampled oppo-
nents through online reinforcement learning. At test time, OSOM only needs to
randomly generate opponent type embeddings as prompts again to achieve effec-
tive on-the-fly identification and response to non-stationary open set opponents.
Extensive controlled experiments in competitive, cooperative, and mixed environ-
ments quantitatively validate the significant advantages of OSOM over existing
approaches in terms of identification accuracy and response performance.

1 INTRODUCTION

Train Set

Eval Set 1

Eval Set 2

Train Set
+ Eval Set 1

1 2 3 4 5 6 7 8

Figure 1: An illustration of Open Set Opponent
(OSO) setting. The number and semantics of op-
ponent types in the test opponent set Πtest can dif-
fer significantly from those in train opponent set
Πtrain. In this example, Πtrain adopts ‘Train Set’,
while Πtest may be ‘Eval Set 1’, ‘Eval Set 2’, or
‘Train Set + Eval Set 1’. OSO poses a formidable
challenge for explicit opponent identification.

Opponent Modeling (OM) is a long-standing
and far-reaching research topic that aims to de-
velop a self-agent1 capable of modeling be-
haviors, goals, intentions, and other properties
about other agents (collectively referred to as
opponents) within a multi-agent system. The
purpose of such modeling is to allow the self-
agent to flexibly adapt to opponents, thereby
reducing its environmental uncertainty and en-
hancing its decision-making abilities (He et al.,
2016; Foerster et al., 2018a; Albrecht & Stone,
2018; Nashed & Zilberstein, 2022; Fu et al.,
2022; Yu et al., 2022; Ma et al., 2024; Jing
et al., 2024a; 2025b). Existing research has uti-
lized various methodologies, such as Repre-
sentation Learning (Hong et al., 2018; Grover
et al., 2018; Papoudakis et al., 2021), Bayesian
Inference (Hernandez-Leal et al., 2016; Zheng
et al., 2018; DiGiovanni & Tewari, 2021), and Meta-learning (Zintgraf et al., 2021; Al-Shedivat
et al., 2018; Kim et al., 2021), to model opponents. Most OM approaches are typically first trained
on a fixed training set of opponent policies Πtrain and then benchmarked on a given testing set of
opponent policies Πtest to evaluate their online adaptation abilities (Jing et al., 2024b; 2025a).

1We refer to the agent under our control in the multi-agent environment as ‘self-agent’.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

However, when the set of all possible policies that opponents can adopt is variable, which we refer
to as the Open Set Opponents (OSOs) setting, existing approaches generally exhibit poor gener-
alization. We illustrate the OSO setting in Fig. 1, where different colors denote distinct opponent
types. The challenge of OSOs setting is that the opponent types in training and testing can differ
significantly in number and semantics. In particular, no work has yet managed to achieve effective
identification of opponents that were never seen during training. Existing work either assumes that
the opponents in training and testing have very similar policies or implicitly circumvents identi-
fication, focusing solely on responding to the opponents. We argue that this lack of identification
for unseen opponents largely limits the adaptability of OM approaches. On one hand, a self-agent
that can only adapt implicitly often employs a ‘blurred’ response policy for all potential opponents,
making it difficult to precisely exploit the specific opponent it faces. On the other hand, when fac-
ing opponents whose policies may change, a self-agent who cannot identify has difficulty quickly
detecting shifts in opponent behavior patterns, which leads to low response efficiency.

In this work, we propose a novel Open Set Opponent Modeling (OSOM) training approach to ad-
dress above issues. OSOM is trained end-to-end using the optimization objectives of Representation
Learning, Contrastive Learning (CL) (Jaiswal et al., 2020), and Online Reinforcement Learning
(RL), which for the first time achieves explicit identification and effective response to OSOs.

Without loss of generality, OM typically assumes that its environment is partially-observable. This
means that during testing, the self-agent cannot immediately observe information about opponents.
To mitigate the challenges of partial observability, we introduce a Representation Learning objective
that uses an additional decoder to predict opponent observations and actions, thereby distilling the
opponent’s policy into a hidden state encoded from the self-agent’s observations and actions.

To achieve explicit identification of OSOs, we further propose a CL-based training procedure. Before
each iteration, we first sample K opponent policies from a large and diverse Train Set, and then
randomly generateK Opponent Type Embeddings (OTEs) to characterize theseK opponent types.
Next, we use these OTEs as prompts for the input of model, and autoregressively output a predicted
OTE at each timestep. Finally, we use a CL objective during updating to maximize the similarity
between the predicted OTEs and the ground truth ones. This procedure makes it possible to identify
opponent types that are variable in both number and semantics, and avoids the limitations of using a
classifier (Ma et al., 2024), which can only identify a fixed number and semantics of opponents.

Building upon explicit identification, how to effectively respond to opponents is also crucial. Specif-
ically, we first aggregate all OTEs selected from recent episodes to obtain a compact semantic rep-
resentation of the opponent. Next, using this aggregated representation as context, we directly train
the self-agent through an online RL objective to learn the best response to the sampled opponent.

By integrating the three objectives, OSOM iteratively samples opponents from the Train Set to train
a Transformer-based model end-to-end. Recent research has shown that Transformers pre-trained
on high-quality data for decision-making tasks exhibit in-context learning abilities (Lee et al., 2023;
Lin et al., 2024). Our model design adopts this idea, which enables the opponent identification and
response capabilities learned by OSOM during training to generalize well to testing. Once training is
complete, when facing a set of opponents with unseen types in terms of both number and semantics,
we only need to randomly generate new OTEs as prompts. This allows OSOM to achieve effective
on-the-fly identification and response to non-stationary OSOs as it interacts. Intuitively, OSOM first
identifies the opponent based on the self-agent’s information, which contains opponent policy se-
mantic. It then summarizes the identification results from a recent period and finally generates the
most suitable response according to the determined opponent’s identity.

In extensive comparative and ablation experiments across competitive, cooperative, and mixed en-
vironments, our approach consistently and significantly outperforms representative OM approaches
in terms of both identification accuracy and response performance, fully validating OSOM’s effec-
tiveness against OSO. To our best knowledge, OSOM is the first to achieve explicit identification of
unseen opponent policies during testing, which prior work has been unable to accomplish.

2 PRELIMINARIES

We use an n-agent Partially-Observable Stochastic Game (POSG) (Hansen et al., 2004; Yang &
Wang, 2020) ⟨S, {Oi}ni=1, {Ai}ni=1,P, {Ri}ni=1, {Ωi}ni=1, T, γ⟩ to formalize the multi-agent envi-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ronment. Here, S denotes the state space.Oi is the observation space of agent i ∈ [n],O =
∏n
i=1Oi

is the joint observation space. Ai denotes the action space for agent i, A =
∏n
i=1Ai is the joint

action space. P : S ×A×S → [0, 1] denotes the transition probabilities. Ri : S ×A → R denotes
the reward function of agent i. Ωi : S ×A×Oi → [0, 1] denotes the agent i’s observation function.
T is the horizon for each game episode. γ is the discount factor.

In line with the tradition in OM, we mark the agent under our control, i.e., the self-agent, with the
superscript 1, while the other n− 1 agents, regarded as opponents, are marked with the superscript
−1. The joint policy of opponents is denoted as π−1(a−1|o−1) =

∏
j ̸=1 π

j(aj |oj), where a−1 is
the joint actions of opponents and o−1 is the joint observations of opponents.

Let the opponent’s trajectory at timestep t be denoted as τ−1t = (o−10 , a−10 , r−10 , . . . , o−1t , a−1t , r−1t),
and his complete trajectory be τ−1 := τ−1T−1+(o−1T). At any episode h and any timestep t, opponent
historical trajectories T−1t(h) := (τ−1(0) , . . . , τ

−1
(h−1)) is available to the self-agent.

In OM, the policy of the self-agent can be typically represented as π1(a1|o1, D), which adjusts
based on the opponent information data D (Jing et al., 2024b; 2025a). The data D can either be
directly derived from a subset of T−1 or obtained by learning a representation from T−1. Under the
OSO setting, the number and semantics of opponent types contained within both the training set of
opponent policies Πtrain and the testing set of opponent policies Πtest are variable. Leveraging the
training process, the objective of the self-agent is to maximize its expected return (i.e., cumulative
discounted reward) during testing, i.e., maxπ1 Eπ1←Train(Πtrain),π−1∼Πtest

[∑T−1
t=0 γtR1

t

]
.

To supplement more background knowledge, we provide a comprehensive review of related work
concerning Opponent Modeling, Open Set Learning, and RL with Transformers in Sec. A.

3 METHODOLOGY

In this work, we propose an Open Set Opponent Modeling (OSOM) training approach, which trains
a Transformer-based model end-to-end, achieving explicit identification and effective response to
Open Set Opponents (OSOs). Specifically, the OSO setting presents three main challenges: (1) How
to handle the partial observability that is inherent in multi-agent environments? (2) How to achieve
explicit identification of a variable set of opponent policies? (3) How to effectively respond to op-
ponents based on historical identification results? In this section, we will sequentially elaborate on
how OSOM addresses these challenges. We provide an overview of the OSOM’s training procedure
in Fig. 2, and supplement this with the corresponding algorithmic pseudocode in Sec. B. Although
we conceptually decompose OSOM into three components to address the three challenges of the
OSO setting, in implementation it is a single Transformer-based model: all modules share param-
eters and are trained in one end-to-end optimization loop with three coupled objectives, rather than
a fragile three-stage pipeline.

3.1 OPPONENT POLICY DISTILLATION WITH REPRESENTATION LEARNING

Consistent with the POSG formalization in Sec. 2, multi-agent environments are typically partially-
observable. Under these conditions, the self-agent’s inability to instantaneously access the opponent
information during testing significantly impedes the effective distinction of different opponent types.
However, it is a reasonable assumption that opponent data is often accessible during training (Pa-
poudakis et al., 2021; Gronauer & Diepold, 2022). This corresponds to a standard Centralized-
Training-with-Decentralized-Execution (CTDE) assumption: during training we may log opponents’
trajectories, but at test time OSOM only observes its own local information. Consequently, we can
manage to distill the opponent policy into the self-agent’s representation, thereby enabling the self-
agent to more effectively distinguish various opponent policies solely through its own observation-
action sequence.

Enlightened by this, we propose to distill the opponent policy into the self-agent’s information en-
coding via Representation Learning. We employ an encoder f to encode the self-agent’s observation-
action tuple, yielding a corresponding d-dimensional latent state e = f(o1, a1) ∈ Rd. Without loss
of generality, assuming a continuous observation space and a discrete action space, we introduce
an auxiliary decoder g that uses e as input to predict the opponent’s observation-action tuple at the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Opponent
Responder

(MLP)

Context Aggregator (Average Pooling)

Opponent Identifier (Transformer Encoder)

 similarity similarity

Current Episode (with Opponent)

Randomly Generate
Opponent Type

Embeddings as Prompt (1)
(2)

(3)

(4)

(5)

Previous Episodes (Episodes with , Episodes with)

 similarity

Figure 2: Training procedure of OSOM. Taking timestep 1 of the current episode against the op-
ponent policy o5 as an example, we illustrate the five steps of OSOM’s end-to-end training: (1)
Opponent Policy Distillation (Sec. 3.1): Distill the opponent policy into the latent state e of the
self-agent’s observation-action encoding via a Representation Learning objective that predicts the
opponent’s observation and action. (2) Embedding Generation and Prompting (Sec. 3.2): Sample
K distinct opponent policies {π−1,k}Kk=1 from the Train Set, randomly generate K corresponding
OTEs {z−1,k}Kk=1, and use this set as the prompt for the input sequence. (3) Explicit Identification
(Sec. 3.2): Use the Opponent Identifier to output the predicted OTE ẑ, maximizing its similarity
with the ground truth OTE via a CL objective. (4) Context Aggregation (Sec. 3.3): Employ the Con-
text Aggregator to aggregate all historically selected OTEs from the previous C episodes, yielding
the compact semantic representation x. (5) Best Response Learning (Sec. 3.3): Use the Opponent
Responder to output the self-agent’s action, using the self-agent’s observation as input along with
x as context, and employ an online RL objective to learn the best response to the o5.

same timestep, specifically o−1 ← gobs(e), a−1 ← gact(·|e). Supposing that during training, we
consistently sample K opponent policies Πtrain = {π−1,k}Kk=1 from a large and diverse Train Set
(comprising more than K policies), the objective function can be written as:

Jdistill = Eπ−1∈Πtrain

[
1

T

T−1∑
t=0

(
−(gobs(et)− o−1t)2 + log gact(a−1t |et)

)]
. (1)

Where et = f(o1t , a
1
t). This method ensures that, even when opponent information is inaccessible

during testing, the trained encoder can utilize the self-agent’s information to implicitly infer and
incorporate the opponent policy details, thus mitigating the challenges posed by partial observability.

In practice, the distillation term Jdistill is an auxiliary objective: in the ablation ‘OSOM w/o Distill
Loss’ we set its coefficient to 0, remove all opponent trajectories from training, and still obtain a
functioning identification-and-response agent trained only with Jidentify and Jrespond (Sec. 4.2).

3.2 OPPONENT IDENTIFICATION WITH CONTRASTIVE LEARNING

In the domain of Contrastive Learning (CL) (Weng, 2021), work such as CLIP (Radford et al., 2021)
has demonstrated the feasibility of text classification for images unseen during training by maximiz-
ing the similarity between image and text embeddings that share the same semantics. Motivated by
this, we introduce a novel training procedure based on CL that enables the explicit identification of
opponent types, where both the number and semantics of these types can be variable.

Before each training iteration, we first sample K opponent policies Πtrain from the Train Set men-
tioned in Sec. 3.1. Subsequently, we randomly generate K corresponding d-dimensional Opponent
Type Embeddings (OTEs) Z train = {z−1,k ∈ Rd}Kk=1 to uniquely characterize these K distinct op-
ponent policies. The core intuition behind using random OTEs is to eliminate any prior knowledge
regarding the structural space of the opponent types within our model. This design choice is mo-
tivated by the observation that employing learnable OTEs becomes impractical when encountering
novel opponent types unseen during training. A new opponent type would lack a pre-trained embed-
ding, and assigning an arbitrary embedding could introduce severe domain shift because the model
would be unable to identify it. The utilization of random OTEs ensures that the model does not

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

rely on extracting any information from the embedding itself, but rather on interpreting the context
provided by the historical interactions with the environment.

Furthermore, we encourage approximate pairwise orthogonality among the K OTEs by sampling
random unit vectors on the sphere and, when the embedding dimension d is at least K, optionally
applying Gram-Schmidt orthogonalization. This is inspired by Elhage et al. (2022); Ganesh et al.
(2023). The unit sphere standardizes the scale of the embeddings, and near-orthogonality makes it
easier for the model to adjust the probability assigned to each opponent type, since a predicted vector
ẑ can align strongly with one OTE without inadvertently aligning with others. This improves the
conditioning of the contrastive objective in Eq. (2) by sharpening the contrastive signal for OSOM;
when K > d, one can simply use random unit OTEs without enforcing exact orthogonality.

During the rollout process of training, we instantiate a Transformer-based model (Vaswani et al.,
2017), which we term the Opponent Identifier. This model utilizes the above K OTEs as a prompt
for the input sequence and, at each timestep, takes the latent state e of the self-agent’s observation
and action as input to autoregressively output a predicted OTE ẑ ∈ Rd. The inclusion of the se-
quence of all legal OTEs prior to the main input serves to prevent the model from lacking awareness
of the current structural space of opponent types. In addition, by directly outputting the embed-
ding ẑ instead of predicting a probability distribution over the opponent types, the model achieves
independence from both the number and the permutation order of the available opponent types.

During the update process of training, we employ an objective of CL to maximize the similarity
between the predicted OTE ẑ and the ground truth OTE z−1,j , while simultaneously minimizing the
similarity between ẑ and all other OTEs z−1,k ̸=j . Specifically, this objective can be formulated as:

Jidentify = Ez−1,j∈Z train

[
1

T

T−1∑
t=0

log
exp (ẑt · z−1,jt /κ)∑K
k=1 exp (ẑt · z

−1,k
t /κ)

]
. (2)

Where κ represents the temperature coefficient. This procedure draws inspiration from CL meth-
ods such as CLIP, InfoNCE (Oord et al., 2018), and SupCon (Khosla et al., 2020), bypassing the
limitation of traditional classifiers which can only identify opponent types with fixed numbers and
semantics (Sukthankar & Sycara, 2007; Iglesias et al., 2008; Bombini et al., 2010; Ma et al., 2024).
During the rollout processes of both training and testing, we probabilistically sample from all legal
OTEs as the selected OTE zsel according to the following probability distribution:

∀ l ∈ [K], P (z−1,l) = softmax(ẑ · z−1,l) = exp (ẑ · z−1,l)∑K
k=1 exp (ẑ · z−1,k)

. (3)

3.3 OPPONENT RESPONSE WITH ONLINE REINFORCEMENT LEARNING

Despite the importance of explicit opponent identification, the challenge of how to effectively re-
spond to the opponent based on the history of identification results is equally critical. Adhering to
the best practices of OM, we assume that the opponent during testing is both unknown and non-
stationary. Here, ‘unknown’ signifies that the opponent’s true policy is black-box and inaccessible.
‘Non-stationary’ indicates that the opponent may switch policies in some manner as the interaction
progresses. Under these conditions, relying solely on the most recent identification result or using
the entirety of the historical identification results could potentially lead to model confusion.

To address the above issues, we introduce a sliding window-based Context Aggregator to ag-
gregate the historically generated identification results. Assuming the current timestep is t in
episode h, we employ Average Pooling (Gholamalinezhad & Khosravi, 2020) to aggregate all
historically selected OTEs from the current episode up to t − 1 and the previous C episodes,
i.e., (zsel

0(h−C), . . . , z
sel
T−1(h−1), z

sel
0(h), . . . , z

sel
t−1(h)), yielding a compact semantic representation xt(h).

The manner in which we select the opponent type is detailed in Eq. (3). This aggregation allows us
to confine the identification results primarily to the current opponent, thereby mitigating interference
introduced by other potential opponents.

Subsequently, using the aggregated representation x as context, we propose an online RL (Li, 2017;
Schulman et al., 2017) objective to train an Opponent Responder that learns the best response
to the opponents. The resulting trained self-agent policy can be concisely denoted as π1(a1|o1, x).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Given the K sampled opponent policies Πtrain (same as in Sec. 3.1), the objective can be written as:

Jrespond = Eπ−1∼Πtrain,π1

[
T−1∑
t=0

γtR1
t

]
. (4)

The Opponent Responder is trained with a standard on-policy RL algorithm PPO (Schulman et al.,
2017), which provides a policy-gradient estimator of ∇Jrespond; in practice we optimize a PPO sur-
rogate objective jointly with the auxiliary losses rather than differentiating through the environment
dynamics. To summarize, OSOM iteratively samples opponents from the Train Set and end-to-end
trains a Transformer-based model. Its final optimization objective is:

maxα1Jdistill + α2Jidentify + α3Jrespond. (5)

Where α1, α2, α3 are tunable coefficients. Upon completion of training, when faced with an oppo-
nent whose policy is drawn from the set of M unknown policies Πtest = {π−1,m}Mm=1, OSOM only
needs to randomly generate M corresponding OTEs Z test = {z−1,m ∈ Rd}Mm=1 as a prompt. This
allows for effective on-the-fly identification and response to the non-stationary opponent as interac-
tions proceed. The testing procedure of OSOM is detailed in Sec. C. We adopt Transformer as the
backbone for our model, which further facilitates OSOM to generalize the learned identification and
response abilities from the training opponents to the testing opponents. This design choice is enlight-
ened by numerous studies demonstrating In-Context RL abilities of Transformer in decision-making
tasks (Wang et al., 2016; Duan et al., 2016; Laskin et al., 2023; Grigsby et al., 2023).

Crucially, the Responder never memorizes fixed semantics for individual OTE vectors. Because we
regenerate a fresh random OTE set whenever we sample a new opponent subset during training and
again at test time, the only stable semantics lie in the geometry of the codebook: for a given interac-
tion history, the Identifier learns to assign high similarity to exactly one OTE and low similarity to
the others, and the Responder learns to map the resulting aggregated context xt to a good response.
Re-sampling the OTE set at test time therefore corresponds to an orthogonal rotation of the label
space to which the jointly trained Identifier–Responder pair is invariant.

4 EXPERIMENTS

In this section, Sec. 4.1 provides detailed experimental setups. Sec. 4.2 poses a series of questions
and provides empirical results to answer them, with the aim of analyzing the effectiveness of OSOM.

4.1 EXPERIMENTAL SETUP

Environments. We consider three partially-observable environments widely used in MARL. For
further details of these environments, see Sec. D.

• Kuhn Poker (KP) (Hoehn et al., 2005; Kuhn, 2016): A two-player zero-sum (competitive) game
with a discrete state space. In KP, the self-agent’s objective is to maximize chip gain while mini-
mizing chip loss, with the opponent having the same objective. No player knows the other’s hand
until one player folds or both proceed to a showdown. KP encompasses the key challenges found
in real-world Poker, where strategic deception or conservatism must be learned.

• Partially-Observable Overcooked (POO) (Carroll et al., 2019; Ma et al., 2024): A two-player
cooperative game with a discrete state space. In POO, the self-agent aims to coordinate closely
with its partner to complete a series of sub-tasks and serve dishes. This version of POO introduces
partial observability and multiple recipes, requiring the self-agent to both infer the global state of
the kitchen from local observations and learn to deduce its partner’s recipe preferences.

• Predator-Prey with Watchtowers (PPW) (Lowe et al., 2017; Ma et al., 2024): A four-player
mixed-incentive game with a continuous state space. In PPW, the self-agent plays the role of a
predator, whose objective is to cooperate with its fellow predator to capture the two preys as many
times as possible. The challenge of PPW lies in the fact that predators can only gain momentary
global observation by actively touching watchtowers. Furthermore, the self-agent must accurately
model the movement preferences of every agent, both teammates and opponents.

Baselines. We select the following representative OM approaches as baselines. The training
recipes for all the OM approaches are supplemented in Sec. F.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

• PPO (Schulman et al., 2017): a non-recurrent agent that receives only the current self observation
as input (no cross-episode context and no opponent information), serving as a naive baseline.

• Generalist: A plain recurrent policy with access to cross-episode contexts. These contexts encom-
pass all of the self-agent’s historical observations and actions.

• LIAM (Papoudakis et al., 2021): Use the observations and actions of the self-agent to reconstruct
those of the opponent through an auto-encoder, thereby embedding the opponent policy into a
latent space to assist in the self-agent’s response learning against opponents.

• LIAMX (Papoudakis et al., 2021): A variant of LIAM with cross-episode contexts. It further
extends the horizon over which LIAM can infer the opponent’s policy from its own information.

• LILI (Xie et al., 2021): Model the observation-action-reward-next observation transitions ob-
served by self-agent in the last episode, implicitly encoding the opponent as environmental dy-
namics to enhance the self-agent’s policy optimization.

• GSCU (Fu et al., 2022): 1) Employ offline policy embedding learning to train well-structured
representations 2) Utilize offline conditional RL to learn responses to various opponents 3) Apply
an online multi-armed bandit algorithm to balance conservative or greedy self-agent policies.

• PACE (Ma et al., 2024): Introduce an opponent identification reward to maximize the mutual
information between the opponent’s policy and the self-agent’s cross-episode trajectory, thereby
encouraging self-agent actions that aid in identifying the opponent’s behavioral patterns.

• PACE-TF (Ma et al., 2024): A variant of PACE in which the original GRU-based context encoder
is replaced with the official Transformer architecture from the PACE paper, while keeping all other
components, training recipes, and hyperparameters unchanged. This baseline isolates the effect of
the Transformer backbone from OSOM’s open-set identification mechanism.

Opponent Policies. We design a relatively large and diverse opponent pool for training and test-
ing OM approaches against OSOs. To ensure both policy diversity and semantic interpretability, we
incorporate human priors in constructing the opponent pool. For KP, we follow Hoehn et al. (2005),
using two parameters to parameterize the opponent’s policy space after eliminating dominated strate-
gies. For POO and PPW, we follow Ma et al. (2024) by using rule-based methods to construct opponent
policies with clearly distinct preferences. After constructing the opponent pool, we selected a subset
of these policies to form a Train Set, and used all remaining policies to constitute an Eval Set.
Concretely, we construct dozens of distinct opponent policies in each domain and then split them
into disjoint Train and Eval pools, so that every evaluation trajectory involves behaviors that never
appeared in Train while still exhibiting meaningful semantic diversity. We have supplemented more
detailed process of constructing the opponent pool in Sec. E.

Training and Testing Protocols. We train all the OM approaches for the same number of itera-
tions. During training, in each iteration, we randomly sample K opponent policies from the Train
Set to instantiate Πtrain. The final checkpoints obtained from training all approaches are used to
test against unknown non-stationary opponents (as explained in Sec. 3.3) for the same number of
episodes. Non-stationarity is defined as the opponent switching its policy by sampling from Πtest

every H episodes. In KP we set the opponent-switch frequency to H = 20 episodes, and in POO and
PPW we use H = 5 episodes. These values correspond to a moderate level of non-stationarity: the
agent must track and adapt to switches that are neither too frequent (near-i.i.d. noise) nor too rare
(almost stationary). All figures and tables report the mean and standard deviation of the results aver-
aged over 5 random seeds. All the hyperparameters are detailed in Sec. G. Unless otherwise stated,
all learning curves are plotted against total environment timesteps rather than training iterations,
so that the sample efficiency of methods with different update-to-data ratios can be compared fairly.

4.2 EMPERICAL ANALYSIS

Question 1. Can OSOM effectively adapt to OSOs with different Πtest configurations?

Fig. 3 shows the overall performance of all OM approaches against non-stationary opponents whose
policies are sampled from three distinct Πtest configurations. We establish three types of Πtest from
which the non-stationary opponent could sample policies: (1) Train Set; (2) Eval Set, where all
policies are unseen during training; and (3) All Set, which is the union of the Train Set and the Eval
Set. The latter two configurations are specifically designed to examine the generalization ability to
opponent types that are unseen in terms of both number and semantics.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Train Set Eval Set All Set
Test Mode

0.05

0.00

0.05
Av

er
ag

e
Re

tu
rn

Kuhn Poker

Train Set Eval Set All Set
Test Mode

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Su
cc

es
s R

at
e

Partially-Observable Overcooked

Train Set Eval Set All Set
Test Mode

5

4

3

2

1

0

Av
er

ag
e

Re
tu

rn

Predator-Prey with Watchtowers
Generalist GSCU LIAM LIAMX LILI PACE OSOM

Figure 3: The overall results of testing OM approaches against unknown non-stationary OSOs em-
ploying different Πtest configurations. Specifically, the performance for KP and PPW is measured by
the average return, while POO’s performance is measured by the average success rate.

o1 o2 o3 o4 o5 o6 o7 o8
Opponent Indexes

0.5

0.0

0.5

1.0

Av
er

ag
e

Re
tu

rn

Kuhn Poker (Eval)

o1 o2 o3 o4 o5 o6 o7 o8
Opponent Indexes

0.00

0.25

0.50

0.75

1.00
Av

er
ag

e
Su

cc
es

s R
at

e
Partially-Observable Overcooked (Eval)

o1 o2 o3 o4 o5 o6 o7 o8
Opponent Indexes

7

6

5

4

3

Av
er

ag
e

Re
tu

rn

Predator-Prey with Watchtowers (Eval)
Generalist GSCU LIAM LIAMX LILI PACE OSOM

Figure 4: Detailed per-episode performance curves for OM approaches when tested against each
specific opponent policy, where Πtest is set to Eval Set. We use o1, o2, . . . , o8 to denote the indexes
of the different opponent types, respectively.

It can be observed that in all three environments, OSOM achieves a higher average return or success
rate compared to other baselines under various Πtest configurations. This is particularly evident in
the challenging POO, where most other approaches fail to work properly. These consistent results
indicate that the overall design of OSOM enables it to effectively respond to non-stationary OSOs,
enabling it to robustly adapt to seen opponent types and successfully generalize to unseen ones.

Question 2. Can OSOM effectively respond to every specific policy adopted by OSOs?

In Fig. 4, we present the smoothed per-episode performance curves for all approaches against non-
stationary opponents whose policies are sampled from the Eval Set. Specifically, each environment
displays the average results against 8 unseen opponent policies from the Eval Set. The frequencyH
for the non-stationary opponent to switch policies is 20, 5, and 5 in KP, POO, and PPW, respectively.
Similar to the observation in Fig. 3, OSOM generally exhibits better results against every specific
opponent policy compared to other baselines. Notably, OSOM shows a trend of gradually increasing
performance against most opponent policies in POO and PPW, which suggests that it may possess a
degree of test-time gradient-free learning capability.

Question 3. Can OSOM make explicit identification of OSOs feasible?

Table 1 shows the accuracy metric for identifying non-stationary OSOs under various Πtest config-
urations during testing. For OSOM, we use the Opponent Identifier to select the OTEs according
to Eq. (3), and then compute the proportion of times it selects the true opponent type out of all
prediction attempts. Furthermore, we introduce Random Guess as a comparative baseline. In con-
trast, the other OM approaches are all unable to explicitly predict the opponent type. For instance,
while PACE uses a classifier to predict opponent type during training, all three Πtest configurations
we established contain a greater number of opponent types (and semantics) than those used dur-
ing training. Observation reveals that, under this challenging open-set protocol, OSOM consistently
achieves substantially higher identification accuracy than Random Guess across all environments,
especially on the unseen opponents in the Eval Set. For example, in the most challenging All Set
OSOM obtains identification accuracies in the range of 9.75%-36.52% while Random Guess re-
mains around 2%-3.7%, i.e., improvements of approximately 2-15× over chance. Given the large
label spaces (up to 40-50 opponent types), the open-set and non-stationary test protocol, and par-
tial observability, such 2-15× gains already indicate substantial and practically useful identification

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Per-policy identification accuracy statistics against non-stationary OSOs under various Πtest

configurations during testing. The Accuracy, expressed as a percentage, measures the quality of
opponent type identification for each approach (higher is better). Results marked with ‘✗’ indicate
that a meaningful evaluation is not possible.

Avg. Acc. (%) ↑
of Approaches

Kuhn Poker Partially-Observable Overcooked Predator-Prey with Watchtowers

Train Set Eval Set All Set Train Set Eval Set All Set Train Set Eval Set All Set

OSOM 13.27 ± 0.09 24.09 ± 0.36 9.75 ± 0.11 32.42 ± 4.24 23.33 ± 1.32 14.77 ± 1.40 38.99 ± 1.33 34.87 ± 0.05 36.52 ± 0.44
Random Guess 2.50 10.00 2.00 5.56 11.11 3.70 6.25 4.17 2.50

Other OM Approaches ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

0 1 2 3 4 5
of Environment Timesteps 1e6

0.2

0.1

0.0

0.1

Av
er

ag
e

Re
tu

rn

Kuhn Poker (Eval)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
of Environment Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Su
cc

es
s R

at
e

Partially-Observable Overcooked (Eval)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
of Environment Timesteps 1e7

5.0

4.5

4.0

3.5

Av
er

ag
e

Re
tu

rn

Predator-Prey with Watchtowers (Eval)
OSOM w/o Identify Loss OSOM w/o OTEs Prompt OSOM w/o Distill Loss OSOM

Figure 5: Average performance curves of the various ablation variants of OSOM against all opponent
policies in the Eval Set during training. We select checkpoints at equal intervals during the training
process to conduct this evaluation.

ability. Combining this with the results in Fig. 3, we hypothesize that OSOM’s strong capability for
responding to OSOs is founded upon its effective identification of opponent types.

Question 4. Do all key design choices in OSOM contribute positively?

We design the following ablation variants of OSOM: (1) OSOM w/o Identify Loss: Remove the
opponent identification objective described in Eq. (2), meaning α2 = 0; (2) OSOM w/o OTEs
Prompt: Remove the OTEs prompt part of the Opponent Identifier’s input sequence; (3) OSOM
w/o Distill Loss: Remove the policy distillation objective described in Eq. (1), meaning α1 = 0.

Fig. 5 presents the average performance curves against all opponent policies in the Eval Set during
the training process. We observe that ‘OSOM w/o Identify Loss’ is essentially unable to function
properly, suggesting that our Contrastive Learning-based opponent identification method plays a
crucial role in effective opponent adaptation. Furthermore, ‘OSOM w/o OTEs Prompt’ and ‘OSOM
w/o Distill Loss’ generally show performance degradation of varying degrees compared to the full
OSOM. These observations support the conclusion that both using OTEs to prompt the Opponent
Identifier regarding the structural space of opponent types, and distilling the opponent policy into
the self-agent’s information encoding, contribute positively to OSOM’s performance.

Question 5. Compared to other OM approaches, does OSOM have higher training efficiency?

In Fig. 6, we show the average performance curves for each OM approach against all opponent poli-
cies in the Train Set and the Eval Set during the training process. Specifically, we test the perfor-
mance by periodically evaluating checkpoints during training of the OM approaches. It is observed
that OSOM consistently surpasses the other baselines and achieves superior opponent adaptation
results more efficiently, regardless of whether the opponent type has been previously encountered
or not. This is particularly true in the challenging POO, where the other baselines consistently fail
to learn a workable self-agent policy. This demonstrates that OSOM possesses a higher algorithmic
training efficiency, given that it requires fewer iterations to reach the same performance.

As expected, the naive PPO baseline performs significantly worse than all OM approaches, espe-
cially on the unseen Eval opponents, confirming that modeling cross-episode information and op-
ponent types is crucial for open-set adaptation. The additional baseline PACE-TF shows that merely
upgrading the context encoder from a GRU to a Transformer does not close the gap to OSOM;
the performance gains stem primarily from OSOM’s open-set identification and context aggregation
mechanisms rather than from a stronger sequence model alone.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.20

0.15

0.10

0.05

0.00

0.05
Av

er
ag

e
Re

tu
rn

Kuhn Poker (Train)

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Su
cc

es
s R

at
e

Partially-Observable Overcooked (Train)

5.0

4.5

4.0

3.5

3.0

2.5

Av
er

ag
e

Re
tu

rn

Predator-Prey with Watchtowers (Train)

0 1 2 3 4 5
of Environment Timesteps 1e6

0.2

0.1

0.0

0.1

Av
er

ag
e

Re
tu

rn

Kuhn Poker (Eval)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
of Environment Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Su
cc

es
s R

at
e

Partially-Observable Overcooked (Eval)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
of Environment Timesteps 1e7

5.5

5.0

4.5

4.0

3.5

Av
er

ag
e

Re
tu

rn

Predator-Prey with Watchtowers (Eval)

PPO Generalist GSCU LIAM LIAMX LILI PACE PACE-TF OSOM

Figure 6: Average performance curves of various OM approaches against different opponent sets
during the training process. The upper subplot shows results against the Train Set, and the lower
subplot shows results against the Eval Set.

Additional Experiments. We provide further experiments in Sec. I to investigate (1) the feasib-
lity of multiple self-agents control for OSOM in CTDE settings; (2) the effect of opponent switch
frequency H; (3) how does OSOM behave in the degenerate case using a single OTE.

5 DISCUSSION

Summary. This paper introduces OSOM, a novel end-to-end training approach that enables ex-
plicit identification and effective response to unseen OSOs in multi-agent systems—an ability not
achieved by prior work. OSOM addresses the three core challenges of OSO modeling by combining
Representation Learning (to handle partial observability), CL (for explicit, variable-type identifica-
tion), and online RL (to learn the best response). Experiments in various multi-agent environments
show that OSOM significantly outperforms existing approaches in both identification accuracy and
response performance against non-stationary OSOs, confirming its robustness and generalizability.

Limitations and Future Work. While OSOM already achieves explicit identification and strong
responses to open-set opponents, it still has several limitations. First, our current experiments adopt
a CTDE assumption: during training we log opponents’ trajectories and use them in the distilla-
tion loss Jdistill to improve representation quality under partial observability, whereas at test time
the agent only observes its own information. Ablations show that an OSOM variant trained without
Jdistill (using only Jidentify and Jrespond) remains functional but with reduced sample efficiency, sug-
gesting future work on fully decentralized or unsupervised alternatives that remove this privileged
training signal. Second, in the OSO benchmarks we set the prompt size M equal to the number of
test opponents and generate approximately orthogonal d-dimensional OTEs with d ≥M ; more gen-
erally, M and d should be understood as capacity hyperparameters that control how many distinct
opponent behaviors can be separated within a single prompt. Scaling OSOM to regimes with very
large or unknown numbers of opponent types will require choosing M as a design budget, allowing
behaviors to be clustered into at most M latent types, increasing d, or exploring richer OTE param-
eterizations (e.g., learnable or hierarchical codebooks) that relax the need for strict orthogonality.

Our empirical study further focuses on three standard multi-agent benchmarks (KP, POO, PPW) built
from structured, semantically diverse pools of opponent policies, and on settings where OSOM
controls a single self-agent against piecewise-stationary opponents. Although our formulation and
algorithms directly extend to centralized control of a team of agents (treating the team as a joint self-
agent) and to CTDE-style decentralized control with one OSOM instance per controllable agent,
a systematic evaluation of such multi-agent extensions is left for future work. Future work also
includes developing variants that can cope with fully learning, continuously evolving opponents
beyond the piecewise-stationary regime considered here.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (ReLU). arXiv preprint
arXiv:1803.08375, 2018.

Milad Aghajohari, Tim Cooijmans, Juan Agustin Duque, Shunichi Akatsuka, and Aaron C.
Courville. Best response shaping. ArXiv, abs/2404.06519, 2024. URL https://api.
semanticscholar.org/CorpusID:269032914.

Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. In In-
ternational Conference on Learning Representations, 2018.

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018.

Anonymous. LOSI: Improving multi-agent reinforcement learning via latent opponent strategy iden-
tification. In Submitted to The Fourteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=S0KGzCEhJp. under review.

Nadarasar Bahavan, Sachith Seneviratne, and Saman K. Halgamuge. Sphor: A representation
learning perspective on open-set recognition for identifying unknown classes in deep learning
models. ArXiv, abs/2503.08049, 2025. URL https://api.semanticscholar.org/CorpusID:
276929445.

Arundhati Banerjee, Soham R. Phade, Stefano Ermon, and Stephan Zheng. Mermaide: Learning
to align learners using model-based meta-learning. Trans. Mach. Learn. Res., 2023, 2023. URL
https://api.semanticscholar.org/CorpusID:258048778.

Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. Online implicit agent modelling.
In International Conference on Autonomous Agents and MultiAgent Systems, pp. 255–262, 2013.

Abhijit Bendale and Terrance E. Boult. Towards open world recognition. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1893–1902, 2014. URL https://api.
semanticscholar.org/CorpusID:5700960.

José M Bernardo and Adrian FM Smith. Bayesian theory, volume 405. John Wiley & Sons, 2009.

Grazia Bombini, Nicola Di Mauro, Stefano Ferilli, and Floriana Esposito. Classifying agent be-
haviour through relational sequential patterns. In KES International Symposium on Agent and
Multi-Agent Systems: Technologies and Applications, pp. 273–282. Springer, 2010.

Terrance E. Boult, Steve Cruz, Akshay Raj Dhamija, Manuel Günther, James Henrydoss, and Wal-
ter J. Scheirer. Learning and the unknown: Surveying steps toward open world recognition. In
AAAI Conference on Artificial Intelligence, 2019. URL https://api.semanticscholar.org/
CorpusID:156051839.

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When
does return-conditioned supervised learning work for offline reinforcement learning? In Advances
in Neural Information Processing Systems, pp. 1542–1553, 2022.

Anderson Brilhador, André Eugênio Lazzaretti, and Heitor Silvério Lopes. A survey on open world
learning for image segmentation: Definitions, challenges, and directions. Learning and Nonlinear
Models, 2025. URL https://api.semanticscholar.org/CorpusID:275945464.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. In Advances in
Neural Information Processing Systems, pp. 5174–5185, 2019.

Rujikorn Charakorn, Poraramte Manoonpong, and Nat Dilokthanakul. Generating diverse cooper-
ative agents by learning incompatible policies. In International Conference on Learning Repre-
sentations, 2023. URL https://api.semanticscholar.org/CorpusID:252757017.

11

https://api.semanticscholar.org/CorpusID:269032914
https://api.semanticscholar.org/CorpusID:269032914
https://openreview.net/forum?id=S0KGzCEhJp
https://api.semanticscholar.org/CorpusID:276929445
https://api.semanticscholar.org/CorpusID:276929445
https://api.semanticscholar.org/CorpusID:258048778
https://api.semanticscholar.org/CorpusID:5700960
https://api.semanticscholar.org/CorpusID:5700960
https://api.semanticscholar.org/CorpusID:156051839
https://api.semanticscholar.org/CorpusID:156051839
https://api.semanticscholar.org/CorpusID:275945464
https://api.semanticscholar.org/CorpusID:252757017

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In Advances in Neural Information Processing Systems, pp. 15084–15097, 2021.

Weiqin Chen and Santiago Paternain. Random policy enables in-context reinforcement learn-
ing within trust horizons. Trans. Mach. Learn. Res., 2025, 2024. URL https://api.
semanticscholar.org/CorpusID:273654240.

Weiqin Chen, Xinjie Zhang, D. Subramanian, and Santiago Paternain. Filtering learning histories
enhances in-context reinforcement learning. ArXiv, abs/2505.15143, 2025. URL https://api.
semanticscholar.org/CorpusID:278782794.

Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. ArXiv, abs/1412.3555, 2014. URL
https://api.semanticscholar.org/CorpusID:5201925.

Zhongxiang Dai, Yizhou Chen, Bryan Kian Hsiang Low, Patrick Jaillet, and Teck-Hua Ho. R2-b2:
Recursive reasoning-based bayesian optimization for no-regret learning in games. In International
Conference on Machine Learning, pp. 2291–2301, 2020.

Anthony DiGiovanni and Ambuj Tewari. Thompson sampling for markov games with piecewise
stationary opponent policies. In Uncertainty in Artificial Intelligence, pp. 738–748, 2021.

Juncheng Dong, Moyang Guo, Ethan X Fang, Zhuoran Yang, and Vahid Tarokh. In-context rein-
forcement learning without optimal action labels. In ICML 2024 Workshop on In-Context Learn-
ing, 2024. URL https://openreview.net/forum?id=8Dey9wo2qA.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–identifiability
challenges and effective data collection strategies. In Advances in Neural Information Processing
Systems, pp. 4607–4618, 2021.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Juan Agustin Duque, Milad Aghajohari, Tim Cooijmans, Tianyu Zhang, and Aaron C. Courville.
Advantage alignment algorithms. ArXiv, abs/2406.14662, 2024. URL https://api.
semanticscholar.org/CorpusID:270688211.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Evren Etel and Virginia Slaughter. Theory of mind and peer cooperation in two play contexts.
Journal of Applied Developmental Psychology, 60:87–95, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135, 2017.

Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. In International Conference on Au-
tonomous Agents and MultiAgent Systems, pp. 122–130, 2018a.

Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric Xing, and Shimon
Whiteson. DiCE: The infinitely differentiable Monte Carlo estimator. In International Conference
on Machine Learning, pp. 1524–1533, 2018b.

Haobo Fu, Ye Tian, Hongxiang Yu, Weiming Liu, Shuang Wu, Jiechao Xiong, Ying Wen, Kai Li,
Junliang Xing, Qiang Fu, et al. Greedy when sure and conservative when uncertain about the
opponents. In International Conference on Machine Learning, pp. 6829–6848, 2022.

Kitty Fung, Qizhen Zhang, Chris Lu, Timon Willi, and Jakob Nicolaus Foerster. Analyzing the
sample complexity of model-free opponent shaping. In ICML Workshop on New Frontiers in
Learning, Control, and Dynamical Systems, 2023.

12

https://api.semanticscholar.org/CorpusID:273654240
https://api.semanticscholar.org/CorpusID:273654240
https://api.semanticscholar.org/CorpusID:278782794
https://api.semanticscholar.org/CorpusID:278782794
https://api.semanticscholar.org/CorpusID:5201925
https://openreview.net/forum?id=8Dey9wo2qA
https://api.semanticscholar.org/CorpusID:270688211
https://api.semanticscholar.org/CorpusID:270688211

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. In International Conference on Learning Representations, 2022.

Narayanan Ganesh, Rajendran Shankar, Robert Čep, Shankar Chakraborty, and Kanak Kalita. Ef-
ficient feature selection using weighted superposition attraction optimization algorithm. Applied
Sciences, 13(5):3223, 2023.

Chuanxing Geng, Sheng-Jun Huang, and Songcan Chen. Recent advances in open set recognition:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:3614–3631, 2018.
URL https://api.semanticscholar.org/CorpusID:53734567.

Hossein Gholamalinezhad and Hossein Khosravi. Pooling methods in deep neural networks, a re-
view. arXiv preprint arXiv:2009.07485, 2020.

Jake Grigsby, Linxi Fan, and Yuke Zhu. Amago: Scalable in-context reinforcement learning for
adaptive agents. In The Twelfth International Conference on Learning Representations, 2023.

Jake Grigsby, Justin Sasek, Samyak Parajuli, Daniel Adebi, Amy Zhang, and Yuke Zhu. Amago-
2: Breaking the multi-task barrier in meta-reinforcement learning with transformers. ArXiv,
abs/2411.11188, 2024. URL https://api.semanticscholar.org/CorpusID:274130967.

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55(2):895–943, 2022.

Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In International Conference on Machine Learning,
pp. 1802–1811, 2018.

András Pál Halász, Nawar Al Hemeary, Lóránt Szabolcs Daubner, Tamás Zsedrovits, and Kálmán
Tornai. Improving the performance of open-set recognition with generated fake data. Electronics,
2023. URL https://api.semanticscholar.org/CorpusID:257463738.

Peixuan Han, Zijia Liu, and Jiaxuan You. Tomap: Training opponent-aware llm persuaders with
theory of mind. ArXiv, abs/2505.22961, 2025. URL https://api.semanticscholar.org/
CorpusID:278996674.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. In AAAI, volume 4, pp. 709–715, 2004.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
forcement learning. In International Conference on Machine Learning, pp. 1804–1813, 2016.

Pablo Hernandez-Leal, Matthew E Taylor, Benjamin S Rosman, Luis Enrique Sucar, and
E Munoz de Cote. Identifying and tracking switching, non-stationary opponents: A bayesian
approach. In AAAI Conference on Artificial Intelligence Workshop on Multiagent Interaction
without Prior Coordination, pp. 560–566, 2016.

Bret Hoehn, Finnegan Southey, Robert C Holte, and Valeriy Bulitko. Effective short-term opponent
exploitation in simplified poker. In AAAI, volume 5, pp. 783–788, 2005.

Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-Yi Lee. A deep
policy inference q-network for multi-agent systems. In International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1388–1396, 2018.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.

Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao.
Q-value regularized transformer for offline reinforcement learning. In Forty-first International
Conference on Machine Learning, 2024.

Yizhe Huang, Anji Liu, Fanqi Kong, Yaodong Yang, Song-Chun Zhu, and Xue Feng. Efficient adap-
tation in mixed-motive environments via hierarchical opponent modeling and planning. ArXiv,
abs/2406.08002, 2024. URL https://api.semanticscholar.org/CorpusID:270391910.

13

https://api.semanticscholar.org/CorpusID:53734567
https://api.semanticscholar.org/CorpusID:274130967
https://api.semanticscholar.org/CorpusID:257463738
https://api.semanticscholar.org/CorpusID:278996674
https://api.semanticscholar.org/CorpusID:278996674
https://api.semanticscholar.org/CorpusID:270391910

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

José Antonio Iglesias, Agapito Ledezma, Araceli Sanchis, and GA Kaminka. Classifying efficiently
the behavior of a soccer team. IAS-10, pp. 316–323, 2008.

Bahar Irfan, Mariacarla Staffa, Andreea Bobu, and Nikhil Churamani. Lifelong learning and per-
sonalization in long-term human-robot interaction (leap-hri): Open-world learning. Compan-
ion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, 2024. URL
https://api.semanticscholar.org/CorpusID:268453303.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):2, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big se-
quence modeling problem. In Neural Information Processing Systems, 2021. URL https:
//api.semanticscholar.org/CorpusID:235313679.

Yuheng Jing, Kai Li, Bingyun Liu, Yifan Zang, Haobo Fu, QIANG FU, Junliang Xing, and Jian
Cheng. Towards offline opponent modeling with in-context learning. In The Twelfth International
Conference on Learning Representations, 2024a.

Yuheng Jing, Bingyun Liu, Kai Li, Yifan Zang, Haobo Fu, QIANG FU, Junliang Xing, and Jian
Cheng. Opponent modeling with in-context search. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024b.

Yuheng Jing, Kai Li, Bingyun Liu, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. An open-
ended learning framework for opponent modeling. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 23222–23230, 2025a.

Yuheng Jing, Kai Li, Bingyun Liu, Ziwen Zhang, Haobo Fu, Qiang Fu, Junliang Xing, and Jian
Cheng. Offline opponent modeling with truncated q-driven instant policy refinement. In Forty-
second International Conference on Machine Learning, 2025b.

Mayank Kejriwal, Eric Kildebeck, Robert Steininger, and Abhinav Shrivastava. Challenges, eval-
uation and opportunities for open-world learning. Nat. Mac. Intell., 6:580–588, 2024. URL
https://api.semanticscholar.org/CorpusID:270717953.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In Advances in Neural
Information Processing Systems, pp. 18661–18673, 2020.

Dong Ki Kim, Miao Liu, Matthew D Riemer, Chuangchuang Sun, Marwa Abdulhai, Golnaz Habibi,
Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan How. A policy gradient algorithm for learning
to learn in multiagent reinforcement learning. In International Conference on Machine Learning,
pp. 5541–5550, 2021.

Michal Kosinski. Evaluating large language models in theory of mind tasks. Proceedings of the
National Academy of Sciences of the United States of America, 121, 2023. URL https://api.
semanticscholar.org/CorpusID:256616268.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Harold W Kuhn. A simplified two-person poker. Contributions to the Theory of Games, 1:97–103,
2016.

Nico Lang, V´esteinn Snæbjarnarson, Elijah Cole, Oisin Mac Aodha, Christian Igel, and Serge J.
Belongie. From coarse to fine-grained open-set recognition. 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 17804–17814, 2024. URL https://api.
semanticscholar.org/CorpusID:272724013.

Pat Langley. Open-world learning for radically autonomous agents. In AAAI Conference on Artificial
Intelligence, 2020. URL https://api.semanticscholar.org/CorpusID:208285052.

14

https://api.semanticscholar.org/CorpusID:268453303
https://api.semanticscholar.org/CorpusID:235313679
https://api.semanticscholar.org/CorpusID:235313679
https://api.semanticscholar.org/CorpusID:270717953
https://api.semanticscholar.org/CorpusID:256616268
https://api.semanticscholar.org/CorpusID:256616268
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://api.semanticscholar.org/CorpusID:272724013
https://api.semanticscholar.org/CorpusID:272724013
https://api.semanticscholar.org/CorpusID:208285052

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, Maxime Gazeau, Himanshu
Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
distillation. In International Conference on Learning Representations, 2023.

Jonathan N Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised pretraining can learn in-context reinforcement learning. arXiv preprint
arXiv:2306.14892, 2023.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision trans-
formers. In Advances in Neural Information Processing Systems, pp. 27921–27936, 2022.

Alistair Letcher, Jakob Foerster, David Balduzzi, Tim Rocktäschel, and Shimon Whiteson. Stable
opponent shaping in differentiable games. In International Conference on Learning Representa-
tions, 2019.

Chaohua Li, Enhao Zhang, Chuanxing Geng, and Songcan Chen. All beings are equal in open
set recognition. ArXiv, abs/2401.17654, 2024a. URL https://api.semanticscholar.org/
CorpusID:267335151.

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and
Katia P. Sycara. Theory of mind for multi-agent collaboration via large language models. In
Conference on Empirical Methods in Natural Language Processing, 2023a. URL https://api.
semanticscholar.org/CorpusID:264172518.

Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning via
distance metric learning and behavior regularization. In International Conference on Learning
Representations, 2020.

Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu, and Deheng Ye. A survey on
transformers in reinforcement learning. Transactions on Machine Learning Research, 2023b.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Zizhao Li, Kourosh Khoshelham, and Joseph West. Contrastive class anchor learning for open
set object recognition in driving scenes. Trans. Mach. Learn. Res., 2024, 2024b. URL https:
//api.semanticscholar.org/CorpusID:273161827.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. In The Twelfth International Conference on Learning
Representations, 2024.

Jinmei Liu, Fuhong Liu, Jianye Hao, Bo Wang, Huaxiong Li, Chunlin Chen, and Zhi Wang. Scalable
in-context q-learning. ArXiv, abs/2506.01299, 2025. URL https://api.semanticscholar.
org/CorpusID:279075028.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In Advances in Neural Information Pro-
cessing Systems, pp. 1–12, 2017.

Christopher Lu, Timon Willi, Christian A Schroeder De Witt, and Jakob Foerster. Model-free oppo-
nent shaping. In International Conference on Machine Learning, pp. 14398–14411, 2022.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In International conference on machine learning, pp. 7204–7213. PMLR, 2021.

Yongliang Lv, Yuanqiang Yu, Yan Zheng, Jianye Hao, Yongming Wen, and Yue Yu. Limited in-
formation opponent modeling. In International Conference on Artificial Neural Networks, pp.
511–522. Springer, 2023.

Long Ma, Yuanfei Wang, Fangwei Zhong, Song-Chun Zhu, and Yizhou Wang. Fast peer adaptation
with context-aware exploration. In International Conference on Machine Learning, pp. 33963–
33982. PMLR, 2024.

15

https://api.semanticscholar.org/CorpusID:267335151
https://api.semanticscholar.org/CorpusID:267335151
https://api.semanticscholar.org/CorpusID:264172518
https://api.semanticscholar.org/CorpusID:264172518
https://api.semanticscholar.org/CorpusID:273161827
https://api.semanticscholar.org/CorpusID:273161827
https://api.semanticscholar.org/CorpusID:279075028
https://api.semanticscholar.org/CorpusID:279075028

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Atefeh Mahdavi and Marco Carvalho. A survey on open set recognition. 2021 IEEE Fourth In-
ternational Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 37–44,
2021. URL https://api.semanticscholar.org/CorpusID:237385860.

Luckeciano C Melo. Transformers are meta-reinforcement learners. In International Conference on
Machine Learning, pp. 15340–15359, 2022.

Dimity Miller, Niko Sünderhauf, Alex Kenna, and Keita Mason. Open-set recognition in the age
of vision-language models. In European Conference on Computer Vision, 2024. URL https:
//api.semanticscholar.org/CorpusID:268681800.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pp. 7780–7791, 2021.

Amir Moeini, Jiuqi Wang, Jacob Beck, Ethan Blaser, Shimon Whiteson, Rohan Chandra, and Shang-
tong Zhang. A survey of in-context reinforcement learning. ArXiv, abs/2502.07978, 2025. URL
https://api.semanticscholar.org/CorpusID:276287353.

Subhojyoti Mukherjee, Josiah P. Hanna, Qiaomin Xie, and Robert Nowak. Pretraining decision
transformers with reward prediction for in-context multi-task structured bandit learning. ArXiv,
abs/2406.05064, 2024. URL https://api.semanticscholar.org/CorpusID:270357386.

Samer Nashed and Shlomo Zilberstein. A survey of opponent modeling in adversarial domains.
Journal of Artificial Intelligence Research, 73:277–327, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Georgios Papoudakis and Stefano V Albrecht. Variational autoencoders for opponent modeling in
multi-agent systems. arXiv preprint arXiv:2001.10829, 2020.

Georgios Papoudakis, Filippos Christianos, Stefano Albrecht, and et al. Agent modelling under par-
tial observability for deep reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 19210–19222, 2021.

Keiran Paster, Sheila McIlraith, and Jimmy Ba. You can’t count on luck: Why decision transformers
and rvs fail in stochastic environments. In Advances in Neural Information Processing Systems,
pp. 38966–38979, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. ArXiv, abs/1912.01703, 2019. URL https://api.semanticscholar.org/
CorpusID:202786778.

Andrey Polubarov, Nikita Lyubaykin, Alexander Derevyagin, Ilya Zisman, Denis Tarasov, Alexan-
der Nikulin, and Vladislav Kurenkov. Vintix: Action model via in-context reinforcement learn-
ing. ArXiv, abs/2501.19400, 2025. URL https://api.semanticscholar.org/CorpusID:
276079375.

Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline meta-
reinforcement learning with online self-supervision. In International Conference on Machine
Learning, pp. 17811–17829, 2022.

Xinyu Qiao, Yudong Hu, Congying Han, Weiyan Wu, and Tiande Guo. Preference-based op-
ponent shaping in differentiable games. ArXiv, abs/2412.03072, 2024. URL https://api.
semanticscholar.org/CorpusID:274465026.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew
Botvinick. Machine theory of mind. In International Conference on Machine Learning, pp.
4218–4227, 2018.

16

https://api.semanticscholar.org/CorpusID:237385860
https://api.semanticscholar.org/CorpusID:268681800
https://api.semanticscholar.org/CorpusID:268681800
https://api.semanticscholar.org/CorpusID:276287353
https://api.semanticscholar.org/CorpusID:270357386
https://api.semanticscholar.org/CorpusID:202786778
https://api.semanticscholar.org/CorpusID:202786778
https://api.semanticscholar.org/CorpusID:276079375
https://api.semanticscholar.org/CorpusID:276079375
https://api.semanticscholar.org/CorpusID:274465026
https://api.semanticscholar.org/CorpusID:274465026

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself
in multi-agent reinforcement learning. In International Conference on Machine Learning, pp.
4257–4266, 2018.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,
Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Ec-
cles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol
Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. Transactions on Machine
Learning Research, 2022.

Benjamin Rosman, Majd Hawasly, and Subramanian Ramamoorthy. Bayesian policy reuse. Ma-
chine Learning, 104:99–127, 2016.

Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult. Probability models for open set recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36:2317–2324, 2014. URL
https://api.semanticscholar.org/CorpusID:9584833.

Thomas Schmied, Fabian Paischer, Vihang Patil, Markus Hofmarcher, Razvan Pascanu, and Sepp
Hochreiter. Retrieval-augmented decision transformer: External memory for in-context rl. ArXiv,
abs/2410.07071, 2024. URL https://api.semanticscholar.org/CorpusID:273228472.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, and Andreas Krause. Learning to
play sequential games versus unknown opponents. ArXiv, abs/2007.05271, 2020. URL https:
//api.semanticscholar.org/CorpusID:220487073.

Itai Sher, Melissa Koenig, and Aldo Rustichini. Children’s strategic theory of mind. Proceedings of
the National Academy of Sciences, 111(37):13307–13312, 2014.

Viacheslav Sinii, Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, and Sergey Kolesnikov. In-
context reinforcement learning for variable action spaces. ArXiv, abs/2312.13327, 2023. URL
https://api.semanticscholar.org/CorpusID:266435721.

Jaehyeon Son, Soochan Lee, and Gunhee Kim. Distilling reinforcement learning algorithms
for in-context model-based planning. ArXiv, abs/2502.19009, 2025. URL https://api.
semanticscholar.org/CorpusID:276617686.

Alexandra Souly, Timon Willi, Akbir Khan, Robert Kirk, Chris Lu, Edward Grefenstette, and Tim
Rocktaschel. Leading the pack: N-player opponent shaping. ArXiv, abs/2312.12564, 2023. URL
https://api.semanticscholar.org/CorpusID:266374989.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating with
humans without human data. Advances in Neural Information Processing Systems, 34:14502–
14515, 2021.

Gita Sukthankar and Katia Sycara. Policy recognition for multi-player tactical scenarios. In Pro-
ceedings of the 6th international joint conference on Autonomous agents and multiagent systems,
pp. 1–8, 2007.

Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J. Zico Kolter, Jeff Schnei-
der, and Ruslan Salakhutdinov. Training a generally curious agent. ArXiv, abs/2502.17543, 2025.
URL https://api.semanticscholar.org/CorpusID:276580798.

17

https://api.semanticscholar.org/CorpusID:9584833
https://api.semanticscholar.org/CorpusID:273228472
https://api.semanticscholar.org/CorpusID:220487073
https://api.semanticscholar.org/CorpusID:220487073
https://api.semanticscholar.org/CorpusID:266435721
https://api.semanticscholar.org/CorpusID:276617686
https://api.semanticscholar.org/CorpusID:276617686
https://api.semanticscholar.org/CorpusID:266374989
https://api.semanticscholar.org/CorpusID:276580798

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Denis Tarasov, Alexander Nikulin, Ilya Zisman, Albina Klepach, Andrei Polubarov, Nikita
Lyubaykin, Alexander Derevyagin, Igor Kiselev, and Vladislav Kurenkov. Yes, q-learning helps
offline in-context rl. ArXiv, abs/2502.17666, 2025. URL https://api.semanticscholar.org/
CorpusID:276580476.

Open-Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob
Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michaël Mathieu, Nat McAleese,
Nathalie Bradley-Schmieg, Nathaniel Wong, Nicolas Porcel, Roberta Raileanu, Steph Hughes-
Fitt, Valentin Dalibard, and Wojciech M. Czarnecki. Open-ended learning leads to generally
capable agents. ArXiv, abs/2107.12808, 2021. URL https://api.semanticscholar.org/
CorpusID:236447390.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 6000–6010, 2017.

Adam R Villaflor, Zhe Huang, Swapnil Pande, John M Dolan, and Jeff Schneider. Addressing
optimism bias in sequence modeling for reinforcement learning. In International Conference on
Machine Learning, pp. 22270–22283, 2022.

Friedrich Burkhard Von Der Osten, Michael Kirley, and Tim Miller. The minds of many: Opponent
modeling in a stochastic game. In International Joint Conference on Artificial Intelligence, pp.
3845–3851, 2017.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Yu Wang, Junxian Mu, Pengfei Zhu, and Qinghua Hu. Exploring diverse representations for
open set recognition. In AAAI Conference on Artificial Intelligence, 2024a. URL https:
//api.semanticscholar.org/CorpusID:266977261.

Yuanfu Wang, Chao Yang, Ying Wen, Yu Liu, and Yu Qiao. Critic-guided decision transformer for
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 15706–15714, 2024b.

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning for
multi-agent reinforcement learning. In International Conference on Learning Representations,
2019.

Ying Wen, Yaodong Yang, and Jun Wang. Modelling bounded rationality in multi-agent interactions
by generalized recursive reasoning. In International Joint Conferences on Artificial Intelligence,
pp. 414–421, 2021.

Lilian Weng. Contrastive representation learning. lilianweng.github.io, May 2021. URL https:
//lilianweng.github.io/posts/2021-05-31-contrastive/.

Timon Willi, Alistair Hp Letcher, Johannes Treutlein, and Jakob Foerster. Cola: consistent learning
with opponent-learning awareness. In International Conference on Machine Learning, pp. 23804–
23831, 2022.

Wenhao Wu, Fuhong Liu, Haoru Li, Zican Hu, Daoyi Dong, Chunlin Chen, and Zhi Wang. Mixture-
of-experts meets in-context reinforcement learning. ArXiv, abs/2506.05426, 2025. URL https:
//api.semanticscholar.org/CorpusID:279244328.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. Advances in
Neural Information Processing Systems, 36, 2024.

Zhe Wu, Kai Li, Hang Xu, Yifan Zang, Bo An, and Junliang Xing. L2e: Learning to exploit your
opponent. In International Joint Conference on Neural Networks, pp. 1–8, 2022.

Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent representa-
tions to influence multi-agent interaction. In Conference on robot learning, pp. 575–588. PMLR,
2021.

18

https://api.semanticscholar.org/CorpusID:276580476
https://api.semanticscholar.org/CorpusID:276580476
https://api.semanticscholar.org/CorpusID:236447390
https://api.semanticscholar.org/CorpusID:236447390
https://api.semanticscholar.org/CorpusID:266977261
https://api.semanticscholar.org/CorpusID:266977261
https://lilianweng.github.io/posts/2021-05-31-contrastive/
https://lilianweng.github.io/posts/2021-05-31-contrastive/
https://api.semanticscholar.org/CorpusID:279244328
https://api.semanticscholar.org/CorpusID:279244328

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Baile Xu, Furao Shen, and Jian Zhao. Contrastive open set recognition. In AAAI Conference on Ar-
tificial Intelligence, 2023. URL https://api.semanticscholar.org/CorpusID:259639633.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023a.

Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control: Separating
what you can control from what you cannot. In International Conference on Learning Represen-
tations, 2023b.

Tianpei Yang, Jianye Hao, Zhaopeng Meng, Chongjie Zhang, Yan Zheng, and Ze Zheng. Towards
efficient detection and optimal response against sophisticated opponents. In International Joint
Conference on Artificial Intelligence, pp. 623–629, 2019.

Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game theo-
retical perspective. arXiv preprint arXiv:2011.00583, 2020.

Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi You, Makoto Iida, and Takeshi Naemura.
Classification-reconstruction learning for open-set recognition. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4011–4020, 2018. URL https://api.
semanticscholar.org/CorpusID:54486352.

Xiaopeng Yu, Jiechuan Jiang, Wanpeng Zhang, Haobin Jiang, and Zongqing Lu. Model-based op-
ponent modeling. In Advances in Neural Information Processing Systems, pp. 28208–28221,
2022.

Luyao Yuan, Zipeng Fu, Jingyue Shen, Lu Xu, Junhong Shen, and Song-Chun Zhu. Emer-
gence of pragmatics from referential game between theory of mind agents. arXiv preprint
arXiv:2001.07752, 2020.

Stephen Zhao, Chris Lu, Roger B Grosse, and Jakob Foerster. Proximal learning with opponent-
learning awareness. In Advances in Neural Information Processing Systems, pp. 26324–26336,
2022.

Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, and
Qianli Ma. Lifelong learning of large language model based agents: A roadmap. ArXiv,
abs/2501.07278, 2025. URL https://api.semanticscholar.org/CorpusID:275470466.

Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and Changjie Fan. A
deep bayesian policy reuse approach against non-stationary agents. In Advances in Neural Infor-
mation Processing Systems, pp. 962–972, 2018.

John L. Zhou, Weizhe Hong, and Jonathan C. Kao. Reciprocal reward influence encourages co-
operation from self-interested agents. ArXiv, abs/2406.01641, 2024a. URL https://api.
semanticscholar.org/CorpusID:270226244.

Yuan Zhou, Songyu Fang, Shuoshi Li, Boyu Wang, and Sun-Yuan Kung. Contrastive learning based
open-set recognition with unknown score. Knowl. Based Syst., 296:111926, 2024b. URL https:
//api.semanticscholar.org/CorpusID:269752489.

Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyu Guo, Ziyao Zeng, Zipeng Qin, Shanghang Zhang,
and Peng Gao. Pointclip v2: Prompting clip and gpt for powerful 3d open-world learning. 2023
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2639–2650, 2022a. URL
https://api.semanticscholar.org/CorpusID:261241594.

Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyao Zeng, Shanghang Zhang, and Peng Gao. Pointclip
v2: Adapting clip for powerful 3d open-world learning. ArXiv, abs/2211.11682, 2022b. URL
https://api.semanticscholar.org/CorpusID:253735373.

19

https://api.semanticscholar.org/CorpusID:259639633
https://api.semanticscholar.org/CorpusID:54486352
https://api.semanticscholar.org/CorpusID:54486352
https://api.semanticscholar.org/CorpusID:275470466
https://api.semanticscholar.org/CorpusID:270226244
https://api.semanticscholar.org/CorpusID:270226244
https://api.semanticscholar.org/CorpusID:269752489
https://api.semanticscholar.org/CorpusID:269752489
https://api.semanticscholar.org/CorpusID:261241594
https://api.semanticscholar.org/CorpusID:253735373

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Zifeng Zhuang, Dengyun Peng, Jinxin Liu, Ziqi Zhang, and Donglin Wang. Reinformer: Max-return
sequence modeling for offline rl. In Forty-first International Conference on Machine Learning,
2024.

Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interactive
bayesian reinforcement learning via meta-learning. In International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1712–1714, 2021.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A RELATED WORK

Opponent Modeling. Prior OM work generally falls into two major categories based on their
focus: (1) those focused on training and (2) those focused on testing.

The first category focuses on learning high-level knowledge of responding to different opponents
during training and generalizing it to testing. Some employ the idea of Representation Learn-
ing (Jaiswal et al., 2020), aiming to learn high-quality representations of opponent policies during
training to aid in policy optimization (He et al., 2016; Hong et al., 2018; Grover et al., 2018; Pa-
poudakis & Albrecht, 2020; Zintgraf et al., 2021; Papoudakis et al., 2021; Papoudakis & Albrecht,
2020; Jing et al., 2024a; Ma et al., 2024). Non-gradient Meta-learning methods (Duan et al., 2016;
Wang et al., 2016) are also utilized by some researchers, who seek to leverage recurrent architec-
tures to acquire knowledge about the intrinsic policy structure of each opponent and the differences
between them throughout training (Wang et al., 2016; Zintgraf et al., 2021).

The second category centers on updating the trained opponent model during testing to reason and
to respond against the current opponent. Some adopt the idea of Bayesian Inference (Bernardo &
Smith, 2009), attempting to detect or infer the opponent’s policy in real-time and generate accu-
rate responses accordingly (Bard et al., 2013; Rosman et al., 2016; Hernandez-Leal et al., 2016;
Zheng et al., 2018; Sessa et al., 2020; DiGiovanni & Tewari, 2021; Fu et al., 2022; Lv et al., 2023).
Others utilize Gradient-based Meta-learning principles (Finn et al., 2017), capitalizing on the well-
initialized solutions acquired in the parameter space during training to enable fast adaptation and
fine-tuning for new opponents encountered during testing (Al-Shedivat et al., 2018; Kim et al.,
2021; Wu et al., 2022; Banerjee et al., 2023). Research pertaining to the Shaping of Opponents’
Learning (Foerster et al., 2018a;b; Letcher et al., 2019; Kim et al., 2021; Lu et al., 2022; Willi et al.,
2022; Zhao et al., 2022; Fung et al., 2023; Souly et al., 2023; Duque et al., 2024; Qiao et al., 2024;
Aghajohari et al., 2024; Zhou et al., 2024a), Recursive Reasoning (Wen et al., 2019; 2021; Dai et al.,
2020; Yuan et al., 2020; Yu et al., 2022), and the Theory of Mind (Von Der Osten et al., 2017; Rabi-
nowitz et al., 2018; Raileanu et al., 2018; Yang et al., 2019; Li et al., 2023a; Kosinski, 2023; Huang
et al., 2024; Han et al., 2025) also falls within this category.

In prior work, it is typically assumed that the sets of training and testing opponents are fixed, and the
testing opponent distribution often lies around the training opponent distribution (i.e., testing oppo-
nents do not differ significantly from those in training). In contrast, this work adopts an OSO setting,
where both the training and testing opponent sets are variable, and the types of policies they contain
can have substantial differences in number and semantics. Under this challenging setting, existing
approaches are unable to explicitly identify unseen opponents and, therefore, struggle to effectively
respond to them. We propose a novel OSOM training approach to overcome this challenge.

Concurrent to our work, LOSI (Anonymous, 2025) proposes a latent opponent-strategy identification
framework in cooperative SMAC-Hard, learning unsupervised embeddings of opponent scripts with
a GRU encoder and a prototype-based contrastive objective that is integrated into QMIX (Rashid
et al., 2020). However, LOSI assumes a fixed, closed set of opponent scripts shared between train-
ing and testing. In contrast, OSOM targets open-set, potentially non-stationary opponents with su-
pervised OTEs and random OTE prompting, provides explicit per-type identification metrics, and
is instantiated as a generic opponent-aware policy module that can be combined with different RL
algorithms. We view LOSI as complementary, and exploring combinations of its unsupervised en-
coders with OSOM’s open-set OTE framework is an interesting direction for future work.

Open Set Learning. Our work is closely related to the field of Open Set Recognition
(OSR) (Scheirer et al., 2014; Bendale & Boult, 2014; Geng et al., 2018; Yoshihashi et al., 2018;
Mahdavi & Carvalho, 2021; Boult et al., 2019; Halász et al., 2023; Li et al., 2024a; Lang et al.,
2024; Wang et al., 2024a; Miller et al., 2024; Bahavan et al., 2025). Traditional machine learning
models mostly follow the ‘closed world’ assumption, where all classes encountered during testing
are known during training. OSR aims to break this assumption, enabling models to not only accu-
rately classify known classes but also effectively recognize and reject unknown class samples that
were never seen during training. Moreover, many of these works have adopted the idea of Con-
trastive Learning (CL) (Xu et al., 2023; Li et al., 2024b; Zhou et al., 2024b).

Similar to the problem setting of OSR, the OSO we formalized assumes that the set of all possible
policies opponents can adopt is variable, and the number and semantics of opponent policies in both

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

the training and testing sets can be significantly different. However, unlike the goal of traditional
OSR, we do not simply hope to detect and reject ‘unknown classes.’ Instead, we aim to achieve
effective discrimination and recognition even for all ‘unknown opponent classes.’

Unlike prior OM work that adapts or generalizes to unseen opponents implicitly, our OSOM is
the first to introduce an explicit identification mechanism. This concept also resonates with the
more advanced field of Open World Learning (OWL) (Langley, 2020; Team et al., 2021; Zhu et al.,
2022b;a; Kejriwal et al., 2024; Irfan et al., 2024; Brilhador et al., 2025; Zheng et al., 2025), which
not only requires recognizing unknowns but also emphasizes incrementally learning new knowledge.
Therefore, OSOM can be seen as a crucial step toward applying the ideas of OWL to multi-agent
decision-making, leveraging the methodology of CL and the in-context generalization abilities of
the Transformer model to achieve more effective opponent adaptation in open environments.

RL with Transformers. There has been a growing research interest in leveraging Transformers
for decision-making tasks by reconceptualizing the problem as sequence modeling (Chen et al.,
2021; Janner et al., 2021; Yang et al., 2023a; Li et al., 2023b; Yamagata et al., 2023; Wu et al., 2024;
Wang et al., 2024b; Hu et al., 2024; Zhuang et al., 2024). Pioneering work like Decision Trans-
former (DT) (Chen et al., 2021) and Trajectory Transformer (Janner et al., 2021) introduced a novel
paradigm, demonstrating that decision-making can be addressed through Return-Conditioned Super-
vised Learning (Brandfonbrener et al., 2022; Yang et al., 2023b). Specifically, DT utilizes a causal
Transformer trained on offline data to predict action sequences based on desired returns. Subsequent
research has built upon this foundation by exploring improvements such as more advanced condi-
tioning techniques (Furuta et al., 2022; Paster et al., 2022) and architectural enhancements (Villaflor
et al., 2022). Another research direction is the application of Transformers’ versatility and scalability
to multi-task learning (Lee et al., 2022; Reed et al., 2022).

When pre-trained for decision-making in some contextual manners, Transformers also demonstrate
a robust ability for In-Context RL (ICRL) (Moeini et al., 2025; Wang et al., 2016; Duan et al., 2016;
Grigsby et al., 2023; Dorfman et al., 2021; Mitchell et al., 2021; Pong et al., 2022; Laskin et al.,
2023; Lee et al., 2023; Sinii et al., 2023; Lin et al., 2024; Grigsby et al., 2024; Mukherjee et al.,
2024; Chen & Paternain, 2024; Dong et al., 2024; Schmied et al., 2024; Son et al., 2025; Polubarov
et al., 2025; Tarasov et al., 2025; Chen et al., 2025; Tajwar et al., 2025; Liu et al., 2025; Wu et al.,
2025). For example, Laskin et al. (2023) used an autoregressive supervised learning approach to
distill the sub-traces of a single-task RL algorithm into a single model that is not tied to any specific
task. Similarly, Lee et al. (2023) used supervised pretraining to show the ICRL capabilities of these
models, both empirically and theoretically. Building on this, Lin et al. (2024) introduced a theoretical
framework to analyze and explain the underlying principles and conditions required for ICRL to
work. Moreover, the works of Dorfman et al. (2021); Mitchell et al. (2021); Li et al. (2020); Pong
et al. (2022); Tarasov et al. (2025) are specifically centered on Offline Meta-RL and incorporate
training objectives that are explicitly designed to address the challenges posed by distributional
shift. It is worth mentioning that some studies, such as those by Wang et al. (2016); Duan et al.
(2016); Melo (2022); Grigsby et al. (2023; 2024), are similar to our work in that they focus on the
Online Meta-RL setting, where the primary objective during training is to maximize the total reward.

Inspired by the above studies, OSOM ingeniously reshapes the Transformer’s sequence modeling
abilities to perform contextual identity inference and response regarding opponents. The model pro-
cesses historical interaction trajectories to infer the current opponent’s type. This inference result
then becomes a new context, which is used to guide the generation of the most appropriate response
policy. The model design of OSOM facilitates its ICRL ability, making it possible to generalize the
learned opponent identification and response knowledge to never-before-seen opponent types.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B ALGORITHMIC PSEUDOCODE FOR OSOM

B.1 OSOM TRAINING

The complete training procedure is detailed in the pseudocode below.

Algorithm 1 OSOM Training Procedure

Initialize model parameters: Encoder θ, Decoder ϕ, Identifier ψ, Responder ω.
Initialize replay buffer B and historical OTE bufferH.
Initialize hyperparameters: K,C, κ, α1, α2, α3.
for each training iteration do

// Sample a new set of opponents and generate corresponding random labels.
Sample K opponent policies Πtrain = {π−1,k}Kk=1 from the opponent pool.
Generate K random, pairwise orthogonal OTEs Z train = {z−1,k}Kk=1 on the unit sphere.
// Rollout phase: Collect interaction data.
for episode h = 1, . . . , Ntrain episodes do

Sample an opponent policy π−1,j ∈ Πtrain with its ground truth OTE z−1,j ∈ Z train.
Reset environment and get initial self-agent observation o10.
Initialize episode trajectory buffer τep.
for timestep t = 0, . . . , T − 1 do

// Aggregate context from historical identifications .
Retrieve recent selected OTEs {zsel} fromH (current episode up to t− 1 and previous

C episodes).
Compute aggregated context xt(h) = AveragePooling({zsel}).
// Self−agent acts based on observation and context.
Generate self-agent action a1t ∼ π1(·|o1t , xt(h);ω).
Execute a1t and opponent action a−1t ∼ π−1,j(·|o−1t) in the environment.
Receive o1t+1, r

1
t , o
−1
t+1.

// Distill opponent policy and perform identification .
Encode self-agent information: et = fθ(o

1
t , a

1
t).

Predict opponent OTE: ẑt = Identifierψ({e},Z train).
Compute sampling probabilities P (z−1,l) = softmax(ẑt·z−1,l) for all l ∈ {1, . . . ,K}.
Sample a selected OTE zsel

t(h) ∼ P (·) and store inH.
// Store all relevant data for updates.
Add (o1t , a

1
t , r

1
t , o

1
t+1, xt(h), et, ẑt, z

−1,j , o−1t , a−1t) to τep.
end for
Store completed trajectory τep in replay buffer B.

end for
// Update phase: Optimize all model components.
Sample a batch of data from B.
Compute policy distillation objective Jdistill using decoder gϕ on (et, o

−1
t , a−1t) per Eq. (1).

Compute identification objective Jidentify on (ẑt, z
−1,j ,Z train) per Eq. (2).

Compute response objective Jrespond using an online RL algorithm (e.g., PPO by Schulman
et al. (2017)) on self-agent trajectories (o1t , a

1
t , r

1
t , xt(h)) pe Eq. (4).

Compute total objective Jtotal = α1Jdistill + α2Jidentify + α3Jrespond.
Update θ, ϕ, ψ, ω using PPO policy-gradient updates on α3Jrespond combined with standard

gradient updates on the auxiliary losses α1Jdistill and α2Jidentify.
end for

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.2 OSOM TESTING

The testing procedure formalizes the deployment of a trained OSOM agent against non-stationary
OSOs, as detailed in the pseudocode below.

Algorithm 2 OSOM Testing Procedure (On-the-Fly Identification and Response)

Load pre-trained model parameters θ, ϕ, ψ, ω. Set models to evaluation mode.
Define the testing set of M opponent policies Πtest = {π−1,m}Mm=1.
Generate M new random, pairwise orthogonal OTEs Z test = {z−1,m}Mm=1.
Initialize historical OTE bufferH.
for each test episode h = 1, . . . , Ntest episodes do

// Opponent may switch its policy to simulate non−stationarity .
if h (mod H) == 1 then

Sample a new opponent policy π−1,j ∈ Πtest.
end if
Reset environment and get initial self-agent observation o10.
for timestep t = 0, . . . , T − 1 do

// Aggregate context from historical identifications .
Retrieve recent selected OTEs {zsel} from H (current episode up to t− 1 and previous C

episodes).
Compute aggregated context xt(h) = AveragePooling({zsel}).
// Self−agent acts based on observation and context.
Generate self-agent action a1t ∼ π1(·|o1t , xt(h);ω).
Execute a1t in the environment and receive o1t+1, r

1
t .

// On−the−fly identification using the fixed , pre−trained model.
Encode self-agent information: et = fθ(o

1
t , a

1
t).

Predict opponent OTE: ẑt = Identifierψ({e},Z test).
Compute sampling probabilities P (z−1,l) = softmax(ẑt · z−1,l) for all l ∈ {1, . . . ,M}.
Sample a selected OTE zsel

t(h) ∼ P (·) and store inH.
end for

end for

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Opponent
Responder

(MLP)

Context Aggregator (Average Pooling)

Opponent Identifier (Transformer Encoder)

softmax sample softmax sample

Current Episode (with Unknown Opponent)

Randomly Generate
Opponent Type

Embeddings as Prompt

(1)

(4)

(2)

(3)
Previous Episodes (with Unknown Opponent)

softmax sample

Figure 7: Testing procedure of OSOM. Taking timestep 1 of the current episode against an unknown
opponent policy as an example, we illustrate the four steps of OSOM’s on-the-fly testing process:
(1) Embedding Generation and Prompting: For the testing set of opponent policies {π−1,k}Mm=1
with M opponent types, randomly generate M corresponding OTEs {z−1,m}Mk=1, and use this set
as the prompt for the input sequence. (2) Context Aggregation: The Context Aggregator aggregate
the OTEs identified from recent interactions (the current episode up to timestep 0 and the previous
C episodes) to form a compact context vector x1 that represents the agent’s current belief about
the opponent’s type. (3) Action Selection (Response): The Opponent Responder takes the agent’s
current observation o11 and the aggregated context vector x1 as input to output an action a1t , allowing
the agent’s policy to be influenced by its belief about the opponent’s identity. (4) On-the-Fly Identi-
fication: The agent encodes its own (o11, a

1
1) pair to produce a latent state e1, which is then used by

the Opponent Identifier along with the sequence of latent states from recent interactions and the
full set of possible test-time OTEs to predict the opponent’s identity ẑ1. The agent probabilistically
selects an OTE from the prompt set, updating its belief about the opponent’s identity.

C TESTING PROCEDURE OF OSOM

The testing process evaluates the agent’s ability to adapt to a set of M unknown opponent policies.
The model’s parameters are frozen, and all adaptation occurs in-context by dynamically updating
its understanding of the current opponent. An illustration of the OSOM testing procedure is pro-
vided in Fig. 7, and corresponding algorithmic pseudocode is supplemented in Algo. 2 to aid in
comprehension.

Here is the breakdown of the procedure:

Initialization and Setup. Before the testing episodes begin, the environment is prepared:

(1) Load the Trained Model: The final, trained parameters for the Encoder, Opponent Identifier,
and Opponent Responder are loaded. The model is set to evaluation mode, meaning no further
learning or gradient updates will occur.

(2) Define the Opponent Set: A set of M new, potentially unseen opponent policies, denoted as
Πtest, is established for the test.

(3) Generate Random OTEs: A corresponding set of M new, random, and pairwise orthogonal
OTEs, denoted as Z test, is generated. This set of OTEs acts as a ‘prompt,’ providing the agent
with the possible identities of the opponents it might face in this new environment. The agent
has no prior association between these specific OTEs and the opponent policies.

(4) Initialize History: A historical buffer for storing identified OTEs is cleared and prepared.

Starting an Episode. At the beginning of each episode (or every H episodes to simulate non-
stationarity), an opponent is chosen:

(1) Select Opponent Policy: An opponent policy π−1,j is sampled from the test set Πtest. The agent
does not know the identity of this opponent.

(2) Reset Environment: The environment is reset, and the agent receives its initial observation, o10.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The Interaction Loop (For each timestep t). For every step within an episode, the agent performs
a cycle of belief formation, action, and belief update.

(1) Context Aggregation: The agent first forms a belief about the current opponent’s identity. The
Context Aggregator retrieves the OTEs that were identified and stored in the historical buffer
from recent interactions (e.g., the current episode up to step t− 1 and the previous C episodes).
It then calculates the average of these embeddings to produce a single, compact context vector,
xt(h). This vector represents the agent’s current, time-averaged belief about the opponent’s type.

(2) Action Selection (Response): The agent decides what action to take. The Opponent Responder
network takes the agent’s current observation o1t and the aggregated context vector xt(h) as
input. Based on this information, it outputs an action, a1t . This mechanism allows the agent’s
policy to be directly influenced by its belief about the opponent’s identity.

(3) On-the-Fly Identification: After acting, the agent updates its belief about the opponent.
• The agent’s own (o1t , a

1
t) pair is passed through the pre-trained Encoder to produce a latent

state, et. This state implicitly contains information about the opponent’s behavior.
• The Opponent Identifier (a Transformer model) takes the sequence of latent states from the

current episode up to t and previous C episodes (e0(h−C), . . . , eT−1(h−1), e0(h), . . . , et(h))
and the full set of possible test-time OTEs (Z test) as input.

• It processes this information and outputs a predicted OTE, ẑt. This prediction represents the
Identifier’s best guess of the opponent’s identity based on the interaction history.

• To make a choice, the agent probabilistically selects the OTE from the prompt set Z test ac-
cording to the dot-product similarities with its prediction ẑt. This selected OTE, zsel

t(h), is the
agent’s identification of the opponent at this timestep.

(4) Update History: The newly identified OTE, zsel
t(h), is stored in the historical buffer. This ensures

it will be used by the Context Aggregator in subsequent timesteps to inform future actions.

This loop continues until the end of the episode, and the entire process is repeated for the desired
number of test episodes. This procedure allows the agent to adapt its behavior on-the-fly by contin-
ually refining its belief about an opponent’s identity and conditioning its actions on that belief, all
without changing its underlying network weights.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

 P1 (Self-Agent) P2 (Opponent) Terminal Node (with payout)

(a) KP

Self
Agent

Opponent

(b) POO














Obstacl

Watchtower

e

Predator
Prey

Self
Agent

(c) PPW

Figure 8: Illustrations of the multi-agent benchmarking environments (a) Kuhn Poker (KP), (b)
Partially-Observable Overcooked (POO), and (c) Predator-Prey with Watchtowers (PPW).

D DETAILED INTRODUCTIONS OF ENVIRONMENTS

D.1 KUHN POKER

The game of Kuhn Poker (KP) is a simplified, two-player (P1 and P2) version of poker, as detailed by
Hoehn et al. (2005) and Kuhn (2016). The game’s setup involves a three-card deck, from which each
player is dealt a single card. The cards are ranked Jack, Queen, and King (from lowest to highest).
KP has no suits, only ranks. Unlike games such as No-Limit Texas Hold’em, which permit multiple
rounds of raising, the allowed actions in KP are restricted to simply ”bet” or ”pass.”

The game unfolds in the following sequence: (1) Both players contribute one ante (chip) to the pot.
(2) One card is dealt to each player from the deck, and the third, remaining card is not seen by either
player. (3) Following the deal, P1 is the first to act, making a choice to either bet one chip or pass.

The trajectory of the game encompasses a total of three potential scenarios, contingent upon the
sequence of actions executed by both players:

• P1 Bets: If Player 1 (P1) elects to bet, Player 2 (P2) is then presented with a choice: to bet (call),
which results in P1’s bet being matched and the game concluding in a showdown, or to pass (fold),
thereby forfeiting the pot.

• P1 Passes, P2 Acts: Should P1 choose to pass, P2 can then either pass (check), leading directly to
a showdown, or bet.

• P2 Bets After P1 Passes: If P2 places a bet after P1 has passed, P1 must then decide whether to
bet (call), matching P2’s bet and ending the hand in a showdown, or to pass (fold), which entails
relinquishing the pot.

In this study, our primary focus is on learning the adaptation strategy for P1 against P2, where the
opponent is modeled as P2. The specific card held by the opponent P2 is only disclosed at the point
of a showdown (represented by the blue diamond nodes in Fig. 8a). Following the methodology for
strategy simplification proposed by Hoehn et al. (2005), we systematically eliminate policies for P2
that are clearly dominated. For instance, P2 will never choose to bet with a Queen after P1 checks
(passes), as P1 would consistently fold with a Jack and call with a King. The complete, simplified
game tree can be referenced in the original paper by Hoehn et al. (2005). This simplification enables
us to parameterize the P2 policy using only two variables, ξ and η, each constrained to the range
[0, 1]. Within, η represents the probability that P2 ‘bets with a Queen’ after P1 has bet. ξ represents
the probability that P2 ‘bets with a Jack’ after P1 has passed. As a result, the full policy space of
P2 can be partitioned into six distinct sections, with each section corresponding to the optimal best
response strategy for P1.

Observation Space. The agents within this game perceive a state that is represented by a 13-
dimensional vector, which is constructed from three one-hot vectors.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(1) First One-Hot Vector (7-dimensions): This component is a 7-dimensional encoding of the cur-
rent stage within the game tree.

(2) Second One-Hot Vector (3-dimensions): This component represents the hand card of the self-
agent.

(3) Third One-Hot Vector (3-dimensions): This component represents the hand card of the oppo-
nent. Crucially, the opponent’s hand is consistently represented by an all-zero vector until the
game reaches a showdown stage.

Action Space. The permissible actions for each player are limited to either ‘bet’ or ‘pass’, which
means the action space is a discrete space comprising two distinct actions.

Reward. The reward is not directly equivalent to the total amount in the pot. Instead, it is computed
as the total chips in the pot minus the chips contributed by the winner. The loser’s reward is the
negative value of the winner’s reward. The reward values are determined by the final size of the pot:

• Showdown (No Bets): If the game concludes in a showdown with no player betting (both pass),
the pot contains 2 chips (one ante from each player). The player with the highest-ranked card wins
the pot.

– Reward: ±1 (Pot 2 - Winner’s contribution 1).

• Showdown (With Bets): If the game concludes in a showdown after a sequence of bets (e.g., one
player bets, and the other calls), the pot contains 4 chips (two chips from each player). The player
with the highest-ranked card wins the pot.

– Reward: ±2 (Pot 4 - Winner’s contribution 2).

• Forfeit (Fold): If the game ends because one player forfeits the pot (folds), the pot contains 3 chips
(one ante plus two bets/chips). The remaining player wins the pot.

– Reward: ±1 (Pot 3 - Winner’s contribution 2).

D.2 PARTIALLY-OBSERVABLE OVERCOOKED

Partially-Observable Overcooked (POO) is a collaborative culinary simulation in which players
assume the roles of chefs working together to accomplish multiple sub-tasks and serve prepared
dishes, as described by Carroll et al. (2019). In this study, we present a more intricate Multi-Recipe
variant, which incorporates modifications previously introduced by Charakorn et al. (2023) and Ma
et al. (2024). To substantially increase the challenge and encourage a wider array of policy behaviors,
we specifically incorporate two additional ingredients—potato and broccoli—and a corresponding
increase in the number of available recipes. The game environment now features a total of six ingre-
dients (Tomato, Onion, Carrot, Lettuce, Potato, and Broccoli) and nine recipes. A notable character-
istic of this environment is a counter that divides the room, thereby making collaboration essential
as chefs must exchange objects, such as ingredients and plates, across this counter. To successfully
serve a dish, the required ingredients must first be taken to the cutting board and chopped. Once all
the necessary chopped ingredients are placed onto a plate, the final dish must be transported to the
delivery square to complete the task. Furthermore, we introduce partial observability by horizon-
tally dividing the game scene into an ‘upper room’ and a ‘lower room’. Each agent is restricted to
observing only the objects present in the same room as itself. The agent situated in the left room is
designated as the self-agent, and the masked gray area shown in Fig. 8b represents the portion of the
environment that is unobserved by the self-agent.

Observation Space. The observation is structured as a 105-dimensional vector, which integrates a
variety of features. These features encompass the agent’s position, direction, currently held objects,
objects immediately in front of the agent, and various other relevant attributes. To properly account
for the partial observation, a flag is included for every relevant object to indicate its visibility status.

Action Space. Each agent is capable of selecting an action from a discrete space of six possi-
ble actions: moving left, moving right, moving up, moving down, interacting (with an object), and
performing a no-operation (taking no action).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Reward. Since POO is a fully cooperative game, all agents in the environment receive the same
shared reward. There are three categories of rewards utilized within the game:

• Interactive Reward: An agent receives a reward of 0.5 whenever it successfully interacts with an
object. It should be noted that consecutive or repeated interactions with the same object do not
yield any cumulative additional reward.

• Progress Reward: Each agent is given a reward of 1.0 when the state of a recipe advances. For in-
stance, if a chopped carrot is placed onto a plate, thereby changing the recipe state from ”chopped
carrot” to ”carrot plate,” all agents receive this reward.

• Completion Reward: When a prepared dish that fulfills the requirements of a recipe is successfully
served to the delivery square, every agent receives a substantial reward of 10.0.

D.3 PREDATOR-PREY WITH WATCHTOWERS

Predator-Prey with Watchtowers (PPW) is a multi-agent environment where the agents face both
collaborative and competitive dynamics. We utilize a modified version of the standard predator-prey
scenario taken from the Multi-agent Particle Environment (MPE), which is commonly employed in
the Multi-Agent RL (MARL) literature (Lowe et al., 2017).

As depicted in the game illustration of Fig. 8c, the environment contains the following components:

• Two Predators: represented by red circles, with the darker one designating the self-agent.
• Two Prey: represented by green circles.
• Multiple Landmarks: represented by gray and blue circles.

The core objectives are two-fold: the predators are tasked with chasing the prey, while the prey
attempt to escape the predators. Furthermore, the predators operate in a collaborative manner, as
they are required to coordinate their actions so that all prey are simultaneously covered by a predator.
Each simulation episode is limited to a maximum duration of 40 timesteps. However, if all the prey
are tagged (or ”touched”) by the predators, the episode concludes immediately.

To augment the complexity of the task, we utilize the version modified by Ma et al. (2024), which
incorporates both partial observability and the addition of ‘four watchtowers’: the blue circles situ-
ated at the corners of the figure. The self-agent’s visual range is limited; it can only perceive other
agents and landmarks that fall within its observation radius, which is fixed at 0.2 for all experiments.
The self-agent has the option to navigate to a watchtower to obtain full observability. When the self-
agent is in contact with any of these watchtowers, its field of view expands to encompass all agents
and landmarks present in the entire environment.

Observation Space. The observation space is a 37-dimensional vector. It is composed of the posi-
tions and velocities of the various agents, as well as the positions of the landmarks. To implement the
partial observability, an additional 0/1 sign is appended for every landmark and every agent other
than the self-agent, which indicates whether that entity is currently visible to the self-agent. For any
entity that is invisible, its sign, positions, and velocities are all set to 0. Finally, all positions, except
for the absolute position of the self-agent, are relative to the self-agent’s location.

Action Space. The action space employed for PPW is a discrete space comprising five actions,
corresponding to the ability to move left, right, up, down, or stand still (take no movement action).

Reward. The predators are assigned a common shared reward that is designed to incentivize col-
laboration and ensure that all prey are covered. Specifically, if A denotes the set of all predators and
B denotes the set of all prey, the reward received by the predators at each timestep is defined by the
following expression:

−c
∑
b∈B

min
a∈A

dist(a, b),

where dist is the Euclidean distance function, and the constant c is set to 0.1. Intuitively, this for-
mulation encourages the predators to divide and conquer the task, ensuring that for every individual
prey, there is at least one predator located in close proximity.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E OPPONENT POOL DESIGN

In this section, we provide a detailed description of the design and construction of the opponent
policy pools used in our experiments. We primarily follow the methodology outlined by Ma et al.
(2024) to generate a diverse set of rule-based opponent policies for each environment.

Current work, as supported by research from Strouse et al. (2021); Charakorn et al. (2023); Lupu
et al. (2021)u, predominantly employs RL algorithms enhanced with diversity objectives to cultivate
a wide range of policy behaviors. However, this paper takes a different approach by generating a col-
lection of rule-based policies that incorporate human-derived priors. The rationale for this decision
is that the P2 policy within the KP framework can be effectively parameterized by two probabilities,
denoted as ξ and η. Furthermore, we posit that the preference-based policies utilized in POO and PPW
more accurately represent human-like behaviors within the game environment. The specific details
regarding the pool of these rule-based policies are provided in the following section.

E.1 KUHN POKER

In accordance with the details provided in Sec. D.1, the dominant strategies for P2 have been elim-
inated. This allows the P2 policy to be defined by two key parameters: η and ξ. The parameter η
represents the probability of P2 betting with a Queen when P1 has already bet, whereas ξ denotes
the probability of P2 betting with a Jack following a pass from P1.

This approach enables the generation of an arbitrary number of P2 policies by randomly sampling
the parameters ξ and η. For the purposes of this paper, a total of 40 P2 policies were sampled to
form the full training opponent set Train Set, while 10 P2 policies were sampled for the full unseen
opponent set Eval Set.

E.2 PARTIALLY-OBSERVABLE OVERCOOKED

In this paper, we follow the method of Ma et al. (2024) for generating opponent policies that are
based on individual preferences for specific recipes. Each opponent policy is thus tailored to a par-
ticular recipe, such as Tomato and Onion Salad. These opponents are spatially constrained to the
right side of the kitchen environment and engage solely with ingredients and dishes relevant to their
preferred recipe. For instance, a policy favoring Tomato and Onion Salad would concentrate on sub-
tasks related to handling fresh or chopped tomatoes and onions, as well as delivering final dishes
that exclusively contain these two ingredients.

At each timestep, the opponent’s decision-making is as follows: it first assesses the completion status
of its current sub-task. If the sub-task is not yet finished, the opponent computes the shortest path
to its target location and proceeds to navigate along that path. Conversely, upon completion of a
sub-task, the opponent samples a new sub-task from its predefined set of preferred options.

In addition, two parameters are utilized to control more fine-grained aspects of the policies. The first,
Pnav, is the probability of selecting a lateral movement (right or left) over a vertical movement (up
or down) when multiple shortest paths exist. The second, Pact, represents the probability of an agent
choosing a random action from the action space instead of the optimal action for its current sub-task.
To illustrate, consider an opponent aiming to place a Tomato on a counter. With a probability of Pact,
the opponent will select a random action from the entire action space. Conversely, with a probability
of 1− Pact, it will choose the optimal action for the task, such as navigating towards the counter or
performing the necessary interaction.

We posit that rule-based agents exhibit behaviors that are more human-like than those of self-play
agents trained with RL algorithms. This belief is supported by two main points. First, cognitive
studies (Etel & Slaughter, 2019; Sher et al., 2014) suggest that human actions are indeed based on
underlying intentions and desires. Additionally, self-play agents frequently develop arbitrary con-
ventions (Hu et al., 2020). In the POO environment, such conventions may involve consistently plac-
ing or taking ingredients and plates from a specific counter and refusing to interact with objects at
other locations. However, these self-play conventions are rarely seen in human behavior. As a result,
a preference-based policy proves to be a more suitable choice.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

The POO scenario detailed in this paper is built upon a set of 9 recipes. Additionally, two parameters,
Pnav and Pact, are employed to control more granular strategic behaviors. The process for generating
a new opponent policy involves first uniformly sampling its preferred recipe from the nine available
options, and then randomly sampling values for Pnav and Pact. The full training opponent set Train
Set, consists of 18 policies, while the full unseen opponent set Eval Set, contains 9 policies.

E.3 PREDATOR-PREY WITH WATCHTOWERS

Our approach to generating preference-based opponent policies in PPW follows the design strategy
outlined by Ma et al. (2024).

For the predator opponent, we designed policies that have a preference for one specific prey from
the two available options. When operating under full observation, the predator will invariably pursue
its preferred prey.

For the prey opponents, we developed a total of 8 distinct movement patterns, which are illustrated
as dotted lines and labeled 1⃝- 8⃝ in Fig. 8c. Each prey opponent is designed to move back and
forth along a single, preferred path. This collection of paths is partitioned into a training set, which
includes the blue dotted lines (1⃝- 4⃝), and an unseen set, which consists of the red dotted lines
(5⃝- 8⃝).

The final full training opponent set Train Set was created by sampling 16 combinations, with each
combination comprising one predator opponent policy and two training prey opponent policies.
Similarly, the final full unseen opponent set Eval Set was generated from 24 sampled combinations,
each consisting of one predator opponent policy and two unseen prey opponent policies.

F TRAINING RECIPES

The overall training pipeline for PACE (Ma et al., 2024), LILI (Xie et al., 2021), LIAM (Papoudakis
et al., 2021), LIAMX (Papoudakis et al., 2021), and Generalist is fundamentally similar to the
OSOM procedure . The key distinction lies in their optimization objectives. Specifically, these OM
approaches do not incorporate the Contrastive Learning objective found in OSOM (Eq. (2) in the
original paper) and may use different Representation Learning objectives (different from Eq. (1)).
Furthermore, a major architectural difference is that these OM approaches do not utilize Transform-
ers as their backbones. In contrast, the training procedure for GSCU is notably different from the
other OM approaches mentioned, and its details can be found in the original paper (Fu et al., 2022).

For all of the baselines and ablation variants, we employ PPO (Schulman et al., 2017; Kostrikov,
2018) as the underlying RL training algorithm. The specific hyperparameters used for the architec-
tures, training, and testing for each environment are detailed in the following sections: KP in Sec. G.1,
POO in Sec. G.2, and PPW in Sec. G.3.

F.1 SPECIFIC DETAILS FOR OSOM

Architectural Design. The choice of a Transformer as the model backbone is central to OSOM’s
functionality. Its attention mechanism is uniquely suited for both identification and response.

• Encoder: We implement the self-agent observation-action Encoder as a 2-layer Multi-Layer Per-
ceptron (MLP) with ReLU (Agarap, 2018) activation functions. The number of hidden units for
KP, POO, and PPW is 64, 128, and 128, respectively.

• Opponent Identifier: We choose an auto-regressive Transformer (Vaswani et al., 2017) imple-
mented using the PyTorch Library (Paszke et al., 2019) for this component. The input sequence
would consist of the latent states (e0(h−C), . . . , eT−1(h−1), e0(h), . . . , et(h)). The set of OTEs, Z ,
can be provided as a prompt, prepended to the main sequence. The attention mechanism allows the
model to perform a soft search over the OTEs in the prompt, comparing each one to the encoded
history to produce the final prediction ẑt. Specifically, the backbone of OSOM is a 3-layer Trans-
former with 1 attention head. The number of hidden units (i.e., dimension of the hidden state) of
the model for KP, POO, and PPW is 64, 128, and 128, respectively. The number of hidden units of
the feed-forward layer for KP, POO, and PPW is 256, 512, and 512, respectively. The dropout rate is
set to 0.1 for all environments.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

• Latent Layer: We also include a latent layer to project the output of the Transformer to the same
dimension as the OTEs, which is the final output of the Opponent Identifier, i.e., ẑt. This is imple-
mented as a 2-layer MLP with ReLU (Agarap, 2018) activation functions. The number of hidden
units for KP, POO, and PPW is 64, 128, and 128, respectively.

• Opponent Responder: While a Transformer could also be used here, we adopt a simpler MLP,
which is often sufficient and more computationally efficient. The input to this network is the
concatenation of the current observation o1t and the aggregated context vector xt. This model
allows the context to directly modulate the policy output for the given input. Specifically, the actor
and critic of PPO are both implemented as 2-layer MLPs with ReLU (Agarap, 2018) activation
functions. The number of hidden units for all environments is 128.

Masking Scheme. At each timestep t of episode h, the Opponent Identifier receives a sequence
consisting of a prefix of K OTE prompt tokens followed by the latent states from the previous C
episodes and the current episode up to t. We apply a causal mask only over the temporal latent-
state tokens: each latent-state token can attend to all OTE prompt tokens and to latent states from
earlier timesteps (across the previous C episodes and the current episode), but not to any future
latent states. The OTE prompt tokens themselves are visible from any position, since they represent
a static set of candidate opponent types rather than a temporal process.

Positional Embeddings. We use learnable absolute positional embeddings implemented with
‘nn.Embedding’ of PyTorch (Paszke et al., 2019). For each latent state et(h) we add (1) a timestep-
level positional embedding reflecting its index within episode h, and (2) an episode-level embedding
indicating which of the last C episodes (or the current episode) it belongs to. OTE prompt tokens
do not carry temporal position and thus are not assigned any positional embeddings. As a result, the
Identifier is effectively insensitive to the ordering of theK OTE tokens, which are randomly shuffled
when we construct the prompt.

Orthogonal OTEs Generation. We suggest that OTEs should be random, pairwise (nearly) or-
thogonal, and reside on the unit sphere. A standard and numerically stable procedure to achieve is
as follows:

(1) Random Sampling: Generate K (or M) vectors of dimension d by sampling each component
from a standard Gaussian distribution, N (0, 1).

(2) Orthogonalization: Apply the Gram-Schmidt process to this set of random vectors. This proce-
dure iteratively modifies the vectors to ensure they are mutually orthogonal.

(3) Normalization: Normalize each of the resulting orthogonal vectors to have a unit L2-norm
(∥·∥2 = 1). This places them on the surface of a d-dimensional hypersphere.

This process ensures that the dot product similarity used in the CL objective (c.f ., Eq. (2)) is well-
behaved. Orthogonality guarantees that a predicted vector ẑt can have a high similarity score with
one target OTE without inadvertently having a high score with others, which sharpens the optimiza-
tion signal and prevents ambiguity during identification.

In this view, the prompt size M and the embedding dimension d should be understood as stan-
dard capacity hyperparameters: for a fixed d, very large M will eventually force some opponent
types to share similar OTEs, just as any finite-dimensional embedding has finite capacity to separate
many distinct classes. In our experiments we choose d ∈ {64, 128} with M ≤ 50, so the apparent
condition d ≥M does not bind in practice.

F.2 OTHER GENERAL DETAILS

Training Budgets. We keep the original hyperparameters for GSCU on KP. For KP, the training
budget for all algorithms except GSCU is 5 million timesteps, while for GSCU embedding learning
takes 1 million episodes and conditional RL takes 1 million episodes. For POO, the training budget for
all algorithms except GSCU is 30 million timesteps, while for GSCU the embedding learning takes
2 million timesteps and the conditional RL takes 30 million timesteps. For PPW, the training budget
for all algorithms including GSCU is 15 million timesteps. The embedding learning for GSCU takes
an additional 2 million timesteps.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

We have retained the original hyperparameters for GSCU on the KP environment. The training bud-
gets for each environment are as follows:

• KP: For all algorithms except GSCU, the training budget is 5 million timesteps. For GSCU, the
budget consists of 1 million episodes for embedding learning and an additional 1 million episodes
for conditional RL.

• POO: For all algorithms except GSCU, the training budget is 30 million timesteps. For GSCU, the
budget is 2 million timesteps for embedding learning and 30 million timesteps for conditional RL.

• PPW: The training budget for all algorithms, including GSCU, is 15 million timesteps. For GSCU,
an additional 2 million timesteps are allocated specifically for embedding learning.

Architectures. For algorithms that employ a Recurrent Neural Network (RNN), including Gen-
eralist, LIAM, and LIAMX, the implementation uses a single-layer GRU (Chung et al., 2014) with
128 hidden units. The training for the RNN is conducted using Back-Propagation Through Time
(BPTT), where gradients are detached every 20 timesteps. This means that all training trajectories
are partitioned into segments of 20 timesteps for BPTT. The actor and critic networks share the same
RNN, as well as the hidden layers that precede the RNN.

Similar to OSOM, the algorithms PACE and LILI also employ a 2-layer MLP as its Encoder, a
2-layer MLP as the Latent Layer to project the output of the Encoder to the same dimension of
the output hidden states, and a 2-layer MLP for both the actor and critic networks of PPO. Unlike
OSOM, the algorithms PACE and LILI include a Aggregate Model that is implemented as a 1-layer
MLP. The number of hidden units for the Aggregate Model for KP, POO, and PPW is 64, 128, and 128,
respectively.

Auxiliary Tasks. Algorithms that incorporate auxiliary tasks have an additional objective that is
optimized concurrently with the primary RL objective. This auxiliary objective is computed using
the same mini-batch of data as the RL training.

• OSOM: The auxiliary task is weighted at 1.0 for both observation and action prediction. In another
word, the coefficient α1 for the Representation Learning objective in Eq. (5) is set to 1.0.

• PACE: The auxiliary task is also weighted at 1.0.
• LIAM: The auxiliary task is given a weight of 1.0 for both observation and action prediction.
• LILI: This approach uses the last episode as its context, as detailed by Xie et al. (2021). Its auxil-

iary task is weighted at 1.0 for both reward and next observation prediction.

PACE’s Exploration Reward. For the implementation of PACE, we follow the original paper (Ma
et al., 2024) to add an exploration reward to the environmental reward. The coefficient for the ex-
ploration reward undergoes a linear decay from an initial value, cinit, to 0 over a duration of Ndecay
timesteps. The specific values for these parameters are:

• KP: cinit = 0.01 and Ndecay = 4× 106 timesteps.

• POO: cinit = 0.2 and Ndecay = 2.5× 107 timesteps.

• PPW: cinit = 0.1 and Ndecay = 1.5× 107 timesteps.

Additionally, the context encoder is initially trained for Nwarm timesteps using only the auxiliary
task, without any RL objective. The values for this warm-up period are:

• KP: Nwarm = 105 timesteps.
• POO: Nwarm = 106 timesteps.
• PPW: Nwarm = 5× 105 timesteps.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

G HYPERPARAMETER SETTINGS

G.1 KUHN POKER

Table 2: Hyperparameters for all the algorithms in the KP environment.

Parameter Name Algorithms

Generalist LILI LIAM(X) GSCU PACE OSOM

Learning Rate 2e-4 2e-4 2e-4 5e-4 2e-4 2e-4
PPO Clip ϵ 0.2 0.2 0.2 0.2 0.2 0.2

Entropy Coefficient 5e-4 5e-4 5e-4 0.01 5e-4 5e-4
Discount Factor γ 0.99 0.99 0.99 0.99 0.99 0.99

GAE λ 0.95 0.95 0.95 0.95 0.95 0.95
Batch Size 80000 80000 80000 1000 80000 80000

of Update Epochs 3 3 3 5 3 3
of Mini Batches 80 80 80 30 80 80

Gradient Clipping (L2) 2.0 2.0 2.0 0.5 2.0 2.0
Activation Function ReLU ReLU ReLU ReLU ReLU ReLU

Actor & Critic Hidden Dims [128, 128] [128, 128] [128, 128] [128, 128] [128, 128] [128, 128]
Encoder f Hidden Dims N/A [64, 64] N/A N/A [64, 64] [64, 64]

Latent Layer Hidden Dims N/A [64, 64] N/A N/A [64, 64] [64, 64]

Specific Hyperparameters for OSOM. The specific hyperparameters for OSOM in the KP envi-
ronment are as follows:

• Number of opponent types sampled during training (K): 8.
• Number of opponent types present during testing (M): 40 for Train Set, 10 for Eval Set, and 50

for All Set.
• Size of the sliding window (in episodes) for context aggregation (C): 20.
• Temperature coefficient for the Contrastive Learning objective in Eq. (2) (κ): 1.5.
• Coefficients for weighting the three objective components in Eq. (5) (α1, α2, α3): 1.0, 0.01, 1.0,

respectively.
• Number of timesteps for resampling the opponent policies and their corresponding OTEs during

training: 3000.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

G.2 PARTIALLY-OBSERVABLE OVERCOOKED

Table 3: Hyperparameters for all the algorithms in the POO environment.

Parameter Name Algorithms

Generalist LILI LIAM(X) GSCU PACE OSOM

Learning Rate 1e-3 1e-3 1e-3 7e-4 1e-3 1e-3
PPO Clip ϵ 0.2 0.2 0.2 0.2 0.2 0.2

Entropy Coefficient 0.03 0.03 0.03 0.01 0.03 0.03
Discount Factor γ 0.99 0.99 0.99 0.99 0.99 0.99

GAE λ 0.95 0.95 0.95 0.95 0.95 0.95
Batch Size 72000 72000 72000 2500 72000 72000

of Update Epochs 3 3 3 8 3 3
of Mini Batches 90 90 90 2 90 90

Gradient Clipping (L2) 15.0 15.0 15.0 0.5 15.0 15.0
Activation Function ReLU ReLU ReLU Tanh ReLU ReLU

Actor & Critic Hidden Dims [128, 128] [128, 128] [128, 128] [64 64] [128, 128] [128, 128]
Encoder f Hidden Dims N/A [128, 128] N/A N/A [128, 128] [128, 128]

Latent Layer Hidden Dims N/A [128, 128] N/A N/A [128, 128] [128, 128]

Specific Hyperparameters for OSOM. The specific hyperparameters for OSOM in the POO en-
vironment are as follows:

• Number of opponent types sampled during training (K): 4.
• Number of opponent types present during testing (M): 18 for Train Set, 9 for Eval Set, and 27

for All Set.
• Size of the sliding window (in episodes) for context aggregation (C): 5.
• Temperature coefficient for the Contrastive Learning objective in Eq. (2) (κ): 1.5.
• Coefficients for weighting the three objective components in Eq. (5) (α1, α2, α3): 1.0, 0.1, 1.0,

respectively.
• Number of timesteps for resampling the opponent policies and their corresponding OTEs during

training: 3000.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

G.3 PREDATOR-PREY WITH WATCHTOWERS

Table 4: Hyperparameters for all the algorithms in the PPW environment.

Parameter Name Algorithms

Generalist LILI LIAM(X) GSCU PACE OSOM

Learning Rate 4e-4 4e-4 4e-4 5e-4 4e-4 4e-4
PPO Clip ϵ 0.2 0.2 0.2 0.2 0.2 0.2

Entropy Coefficient 0.03 0.03 0.03 0.01 0.03 0.03
Discount Factor γ 0.99 0.99 0.99 0.99 0.99 0.99

GAE λ 0.95 0.95 0.95 0.95 0.95 0.95
Batch Size 64000 64000 64000 2500 64000 64000

of Update Epochs 2 2 2 8 2 2
of Mini Batches 150 150 150 2 150 150

Gradient Clipping (L2) 15.0 15.0 15.0 0.5 15.0 15.0
Activation Function ReLU ReLU ReLU Tanh ReLU ReLU

Actor & Critic Hidden Dims [128, 128] [128, 128] [128, 128] [64 64] [128, 128] [128, 128]
Encoder f Hidden Dims N/A [128, 128] N/A N/A [128, 128] [128, 128]

Latent Layer Hidden Dims N/A [128, 128] N/A N/A [128, 128] [128, 128]

Specific Hyperparameters for OSOM. The specific hyperparameters for OSOM in the PPW en-
vironment are as follows:

• Number of opponent types sampled during training (K): 4.
• Number of opponent types present during testing (M): 16 for Train Set, 24 for Eval Set, and 40

for All Set.
• Size of the sliding window (in episodes) for context aggregation (C): 5.
• Temperature coefficient for the Contrastive Learning objective in Eq. (2) (κ): 1.5.
• Coefficients for weighting the three objective components in Eq. (5) (α1, α2, α3): 1.0, 1.0, 1.0,

respectively.
• Number of timesteps for resampling the opponent policies and their corresponding OTEs during

training: 3000.

H THE USE OF LARGE LANGUAGE MODELS

This paper utilizes Large Language Models to polish the writing of certain sections.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00 1.25 1.50
of Environment Timesteps 1e7

5

4

3

2
Av

er
ag

e
Re

tu
rn

Predator-Prey with Watchtowers (Train)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
of Environment Timesteps 1e7

5

4

3

Av
er

ag
e

Re
tu

rn

Predator-Prey with Watchtowers (Eval)
PACE PACE w/ Multi Self-Agents OSOM OSOM w/ Multi Self-Agents

Figure 9: Training curves for centralized control of multiple self-agents in PPW. We adopt the same
experimental setup as in Fig. 6 but with both predators being controllable self-agents.

H = 1 H = 3 H = 5 H = 10 H = 20
Opponent Policy Switching Frequency (H)

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
tu

rn

Partially-Observable Overcooked (Eval Set)
Generalist GSCU LIAM LIAMX LILI PACE OSOM

Figure 10: Ablation study on the opponent switch frequency H in POO (Eval Set). We adopt the
same experimental setup as in Fig. 3 but vary H from {1, 3, 5, 10, 20}.

I ADDITIONAL EXPERIMENTAL RESULTS

Question 6. Can OSOM effectively control multiple self-agents?

To directly test whether OSOM can control a team of agents, we consider a centralized-control
variant of PPW in which both predators are controllable self-agents and a joint controller outputs their
joint action at each timestep (see Sec. D.3 for details). We compare PACE and OSOM in this setting,
including both the original single-self versions and their multi-self counterparts (‘PACE w/ Multi
Self-Agents’ and ‘OSOM w/ Multi Self-Agents’), where OSOM uses factorized per-agent OTEs for
the two preys and aggregates them into a team-level context. As shown in Fig. 9, centralized team
control yields slower early convergence for both approaches but higher asymptotic returns than their
single-self variants, and OSOM w/ Multi Self-Agents consistently outperforms PACE w/ Multi
Self-Agents across training, demonstrating that OSOM remains effective when extended to non-
trivial multi-agent team control.

Question 7. How does the opponent switch frequency H affect OSOM’s performance?

We further study the impact of the switch frequency H on POO (Eval Set) by varying H ∈
{1, 3, 5, 10, 20}. The corresponding results are presented in Fig. 10. Across all choices ofH , OSOM
dominates all baselines in terms of average return and success rate, and the relative gap remains sta-
ble. This suggests that our conclusions are not tied to a specific non-stationarity level, and that
OSOM is robust to both fast and slow opponent switches.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Train Set Eval Set All Set
Test Mode

0.0

0.2

0.4

0.6

0.8
Av

er
ag

e
Re

tu
rn

Partially-Observable Overcooked
Generalist GSCU LIAM LIAMX LILI PACE OSOM w/ M=1 OSOM

Figure 11: Ablation study on the degenerate case of a single OTE (M = 1) in POO. We adopt the
same experimental setup as in Fig. 3 but set M = 1 for OSOM’s OTE prompt.

Question 8. How does OSOM perform in the degenerate case of a single OTE (M = 1)?

We also investigate the degenerate case M = 1, where the prompt contains only a single OTE and
OSOM deems that there is at most one opponent type. In this regime, the context vector collapses to
a constant, and OSOM behaves like a generalist agent without meaningful type uncertainty. In a POO
experiment with M = 1 as shown in Fig. 11, OSOM performs comparably to other OM baselines
but significantly worse than full OSOM with M ≥ 2, which can exploit variation across opponent
types. This behavior is consistent with our interpretation of OSOM as an open-set opponent model
whose advantages emerge precisely when multiple types are possible.

38

	Introduction
	Preliminaries
	Methodology
	Opponent Policy Distillation with Representation Learning
	Opponent Identification with Contrastive Learning
	Opponent Response with Online Reinforcement Learning

	Experiments
	Experimental Setup
	Emperical Analysis

	Discussion
	Related Work
	Algorithmic Pseudocode for OSOM
	OSOM Training
	OSOM Testing

	Testing Procedure of OSOM
	Detailed Introductions of Environments
	Kuhn Poker
	Partially-Observable Overcooked
	Predator-Prey with Watchtowers

	Opponent Pool Design
	Kuhn Poker
	Partially-Observable Overcooked
	Predator-Prey with Watchtowers

	Training Recipes
	Specific Details for OSOM
	Other General Details

	Hyperparameter Settings
	Kuhn Poker
	Partially-Observable Overcooked
	Predator-Prey with Watchtowers

	The Use of Large Language Models
	Additional Experimental Results

