

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPEN SET OPPONENT MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

In multi-agent systems, opponent modeling aims to reduce environmental uncertainty by modeling other agents. Existing research has utilized opponent information to enhance decision-making capabilities based on various methodologies. However, they generally lack good generalization when opponents adopt an open set of policies. In particular, no work has managed to effectively identify never-before-seen opponents. To address these issues, we propose an end-to-end **Open Set Opponent Modeling (OSOM)** training approach, which for the first time enables explicit identification and response to open set opponents. First, OSOM overcomes the challenges of partial observability by distilling opponent policies into information encodings of controlled agent through representation learning. Second, using randomly generated opponent type embeddings as prompts, OSOM achieves identification of opponent types with variable numbers and semantics by maximizing the probability of selecting the true opponent type embedding via contrastive learning. Finally, with the aggregated opponent type embeddings selected from recent history as context, OSOM learns to best respond to sampled opponents through online reinforcement learning. At test time, OSOM only needs to randomly generate opponent type embeddings as prompts again to achieve effective on-the-fly identification and response to non-stationary open set opponents. Extensive controlled experiments in competitive, cooperative, and mixed environments quantitatively validate the significant advantages of OSOM over existing approaches in terms of identification accuracy and response performance.

1 INTRODUCTION

Opponent Modeling (**OM**) is a long-standing and far-reaching research topic that aims to develop a *self-agent*¹ capable of modeling behaviors, goals, intentions, and other properties about *other agents* (collectively referred to as **opponents**) within a multi-agent system. The purpose of such modeling is to allow the self-agent to flexibly adapt to opponents, thereby reducing its environmental uncertainty and enhancing its decision-making abilities (He et al., 2016; Foerster et al., 2018a; Albrecht & Stone, 2018; Nashed & Zilberstein, 2022; Fu et al., 2022; Yu et al., 2022; Ma et al., 2024; Jing et al., 2024a; 2025b). Existing research has utilized various methodologies, such as Representation Learning (Hong et al., 2018; Grover et al., 2018; Papoudakis et al., 2021), Bayesian Inference (Hernandez-Leal et al., 2016; Zheng et al., 2018; DiGiovanni & Tewari, 2021), and Meta-learning (Zintgraf et al., 2021; Al-Shedivat et al., 2018; Kim et al., 2021), to model opponents. Most OM approaches are typically first trained on a fixed *training set of opponent policies* Π^{train} and then benchmarked on a given *testing set of opponent policies* Π^{test} to evaluate their online adaptation abilities (Jing et al., 2024b; 2025a).

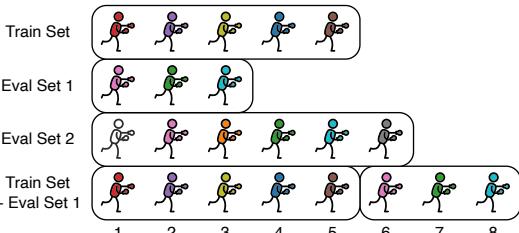


Figure 1: An illustration of **Open Set Opponent (OSO)** setting. The number and semantics of opponent types in the test opponent set Π^{test} can differ significantly from those in train opponent set Π^{train} . In this example, Π^{train} adopts ‘Train Set’, while Π^{test} may be ‘Eval Set 1’, ‘Eval Set 2’, or ‘Train Set + Eval Set 1’. OSO poses a formidable challenge for explicit opponent identification.

¹We refer to the agent under our control in the multi-agent environment as ‘self-agent’.

054 However, when *the set of all possible policies that opponents can adopt is variable*, which we refer
 055 to as the **Open Set Opponents (OSOs)** setting, existing approaches generally exhibit poor gener-
 056 alization. We illustrate the OSO setting in Fig. 1, where different colors denote distinct opponent
 057 types. The challenge of OSOs setting is that the opponent types in training and testing can differ
 058 significantly in number and semantics. In particular, no work has yet managed to achieve effective
 059 identification of opponents that were never seen during training. Existing work either assumes that
 060 the opponents in training and testing have very similar policies or implicitly circumvents identi-
 061 fication, focusing solely on responding to the opponents. We argue that this lack of identification
 062 for unseen opponents largely limits the adaptability of OM approaches. On one hand, a self-agent
 063 that can only adapt implicitly often employs a ‘blurred’ response policy for all potential opponents,
 064 making it difficult to precisely exploit the specific opponent it faces. On the other hand, when fac-
 065 ing opponents whose policies may change, a self-agent who cannot identify has difficulty quickly
 066 detecting shifts in opponent behavior patterns, which leads to low response efficiency.

067 In this work, we propose a novel **Open Set Opponent Modeling (OSOM)** training approach to ad-
 068 dress above issues. OSOM is trained end-to-end using the optimization objectives of Representation
 069 Learning, *Contrastive Learning* (CL) (Jaiswal et al., 2020), and Online *Reinforcement Learning*
 070 (RL), which for the first time achieves **explicit identification** and **effective response** to OSOs.

071 Without loss of generality, OM typically assumes that its environment is partially-observable. This
 072 means that during testing, the self-agent cannot immediately observe information about opponents.
 073 To mitigate the challenges of partial observability, we introduce a Representation Learning objective
 074 that uses an additional decoder to predict opponent observations and actions, thereby distilling the
 075 opponent’s policy into a hidden state encoded from the self-agent’s observations and actions.

076 To achieve explicit identification of OSOs, we further propose a CL-based training procedure. Before
 077 each iteration, we first sample K opponent policies from a large and diverse Train Set, and then
 078 randomly generate K **Opponent Type Embeddings (OTEs)** to characterize these K opponent types.
 079 Next, we use these OTEs as prompts for the input of model, and autoregressively output a predicted
 080 OTE at each timestep. Finally, we use a CL objective during updating to maximize the similarity
 081 between the predicted OTEs and the ground truth ones. This procedure makes it possible to identify
 082 opponent types that are variable in both number and semantics, and avoids the limitations of using a
 083 classifier (Ma et al., 2024), which can only identify a fixed number and semantics of opponents.

084 Building upon explicit identification, how to effectively respond to opponents is also crucial. Specif-
 085 ically, we first aggregate all OTEs selected from recent episodes to obtain a *compact semantic rep-
 086 resentation* of the opponent. Next, using this aggregated representation as context, we directly train
 087 the self-agent through an online RL objective to learn the best response to the sampled opponent.

088 By integrating the three objectives, OSOM iteratively samples opponents from the Train Set to train
 089 a Transformer-based model end-to-end. Recent research has shown that Transformers pre-trained
 090 on high-quality data for decision-making tasks exhibit in-context learning abilities (Lee et al., 2023;
 091 Lin et al., 2024). Our model design adopts this idea, which enables the opponent identification and
 092 response capabilities learned by OSOM during training to generalize well to testing. Once training is
 093 complete, when facing a set of opponents with unseen types in terms of both number and semantics,
 094 we only need to randomly generate new OTEs as prompts. This allows OSOM to achieve effective
 095 on-the-fly identification and response to non-stationary OSOs as it interacts. Intuitively, OSOM first
 096 identifies the opponent based on the self-agent’s information, which contains opponent policy se-
 097 mantic. It then summarizes the identification results from a recent period and finally generates the
 098 most suitable response according to the determined opponent’s identity.

099 In extensive comparative and ablation experiments across competitive, cooperative, and mixed en-
 100 vironments, our approach consistently and significantly outperforms representative OM approaches
 101 in terms of both identification accuracy and response performance, fully validating OSOM’s effec-
 102 tiveness against OSO. To our best knowledge, OSOM is the first to achieve explicit identification of
 103 unseen opponent policies during testing, which prior work has been unable to accomplish.

104 2 PRELIMINARIES

105 We use an n -agent *Partially-Observable Stochastic Game* (POSG) (Hansen et al., 2004; Yang &
 106 Wang, 2020) $\langle \mathcal{S}, \{\mathcal{O}^i\}_{i=1}^n, \{\mathcal{A}^i\}_{i=1}^n, \mathcal{P}, \{R^i\}_{i=1}^n, \{\Omega^i\}_{i=1}^n, T, \gamma \rangle$ to formalize the multi-agent envi-

108 ronment. Here, \mathcal{S} denotes the state space. \mathcal{O}^i is the observation space of agent $i \in [n]$, $\mathcal{O} = \prod_{i=1}^n \mathcal{O}^i$ is the joint observation space. \mathcal{A}^i denotes the action space for agent i , $\mathcal{A} = \prod_{i=1}^n \mathcal{A}^i$ is the joint action space. $\mathcal{P} : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$ denotes the transition probabilities. $R^i : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ denotes the reward function of agent i . $\Omega^i : \mathcal{S} \times \mathcal{A} \times \mathcal{O}^i \rightarrow [0, 1]$ denotes the agent i 's observation function. T is the horizon for each game episode. γ is the discount factor.

113 In line with the tradition in OM, we mark the agent under our control, *i.e.*, the *self-agent*, with the
 114 superscript 1, while the other $n - 1$ agents, regarded as *opponents*, are marked with the superscript
 115 -1 . The joint policy of opponents is denoted as $\pi^{-1}(a^{-1}|o^{-1}) = \prod_{j \neq 1} \pi^j(a^j|o^j)$, where a^{-1} is
 116 the joint actions of opponents and o^{-1} is the joint observations of opponents.
 117

118 Let the opponent's trajectory at timestep t be denoted as $\tau_t^{-1} = (o_0^{-1}, a_0^{-1}, r_0^{-1}, \dots, o_t^{-1}, a_t^{-1}, r_t^{-1})$,
 119 and his complete trajectory be $\tau^{-1} := \tau_{T-1}^{-1} + (o_T^{-1})$. At any episode h and any timestep t , *opponent*
 120 *historical trajectories* $\mathfrak{T}_{t(h)}^{-1} := (\tau_{(0)}^{-1}, \dots, \tau_{(h-1)}^{-1})$ is available to the self-agent.
 121

122 In OM, the policy of the self-agent can be typically represented as $\pi^1(a^1|o^1, D)$, which adjusts
 123 based on the *opponent information data* D (Jing et al., 2024b; 2025a). The data D can either be
 124 directly derived from a subset of \mathfrak{T}^{-1} or obtained by learning a representation from \mathfrak{T}^{-1} . Under the
 125 OSO setting, the number and semantics of opponent types contained within both the *training set of*
 126 *opponent policies* Π^{train} and the *testing set of opponent policies* Π^{test} are variable. Leveraging the
 127 training process, the objective of the self-agent is to maximize its expected *return* (*i.e.*, cumulative
 128 discounted reward) during testing, *i.e.*, $\max_{\pi^1} \mathbb{E}_{\pi^1 \leftarrow \text{Train}(\Pi^{\text{train}}), \pi^{-1} \sim \Pi^{\text{test}}} \left[\sum_{t=0}^{T-1} \gamma^t R_t^1 \right]$.
 129

130 To supplement more background knowledge, we provide a comprehensive review of related work
 131 concerning *Opponent Modeling*, *Open Set Learning*, and *RL with Transformers* in Sec. A.
 132

3 METHODOLOGY

133 In this work, we propose an **Open Set Opponent Modeling (OSOM)** training approach, which trains
 134 a Transformer-based model end-to-end, achieving **explicit identification** and **effective response** to
 135 **Open Set Opponents (OSOs)**. Specifically, the OSO setting presents three main challenges: (1) How
 136 to handle the *partial observability* that is inherent in multi-agent environments? (2) How to achieve
 137 *explicit identification* of a *variable set of opponent policies*? (3) How to *effectively respond to opponents*
 138 based on *historical identification results*? In this section, we will sequentially elaborate on
 139 how OSOM addresses these challenges. We provide an overview of the OSOM's training procedure
 140 in Fig. 2, and supplement this with the corresponding algorithmic pseudocode in Sec. B. **Although**
 141 **we conceptually decompose OSOM into three components to address the three challenges of the**
 142 **OSO setting, in implementation it is a single Transformer-based model: all modules share param-**
 143 **eters and are trained in one end-to-end optimization loop with three coupled objectives, rather than**
 144 **a fragile three-stage pipeline.**

3.1 OPPONENT POLICY DISTILLATION WITH REPRESENTATION LEARNING

145 Consistent with the POSG formalization in Sec. 2, multi-agent environments are typically partially-
 146 observable. Under these conditions, the self-agent's inability to instantaneously access the opponent
 147 information during testing significantly impedes the effective distinction of different opponent types.
 148 However, it is a reasonable assumption that opponent data is often accessible during training (Pap-
 149 poudakis et al., 2021; Gronauer & Diepold, 2022). **This corresponds to a standard *Centralized-Training-with-Decentralized-Execution (CTDE)* assumption: during training we may log opponents'**
 150 **trajectories, but at test time OSOM only observes its own local information.** Consequently, we can
 151 manage to distill the opponent policy into the self-agent's representation, thereby enabling the self-
 152 agent to more effectively distinguish various opponent policies solely through its own observation-
 153 action sequence.
 154

155 Enlightened by this, we propose to distill the opponent policy into the self-agent's information en-
 156 coding via Representation Learning. We employ an encoder f to encode the self-agent's observation-
 157 action tuple, yielding a corresponding d -dimensional latent state $e = f(o^1, a^1) \in \mathbb{R}^d$. Without loss
 158 of generality, assuming a continuous observation space and a discrete action space, we introduce
 159 an auxiliary decoder g that uses e as input to predict the opponent's observation-action tuple at the
 160

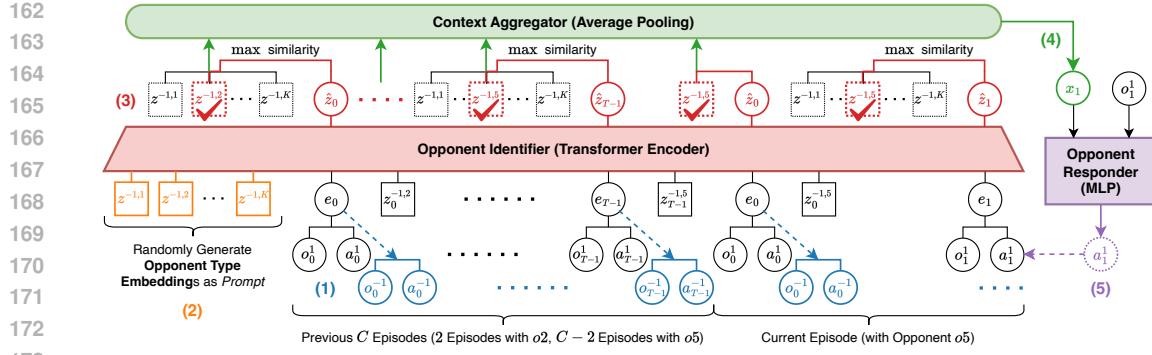


Figure 2: Training procedure of OSOM. Taking timestep 1 of the current episode against the opponent policy o_5 as an example, we illustrate the five steps of OSOM’s end-to-end training: (1) *Opponent Policy Distillation* (Sec. 3.1): Distill the opponent policy into the latent state e of the self-agent’s observation-action encoding via a Representation Learning objective that predicts the opponent’s observation and action. (2) *Embedding Generation and Prompting* (Sec. 3.2): Sample K distinct opponent policies $\{\pi^{-1,k}\}_{k=1}^K$ from the Train Set, randomly generate K corresponding OTEs $\{z^{-1,k}\}_{k=1}^K$, and use this set as the prompt for the input sequence. (3) *Explicit Identification* (Sec. 3.2): Use the **Opponent Identifier** to output the predicted OTE \hat{z} , maximizing its similarity with the ground truth OTE via a CL objective. (4) *Context Aggregation* (Sec. 3.3): Employ the **Context Aggregator** to aggregate all historically selected OTEs from the previous C episodes, yielding the compact semantic representation x . (5) *Best Response Learning* (Sec. 3.3): Use the **Opponent Responder** to output the self-agent’s action, using the self-agent’s observation as input along with x as context, and employ an online RL objective to learn the best response to the o_5 .

same timestep, specifically $o^{-1} \leftarrow g^{\text{obs}}(e), a^{-1} \leftarrow g^{\text{act}}(\cdot|e)$. Supposing that during training, we consistently sample K opponent policies $\Pi^{\text{train}} = \{\pi^{-1,k}\}_{k=1}^K$ from a large and diverse Train Set (comprising more than K policies), the objective function can be written as:

$$\mathcal{J}_{\text{distill}} = \mathbb{E}_{\pi^{-1} \in \Pi^{\text{train}}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \left(-(g^{\text{obs}}(e_t) - o_t^{-1})^2 + \log g^{\text{act}}(a_t^{-1}|e_t) \right) \right]. \quad (1)$$

Where $e_t = f(o_t^1, a_t^1)$. This method ensures that, even when opponent information is inaccessible during testing, the trained encoder can utilize the self-agent’s information to implicitly infer and incorporate the opponent policy details, thus mitigating the challenges posed by partial observability.

In practice, the distillation term J_{distill} is an auxiliary objective: in the ablation ‘OSOM w/o Distill Loss’ we set its coefficient to 0, remove all opponent trajectories from training, and still obtain a functioning identification-and-response agent trained only with J_{identify} and J_{respond} (Sec. 4.2).

3.2 OPPONENT IDENTIFICATION WITH CONTRASTIVE LEARNING

In the domain of *Contrastive Learning* (CL) (Weng, 2021), work such as CLIP (Radford et al., 2021) has demonstrated the feasibility of text classification for images unseen during training by maximizing the similarity between image and text embeddings that share the same semantics. Motivated by this, we introduce a novel training procedure based on CL that enables the explicit identification of opponent types, where both the number and semantics of these types can be variable.

Before each training iteration, we first sample K opponent policies Π^{train} from the Train Set mentioned in Sec. 3.1. Subsequently, we randomly generate K corresponding d -dimensional Opponent Type Embeddings (OTEs) $\mathcal{Z}^{\text{train}} = \{z^{-1,k} \in \mathbb{R}^d\}_{k=1}^K$ to uniquely characterize these K distinct opponent policies. The core intuition behind using random OTEs is to eliminate any prior knowledge regarding the structural space of the opponent types within our model. This design choice is motivated by the observation that employing learnable OTEs becomes impractical when encountering novel opponent types unseen during training. A new opponent type would lack a pre-trained embedding, and assigning an arbitrary embedding could introduce severe domain shift because the model would be unable to identify it. The utilization of random OTEs ensures that the model does not

216 rely on extracting any information from the embedding itself, but rather on interpreting the context
 217 provided by the historical interactions with the environment.

219 Furthermore, we encourage approximate pairwise orthogonality among the K OTEs by sampling
 220 random unit vectors on the sphere and, when the embedding dimension d is at least K , optionally
 221 applying Gram-Schmidt orthogonalization. This is inspired by Elhage et al. (2022); Ganesh et al.
 222 (2023). The unit sphere standardizes the scale of the embeddings, and near-orthogonality makes it
 223 easier for the model to adjust the probability assigned to each opponent type, since a predicted vector
 224 \hat{z} can align strongly with one OTE without inadvertently aligning with others. This improves the
 225 conditioning of the contrastive objective in Eq. (2) by sharpening the contrastive signal for OSOM;
 226 when $K > d$, one can simply use random unit OTEs without enforcing exact orthogonality.

227 During the rollout process of training, we instantiate a Transformer-based model (Vaswani et al.,
 228 2017), which we term the **Opponent Identifier**. This model utilizes the above K OTEs as a prompt
 229 for the input sequence and, at each timestep, takes the latent state e of the self-agent’s observation
 230 and action as input to autoregressively output a predicted OTE $\hat{z} \in \mathbb{R}^d$. The inclusion of the se-
 231 quence of all legal OTEs prior to the main input serves to prevent the model from lacking awareness
 232 of the current structural space of opponent types. In addition, by directly outputting the embed-
 233 ding \hat{z} instead of predicting a probability distribution over the opponent types, the model achieves
 234 independence from both the number and the permutation order of the available opponent types.

235 During the update process of training, we employ an objective of CL to maximize the similarity
 236 between the predicted OTE \hat{z} and the ground truth OTE $z^{-1,j}$, while simultaneously minimizing the
 237 similarity between \hat{z} and all other OTEs $z^{-1,k \neq j}$. Specifically, this objective can be formulated as:

$$238 \quad \mathcal{J}_{\text{identify}} = \mathbb{E}_{z^{-1,j} \in \mathcal{Z}^{\text{train}}} \left[\frac{1}{T} \sum_{t=0}^{T-1} \log \frac{\exp(\hat{z}_t \cdot z_t^{-1,j} / \kappa)}{\sum_{k=1}^K \exp(\hat{z}_t \cdot z_t^{-1,k} / \kappa)} \right]. \quad (2)$$

241 Where κ represents the temperature coefficient. This procedure draws inspiration from CL meth-
 242 ods such as CLIP, InfoNCE (Oord et al., 2018), and SupCon (Khosla et al., 2020), bypassing the
 243 limitation of traditional classifiers which can only identify opponent types with fixed numbers and
 244 semantics (Sukthankar & Sycara, 2007; Iglesias et al., 2008; Bombini et al., 2010; Ma et al., 2024).
 245 During the rollout processes of both training and testing, we probabilistically sample from all legal
 246 OTEs as the *selected OTE* z^{sel} according to the following probability distribution:

$$247 \quad \forall l \in [K], \quad P(z^{-1,l}) = \text{softmax}(\hat{z} \cdot z^{-1,l}) = \frac{\exp(\hat{z} \cdot z^{-1,l})}{\sum_{k=1}^K \exp(\hat{z} \cdot z^{-1,k})}. \quad (3)$$

251 3.3 OPPONENT RESPONSE WITH ONLINE REINFORCEMENT LEARNING

253 Despite the importance of explicit opponent identification, the challenge of how to effectively re-
 254 spond to the opponent based on the history of identification results is equally critical. Adhering to
 255 the best practices of OM, we assume that the opponent during testing is both *unknown* and *non-*
 256 *stationary*. Here, ‘unknown’ signifies that the opponent’s true policy is black-box and inaccessible.
 257 ‘Non-stationary’ indicates that the opponent may switch policies in some manner as the interaction
 258 progresses. Under these conditions, relying solely on the most recent identification result or using
 259 the entirety of the historical identification results could potentially lead to model confusion.

260 To address the above issues, we introduce a sliding window-based **Context Aggregator** to ag-
 261 gregate the historically generated identification results. Assuming the current timestep is t in
 262 episode h , we employ Average Pooling (Gholamalinezhad & Khosravi, 2020) to aggregate all
 263 historically selected OTEs from the current episode up to $t-1$ and the previous C episodes,
 264 *i.e.*, $(z_{0(h-C)}^{\text{sel}}, \dots, z_{T-1(h-1)}^{\text{sel}}, z_{0(h)}^{\text{sel}}, \dots, z_{t-1(h)}^{\text{sel}})$, yielding a *compact semantic representation* $x_{t(h)}$.
 265 The manner in which we select the opponent type is detailed in Eq. (3). This aggregation allows us
 266 to confine the identification results primarily to the current opponent, thereby mitigating interference
 267 introduced by other potential opponents.

268 Subsequently, using the aggregated representation x as context, we propose an online RL (Li, 2017;
 269 Schulman et al., 2017) objective to train an **Opponent Responder** that learns the best response
 270 to the opponents. The resulting trained self-agent policy can be concisely denoted as $\pi^1(a^1 | o^1, x)$.

270 Given the K sampled opponent policies Π^{train} (same as in Sec. 3.1), the objective can be written as:
 271

$$272 \quad \mathcal{J}_{\text{respond}} = \mathbb{E}_{\pi^{-1} \sim \Pi^{\text{train}}, \pi^1} \left[\sum_{t=0}^{T-1} \gamma^t R_t^1 \right]. \quad (4)$$

273

274 The Opponent Responder is trained with a standard on-policy RL algorithm PPO (Schulman et al.,
 275 2017), which provides a policy-gradient estimator of $\nabla J_{\text{respond}}$; in practice we optimize a PPO sur-
 276 rogate objective jointly with the auxiliary losses rather than differentiating through the environment
 277 dynamics. To summarize, OSOM iteratively samples opponents from the Train Set and end-to-end
 278 trains a Transformer-based model. Its final optimization objective is:
 279

$$280 \quad \max \alpha_1 \mathcal{J}_{\text{distill}} + \alpha_2 \mathcal{J}_{\text{identify}} + \alpha_3 \mathcal{J}_{\text{respond}}. \quad (5)$$

281

282 Where $\alpha_1, \alpha_2, \alpha_3$ are tunable coefficients. Upon completion of training, when faced with an oppo-
 283 nent whose policy is drawn from the set of M unknown policies $\Pi^{\text{test}} = \{\pi^{-1, m}\}_{m=1}^M$, OSOM only
 284 needs to randomly generate M corresponding OTEs $\mathcal{Z}^{\text{test}} = \{z^{-1, m} \in \mathbb{R}^d\}_{m=1}^M$ as a prompt. This
 285 allows for effective on-the-fly identification and response to the non-stationary opponent as interac-
 286 tions proceed. The testing procedure of OSOM is detailed in Sec. C. We adopt Transformer as the
 287 backbone for our model, which further facilitates OSOM to generalize the learned identification and
 288 response abilities from the training opponents to the testing opponents. This design choice is enlight-
 289 ened by numerous studies demonstrating In-Context RL abilities of Transformer in decision-making
 290 tasks (Wang et al., 2016; Duan et al., 2016; Laskin et al., 2023; Grigsby et al., 2023).

291 Crucially, the Responder never memorizes fixed semantics for individual OTE vectors. Because we
 292 regenerate a fresh random OTE set whenever we sample a new opponent subset during training and
 293 again at test time, the only stable semantics lie in the *geometry* of the codebook: for a given interac-
 294 tion history, the Identifier learns to assign high similarity to exactly one OTE and low similarity to
 295 the others, and the Responder learns to map the resulting aggregated context x_t to a good response.
 296 Re-sampling the OTE set at test time therefore corresponds to an orthogonal rotation of the label
 297 space to which the jointly trained Identifier–Responder pair is invariant.

298 4 EXPERIMENTS

299

300 In this section, Sec. 4.1 provides detailed experimental setups. Sec. 4.2 poses a series of questions
 301 and provides empirical results to answer them, with the aim of analyzing the effectiveness of OSOM.
 302

303 4.1 EXPERIMENTAL SETUP

304

305 **Environments.** We consider three partially-observable environments widely used in MARL. For
 306 further details of these environments, see Sec. D.

- 307 • Kuhn Poker (KP) (Hoehn et al., 2005; Kuhn, 2016): A two-player zero-sum (competitive) game
 308 with a discrete state space. In KP, the self-agent’s objective is to maximize chip gain while mini-
 309 mizing chip loss, with the opponent having the same objective. No player knows the other’s hand
 310 until one player folds or both proceed to a showdown. KP encompasses the key challenges found
 311 in real-world Poker, where strategic deception or conservatism must be learned.
- 312 • Partially-Observable Overcooked (POO) (Carroll et al., 2019; Ma et al., 2024): A two-player
 313 cooperative game with a discrete state space. In POO, the self-agent aims to coordinate closely
 314 with its partner to complete a series of sub-tasks and serve dishes. This version of POO introduces
 315 partial observability and multiple recipes, requiring the self-agent to both infer the global state of
 316 the kitchen from local observations and learn to deduce its partner’s recipe preferences.
- 317 • Predator–Prey with Watchtowers (PPW) (Lowe et al., 2017; Ma et al., 2024): A four-player
 318 mixed-incentive game with a continuous state space. In PPW, the self-agent plays the role of a
 319 predator, whose objective is to cooperate with its fellow predator to capture the two preys as many
 320 times as possible. The challenge of PPW lies in the fact that predators can only gain momentary
 321 global observation by actively touching watchtowers. Furthermore, the self-agent must accurately
 322 model the movement preferences of every agent, both teammates and opponents.

323 **Baselines.** We select the following representative OM approaches as baselines. The training
 324 recipes for all the OM approaches are supplemented in Sec. F.

- 324 • **PPO** (Schulman et al., 2017): a non-recurrent agent that receives only the current self observation
325 as input (no cross-episode context and no opponent information), serving as a naive baseline.
- 326 • **Generalist**: A plain recurrent policy with access to cross-episode contexts. These contexts encom-
327 pass all of the self-agent’s historical observations and actions.
- 328 • **LIAM** (Papoudakis et al., 2021): Use the observations and actions of the self-agent to reconstruct
329 those of the opponent through an auto-encoder, thereby embedding the opponent policy into a
330 latent space to assist in the self-agent’s response learning against opponents.
- 331 • **LIAMX** (Papoudakis et al., 2021): A variant of LIAM with cross-episode contexts. It further
332 extends the horizon over which LIAM can infer the opponent’s policy from its own information.
- 333 • **LILI** (Xie et al., 2021): Model the observation-action-reward-next observation transitions ob-
334 served by self-agent in the last episode, implicitly encoding the opponent as environmental dy-
335 namics to enhance the self-agent’s policy optimization.
- 336 • **GSCU** (Fu et al., 2022): 1) Employ offline policy embedding learning to train well-structured
337 representations 2) Utilize offline conditional RL to learn responses to various opponents 3) Apply
338 an online multi-armed bandit algorithm to balance conservative or greedy self-agent policies.
- 339 • **PACE** (Ma et al., 2024): Introduce an opponent identification reward to maximize the mutual
340 information between the opponent’s policy and the self-agent’s cross-episode trajectory, thereby
341 encouraging self-agent actions that aid in identifying the opponent’s behavioral patterns.
- 342 • **PACE-TF** (Ma et al., 2024): A variant of PACE in which the original GRU-based context encoder
343 is replaced with the official Transformer architecture from the PACE paper, while keeping all other
344 components, training recipes, and hyperparameters unchanged. This baseline isolates the effect of
345 the Transformer backbone from OSOM’s open-set identification mechanism.

346 **Opponent Policies.** We design a relatively large and diverse *opponent pool* for training and test-
347 ing OM approaches against OSOs. To ensure both policy diversity and semantic interpretability, we
348 incorporate human priors in constructing the opponent pool. For KP, we follow Hoehn et al. (2005),
349 using two parameters to parameterize the opponent’s policy space after eliminating dominated strate-
350 gies. For P00 and PPW, we follow Ma et al. (2024) by using rule-based methods to construct opponent
351 policies with clearly distinct preferences. After constructing the opponent pool, we selected a subset
352 of these policies to form a **Train Set**, and used all remaining policies to constitute an **Eval Set**.
353 **Concretely, we construct dozens of distinct opponent policies in each domain and then split them**
354 **into disjoint Train and Eval pools, so that every evaluation trajectory involves behaviors that never**
355 **appeared in Train while still exhibiting meaningful semantic diversity.** We have supplemented more
356 detailed process of constructing the opponent pool in Sec. E.

357 **Training and Testing Protocols.** We train all the OM approaches for the same number of itera-
358 tions. During training, in each iteration, we randomly sample K opponent policies from the **Train**
359 **Set** to instantiate Π^{train} . The final checkpoints obtained from training all approaches are used to
360 test against unknown non-stationary opponents (as explained in Sec. 3.3) for the same number of
361 episodes. Non-stationarity is defined as the opponent switching its policy by sampling from Π^{test}
362 every H episodes. **In KP we set the opponent-switch frequency to $H = 20$ episodes, and in P00 and**
363 **PPW we use $H = 5$ episodes.** These values correspond to a moderate level of non-stationarity: the
364 agent must track and adapt to switches that are neither too frequent (near-i.i.d. noise) nor too rare
365 (almost stationary). All figures and tables report the *mean* and *standard deviation* of the results aver-
366 aged over 5 random seeds. All the hyperparameters are detailed in Sec. G. **Unless otherwise stated,**
367 **all learning curves are plotted against total environment timesteps rather than training iterations,**
368 **so that the sample efficiency of methods with different update-to-data ratios can be compared fairly.**

369 4.2 EMPERICAL ANALYSIS

370 **Question 1.** *Can OSOM effectively adapt to OSOs with different Π^{test} configurations?*

371 Fig. 3 shows the overall performance of all OM approaches against non-stationary opponents whose
372 policies are sampled from three distinct Π^{test} configurations. We establish three types of Π^{test} from
373 which the non-stationary opponent could sample policies: (1) **Train Set**; (2) **Eval Set**, where all
374 policies are unseen during training; and (3) **All Set**, which is the union of the **Train Set** and the **Eval**
375 **Set**. The latter two configurations are specifically designed to examine the generalization ability to
376 opponent types that are unseen in terms of both number and semantics.

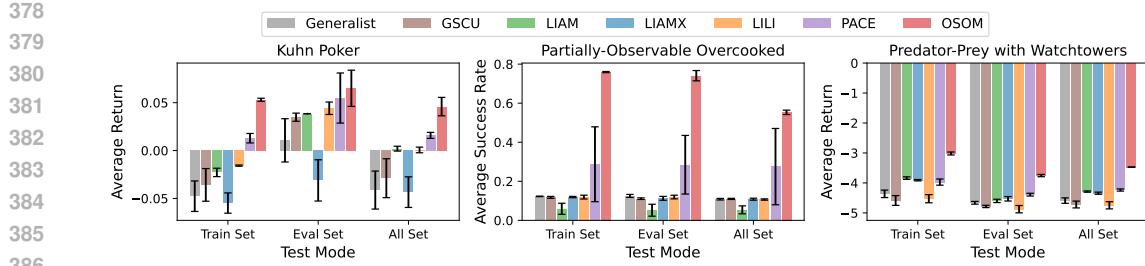


Figure 3: The overall results of testing OM approaches against unknown non-stationary OSOs employing different Π^{test} configurations. Specifically, the performance for KP and PPW is measured by the average return, while POO’s performance is measured by the average success rate.

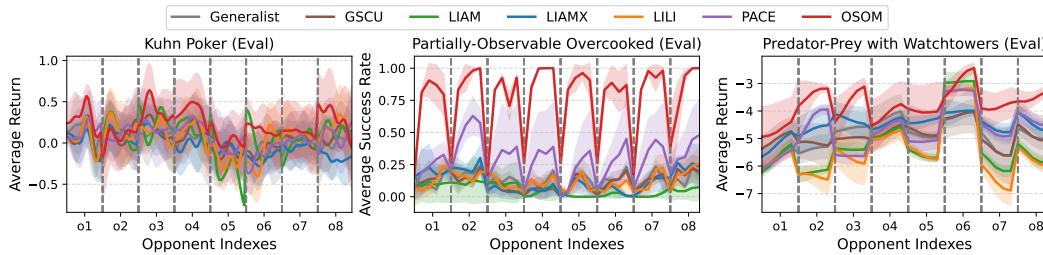


Figure 4: Detailed per-episode performance curves for OM approaches when tested against each specific opponent policy, where Π^{test} is set to Eval Set. We use $o1, o2, \dots, o8$ to denote the indexes of the different opponent types, respectively.

It can be observed that in all three environments, OSOM achieves a higher average return or success rate compared to other baselines under various Π^{test} configurations. This is particularly evident in the challenging POO, where most other approaches fail to work properly. These consistent results indicate that the overall design of OSOM enables it to effectively respond to non-stationary OSOs, enabling it to robustly adapt to seen opponent types and successfully generalize to unseen ones.

408 **Question 2.** *Can OSOM effectively respond to every specific policy adopted by OSOs?*

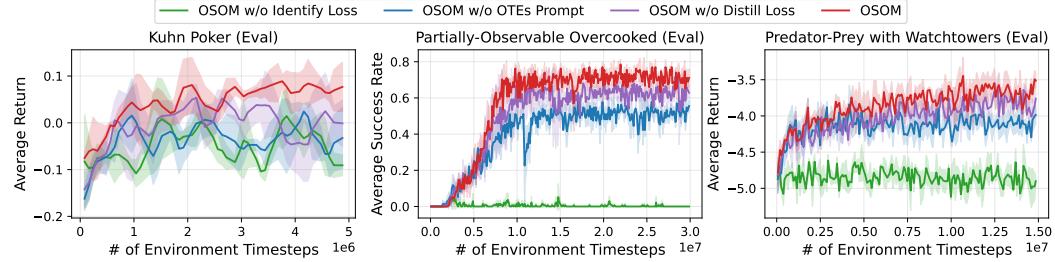
410 In Fig. 4, we present the smoothed per-episode performance curves for all approaches against non-
411 stationary opponents whose policies are sampled from the Eval Set. Specifically, each environment
412 displays the average results against 8 unseen opponent policies from the Eval Set. The frequency H
413 for the non-stationary opponent to switch policies is 20, 5, and 5 in KP, POO, and PPW, respectively.
414 Similar to the observation in Fig. 3, OSOM generally exhibits better results against every specific
415 opponent policy compared to other baselines. Notably, OSOM shows a trend of gradually increasing
416 performance against most opponent policies in POO and PPW, which suggests that it may possess a
417 degree of test-time gradient-free learning capability.

418 **Question 3.** *Can OSOM make explicit identification of OSOs feasible?*

420 Table 1 shows the accuracy metric for identifying non-stationary OSOs under various Π^{test} config-
421 urations during testing. For OSOM, we use the Opponent Identifier to select the OTEs according
422 to Eq. (3), and then compute the proportion of times it selects the true opponent type out of all
423 prediction attempts. Furthermore, we introduce **Random Guess** as a comparative baseline. In con-
424 trast, the other OM approaches are all unable to explicitly predict the opponent type. For instance,
425 while PACE uses a classifier to predict opponent type during training, all three Π^{test} configura-
426 tions we established contain a greater number of opponent types (and semantics) than those used during
427 training. **Observation reveals that, under this challenging open-set protocol, OSOM consistently**
428 **achieves substantially higher identification accuracy than Random Guess across all environments,**
429 **especially on the unseen opponents in the Eval Set.** For example, in the most challenging All Set
430 OSOM obtains identification accuracies in the range of 9.75%-36.52% while Random Guess re-
431 mains around 2%-3.7%, *i.e.*, improvements of approximately 2-15 \times over chance. Given the large
432 label spaces (up to 40-50 opponent types), the open-set and non-stationary test protocol, and par-
433 tial observability, such 2-15 \times gains already indicate substantial and practically useful identification

432 Table 1: Per-policy identification accuracy statistics against non-stationary OSOs under various Π^{test}
 433 configurations during testing. The Accuracy, expressed as a percentage, measures the quality of
 434 opponent type identification for each approach (higher is better). Results marked with ‘ \times ’ indicate
 435 that a meaningful evaluation is not possible.

Avg. Acc. (%) ↑ of Approaches	Kuhn Poker			Partially-Observable Overcooked			Predator-Prey with Watchtowers		
	Train Set	Eval Set	All Set	Train Set	Eval Set	All Set	Train Set	Eval Set	All Set
OSOM	13.27 \pm 0.09	24.09 \pm 0.36	9.75 \pm 0.11	32.42 \pm 4.24	23.33 \pm 1.32	14.77 \pm 1.40	38.99 \pm 1.33	34.87 \pm 0.05	36.52 \pm 0.44
Random Guess	2.50	10.00	2.00	5.56	11.11	3.70	6.25	4.17	2.50
Other OM Approaches	\times	\times	\times	\times	\times	\times	\times	\times	\times



451 Figure 5: Average performance curves of the various ablation variants of OSOM against all opponent
 452 policies in the Eval Set during training. We select checkpoints at equal intervals during the training
 453 process to conduct this evaluation.

455 **ability.** Combining this with the results in Fig. 3, we hypothesize that OSOM’s strong capability for
 456 responding to OSOs is founded upon its effective identification of opponent types.

458 **Question 4.** Do all key design choices in OSOM contribute positively?

459 We design the following ablation variants of OSOM: (1) **OSOM w/o Identify Loss**: Remove the
 460 opponent identification objective described in Eq. (2), meaning $\alpha_2 = 0$; (2) **OSOM w/o OTEs**
 461 **Prompt**: Remove the OTEs prompt part of the Opponent Identifier’s input sequence; (3) **OSOM**
 462 **w/o Distill Loss**: Remove the policy distillation objective described in Eq. (1), meaning $\alpha_1 = 0$.

463 Fig. 5 presents the average performance curves against all opponent policies in the Eval Set during
 464 the training process. We observe that ‘OSOM w/o Identify Loss’ is essentially unable to function
 465 properly, suggesting that our Contrastive Learning-based opponent identification method plays a
 466 crucial role in effective opponent adaptation. Furthermore, ‘OSOM w/o OTEs Prompt’ and ‘OSOM
 467 w/o Distill Loss’ generally show performance degradation of varying degrees compared to the full
 468 OSOM. These observations support the conclusion that both using OTEs to prompt the Opponent
 469 Identifier regarding the structural space of opponent types, and distilling the opponent policy into
 470 the self-agent’s information encoding, contribute positively to OSOM’s performance.

471 **Question 5.** Compared to other OM approaches, does OSOM have higher training efficiency?

473 In Fig. 6, we show the average performance curves for each OM approach against all opponent poli-
 474 cies in the Train Set and the Eval Set during the training process. Specifically, we test the per-
 475 formance by periodically evaluating checkpoints during training of the OM approaches. It is observed
 476 that OSOM consistently surpasses the other baselines and achieves superior opponent adaptation
 477 results more efficiently, regardless of whether the opponent type has been previously encountered
 478 or not. This is particularly true in the challenging P00, where the other baselines consistently fail
 479 to learn a workable self-agent policy. This demonstrates that OSOM possesses a higher algorithmic
 480 training efficiency, given that it requires fewer iterations to reach the same performance.

481 **As expected, the naive PPO baseline performs significantly worse than all OM approaches, es-
 482 pecially on the unseen Eval opponents, confirming that modeling cross-episode information and
 483 opponent types is crucial for open-set adaptation. The additional baseline PACE-TF shows that merely
 484 upgrading the context encoder from a GRU to a Transformer does not close the gap to OSOM;
 485 the performance gains stem primarily from OSOM’s open-set identification and context aggregation
 mechanisms rather than from a stronger sequence model alone.**

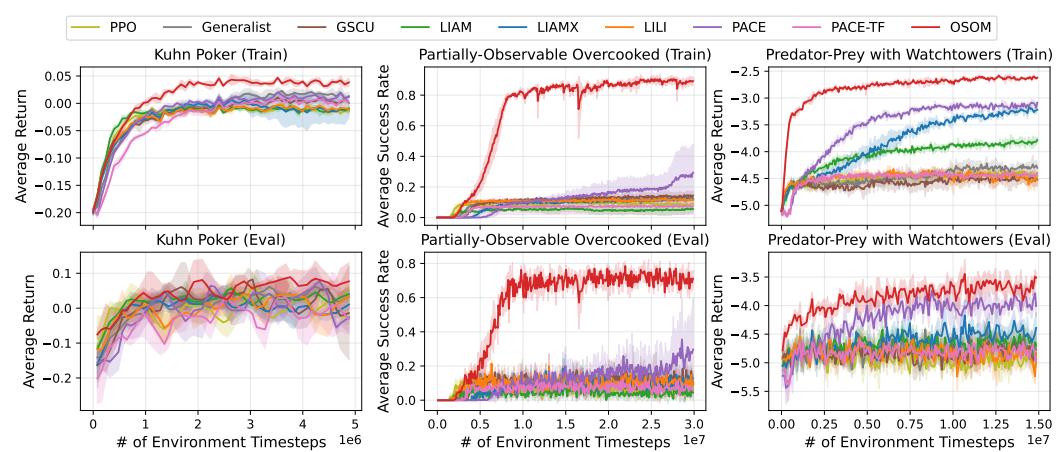


Figure 6: Average performance curves of various OM approaches against different opponent sets during the training process. The upper subplot shows results against the **Train Set**, and the lower subplot shows results against the **Eval Set**.

Additional Experiments. We provide further experiments in Sec. I to investigate (1) the feasibility of multiple self-agents control for OSOM in CTDE settings; (2) the effect of opponent switch frequency H ; (3) how does OSOM behave in the degenerate case using a single OTE.

5 DISCUSSION

Summary. This paper introduces OSOM, a novel end-to-end training approach that enables explicit identification and effective response to unseen OSOs in multi-agent systems—an ability not achieved by prior work. OSOM addresses the three core challenges of OSO modeling by combining Representation Learning (to handle partial observability), CL (for explicit, variable-type identification), and online RL (to learn the best response). Experiments in various multi-agent environments show that OSOM significantly outperforms existing approaches in both identification accuracy and response performance against non-stationary OSOs, confirming its robustness and generalizability.

Limitations and Future Work. While OSOM already achieves explicit identification and strong responses to open-set opponents, it still has several limitations. First, our current experiments adopt a CTDE assumption: during training we log opponents’ trajectories and use them in the distillation loss J_{distill} to improve representation quality under partial observability, whereas at test time the agent only observes its own information. Ablations show that an OSOM variant trained without J_{distill} (using only J_{identify} and J_{respond}) remains functional but with reduced sample efficiency, suggesting future work on fully decentralized or unsupervised alternatives that remove this privileged training signal. Second, in the OSO benchmarks we set the prompt size M equal to the number of test opponents and generate approximately orthogonal d -dimensional OTEs with $d \geq M$; more generally, M and d should be understood as capacity hyperparameters that control how many distinct opponent behaviors can be separated within a single prompt. Scaling OSOM to regimes with very large or unknown numbers of opponent types will require choosing M as a design budget, allowing behaviors to be clustered into at most M latent types, increasing d , or exploring richer OTE parameterizations (e.g., learnable or hierarchical codebooks) that relax the need for strict orthogonality.

Our empirical study further focuses on three standard multi-agent benchmarks (KP, POO, PPW) built from structured, semantically diverse pools of opponent policies, and on settings where OSOM controls a single self-agent against piecewise-stationary opponents. Although our formulation and algorithms directly extend to centralized control of a team of agents (treating the team as a joint self-agent) and to CTDE-style decentralized control with one OSOM instance per controllable agent, a systematic evaluation of such multi-agent extensions is left for future work. Future work also includes developing variants that can cope with fully learning, continuously evolving opponents beyond the piecewise-stationary regime considered here.

540 REFERENCES

541

542 Abien Fred Agarap. Deep learning using rectified linear units (ReLU). *arXiv preprint*
543 *arXiv:1803.08375*, 2018.

544 Milad Aghajohari, Tim Cooijmans, Juan Agustin Duque, Shunichi Akatsuka, and Aaron C.
545 Courville. Best response shaping. *ArXiv*, abs/2404.06519, 2024. URL <https://api.semanticscholar.org/CorpusID:269032914>.

546

547 Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
548 Continuous adaptation via meta-learning in nonstationary and competitive environments. In *International
549 Conference on Learning Representations*, 2018.

550

551 Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
552 survey and open problems. *Artificial Intelligence*, 258:66–95, 2018.

553

554 Anonymous. LOSI: Improving multi-agent reinforcement learning via latent opponent strategy iden-
555 tification. In *Submitted to The Fourteenth International Conference on Learning Representations*,
556 2025. URL <https://openreview.net/forum?id=S0KGzCEhJp>. under review.

557

558 Nadarasar Bahavan, Sachith Seneviratne, and Saman K. Halgamuge. Sphor: A representation
559 learning perspective on open-set recognition for identifying unknown classes in deep learning
560 models. *ArXiv*, abs/2503.08049, 2025. URL <https://api.semanticscholar.org/CorpusID:276929445>.

561

562 Arundhati Banerjee, Soham R. Phade, Stefano Ermon, and Stephan Zheng. Mermaide: Learning
563 to align learners using model-based meta-learning. *Trans. Mach. Learn. Res.*, 2023, 2023. URL
564 <https://api.semanticscholar.org/CorpusID:258048778>.

565

566 Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. Online implicit agent modelling.
567 In *International Conference on Autonomous Agents and MultiAgent Systems*, pp. 255–262, 2013.

568

569 Abhijit Bendale and Terrance E. Boult. Towards open world recognition. *2015 IEEE Conference on
570 Computer Vision and Pattern Recognition (CVPR)*, pp. 1893–1902, 2014. URL <https://api.semanticscholar.org/CorpusID:5700960>.

571

572 José M Bernardo and Adrian FM Smith. *Bayesian theory*, volume 405. John Wiley & Sons, 2009.

573

574 Grazia Bombini, Nicola Di Mauro, Stefano Ferilli, and Floriana Esposito. Classifying agent be-
575 haviour through relational sequential patterns. In *KES International Symposium on Agent and
576 Multi-Agent Systems: Technologies and Applications*, pp. 273–282. Springer, 2010.

577

578 Terrance E. Boult, Steve Cruz, Akshay Raj Dhamija, Manuel Günther, James Henrydoss, and Wal-
579 ter J. Scheirer. Learning and the unknown: Surveying steps toward open world recognition. In *AAAI
580 Conference on Artificial Intelligence*, 2019. URL <https://api.semanticscholar.org/CorpusID:156051839>.

581

582 David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When
583 does return-conditioned supervised learning work for offline reinforcement learning? In *Advances
584 in Neural Information Processing Systems*, pp. 1542–1553, 2022.

585

586 Anderson Brilhador, André Eugênio Lazzaretti, and Heitor Silvério Lopes. A survey on open world
587 learning for image segmentation: Definitions, challenges, and directions. *Learning and Nonlinear
588 Models*, 2025. URL <https://api.semanticscholar.org/CorpusID:275945464>.

589

590 Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
591 Dragan. On the utility of learning about humans for human-ai coordination. In *Advances in
592 Neural Information Processing Systems*, pp. 5174–5185, 2019.

593

Rujikorn Charakorn, Poraramte Manoonpong, and Nat Dilokthanakul. Generating diverse cooperative
594 agents by learning incompatible policies. In *International Conference on Learning Representations*,
595 2023. URL <https://api.semanticscholar.org/CorpusID:252757017>.

594 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
 595 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
 596 modeling. In *Advances in Neural Information Processing Systems*, pp. 15084–15097, 2021.

597

598 Weiqin Chen and Santiago Paternain. Random policy enables in-context reinforcement learning
 599 within trust horizons. *Trans. Mach. Learn. Res.*, 2025, 2024. URL <https://api.semanticscholar.org/CorpusID:273654240>.

600

601 Weiqin Chen, Xinjie Zhang, D. Subramanian, and Santiago Paternain. Filtering learning histories
 602 enhances in-context reinforcement learning. *ArXiv*, abs/2505.15143, 2025. URL <https://api.semanticscholar.org/CorpusID:278782794>.

603

604 Junyoung Chung, Caglar Gülcöhre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation
 605 of gated recurrent neural networks on sequence modeling. *ArXiv*, abs/1412.3555, 2014. URL
 606 <https://api.semanticscholar.org/CorpusID:5201925>.

607

608 Zhongxiang Dai, Yizhou Chen, Bryan Kian Hsiang Low, Patrick Jaillet, and Teck-Hua Ho. R2-b2:
 609 Recursive reasoning-based bayesian optimization for no-regret learning in games. In *International
 610 Conference on Machine Learning*, pp. 2291–2301, 2020.

611

612 Anthony DiGiovanni and Ambuj Tewari. Thompson sampling for markov games with piecewise
 613 stationary opponent policies. In *Uncertainty in Artificial Intelligence*, pp. 738–748, 2021.

614

615 Juncheng Dong, Moyang Guo, Ethan X Fang, Zhuoran Yang, and Vahid Tarokh. In-context rein-
 616 forcement learning without optimal action labels. In *ICML 2024 Workshop on In-Context Learn-
 617 ing*, 2024. URL <https://openreview.net/forum?id=8Dey9wo2qA>.

618

619 Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–identifiability
 620 challenges and effective data collection strategies. In *Advances in Neural Information Processing
 621 Systems*, pp. 4607–4618, 2021.

622

623 Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL²: Fast
 624 reinforcement learning via slow reinforcement learning. *arXiv preprint arXiv:1611.02779*, 2016.

625

626 Juan Agustin Duque, Milad Aghajohari, Tim Cooijmans, Tianyu Zhang, and Aaron C. Courville.
 627 Advantage alignment algorithms. *ArXiv*, abs/2406.14662, 2024. URL <https://api.semanticscholar.org/CorpusID:270688211>.

628

629 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
 630 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
 631 tion. *arXiv preprint arXiv:2209.10652*, 2022.

632

633 Evren Etel and Virginia Slaughter. Theory of mind and peer cooperation in two play contexts.
 634 *Journal of Applied Developmental Psychology*, 60:87–95, 2019.

635

636 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
 637 of deep networks. In *International Conference on Machine Learning*, pp. 1126–1135, 2017.

638

639 Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
 640 Mordatch. Learning with opponent-learning awareness. In *International Conference on Au-
 641 tonomous Agents and MultiAgent Systems*, pp. 122–130, 2018a.

642

643 Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric Xing, and Shimon
 644 Whiteson. DiCE: The infinitely differentiable Monte Carlo estimator. In *International Conference
 645 on Machine Learning*, pp. 1524–1533, 2018b.

646

647 Haobo Fu, Ye Tian, Hongxiang Yu, Weiming Liu, Shuang Wu, Jiechao Xiong, Ying Wen, Kai Li,
 648 Junliang Xing, Qiang Fu, et al. Greedy when sure and conservative when uncertain about the
 649 opponents. In *International Conference on Machine Learning*, pp. 6829–6848, 2022.

650

Kitty Fung, Qizhen Zhang, Chris Lu, Timon Willi, and Jakob Nicolaus Foerster. Analyzing the
 651 sample complexity of model-free opponent shaping. In *ICML Workshop on New Frontiers in
 652 Learning, Control, and Dynamical Systems*, 2023.

648 Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
 649 hindsight information matching. In *International Conference on Learning Representations*, 2022.
 650

651 Narayanan Ganesh, Rajendran Shankar, Robert Čep, Shankar Chakraborty, and Kanak Kalita. Ef-
 652 ficient feature selection using weighted superposition attraction optimization algorithm. *Applied
 653 Sciences*, 13(5):3223, 2023.

654 Chuanxing Geng, Sheng-Jun Huang, and Songcan Chen. Recent advances in open set recognition:
 655 A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43:3614–3631, 2018.
 656 URL <https://api.semanticscholar.org/CorpusID:53734567>.
 657

658 Hossein Gholamalinezhad and Hossein Khosravi. Pooling methods in deep neural networks, a re-
 659 view. *arXiv preprint arXiv:2009.07485*, 2020.

660 Jake Grigsby, Linxi Fan, and Yuke Zhu. Amago: Scalable in-context reinforcement learning for
 661 adaptive agents. In *The Twelfth International Conference on Learning Representations*, 2023.

662 Jake Grigsby, Justin Sasek, Samyak Parajuli, Daniel Adebi, Amy Zhang, and Yuke Zhu. Amago-
 663 2: Breaking the multi-task barrier in meta-reinforcement learning with transformers. *ArXiv*,
 664 abs/2411.11188, 2024. URL <https://api.semanticscholar.org/CorpusID:274130967>.
 665

666 Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. *Artificial
 667 Intelligence Review*, 55(2):895–943, 2022.

668 Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison Edwards. Learning
 669 policy representations in multiagent systems. In *International Conference on Machine Learning*,
 670 pp. 1802–1811, 2018.

671 András Pál Halász, Nawar Al Hemeary, Lóránt Szabolcs Daubner, Tamás Zsedrovits, and Kálmán
 672 Tornai. Improving the performance of open-set recognition with generated fake data. *Electronics*,
 673 2023. URL <https://api.semanticscholar.org/CorpusID:257463738>.
 674

675 Peixuan Han, Zijia Liu, and Jiaxuan You. Tomap: Training opponent-aware ILM persuaders with
 676 theory of mind. *ArXiv*, abs/2505.22961, 2025. URL <https://api.semanticscholar.org/CorpusID:278996674>.
 677

678 Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
 679 observable stochastic games. In *AAAI*, volume 4, pp. 709–715, 2004.

680 He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
 681 forcement learning. In *International Conference on Machine Learning*, pp. 1804–1813, 2016.

682

683 Pablo Hernandez-Leal, Matthew E Taylor, Benjamin S Rosman, Luis Enrique Sucar, and
 684 E Munoz de Cote. Identifying and tracking switching, non-stationary opponents: A bayesian
 685 approach. In *AAAI Conference on Artificial Intelligence Workshop on Multiagent Interaction
 686 without Prior Coordination*, pp. 560–566, 2016.

687

688 Bret Hoehn, Finnegan Southey, Robert C Holte, and Valeriy Bulitko. Effective short-term opponent
 689 exploitation in simplified poker. In *AAAI*, volume 5, pp. 783–788, 2005.

690

691 Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-Yi Lee. A deep
 692 policy inference q-network for multi-agent systems. In *International Conference on Autonomous
 693 Agents and MultiAgent Systems*, pp. 1388–1396, 2018.

694

695 Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
 696 coordination. In *International Conference on Machine Learning*, pp. 4399–4410. PMLR, 2020.

697

698 Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao.
 699 Q-value regularized transformer for offline reinforcement learning. In *Forty-first International
 Conference on Machine Learning*, 2024.

700

701 Yizhe Huang, Anji Liu, Fanqi Kong, Yaodong Yang, Song-Chun Zhu, and Xue Feng. Efficient adap-
 702 tation in mixed-motive environments via hierarchical opponent modeling and planning. *ArXiv*,
 703 abs/2406.08002, 2024. URL <https://api.semanticscholar.org/CorpusID:270391910>.

702 José Antonio Iglesias, Agapito Ledezma, Araceli Sanchis, and GA Kaminka. Classifying efficiently
 703 the behavior of a soccer team. *IAS-10*, pp. 316–323, 2008.

704

705 Bahar Irfan, Mariacarla Staffa, Andreea Bobu, and Nikhil Churamani. Lifelong learning and per-
 706 sonalization in long-term human-robot interaction (leap-hri): Open-world learning. *Compan-
 707 ion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction*, 2024. URL
 708 <https://api.semanticscholar.org/CorpusID:268453303>.

709

710 Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
 711 Makedon. A survey on contrastive self-supervised learning. *Technologies*, 9(1):2, 2020.

712

713 Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big se-
 714 quence modeling problem. In *Neural Information Processing Systems*, 2021. URL <https://api.semanticscholar.org/CorpusID:235313679>.

715

716 Yuheng Jing, Kai Li, Bingyun Liu, Yifan Zang, Haobo Fu, QIANG FU, Junliang Xing, and Jian
 717 Cheng. Towards offline opponent modeling with in-context learning. In *The Twelfth International
 718 Conference on Learning Representations*, 2024a.

719

720 Yuheng Jing, Bingyun Liu, Kai Li, Yifan Zang, Haobo Fu, QIANG FU, Junliang Xing, and Jian
 721 Cheng. Opponent modeling with in-context search. In *The Thirty-eighth Annual Conference on
 722 Neural Information Processing Systems*, 2024b.

723

724 Yuheng Jing, Kai Li, Bingyun Liu, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. An open-
 725 ended learning framework for opponent modeling. In *Proceedings of the AAAI Conference on
 Artificial Intelligence*, volume 39, pp. 23222–23230, 2025a.

726

727 Yuheng Jing, Kai Li, Bingyun Liu, Ziwen Zhang, Haobo Fu, Qiang Fu, Junliang Xing, and Jian
 728 Cheng. Offline opponent modeling with truncated q-driven instant policy refinement. In *Forty-
 729 second International Conference on Machine Learning*, 2025b.

730

731 Mayank Kejriwal, Eric Kildebeck, Robert Steininger, and Abhinav Shrivastava. Challenges, eval-
 732 uation and opportunities for open-world learning. *Nat. Mac. Intell.*, 6:580–588, 2024. URL
<https://api.semanticscholar.org/CorpusID:270717953>.

733

734 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
 735 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In *Advances in Neural
 736 Information Processing Systems*, pp. 18661–18673, 2020.

737

738 Dong Ki Kim, Miao Liu, Matthew D Riemer, Chuangchuang Sun, Marwa Abdulhai, Golnaz Habibi,
 739 Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan How. A policy gradient algorithm for learning
 740 to learn in multiagent reinforcement learning. In *International Conference on Machine Learning*,
 pp. 5541–5550, 2021.

741

742 Michal Kosinski. Evaluating large language models in theory of mind tasks. *Proceedings of the
 743 National Academy of Sciences of the United States of America*, 121, 2023. URL <https://api.semanticscholar.org/CorpusID:256616268>.

744

745 Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. <https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail>, 2018.

746

747 Harold W Kuhn. A simplified two-person poker. *Contributions to the Theory of Games*, 1:97–103,
 748 2016.

749

750 Nico Lang, V’esteinn Snæbjarnarson, Elijah Cole, Oisin Mac Aodha, Christian Igel, and Serge J.
 751 Belongie. From coarse to fine-grained open-set recognition. *2024 IEEE/CVF Conference on
 752 Computer Vision and Pattern Recognition (CVPR)*, pp. 17804–17814, 2024. URL <https://api.semanticscholar.org/CorpusID:272724013>.

753

754 Pat Langley. Open-world learning for radically autonomous agents. In *AAAI Conference on Artificial
 755 Intelligence*, 2020. URL <https://api.semanticscholar.org/CorpusID:208285052>.

756 Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
 757 DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, Maxime Gazeau, Himanshu
 758 Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
 759 distillation. In *International Conference on Learning Representations*, 2023.

760 Jonathan N Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
 761 Brunskill. Supervised pretraining can learn in-context reinforcement learning. *arXiv preprint*
 762 *arXiv:2306.14892*, 2023.

763 Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision trans-
 764 formers. In *Advances in Neural Information Processing Systems*, pp. 27921–27936, 2022.

765 Alistair Letcher, Jakob Foerster, David Balduzzi, Tim Rocktäschel, and Shimon Whiteson. Stable
 766 opponent shaping in differentiable games. In *International Conference on Learning Representa-
 767 tions*, 2019.

768 Chaohua Li, Enhao Zhang, Chuanxing Geng, and Songcan Chen. All beings are equal in open
 769 set recognition. *ArXiv*, abs/2401.17654, 2024a. URL <https://api.semanticscholar.org/CorpusID:267335151>.

770 Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and
 771 Katia P. Sycara. Theory of mind for multi-agent collaboration via large language models. In
 772 *Conference on Empirical Methods in Natural Language Processing*, 2023a. URL <https://api.semanticscholar.org/CorpusID:264172518>.

773 Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning via
 774 distance metric learning and behavior regularization. In *International Conference on Learning
 775 Representations*, 2020.

776 Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu, and Deheng Ye. A survey on
 777 transformers in reinforcement learning. *Transactions on Machine Learning Research*, 2023b.

778 Yuxi Li. Deep reinforcement learning: An overview. *arXiv preprint arXiv:1701.07274*, 2017.

779 Zizhao Li, Kourosh Khoshelham, and Joseph West. Contrastive class anchor learning for open
 780 set object recognition in driving scenes. *Trans. Mach. Learn. Res.*, 2024, 2024b. URL <https://api.semanticscholar.org/CorpusID:273161827>.

781 Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
 782 ment learning via supervised pretraining. In *The Twelfth International Conference on Learning
 783 Representations*, 2024.

784 Jinmei Liu, Fuhong Liu, Jianye Hao, Bo Wang, Huaxiong Li, Chunlin Chen, and Zhi Wang. Scalable
 785 in-context q-learning. *ArXiv*, abs/2506.01299, 2025. URL <https://api.semanticscholar.org/CorpusID:279075028>.

786 Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
 787 critic for mixed cooperative-competitive environments. In *Advances in Neural Information Pro-
 788 cessing Systems*, pp. 1–12, 2017.

789 Christopher Lu, Timon Willi, Christian A Schroeder De Witt, and Jakob Foerster. Model-free oppo-
 790 nent shaping. In *International Conference on Machine Learning*, pp. 14398–14411, 2022.

791 Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
 792 coordination. In *International conference on machine learning*, pp. 7204–7213. PMLR, 2021.

793 Yongliang Lv, Yuanqiang Yu, Yan Zheng, Jianye Hao, Yongming Wen, and Yue Yu. Limited in-
 794 formation opponent modeling. In *International Conference on Artificial Neural Networks*, pp.
 795 511–522. Springer, 2023.

796 Long Ma, Yuanfei Wang, Fangwei Zhong, Song-Chun Zhu, and Yizhou Wang. Fast peer adaptation
 797 with context-aware exploration. In *International Conference on Machine Learning*, pp. 33963–
 798 33982. PMLR, 2024.

810 Atefeh Mahdavi and Marco Carvalho. A survey on open set recognition. *2021 IEEE Fourth In-*
 811 *ternational Conference on Artificial Intelligence and Knowledge Engineering (AIKE)*, pp. 37–44,
 812 2021. URL <https://api.semanticscholar.org/CorpusID:237385860>.

813

814 Luckeciano C Melo. Transformers are meta-reinforcement learners. In *International Conference on*
 815 *Machine Learning*, pp. 15340–15359, 2022.

816 Dimitry Miller, Niko Sünderhauf, Alex Kenna, and Keita Mason. Open-set recognition in the age
 817 of vision-language models. In *European Conference on Computer Vision*, 2024. URL <https://api.semanticscholar.org/CorpusID:268681800>.

818

819 Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
 820 reinforcement learning with advantage weighting. In *International Conference on Machine*
 821 *Learning*, pp. 7780–7791, 2021.

822

823 Amir Moeini, Jiuqi Wang, Jacob Beck, Ethan Blaser, Shimon Whiteson, Rohan Chandra, and Shang-
 824 tong Zhang. A survey of in-context reinforcement learning. *ArXiv*, abs/2502.07978, 2025. URL
 825 <https://api.semanticscholar.org/CorpusID:276287353>.

826

827 Subhojoyoti Mukherjee, Josiah P. Hanna, Qiaomin Xie, and Robert Nowak. Pretraining decision
 828 transformers with reward prediction for in-context multi-task structured bandit learning. *ArXiv*,
 829 abs/2406.05064, 2024. URL <https://api.semanticscholar.org/CorpusID:270357386>.

830

831 Samer Nashed and Shlomo Zilberstein. A survey of opponent modeling in adversarial domains.
Journal of Artificial Intelligence Research, 73:277–327, 2022.

832

833 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 834 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

835

836 Georgios Papoudakis and Stefano V Albrecht. Variational autoencoders for opponent modeling in
 837 multi-agent systems. *arXiv preprint arXiv:2001.10829*, 2020.

838

839 Georgios Papoudakis, Filippos Christianos, Stefano Albrecht, and et al. Agent modelling under par-
 840 tial observability for deep reinforcement learning. In *Advances in Neural Information Processing*
 Systems, pp. 19210–19222, 2021.

841

842 Keiran Paster, Sheila McIlraith, and Jimmy Ba. You can't count on luck: Why decision transformers
 843 and rvs fail in stochastic environments. In *Advances in Neural Information Processing Systems*,
 pp. 38966–38979, 2022.

844

845 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 846 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 847 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 848 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
 849 learning library. *ArXiv*, abs/1912.01703, 2019. URL <https://api.semanticscholar.org/CorpusID:202786778>.

850

851 Andrey Polubarov, Nikita Lyubaykin, Alexander Derevyagin, Ilya Zisman, Denis Tarasov, Alexan-
 852 der Nikulin, and Vladislav Kurenkov. Vintix: Action model via in-context reinforcement learn-
 853 ing. *ArXiv*, abs/2501.19400, 2025. URL <https://api.semanticscholar.org/CorpusID:276079375>.

854

855 Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline meta-
 856 reinforcement learning with online self-supervision. In *International Conference on Machine*
 857 *Learning*, pp. 17811–17829, 2022.

858

859 Xinyu Qiao, Yudong Hu, Congying Han, Weiyan Wu, and Tiande Guo. Preference-based op-
 860 ponent shaping in differentiable games. *ArXiv*, abs/2412.03072, 2024. URL <https://api.semanticscholar.org/CorpusID:274465026>.

861

862 Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew
 863 Botvinick. Machine theory of mind. In *International Conference on Machine Learning*, pp.
 4218–4227, 2018.

864 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 865 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 866 models from natural language supervision. In *International conference on machine learning*, pp.
 867 8748–8763. PMLR, 2021.

868 Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself
 869 in multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp.
 870 4257–4266, 2018.

871 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
 872 and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
 873 learning. *Journal of Machine Learning Research*, 21(178):1–51, 2020.

874 Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,
 875 Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Ec-
 876 cles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol
 877 Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. *Transactions on Machine
 878 Learning Research*, 2022.

879 Benjamin Rosman, Majd Hawasly, and Subramanian Ramamoorthy. Bayesian policy reuse. *Ma-
 880 chine Learning*, 104:99–127, 2016.

881 Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult. Probability models for open set recognition.
 882 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36:2317–2324, 2014. URL
 883 <https://api.semanticscholar.org/CorpusID:9584833>.

884 Thomas Schmied, Fabian Paischer, Vihang Patil, Markus Hofmarcher, Razvan Pascanu, and Sepp
 885 Hochreiter. Retrieval-augmented decision transformer: External memory for in-context rl. *ArXiv*,
 886 abs/2410.07071, 2024. URL <https://api.semanticscholar.org/CorpusID:273228472>.

887 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 888 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

889 Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, and Andreas Krause. Learning to
 890 play sequential games versus unknown opponents. *ArXiv*, abs/2007.05271, 2020. URL <https://api.semanticscholar.org/CorpusID:220487073>.

891 Itai Sher, Melissa Koenig, and Aldo Rustichini. Children’s strategic theory of mind. *Proceedings of
 892 the National Academy of Sciences*, 111(37):13307–13312, 2014.

893 Viacheslav Sinii, Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, and Sergey Kolesnikov. In-
 894 context reinforcement learning for variable action spaces. *ArXiv*, abs/2312.13327, 2023. URL
 895 <https://api.semanticscholar.org/CorpusID:266435721>.

896 Jaehyeon Son, Soochan Lee, and Gunhee Kim. Distilling reinforcement learning algorithms
 897 for in-context model-based planning. *ArXiv*, abs/2502.19009, 2025. URL <https://api.semanticscholar.org/CorpusID:276617686>.

898 Alexandra Souly, Timon Willi, Akbir Khan, Robert Kirk, Chris Lu, Edward Grefenstette, and Tim
 899 Rocktaschel. Leading the pack: N-player opponent shaping. *ArXiv*, abs/2312.12564, 2023. URL
 900 <https://api.semanticscholar.org/CorpusID:266374989>.

901 DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating with
 902 humans without human data. *Advances in Neural Information Processing Systems*, 34:14502–
 903 14515, 2021.

904 Gita Sukthankar and Katia Sycara. Policy recognition for multi-player tactical scenarios. In *Pro-
 905 ceedings of the 6th international joint conference on Autonomous agents and multiagent systems*,
 906 pp. 1–8, 2007.

907 Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J. Zico Kolter, Jeff Schnei-
 908 der, and Ruslan Salakhutdinov. Training a generally curious agent. *ArXiv*, abs/2502.17543, 2025.
 909 URL <https://api.semanticscholar.org/CorpusID:276580798>.

918 Denis Tarasov, Alexander Nikulin, Ilya Zisman, Albina Klepach, Andrei Polubarov, Nikita
919 Lyubaykin, Alexander Derevyagin, Igor Kiselev, and Vladislav Kurenkov. Yes, q-learning helps
920 offline in-context rl. *ArXiv*, abs/2502.17666, 2025. URL <https://api.semanticscholar.org/CorpusID:276580476>.

921

922 Open-Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob
923 Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michaël Mathieu, Nat McAleese,
924 Nathalie Bradley-Schmieg, Nathaniel Wong, Nicolas Porcel, Roberta Raileanu, Steph Hughes-
925 Fitt, Valentin Dalibard, and Wojciech M. Czarnecki. Open-ended learning leads to generally
926 capable agents. *ArXiv*, abs/2107.12808, 2021. URL <https://api.semanticscholar.org/CorpusID:236447390>.

927

928 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
929 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-
930 mation Processing Systems*, pp. 6000–6010, 2017.

931

932 Adam R Villaflor, Zhe Huang, Swapnil Pande, John M Dolan, and Jeff Schneider. Addressing
933 optimism bias in sequence modeling for reinforcement learning. In *International Conference on
934 Machine Learning*, pp. 22270–22283, 2022.

935

936 Friedrich Burkhard Von Der Osten, Michael Kirley, and Tim Miller. The minds of many: Opponent
937 modeling in a stochastic game. In *International Joint Conference on Artificial Intelligence*, pp.
938 3845–3851, 2017.

939

940 Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
941 Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
942 *arXiv preprint arXiv:1611.05763*, 2016.

943

944 Yu Wang, Junxian Mu, Pengfei Zhu, and Qinghua Hu. Exploring diverse representations for
945 open set recognition. In *AAAI Conference on Artificial Intelligence*, 2024a. URL <https://api.semanticscholar.org/CorpusID:266977261>.

946

947 Yuanfu Wang, Chao Yang, Ying Wen, Yu Liu, and Yu Qiao. Critic-guided decision transformer for
948 offline reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
949 volume 38, pp. 15706–15714, 2024b.

950

951 Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning for
952 multi-agent reinforcement learning. In *International Conference on Learning Representations*,
953 2019.

954

955 Ying Wen, Yaodong Yang, and Jun Wang. Modelling bounded rationality in multi-agent interactions
956 by generalized recursive reasoning. In *International Joint Conferences on Artificial Intelligence*,
957 pp. 414–421, 2021.

958

959 Lilian Weng. Contrastive representation learning. *lilianweng.github.io*, May 2021. URL <https://lilianweng.github.io/posts/2021-05-31-contrastive/>.

960

961 Timon Willi, Alistair Hp Letcher, Johannes Treutlein, and Jakob Foerster. Cola: consistent learning
962 with opponent-learning awareness. In *International Conference on Machine Learning*, pp. 23804–
963 23831, 2022.

964

965 Wenhao Wu, Fuhong Liu, Haoru Li, Zican Hu, Daoyi Dong, Chunlin Chen, and Zhi Wang. Mixture-
966 of-experts meets in-context reinforcement learning. *ArXiv*, abs/2506.05426, 2025. URL <https://api.semanticscholar.org/CorpusID:279244328>.

967

968 Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. *Advances in
969 Neural Information Processing Systems*, 36, 2024.

970

971 Zhe Wu, Kai Li, Hang Xu, Yifan Zang, Bo An, and Junliang Xing. L2e: Learning to exploit your
972 opponent. In *International Joint Conference on Neural Networks*, pp. 1–8, 2022.

973

974 Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent representa-
975 tions to influence multi-agent interaction. In *Conference on robot learning*, pp. 575–588. PMLR,
976 2021.

972 Baile Xu, Furao Shen, and Jian Zhao. Contrastive open set recognition. In *AAAI Conference on Ar-
973 tificial Intelligence*, 2023. URL <https://api.semanticscholar.org/CorpusID:259639633>.
974

975 Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
976 Leveraging dynamic programming for conditional sequence modelling in offline rl. In *Inter-
977 national Conference on Machine Learning*, pp. 38989–39007. PMLR, 2023.

978 Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
979 dation models for decision making: Problems, methods, and opportunities. *arXiv preprint*
980 *arXiv:2303.04129*, 2023a.
981

982 Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control: Separating
983 what you can control from what you cannot. In *International Conference on Learning Represen-
984 tations*, 2023b.

985 Tianpei Yang, Jianye Hao, Zhaopeng Meng, Chongjie Zhang, Yan Zheng, and Ze Zheng. Towards
986 efficient detection and optimal response against sophisticated opponents. In *International Joint
987 Conference on Artificial Intelligence*, pp. 623–629, 2019.
988

989 Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game theo-
990 retical perspective. *arXiv preprint arXiv:2011.00583*, 2020.
991

992 Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi You, Makoto Iida, and Takeshi Naemura.
993 Classification-reconstruction learning for open-set recognition. *2019 IEEE/CVF Conference on
994 Computer Vision and Pattern Recognition (CVPR)*, pp. 4011–4020, 2018. URL <https://api.semanticscholar.org/CorpusID:54486352>.
995

996 Xiaopeng Yu, Jiechuan Jiang, Wanpeng Zhang, Haobin Jiang, and Zongqing Lu. Model-based op-
997 ponent modeling. In *Advances in Neural Information Processing Systems*, pp. 28208–28221,
998 2022.
999

1000 Luyao Yuan, Zipeng Fu, Jingyue Shen, Lu Xu, Junhong Shen, and Song-Chun Zhu. Emer-
1001 gence of pragmatics from referential game between theory of mind agents. *arXiv preprint*
1002 *arXiv:2001.07752*, 2020.
1003

1004 Stephen Zhao, Chris Lu, Roger B Grosse, and Jakob Foerster. Proximal learning with opponent-
1005 learning awareness. In *Advances in Neural Information Processing Systems*, pp. 26324–26336,
1006 2022.
1007

1008 Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, and
1009 Qianli Ma. Lifelong learning of large language model based agents: A roadmap. *ArXiv*,
1010 abs/2501.07278, 2025. URL <https://api.semanticscholar.org/CorpusID:275470466>.
1011

1012 Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and Changjie Fan. A
1013 deep bayesian policy reuse approach against non-stationary agents. In *Advances in Neural Infor-
1014 mation Processing Systems*, pp. 962–972, 2018.
1015

1016 John L. Zhou, Weizhe Hong, and Jonathan C. Kao. Reciprocal reward influence encourages co-
1017 operation from self-interested agents. *ArXiv*, abs/2406.01641, 2024a. URL <https://api.semanticscholar.org/CorpusID:270226244>.
1018

1019 Yuan Zhou, Songyu Fang, Shuoshi Li, Boyu Wang, and Sun-Yuan Kung. Contrastive learning based
1020 open-set recognition with unknown score. *Knowl. Based Syst.*, 296:111926, 2024b. URL <https://api.semanticscholar.org/CorpusID:269752489>.
1021

1022 Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyu Guo, Ziyao Zeng, Zipeng Qin, Shanghang Zhang,
1023 and Peng Gao. Pointclip v2: Prompting clip and gpt for powerful 3d open-world learning. *2023
1024 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 2639–2650, 2022a. URL
1025 <https://api.semanticscholar.org/CorpusID:261241594>.
1026

1027 Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyao Zeng, Shanghang Zhang, and Peng Gao. Pointclip
1028 v2: Adapting clip for powerful 3d open-world learning. *ArXiv*, abs/2211.11682, 2022b. URL
1029 <https://api.semanticscholar.org/CorpusID:253735373>.
1030

1026 Zifeng Zhuang, Dengyun Peng, Jinxin Liu, Ziqi Zhang, and Donglin Wang. Reinformer: Max-return
1027 sequence modeling for offline rl. In *Forty-first International Conference on Machine Learning*,
1028 2024.

1029

1030 Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interactive
1031 bayesian reinforcement learning via meta-learning. In *International Conference on Autonomous
1032 Agents and MultiAgent Systems*, pp. 1712–1714, 2021.

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 A RELATED WORK
10811082 **Opponent Modeling.** Prior OM work generally falls into two major categories based on their
1083 focus: (1) those *focused on training* and (2) those *focused on testing*.
10841085 The first category focuses on learning high-level knowledge of responding to different opponents
1086 during training and generalizing it to testing. Some employ the idea of *Representation Learning*
1087 (Jaiswal et al., 2020), aiming to learn high-quality representations of opponent policies during
1088 training to aid in policy optimization (He et al., 2016; Hong et al., 2018; Grover et al., 2018; Pa-
1089 poudakis & Albrecht, 2020; Zintgraf et al., 2021; Papoudakis et al., 2021; Papoudakis & Albrecht,
1090 2020; Jing et al., 2024a; Ma et al., 2024). *Non-gradient Meta-learning* methods (Duan et al., 2016;
1091 Wang et al., 2016) are also utilized by some researchers, who seek to leverage recurrent architec-
1092 tures to acquire knowledge about the intrinsic policy structure of each opponent and the differences
1093 between them throughout training (Wang et al., 2016; Zintgraf et al., 2021).
10941095 The second category centers on updating the trained opponent model during testing to reason and
1096 to respond against the current opponent. Some adopt the idea of *Bayesian Inference* (Bernardo &
1097 Smith, 2009), attempting to detect or infer the opponent’s policy in real-time and generate accu-
1098 rate responses accordingly (Bard et al., 2013; Rosman et al., 2016; Hernandez-Leal et al., 2016;
1099 Zheng et al., 2018; Sessa et al., 2020; DiGiovanni & Tewari, 2021; Fu et al., 2022; Lv et al., 2023).
1100 Others utilize *Gradient-based Meta-learning* principles (Finn et al., 2017), capitalizing on the well-
1101 initialized solutions acquired in the parameter space during training to enable fast adaptation and
1102 fine-tuning for new opponents encountered during testing (Al-Shedivat et al., 2018; Kim et al.,
1103 2021; Wu et al., 2022; Banerjee et al., 2023). Research pertaining to the *Shaping of Opponents’*
1104 *Learning* (Foerster et al., 2018a;b; Letcher et al., 2019; Kim et al., 2021; Lu et al., 2022; Willi et al.,
1105 2022; Zhao et al., 2022; Fung et al., 2023; Souly et al., 2023; Duque et al., 2024; Qiao et al., 2024;
1106 Aghajohari et al., 2024; Zhou et al., 2024a), *Recursive Reasoning* (Wen et al., 2019; 2021; Dai et al.,
1107 2020; Yuan et al., 2020; Yu et al., 2022), and the *Theory of Mind* (Von Der Osten et al., 2017; Rabi-
1108 nowitz et al., 2018; Raileanu et al., 2018; Yang et al., 2019; Li et al., 2023a; Kosinski, 2023; Huang
1109 et al., 2024; Han et al., 2025) also falls within this category.
11101111 In prior work, it is typically assumed that the sets of training and testing opponents are fixed, and the
1112 testing opponent distribution often **lies around** the training opponent distribution (*i.e.*, testing oppo-
1113 nents do not differ significantly from those in training). In contrast, this work adopts an OSO setting,
1114 where both the training and testing opponent sets are variable, and the types of policies they contain
1115 can have substantial differences in number and semantics. Under this challenging setting, existing
1116 approaches are unable to explicitly identify unseen opponents and, therefore, struggle to effectively
1117 respond to them. We propose a novel OSOM training approach to overcome this challenge.
11181119 **Concurrent to our work, LOSI (Anonymous, 2025) proposes a latent opponent-strategy identification**
1120 **framework in cooperative SMAC-Hard, learning unsupervised embeddings of opponent scripts with**
1121 **a GRU encoder and a prototype-based contrastive objective that is integrated into QMIX (Rashid**
1122 **et al., 2020). However, LOSI assumes a fixed, closed set of opponent scripts shared between train-**
1123 **ing and testing. In contrast, OSOM targets **open-set**, potentially non-stationary opponents with sup-**
1124 **ervised OTEs and random OTE prompting, provides explicit per-type identification metrics, and**
1125 **is instantiated as a generic opponent-aware policy module that can be combined with different RL**
1126 **algorithms. We view LOSI as complementary, and exploring combinations of its unsupervised en-**
1127 **coders with OSOM’s open-set OTE framework is an interesting direction for future work.**
11281129 **Open Set Learning.** Our work is closely related to the field of *Open Set Recognition*
1130 (OSR) (Scheirer et al., 2014; Bendale & Boult, 2014; Geng et al., 2018; Yoshihashi et al., 2018;
1131 Mahdavi & Carvalho, 2021; Boult et al., 2019; Halász et al., 2023; Li et al., 2024a; Lang et al.,
1132 2024; Wang et al., 2024a; Miller et al., 2024; Bahavan et al., 2025). Traditional machine learning
1133 models mostly follow the ‘closed world’ assumption, where all classes encountered during testing
1134 are known during training. OSR aims to break this assumption, enabling models to not only accu-
1135 rately classify known classes but also effectively recognize and reject unknown class samples that
1136 were never seen during training. Moreover, many of these works have adopted the idea of *Con-*
1137 *trastive Learning* (CL) (Xu et al., 2023; Li et al., 2024b; Zhou et al., 2024b).
11381139 Similar to the problem setting of OSR, the OSO we formalized assumes that the set of all possible
1140 policies opponents can adopt is variable, and the number and semantics of opponent policies in both
1141

1134 the training and testing sets can be significantly different. However, unlike the goal of traditional
 1135 OSR, we do not simply hope to detect and reject ‘*unknown classes*.’ Instead, we aim to achieve
 1136 effective discrimination and recognition even for all ‘*unknown opponent classes*.’

1137 Unlike prior OM work that adapts or generalizes to unseen opponents implicitly, our OSOM is
 1138 the first to introduce an explicit identification mechanism. This concept also resonates with the
 1139 more advanced field of *Open World Learning* (OWL) (Langley, 2020; Team et al., 2021; Zhu et al.,
 1140 2022b;a; Kejriwal et al., 2024; Irfan et al., 2024; Brilhador et al., 2025; Zheng et al., 2025), which
 1141 not only requires recognizing unknowns but also emphasizes incrementally learning new knowledge.
 1142 Therefore, OSOM can be seen as a crucial step toward applying the ideas of OWL to multi-agent
 1143 decision-making, leveraging the methodology of CL and the in-context generalization abilities of
 1144 the Transformer model to achieve more effective opponent adaptation in open environments.

1145
 1146 **RL with Transformers.** There has been a growing research interest in leveraging Transformers
 1147 for decision-making tasks by reconceptualizing the problem as sequence modeling (Chen et al.,
 1148 2021; Janner et al., 2021; Yang et al., 2023a; Li et al., 2023b; Yamagata et al., 2023; Wu et al., 2024;
 1149 Wang et al., 2024b; Hu et al., 2024; Zhuang et al., 2024). Pioneering work like *Decision Trans-*
 1150 *former* (DT) (Chen et al., 2021) and *Trajectory Transformer* (Janner et al., 2021) introduced a novel
 1151 paradigm, demonstrating that decision-making can be addressed through *Return-Conditioned Super-*
 1152 *vised Learning* (Brandfonbrener et al., 2022; Yang et al., 2023b). Specifically, DT utilizes a causal
 1153 Transformer trained on offline data to predict action sequences based on desired returns. Subsequent
 1154 research has built upon this foundation by exploring improvements such as more advanced condi-
 1155 tioning techniques (Furuta et al., 2022; Paster et al., 2022) and architectural enhancements (Villaflor
 1156 et al., 2022). Another research direction is the application of Transformers’ versatility and scalability
 1157 to multi-task learning (Lee et al., 2022; Reed et al., 2022).

1158 When pre-trained for decision-making in some contextual manners, Transformers also demonstrate
 1159 a robust ability for *In-Context RL* (ICRL) (Moeini et al., 2025; Wang et al., 2016; Duan et al., 2016;
 1160 Grigsby et al., 2023; Dorfman et al., 2021; Mitchell et al., 2021; Pong et al., 2022; Laskin et al.,
 1161 2023; Lee et al., 2023; Sinii et al., 2023; Lin et al., 2024; Grigsby et al., 2024; Mukherjee et al.,
 1162 2024; Chen & Paternain, 2024; Dong et al., 2024; Schmied et al., 2024; Son et al., 2025; Polubarov
 1163 et al., 2025; Tarasov et al., 2025; Chen et al., 2025; Tajwar et al., 2025; Liu et al., 2025; Wu et al.,
 1164 2025). For example, Laskin et al. (2023) used an autoregressive supervised learning approach to
 1165 distill the sub-traces of a single-task RL algorithm into a single model that is not tied to any specific
 1166 task. Similarly, Lee et al. (2023) used supervised pretraining to show the ICRL capabilities of these
 1167 models, both empirically and theoretically. Building on this, Lin et al. (2024) introduced a theoretical
 1168 framework to analyze and explain the underlying principles and conditions required for ICRL to
 1169 work. Moreover, the works of Dorfman et al. (2021); Mitchell et al. (2021); Li et al. (2020); Pong
 1170 et al. (2022); Tarasov et al. (2025) are specifically centered on *Offline Meta-RL* and incorporate
 1171 training objectives that are explicitly designed to address the challenges posed by distributional
 1172 shift. It is worth mentioning that some studies, such as those by Wang et al. (2016); Duan et al.
 1173 (2016); Melo (2022); Grigsby et al. (2023; 2024), are similar to our work in that they focus on the
 1174 *Online Meta-RL setting*, where the primary objective during training is to maximize the total reward.

1175 Inspired by the above studies, OSOM ingeniously reshapes the Transformer’s sequence modeling
 1176 abilities to perform contextual identity inference and response regarding opponents. The model pro-
 1177 cesses historical interaction trajectories to infer the current opponent’s type. This inference result
 1178 then becomes a new context, which is used to guide the generation of the most appropriate response
 1179 policy. The model design of OSOM facilitates its ICRL ability, making it possible to generalize the
 1180 learned opponent identification and response knowledge to never-before-seen opponent types.

1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 B ALGORITHMIC PSEUDOCODE FOR OSOM
11891190 B.1 OSOM TRAINING
11911192 The complete training procedure is detailed in the pseudocode below.
11931194 **Algorithm 1** OSOM Training Procedure

1195 **Initialize** model parameters: Encoder θ , Decoder ϕ , Identifier ψ , Responder ω .
 1196 **Initialize** replay buffer \mathcal{B} and historical OTE buffer \mathcal{H} .
 1197 **Initialize** hyperparameters: $K, C, \kappa, \alpha_1, \alpha_2, \alpha_3$.
 1198 **for** each training iteration **do**
 1199 **// Sample a new set of opponents and generate corresponding random labels.**
 1200 Sample K opponent policies $\Pi^{\text{train}} = \{\pi^{-1,k}\}_{k=1}^K$ from the *opponent pool*.
 1201 Generate K random, pairwise orthogonal OTEs $\mathcal{Z}^{\text{train}} = \{z^{-1,k}\}_{k=1}^K$ on the unit sphere.
 1202 **// Rollout phase: Collect interaction data.**
 1203 **for** episode $h = 1, \dots, N_{\text{train_episodes}}$ **do**
 1204 Sample an opponent policy $\pi^{-1,j} \in \Pi^{\text{train}}$ with its ground truth OTE $z^{-1,j} \in \mathcal{Z}^{\text{train}}$.
 1205 Reset environment and get initial self-agent observation o_0^1 .
 1206 Initialize episode trajectory buffer τ_{ep} .
 1207 **for** timestep $t = 0, \dots, T - 1$ **do**
 1208 **// Aggregate context from historical identifications .**
 1209 Retrieve recent selected OTEs $\{z^{\text{sel}}\}$ from \mathcal{H} (current episode up to $t - 1$ and previous
 1210 C episodes).
 1211 Compute aggregated context $x_{t(h)} = \text{AveragePooling}(\{z^{\text{sel}}\})$.
 1212 **// Self-agent acts based on observation and context.**
 1213 Generate self-agent action $a_t^1 \sim \pi^1(\cdot | o_t^1, x_{t(h)}; \omega)$.
 1214 Execute a_t^1 and opponent action $a_t^{-1} \sim \pi^{-1,j}(\cdot | o_t^{-1})$ in the environment.
 1215 Receive $o_{t+1}^1, r_t^1, o_{t+1}^{-1}$.
 1216 **// Distill opponent policy and perform identification .**
 1217 Encode self-agent information: $e_t = f_\theta(o_t^1, a_t^1)$.
 1218 Predict opponent OTE: $\hat{z}_t = \text{Identifier}_\psi(\{e\}, \mathcal{Z}^{\text{train}})$.
 1219 Compute sampling probabilities $P(z^{-1,l}) = \text{softmax}(\hat{z}_t \cdot z^{-1,l})$ for all $l \in \{1, \dots, K\}$.
 1220 Sample a selected OTE $z_{t(h)}^{\text{sel}} \sim P(\cdot)$ and store in \mathcal{H} .
 1221 **// Store all relevant data for updates.**
 1222 Add $(o_t^1, a_t^1, r_t^1, o_{t+1}^1, x_{t(h)}, e_t, \hat{z}_t, z^{-1,j}, o_t^{-1}, a_t^{-1})$ to τ_{ep} .
 1223 **end for**
 1224 Store completed trajectory τ_{ep} in replay buffer \mathcal{B} .
 1225 **end for**
 1226 **// Update phase: Optimize all model components.**
 1227 Sample a batch of data from \mathcal{B} .
 1228 Compute policy distillation objective $\mathcal{J}_{\text{distill}}$ using decoder g_ϕ on $(e_t, o_t^{-1}, a_t^{-1})$ per Eq. (1).
 1229 Compute identification objective $\mathcal{J}_{\text{identify}}$ on $(\hat{z}_t, z^{-1,j}, \mathcal{Z}^{\text{train}})$ per Eq. (2).
 1230 Compute response objective $\mathcal{J}_{\text{respond}}$ using an online RL algorithm (e.g., PPO by Schulman
 1231 et al. (2017)) on self-agent trajectories $(o_t^1, a_t^1, r_t^1, x_{t(h)})$ per Eq. (4).
 1232 Compute total objective $\mathcal{J}_{\text{total}} = \alpha_1 \mathcal{J}_{\text{distill}} + \alpha_2 \mathcal{J}_{\text{identify}} + \alpha_3 \mathcal{J}_{\text{respond}}$.
 1233 **Update** $\theta, \phi, \psi, \omega$ using PPO policy-gradient updates on $\alpha_3 \mathcal{J}_{\text{respond}}$ combined with standard
 1234 gradient updates on the auxiliary losses $\alpha_1 \mathcal{J}_{\text{distill}}$ and $\alpha_2 \mathcal{J}_{\text{identify}}$.
 1235 **end for**
 1236
 1237
 1238
 1239
 1240
 1241

1242 B.2 OSOM TESTING
12431244 The testing procedure formalizes the deployment of a trained OSOM agent against non-stationary
1245 OSOs, as detailed in the pseudocode below.
12461247 **Algorithm 2** OSOM Testing Procedure (On-the-Fly Identification and Response)
1248

```

Load pre-trained model parameters  $\theta, \phi, \psi, \omega$ . Set models to evaluation mode.
Define the testing set of  $M$  opponent policies  $\Pi^{\text{test}} = \{\pi^{-1, m}\}_{m=1}^M$ .
Generate  $M$  new random, pairwise orthogonal OTEs  $\mathcal{Z}^{\text{test}} = \{z^{-1, m}\}_{m=1}^M$ .
Initialize historical OTE buffer  $\mathcal{H}$ .
for each test episode  $h = 1, \dots, N_{\text{test\_episodes}}$  do
    // Opponent may switch its policy to simulate non-stationarity.
    if  $h \pmod{H} == 1$  then
        Sample a new opponent policy  $\pi^{-1, j} \in \Pi^{\text{test}}$ .
    end if
    Reset environment and get initial self-agent observation  $o_0^1$ .
    for timestep  $t = 0, \dots, T - 1$  do
        // Aggregate context from historical identifications .
        Retrieve recent selected OTEs  $\{z^{\text{sel}}\}$  from  $\mathcal{H}$  (current episode up to  $t - 1$  and previous  $C$ 
        episodes).
        Compute aggregated context  $x_{t(h)} = \text{AveragePooling}(\{z^{\text{sel}}\})$ .
        // Self-agent acts based on observation and context.
        Generate self-agent action  $a_t^1 \sim \pi^1(\cdot | o_t^1, x_{t(h)}; \omega)$ .
        Execute  $a_t^1$  in the environment and receive  $o_{t+1}^1, r_t^1$ .
        // On-the-fly identification using the fixed, pre-trained model.
        Encode self-agent information:  $e_t = f_\theta(o_t^1, a_t^1)$ .
        Predict opponent OTE:  $\hat{z}_t = \text{Identifier}_\psi(\{e\}, \mathcal{Z}^{\text{test}})$ .
        Compute sampling probabilities  $P(z^{-1, l}) = \text{softmax}(\hat{z}_t \cdot z^{-1, l})$  for all  $l \in \{1, \dots, M\}$ .
        Sample a selected OTE  $z_{t(h)}^{\text{sel}} \sim P(\cdot)$  and store in  $\mathcal{H}$ .
    end for
end for
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

```

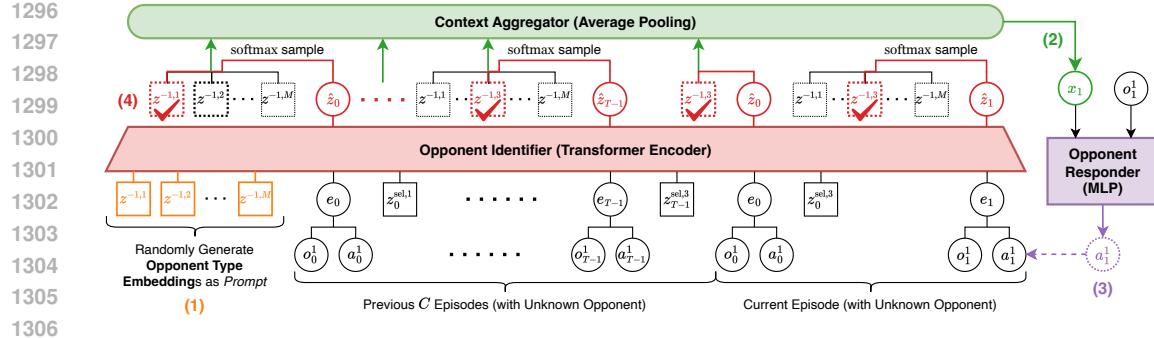


Figure 7: Testing procedure of OSOM. Taking timestep 1 of the current episode against an unknown opponent policy as an example, we illustrate the four steps of OSOM’s on-the-fly testing process: (1) *Embedding Generation and Prompting*: For the testing set of opponent policies $\{\pi^{-1,k}\}_{m=1}^M$ with M opponent types, randomly generate M corresponding OTEs $\{z^{-1,m}\}_{m=1}^M$ and use this set as the prompt for the input sequence. (2) *Context Aggregation*: The **Context Aggregator** aggregate the OTEs identified from recent interactions (the current episode up to timestep 0 and the previous C episodes) to form a compact context vector x_1 that represents the agent’s current belief about the opponent’s type. (3) *Action Selection (Response)*: The **Opponent Responder** takes the agent’s current observation o_1^1 and the aggregated context vector x_1 as input to output an action a_1^1 , allowing the agent’s policy to be influenced by its belief about the opponent’s identity. (4) *On-the-Fly Identification*: The agent encodes its own (o_1^1, a_1^1) pair to produce a latent state e_1 , which is then used by the **Opponent Identifier** along with the sequence of latent states from recent interactions and the full set of possible test-time OTEs to predict the opponent’s identity \hat{z}_1 . The agent probabilistically selects an OTE from the prompt set, updating its belief about the opponent’s identity.

C TESTING PROCEDURE OF OSOM

The testing process evaluates the agent’s ability to adapt to a set of M unknown opponent policies. The model’s parameters are frozen, and all adaptation occurs in-context by dynamically updating its understanding of the current opponent. An illustration of the OSOM testing procedure is provided in Fig. 7, and corresponding algorithmic pseudocode is supplemented in Algo. 2 to aid in comprehension.

Here is the breakdown of the procedure:

Initialization and Setup. Before the testing episodes begin, the environment is prepared:

- (1) *Load the Trained Model*: The final, trained parameters for the Encoder, Opponent Identifier, and Opponent Responder are loaded. The model is set to evaluation mode, meaning no further learning or gradient updates will occur.
- (2) *Define the Opponent Set*: A set of M new, potentially unseen opponent policies, denoted as Π^{test} , is established for the test.
- (3) *Generate Random OTEs*: A corresponding set of M new, random, and pairwise orthogonal OTEs, denoted as $\mathcal{Z}^{\text{test}}$, is generated. This set of OTEs acts as a ‘prompt,’ providing the agent with the possible identities of the opponents it might face in this new environment. The agent has no prior association between these specific OTEs and the opponent policies.
- (4) *Initialize History*: A historical buffer for storing identified OTEs is cleared and prepared.

Starting an Episode. At the beginning of each episode (or every H episodes to simulate non-stationarity), an opponent is chosen:

- (1) *Select Opponent Policy*: An opponent policy $\pi^{-1,j}$ is sampled from the test set Π^{test} . The agent does not know the identity of this opponent.
- (2) *Reset Environment*: The environment is reset, and the agent receives its initial observation, o_0^1 .

1350
1351
1352

The Interaction Loop (For each timestep t). For every step within an episode, the agent performs a cycle of belief formation, action, and belief update.

1353
1354
1355
1356
1357

(1) *Context Aggregation*: The agent first forms a belief about the current opponent’s identity. The Context Aggregator retrieves the OTEs that were identified and stored in the historical buffer from recent interactions (e.g., the current episode up to step $t - 1$ and the previous C episodes). It then calculates the average of these embeddings to produce a single, compact context vector, $x_{t(h)}$. This vector represents the agent’s current, time-averaged belief about the opponent’s type.

1358
1359
1360
1361

(2) *Action Selection (Response)*: The agent decides what action to take. The Opponent Responder network takes the agent’s current observation o_t^1 and the aggregated context vector $x_{t(h)}$ as input. Based on this information, it outputs an action, a_t^1 . This mechanism allows the agent’s policy to be directly influenced by its belief about the opponent’s identity.

1362
1363
1364

(3) *On-the-Fly Identification*: After acting, the agent updates its belief about the opponent.

1365
1366
1367

- The agent’s own (o_t^1, a_t^1) pair is passed through the pre-trained Encoder to produce a latent state, e_t . This state implicitly contains information about the opponent’s behavior.
- The Opponent Identifier (a Transformer model) takes the sequence of latent states from the current episode up to t and previous C episodes $(e_{0(h-C)}, \dots, e_{T-1(h-1)}, e_{0(h)}, \dots, e_{t(h)})$ and the full set of possible test-time OTEs ($\mathcal{Z}^{\text{test}}$) as input.
- It processes this information and outputs a predicted OTE, \hat{z}_t . This prediction represents the Identifier’s best guess of the opponent’s identity based on the interaction history.
- To make a choice, the agent probabilistically selects the OTE from the prompt set $\mathcal{Z}^{\text{test}}$ according to the dot-product similarities with its prediction \hat{z}_t . This selected OTE, $z_{t(h)}^{\text{sel}}$, is the agent’s identification of the opponent at this timestep.

1370
1371
1372

(4) *Update History*: The newly identified OTE, $z_{t(h)}^{\text{sel}}$, is stored in the historical buffer. This ensures it will be used by the Context Aggregator in subsequent timesteps to inform future actions.

1373
1374
1375

This loop continues until the end of the episode, and the entire process is repeated for the desired number of test episodes. This procedure allows the agent to adapt its behavior on-the-fly by continually refining its belief about an opponent’s identity and conditioning its actions on that belief, all without changing its underlying network weights.

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

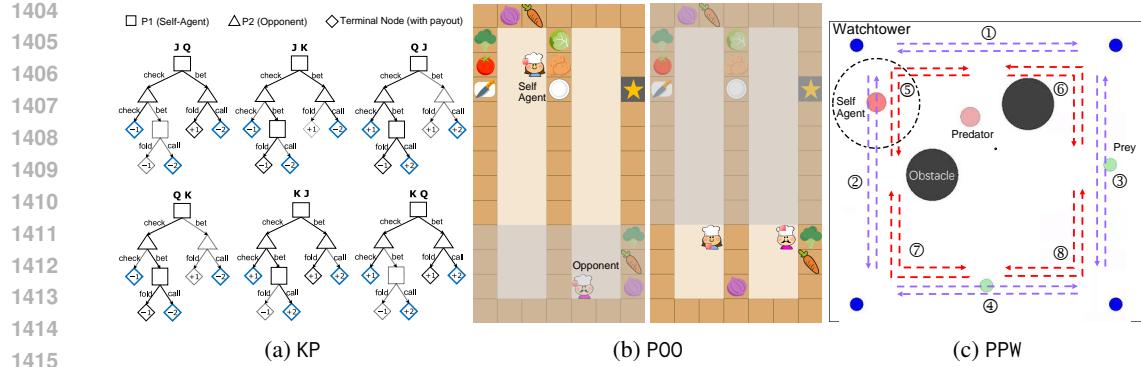


Figure 8: Illustrations of the multi-agent benchmarking environments (a) Kuhn Poker (KP), (b) Partially-Observable Overcooked (P00), and (c) Predator-Prey with Watchtowers (PPW).

D DETAILED INTRODUCTIONS OF ENVIRONMENTS

D.1 KUHN POKER

The game of Kuhn Poker (KP) is a simplified, two-player (P1 and P2) version of poker, as detailed by Hoehn et al. (2005) and Kuhn (2016). The game’s setup involves a three-card deck, from which each player is dealt a single card. The cards are ranked Jack, Queen, and King (from lowest to highest). KP has no suits, only ranks. Unlike games such as No-Limit Texas Hold’em, which permit multiple rounds of raising, the allowed actions in KP are restricted to simply “bet” or “pass.”

The game unfolds in the following sequence: (1) Both players contribute one ante (chip) to the pot. (2) One card is dealt to each player from the deck, and the third, remaining card is not seen by either player. (3) Following the deal, P1 is the first to act, making a choice to either bet one chip or pass.

The trajectory of the game encompasses a total of three potential scenarios, contingent upon the sequence of actions executed by both players:

- P1 Bets: If Player 1 (P1) elects to bet, Player 2 (P2) is then presented with a choice: to bet (call), which results in P1’s bet being matched and the game concluding in a showdown, or to pass (fold), thereby forfeiting the pot.
- P1 Passes, P2 Acts: Should P1 choose to pass, P2 can then either pass (check), leading directly to a showdown, or bet.
- P2 Bets After P1 Passes: If P2 places a bet after P1 has passed, P1 must then decide whether to bet (call), matching P2’s bet and ending the hand in a showdown, or to pass (fold), which entails relinquishing the pot.

In this study, our primary focus is on learning the adaptation strategy for P1 against P2, where the opponent is modeled as P2. The specific card held by the opponent P2 is only disclosed at the point of a showdown (represented by the blue diamond nodes in Fig. 8a). Following the methodology for strategy simplification proposed by Hoehn et al. (2005), we systematically eliminate policies for P2 that are clearly dominated. For instance, P2 will never choose to bet with a Queen after P1 checks (passes), as P1 would consistently fold with a Jack and call with a King. The complete, simplified game tree can be referenced in the original paper by Hoehn et al. (2005). This simplification enables us to parameterize the P2 policy using only two variables, ξ and η , each constrained to the range $[0, 1]$. Within, η represents the probability that P2 ‘bets with a Queen’ after P1 has bet. ξ represents the probability that P2 ‘bets with a Jack’ after P1 has passed. As a result, the full policy space of P2 can be partitioned into six distinct sections, with each section corresponding to the optimal best response strategy for P1.

Observation Space. The agents within this game perceive a state that is represented by a 13-dimensional vector, which is constructed from three one-hot vectors.

1458 (1) First One-Hot Vector (7-dimensions): This component is a 7-dimensional encoding of the cur-
 1459 rent stage within the game tree.
 1460 (2) Second One-Hot Vector (3-dimensions): This component represents the hand card of the self-
 1461 agent.
 1462 (3) Third One-Hot Vector (3-dimensions): This component represents the hand card of the oppo-
 1463 nent. Crucially, the opponent’s hand is consistently represented by an all-zero vector until the
 1464 game reaches a showdown stage.
 1465

1466 **Action Space.** The permissible actions for each player are limited to either ‘bet’ or ‘pass’, which
 1467 means the action space is a discrete space comprising two distinct actions.
 1468

1469 **Reward.** The reward is not directly equivalent to the total amount in the pot. Instead, it is computed
 1470 as the total chips in the pot minus the chips contributed by the winner. The loser’s reward is the
 1471 negative value of the winner’s reward. The reward values are determined by the final size of the pot:
 1472

- 1473 • Showdown (No Bets): If the game concludes in a showdown with no player betting (both pass),
 1474 the pot contains 2 chips (one ante from each player). The player with the highest-ranked card wins
 1475 the pot.
 - 1476 – Reward: ± 1 (Pot 2 - Winner’s contribution 1).
- 1477 • Showdown (With Bets): If the game concludes in a showdown after a sequence of bets (e.g., one
 1478 player bets, and the other calls), the pot contains 4 chips (two chips from each player). The player
 1479 with the highest-ranked card wins the pot.
 - 1480 – Reward: ± 2 (Pot 4 - Winner’s contribution 2).
- 1481 • Forfeit (Fold): If the game ends because one player forfeits the pot (folds), the pot contains 3 chips
 1482 (one ante plus two bets/chips). The remaining player wins the pot.
 - 1483 – Reward: ± 1 (Pot 3 - Winner’s contribution 2).

1486 D.2 PARTIALLY-OBSERVABLE OVERCOOKED

1487 Partially-Observable Overcooked (POO) is a collaborative culinary simulation in which players
 1488 assume the roles of chefs working together to accomplish multiple sub-tasks and serve prepared
 1489 dishes, as described by Carroll et al. (2019). In this study, we present a more intricate *Multi-Recipe*
 1490 variant, which incorporates modifications previously introduced by Charakorn et al. (2023) and Ma
 1491 et al. (2024). To substantially increase the challenge and encourage a wider array of policy behaviors,
 1492 we specifically incorporate two additional ingredients—potato and broccoli—and a corresponding
 1493 increase in the number of available recipes. The game environment now features a total of six ingre-
 1494 dients (Tomato, Onion, Carrot, Lettuce, Potato, and Broccoli) and nine recipes. A notable character-
 1495 istic of this environment is a counter that divides the room, thereby making collaboration essential
 1496 as chefs must exchange objects, such as ingredients and plates, across this counter. To successfully
 1497 serve a dish, the required ingredients must first be taken to the cutting board and chopped. Once all
 1498 the necessary chopped ingredients are placed onto a plate, the final dish must be transported to the
 1499 delivery square to complete the task. Furthermore, we introduce partial observability by hori-
 1500 zontally dividing the game scene into an ‘upper room’ and a ‘lower room’. Each agent is restricted to
 1501 observing only the objects present in the same room as itself. The agent situated in the left room is
 1502 designated as the self-agent, and the masked gray area shown in Fig. 8b represents the portion of the
 1503 environment that is unobserved by the self-agent.
 1504

1505 **Observation Space.** The observation is structured as a 105-dimensional vector, which integrates a
 1506 variety of features. These features encompass the agent’s position, direction, currently held objects,
 1507 objects immediately in front of the agent, and various other relevant attributes. To properly account
 1508 for the partial observation, a flag is included for every relevant object to indicate its visibility status.
 1509

1510 **Action Space.** Each agent is capable of selecting an action from a discrete space of six possi-
 1511 ble actions: moving left, moving right, moving up, moving down, interacting (with an object), and
 1512 performing a no-operation (taking no action).

1512 **Reward.** Since P00 is a fully cooperative game, all agents in the environment receive the same
 1513 shared reward. There are three categories of rewards utilized within the game:
 1514

- 1515 • Interactive Reward: An agent receives a reward of 0.5 whenever it successfully interacts with an
 1516 object. It should be noted that consecutive or repeated interactions with the same object do not
 1517 yield any cumulative additional reward.
- 1518 • Progress Reward: Each agent is given a reward of 1.0 when the state of a recipe advances. For in-
 1519 stance, if a chopped carrot is placed onto a plate, thereby changing the recipe state from "chopped
 1520 carrot" to "carrot plate," all agents receive this reward.
- 1521 • Completion Reward: When a prepared dish that fulfills the requirements of a recipe is successfully
 1522 served to the delivery square, every agent receives a substantial reward of 10.0.

1524 **D.3 PREDATOR-PREY WITH WATCHTOWERS**

1525 Predator-Prey with Watchtowers (PPW) is a multi-agent environment where the agents face both
 1526 collaborative and competitive dynamics. We utilize a modified version of the standard predator-prey
 1527 scenario taken from the *Multi-agent Particle Environment* (MPE), which is commonly employed in
 1528 the Multi-Agent RL (MARL) literature (Lowe et al., 2017).

1529 As depicted in the game illustration of Fig. 8c, the environment contains the following components:

- 1530 • Two Predators: represented by red circles, with the darker one designating the self-agent.
- 1531 • Two Prey: represented by green circles.
- 1532 • Multiple Landmarks: represented by gray and blue circles.

1533 The core objectives are two-fold: the predators are tasked with chasing the prey, while the prey
 1534 attempt to escape the predators. Furthermore, the predators operate in a collaborative manner, as
 1535 they are required to coordinate their actions so that all prey are simultaneously covered by a predator.
 1536 Each simulation episode is limited to a maximum duration of 40 timesteps. However, if all the prey
 1537 are tagged (or "touched") by the predators, the episode concludes immediately.

1538 To augment the complexity of the task, we utilize the version modified by Ma et al. (2024), which
 1539 incorporates both partial observability and the addition of 'four watchtowers': the blue circles situ-
 1540 ated at the corners of the figure. The self-agent's visual range is limited; it can only perceive other
 1541 agents and landmarks that fall within its observation radius, which is fixed at 0.2 for all experiments.
 1542 The self-agent has the option to navigate to a watchtower to obtain full observability. When the self-
 1543 agent is in contact with any of these watchtowers, its field of view expands to encompass all agents
 1544 and landmarks present in the entire environment.

1545 **Observation Space.** The observation space is a 37-dimensional vector. It is composed of the posi-
 1546 tions and velocities of the various agents, as well as the positions of the landmarks. To implement the
 1547 partial observability, an additional 0/1 sign is appended for every landmark and every agent other
 1548 than the self-agent, which indicates whether that entity is currently visible to the self-agent. For any
 1549 entity that is invisible, its sign, positions, and velocities are all set to 0. Finally, all positions, except
 1550 for the absolute position of the self-agent, are relative to the self-agent's location.

1551 **Action Space.** The action space employed for PPW is a discrete space comprising five actions,
 1552 corresponding to the ability to move left, right, up, down, or stand still (take no movement action).

1553 **Reward.** The predators are assigned a common shared reward that is designed to incentivize col-
 1554 laboration and ensure that all prey are covered. Specifically, if \mathcal{A} denotes the set of all predators and
 1555 \mathcal{B} denotes the set of all prey, the reward received by the predators at each timestep is defined by the
 1556 following expression:

$$1557 -c \sum_{b \in \mathcal{B}} \min_{a \in \mathcal{A}} \text{dist}(a, b),$$

1558 where dist is the *Euclidean distance function*, and the constant c is set to 0.1. Intuitively, this for-
 1559 mulation encourages the predators to divide and conquer the task, ensuring that for every individual
 1560 prey, there is at least one predator located in close proximity.

1566

E OPPONENT POOL DESIGN

1567
 1568 In this section, we provide a detailed description of the design and construction of the opponent
 1569 policy pools used in our experiments. We primarily follow the methodology outlined by Ma et al.
 1570 (2024) to generate a diverse set of rule-based opponent policies for each environment.
 1571

1572 Current work, as supported by research from Strouse et al. (2021); Charakorn et al. (2023); Lupu
 1573 et al. (2021)u, predominantly employs RL algorithms enhanced with diversity objectives to cultivate
 1574 a wide range of policy behaviors. However, this paper takes a different approach by generating a col-
 1575 lection of rule-based policies that incorporate human-derived priors. The rationale for this decision
 1576 is that the P2 policy within the KP framework can be effectively parameterized by two probabilities,
 1577 denoted as ξ and η . Furthermore, we posit that the preference-based policies utilized in POO and PPW
 1578 more accurately represent human-like behaviors within the game environment. The specific details
 1579 regarding the pool of these rule-based policies are provided in the following section.
 1580

1581

E.1 KUHN POKER

1582
 1583 In accordance with the details provided in Sec. D.1, the dominant strategies for P2 have been elim-
 1584 inated. This allows the P2 policy to be defined by two key parameters: η and ξ . The parameter η
 1585 represents the probability of P2 betting with a Queen when P1 has already bet, whereas ξ denotes
 1586 the probability of P2 betting with a Jack following a pass from P1.

1587 This approach enables the generation of an arbitrary number of P2 policies by randomly sampling
 1588 the parameters ξ and η . For the purposes of this paper, a total of 40 P2 policies were sampled to
 1589 form the *full training opponent set Train Set*, while 10 P2 policies were sampled for the *full unseen*
 1590 *opponent set Eval Set*.
 1591

1592

E.2 PARTIALLY-OBSERVABLE OVERCOOKED

1593
 1594 In this paper, we follow the method of Ma et al. (2024) for generating opponent policies that are
 1595 based on individual preferences for specific recipes. Each opponent policy is thus tailored to a par-
 1596 ticular recipe, such as Tomato and Onion Salad. These opponents are spatially constrained to the
 1597 right side of the kitchen environment and engage solely with ingredients and dishes relevant to their
 1598 preferred recipe. For instance, a policy favoring Tomato and Onion Salad would concentrate on sub-
 1599 tasks related to handling fresh or chopped tomatoes and onions, as well as delivering final dishes
 1600 that exclusively contain these two ingredients.

1601 At each timestep, the opponent’s decision-making is as follows: it first assesses the completion status
 1602 of its current sub-task. If the sub-task is not yet finished, the opponent computes the shortest path
 1603 to its target location and proceeds to navigate along that path. Conversely, upon completion of a
 1604 sub-task, the opponent samples a new sub-task from its predefined set of preferred options.
 1605

1606 In addition, two parameters are utilized to control more fine-grained aspects of the policies. The first,
 1607 P_{nav} , is the probability of selecting a lateral movement (right or left) over a vertical movement (up
 1608 or down) when multiple shortest paths exist. The second, P_{act} , represents the probability of an agent
 1609 choosing a random action from the action space instead of the optimal action for its current sub-task.
 1610 To illustrate, consider an opponent aiming to place a Tomato on a counter. With a probability of P_{act} ,
 1611 the opponent will select a random action from the entire action space. Conversely, with a probability
 1612 of $1 - P_{\text{act}}$, it will choose the optimal action for the task, such as navigating towards the counter or
 1613 performing the necessary interaction.

1614 We posit that rule-based agents exhibit behaviors that are more human-like than those of self-play
 1615 agents trained with RL algorithms. This belief is supported by two main points. First, cognitive
 1616 studies (Etel & Slaughter, 2019; Sher et al., 2014) suggest that human actions are indeed based on
 1617 underlying intentions and desires. Additionally, self-play agents frequently develop arbitrary con-
 1618 ventions (Hu et al., 2020). In the POO environment, such conventions may involve consistently plac-
 1619 ing or taking ingredients and plates from a specific counter and refusing to interact with objects at
 a other locations. However, these self-play conventions are rarely seen in human behavior. As a result,
 a preference-based policy proves to be a more suitable choice.

1620 The P00 scenario detailed in this paper is built upon a set of 9 recipes. Additionally, two parameters,
 1621 P_{nav} and P_{act} , are employed to control more granular strategic behaviors. The process for generating
 1622 a new opponent policy involves first uniformly sampling its preferred recipe from the nine available
 1623 options, and then randomly sampling values for P_{nav} and P_{act} . The *full training opponent set* Train
 1624 Set, consists of 18 policies, while the *full unseen opponent set* Eval Set, contains 9 policies.
 1625

1626 E.3 PREDATOR-PREY WITH WATCHTOWERS

1627 Our approach to generating preference-based opponent policies in PPW follows the design strategy
 1628 outlined by Ma et al. (2024).

1630 For the predator opponent, we designed policies that have a preference for one specific prey from
 1631 the two available options. When operating under full observation, the predator will invariably pursue
 1632 its preferred prey.

1633 For the prey opponents, we developed a total of 8 distinct movement patterns, which are illustrated
 1634 as dotted lines and labeled ①-⑧ in Fig. 8c. Each prey opponent is designed to move back and
 1635 forth along a single, preferred path. This collection of paths is partitioned into a training set, which
 1636 includes the blue dotted lines (①-④), and an unseen set, which consists of the red dotted lines
 1637 (⑤-⑧).

1638 The final *full training opponent set* Train Set was created by sampling 16 combinations, with each
 1639 combination comprising one predator opponent policy and two training prey opponent policies.
 1640 Similarly, the final *full unseen opponent set* Eval Set was generated from 24 sampled combinations,
 1641 each consisting of one predator opponent policy and two unseen prey opponent policies.
 1642

1643 F TRAINING RECIPES

1645 The overall training pipeline for PACE (Ma et al., 2024), LILI (Xie et al., 2021), LIAM (Papoudakis
 1646 et al., 2021), LIAMX (Papoudakis et al., 2021), and Generalist is fundamentally similar to the
 1647 OSOM procedure. The key distinction lies in their optimization objectives. Specifically, these OM
 1648 approaches do not incorporate the Contrastive Learning objective found in OSOM (Eq. (2) in the
 1649 original paper) and may use different Representation Learning objectives (different from Eq. (1)).
 1650 Furthermore, a major architectural difference is that these OM approaches do not utilize Transfor-
 1651 mers as their backbones. In contrast, the training procedure for GSCU is notably different from the
 1652 other OM approaches mentioned, and its details can be found in the original paper (Fu et al., 2022).

1653 For all of the baselines and ablation variants, we employ PPO (Schulman et al., 2017; Kostrikov,
 1654 2018) as the underlying RL training algorithm. The specific hyperparameters used for the architec-
 1655 tures, training, and testing for each environment are detailed in the following sections: KP in Sec. G.1,
 1656 P00 in Sec. G.2, and PPW in Sec. G.3.

1657 F.1 SPECIFIC DETAILS FOR OSOM

1659 **Architectural Design.** The choice of a Transformer as the model backbone is central to OSOM’s
 1660 functionality. Its attention mechanism is uniquely suited for both identification and response.

- 1662 • Encoder: We implement the self-agent observation-action Encoder as a 2-layer Multi-Layer Per-
 1663 ceptron (MLP) with ReLU (Agarap, 2018) activation functions. The number of hidden units for
 1664 KP, P00, and PPW is 64, 128, and 128, respectively.
- 1665 • Opponent Identifier: We choose an auto-regressive Transformer (Vaswani et al., 2017) imple-
 1666 mented using the PyTorch Library (Paszke et al., 2019) for this component. The input sequence
 1667 would consist of the latent states $(e_{0(h-C)}, \dots, e_{T-1(h-1)}, e_{0(h)}, \dots, e_{t(h)})$. The set of OTEs, \mathcal{Z} ,
 1668 can be provided as a prompt, prepended to the main sequence. The attention mechanism allows the
 1669 model to perform a soft search over the OTEs in the prompt, comparing each one to the encoded
 1670 history to produce the final prediction \hat{z}_t . Specifically, the backbone of OSOM is a 3-layer Trans-
 1671 former with 1 attention head. The number of hidden units (*i.e.*, dimension of the hidden state) of
 1672 the model for KP, P00, and PPW is 64, 128, and 128, respectively. The number of hidden units of
 1673 the feed-forward layer for KP, P00, and PPW is 256, 512, and 512, respectively. The dropout rate is
 set to 0.1 for all environments.

- Latent Layer: We also include a latent layer to project the output of the Transformer to the same dimension as the OTEs, which is the final output of the Opponent Identifier, *i.e.*, \hat{z}_t . This is implemented as a 2-layer MLP with ReLU (Agarap, 2018) activation functions. The number of hidden units for KP, P00, and PPW is 64, 128, and 128, respectively.
- Opponent Responder: While a Transformer could also be used here, we adopt a simpler MLP, which is often sufficient and more computationally efficient. The input to this network is the concatenation of the current observation o_t^1 and the aggregated context vector x_t . This model allows the context to directly modulate the policy output for the given input. Specifically, the actor and critic of PPO are both implemented as 2-layer MLPs with ReLU (Agarap, 2018) activation functions. The number of hidden units for all environments is 128.

Masking Scheme. At each timestep t of episode h , the Opponent Identifier receives a sequence consisting of a prefix of K OTE prompt tokens followed by the latent states from the previous C episodes and the current episode up to t . We apply a **causal mask only over the temporal latent-state tokens**: each latent-state token can attend to all OTE prompt tokens and to latent states from earlier timesteps (across the previous C episodes and the current episode), but not to any future latent states. The OTE prompt tokens themselves are visible from any position, since they represent a static set of candidate opponent types rather than a temporal process.

Positional Embeddings. We use learnable absolute positional embeddings implemented with ‘nn.Embedding’ of PyTorch (Paszke et al., 2019). For each latent state $e_{t(h)}$ we add (1) a timestep-level positional embedding reflecting its index within episode h , and (2) an episode-level embedding indicating which of the last C episodes (or the current episode) it belongs to. OTE prompt tokens do not carry temporal position and thus are not assigned any positional embeddings. As a result, the Identifier is effectively insensitive to the ordering of the K OTE tokens, which are randomly shuffled when we construct the prompt.

Orthogonal OTEs Generation. We suggest that OTEs should be random, pairwise (**nearly**) orthogonal, and reside on the unit sphere. A standard and numerically stable procedure to achieve is as follows:

- (1) Random Sampling: Generate K (or M) vectors of dimension d by sampling each component from a standard Gaussian distribution, $\mathcal{N}(0, 1)$.
- (2) Orthogonalization: Apply the Gram-Schmidt process to this set of random vectors. This procedure iteratively modifies the vectors to ensure they are mutually orthogonal.
- (3) Normalization: Normalize each of the resulting orthogonal vectors to have a unit L2-norm ($\|\cdot\|_2 = 1$). This places them on the surface of a d -dimensional hypersphere.

This process ensures that the dot product similarity used in the CL objective (*c.f.*, Eq. (2)) is well-behaved. Orthogonality guarantees that a predicted vector \hat{z}_t can have a high similarity score with one target OTE without inadvertently having a high score with others, which sharpens the optimization signal and prevents ambiguity during identification.

In this view, the prompt size M and the embedding dimension d should be understood as standard **capacity hyperparameters**: for a fixed d , very large M will eventually force some opponent types to share similar OTEs, just as any finite-dimensional embedding has finite capacity to separate many distinct classes. In our experiments we choose $d \in \{64, 128\}$ with $M \leq 50$, so the apparent condition $d \geq M$ does not bind in practice.

F.2 OTHER GENERAL DETAILS

Training Budgets. We keep the original hyperparameters for GSCU on KP. For KP, the training budget for all algorithms except GSCU is 5 million timesteps, while for GSCU embedding learning takes 1 million episodes and conditional RL takes 1 million episodes. For P00, the training budget for all algorithms except GSCU is 30 million timesteps, while for GSCU the embedding learning takes 2 million timesteps and the conditional RL takes 30 million timesteps. For PPW, the training budget for all algorithms including GSCU is 15 million timesteps. The embedding learning for GSCU takes an additional 2 million timesteps.

1728 We have retained the original hyperparameters for GSCU on the KP environment. The training bud-
 1729 getts for each environment are as follows:
 1730

- 1731 • KP: For all algorithms except GSCU, the training budget is 5 million timesteps. For GSCU, the
 1732 budget consists of 1 million episodes for embedding learning and an additional 1 million episodes
 1733 for conditional RL.
- 1734 • P00: For all algorithms except GSCU, the training budget is 30 million timesteps. For GSCU, the
 1735 budget is 2 million timesteps for embedding learning and 30 million timesteps for conditional RL.
- 1736 • PPW: The training budget for all algorithms, including GSCU, is 15 million timesteps. For GSCU,
 1737 an additional 2 million timesteps are allocated specifically for embedding learning.
 1738

1739 **Architectures.** For algorithms that employ a Recurrent Neural Network (RNN), including Generalist,
 1740 LIAM, and LIAMX, the implementation uses a single-layer GRU (Chung et al., 2014) with
 1741 128 hidden units. The training for the RNN is conducted using Back-Propagation Through Time
 1742 (BPTT), where gradients are detached every 20 timesteps. This means that all training trajectories
 1743 are partitioned into segments of 20 timesteps for BPTT. The actor and critic networks share the same
 1744 RNN, as well as the hidden layers that precede the RNN.

1745 Similar to OSOM, the algorithms PACE and LILI also employ a 2-layer MLP as its Encoder, a
 1746 2-layer MLP as the Latent Layer to project the output of the Encoder to the same dimension of
 1747 the output hidden states, and a 2-layer MLP for both the actor and critic networks of PPO. Unlike
 1748 OSOM, the algorithms PACE and LILI include a *Aggregate Model* that is implemented as a 1-layer
 1749 MLP. The number of hidden units for the Aggregate Model for KP, P00, and PPW is 64, 128, and 128,
 1750 respectively.

1751 **Auxiliary Tasks.** Algorithms that incorporate *auxiliary tasks* have an additional objective that is
 1752 optimized concurrently with the primary RL objective. This auxiliary objective is computed using
 1753 the same mini-batch of data as the RL training.
 1754

- 1755 • OSOM: The auxiliary task is weighted at 1.0 for both observation and action prediction. In another
 1756 word, the coefficient α_1 for the Representation Learning objective in Eq. (5) is set to 1.0.
 1757
- 1758 • PACE: The auxiliary task is also weighted at 1.0.
 1759
- 1760 • LIAM: The auxiliary task is given a weight of 1.0 for both observation and action prediction.
 1761
- 1762 • LILI: This approach uses the last episode as its context, as detailed by Xie et al. (2021). Its auxil-
 1763 iary task is weighted at 1.0 for both reward and next observation prediction.

1763 **PACE’s Exploration Reward.** For the implementation of PACE, we follow the original paper (Ma
 1764 et al., 2024) to add an exploration reward to the environmental reward. The coefficient for the ex-
 1765 ploration reward undergoes a linear decay from an initial value, c_{init} , to 0 over a duration of N_{decay}
 1766 timesteps. The specific values for these parameters are:

- 1767 • KP: $c_{\text{init}} = 0.01$ and $N_{\text{decay}} = 4 \times 10^6$ timesteps.
 1768
- 1769 • P00: $c_{\text{init}} = 0.2$ and $N_{\text{decay}} = 2.5 \times 10^7$ timesteps.
 1770
- 1771 • PPW: $c_{\text{init}} = 0.1$ and $N_{\text{decay}} = 1.5 \times 10^7$ timesteps.

1772 Additionally, the context encoder is initially trained for N_{warm} timesteps using only the auxiliary
 1773 task, without any RL objective. The values for this warm-up period are:

- 1774 • KP: $N_{\text{warm}} = 10^5$ timesteps.
 1775
- 1776 • P00: $N_{\text{warm}} = 10^6$ timesteps.
 1777
- 1778 • PPW: $N_{\text{warm}} = 5 \times 10^5$ timesteps.
 1779
- 1780
- 1781

1782 **G HYPERPARAMETER SETTINGS**
17831784 **G.1 KUHN POKER**
17851786 Table 2: Hyperparameters for all the algorithms in the KP environment.
1787

1789 Parameter Name	Algorithms					
	1790 Generalist	LILI	LIAM(X)	GSCU	PACE	OSOM
1791 Learning Rate	2e-4	2e-4	2e-4	5e-4	2e-4	2e-4
1792 PPO Clip ϵ	0.2	0.2	0.2	0.2	0.2	0.2
1793 Entropy Coefficient	5e-4	5e-4	5e-4	0.01	5e-4	5e-4
1794 Discount Factor γ	0.99	0.99	0.99	0.99	0.99	0.99
1795 GAE λ	0.95	0.95	0.95	0.95	0.95	0.95
1796 Batch Size	80000	80000	80000	1000	80000	80000
1797 # of Update Epochs	3	3	3	5	3	3
1798 # of Mini Batches	80	80	80	30	80	80
1799 Gradient Clipping (L2)	2.0	2.0	2.0	0.5	2.0	2.0
1800 Activation Function	ReLU	ReLU	ReLU	ReLU	ReLU	ReLU
1801 Actor & Critic Hidden Dims	[128, 128]	[128, 128]	[128, 128]	[128, 128]	[128, 128]	[128, 128]
Encoder f Hidden Dims	N/A	[64, 64]	N/A	N/A	[64, 64]	[64, 64]
Latent Layer Hidden Dims	N/A	[64, 64]	N/A	N/A	[64, 64]	[64, 64]

1802
1803 **Specific Hyperparameters for OSOM.** The specific hyperparameters for OSOM in the KP envi-
1804
1805
ronment are as follows:

1806 • Number of opponent types sampled during training (K): 8.
1807
1808 • Number of opponent types present during testing (M): 40 for Train Set, 10 for Eval Set, and 50
1809 for All Set.
1810
1811 • Size of the sliding window (in episodes) for context aggregation (C): 20.
1812
1813 • Temperature coefficient for the Contrastive Learning objective in Eq. (2) (κ): 1.5.
1814
1815 • Coefficients for weighting the three objective components in Eq. (5) ($\alpha_1, \alpha_2, \alpha_3$): 1.0, 0.01, 1.0,
1816 respectively.
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836 **G.2 PARTIALLY-OBSERVABLE OVERCOOKED**
18371838 Table 3: Hyperparameters for all the algorithms in the POO environment.
1839

Parameter Name	Algorithms					
	Generalist	LILI	LIAM(X)	GSCU	PACE	OSOM
Learning Rate	1e-3	1e-3	1e-3	7e-4	1e-3	1e-3
PPO Clip ϵ	0.2	0.2	0.2	0.2	0.2	0.2
Entropy Coefficient	0.03	0.03	0.03	0.01	0.03	0.03
Discount Factor γ	0.99	0.99	0.99	0.99	0.99	0.99
GAE λ	0.95	0.95	0.95	0.95	0.95	0.95
Batch Size	72000	72000	72000	2500	72000	72000
# of Update Epochs	3	3	3	8	3	3
# of Mini Batches	90	90	90	2	90	90
Gradient Clipping (L2)	15.0	15.0	15.0	0.5	15.0	15.0
Activation Function	ReLU	ReLU	ReLU	Tanh	ReLU	ReLU
Actor & Critic Hidden Dims	[128, 128]	[128, 128]	[128, 128]	[64, 64]	[128, 128]	[128, 128]
Encoder f Hidden Dims	N/A	[128, 128]	N/A	N/A	[128, 128]	[128, 128]
Latent Layer Hidden Dims	N/A	[128, 128]	N/A	N/A	[128, 128]	[128, 128]

1855 **Specific Hyperparameters for OSOM.** The specific hyperparameters for OSOM in the POO environment are as follows:

- 1858 • Number of opponent types sampled during training (K): 4.
- 1859 • Number of opponent types present during testing (M): 18 for Train Set, 9 for Eval Set, and 27 for All Set.
- 1860 • Size of the sliding window (in episodes) for context aggregation (C): 5.
- 1861 • Temperature coefficient for the Contrastive Learning objective in Eq. (2) (κ): 1.5.
- 1862 • Coefficients for weighting the three objective components in Eq. (5) ($\alpha_1, \alpha_2, \alpha_3$): 1.0, 0.1, 1.0, respectively.
- 1863 • Number of timesteps for resampling the opponent policies and their corresponding OTEs during training: 3000.

1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890 G.3 PREDATOR-PREY WITH WATCHTOWERS
18911892 Table 4: Hyperparameters for all the algorithms in the PPW environment.
1893

1895 Parameter Name	Algorithms					
	1896 Generalist	LILI	LIAM(X)	GSCU	PACE	OSOM
1897 Learning Rate	4e-4	4e-4	4e-4	5e-4	4e-4	4e-4
1898 PPO Clip ϵ	0.2	0.2	0.2	0.2	0.2	0.2
1899 Entropy Coefficient	0.03	0.03	0.03	0.01	0.03	0.03
1900 Discount Factor γ	0.99	0.99	0.99	0.99	0.99	0.99
1901 GAE λ	0.95	0.95	0.95	0.95	0.95	0.95
1902 Batch Size	64000	64000	64000	2500	64000	64000
1903 # of Update Epochs	2	2	2	8	2	2
1904 # of Mini Batches	150	150	150	2	150	150
1905 Gradient Clipping (L2)	15.0	15.0	15.0	0.5	15.0	15.0
1906 Activation Function	ReLU	ReLU	ReLU	Tanh	ReLU	ReLU
1907 Actor & Critic Hidden Dims	[128, 128]	[128, 128]	[128, 128]	[64 64]	[128, 128]	[128, 128]
1908 Encoder f Hidden Dims	N/A	[128, 128]	N/A	N/A	[128, 128]	[128, 128]
1909 Latent Layer Hidden Dims	N/A	[128, 128]	N/A	N/A	[128, 128]	[128, 128]

1910 **Specific Hyperparameters for OSOM.** The specific hyperparameters for OSOM in the PPW environment are as follows:

- 1912 • Number of opponent types sampled during training (K): 4.
- 1913 • Number of opponent types present during testing (M): 16 for Train Set, 24 for Eval Set, and 40 for All Set.
- 1914 • Size of the sliding window (in episodes) for context aggregation (C): 5.
- 1915 • Temperature coefficient for the Contrastive Learning objective in Eq. (2) (κ): 1.5.
- 1916 • Coefficients for weighting the three objective components in Eq. (5) ($\alpha_1, \alpha_2, \alpha_3$): 1.0, 1.0, 1.0, respectively.
- 1917 • Number of timesteps for resampling the opponent policies and their corresponding OTEs during training: 3000.

1923 H THE USE OF LARGE LANGUAGE MODELS

1924 This paper utilizes Large Language Models to polish the writing of certain sections.

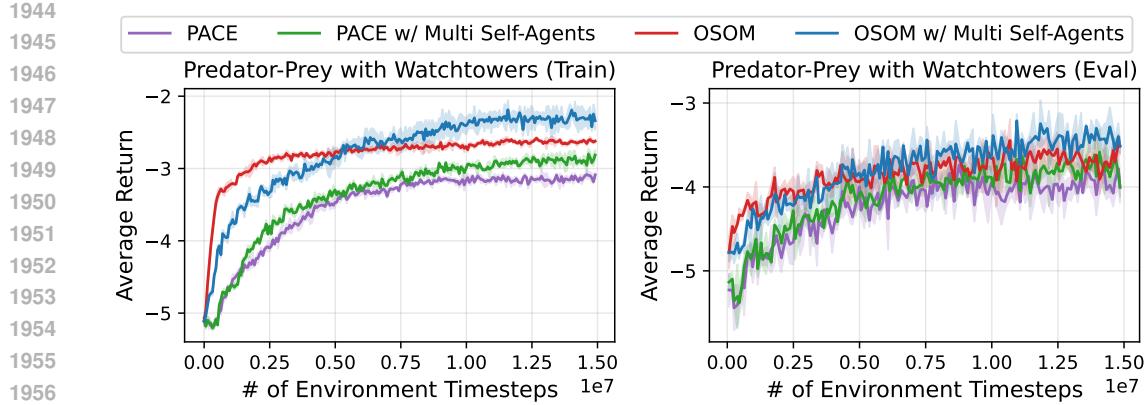


Figure 9: Training curves for centralized control of multiple self-agents in PPW. We adopt the same experimental setup as in Fig. 6 but with both predators being controllable self-agents.

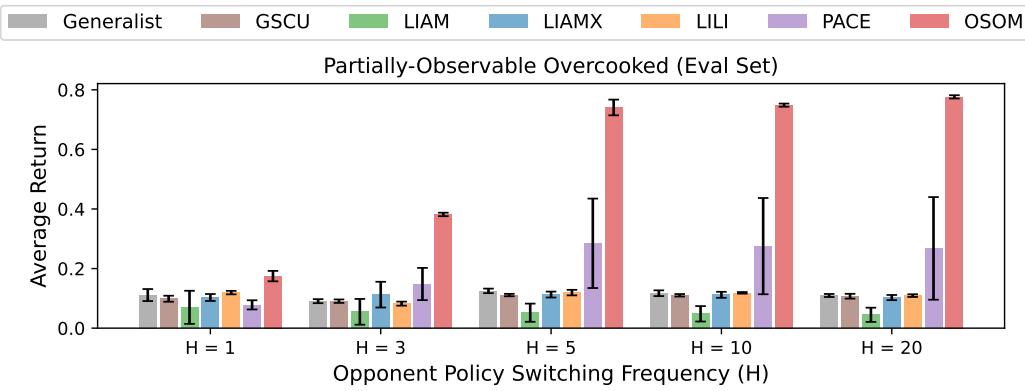


Figure 10: Ablation study on the opponent switch frequency H in P00 (Eval Set). We adopt the same experimental setup as in Fig. 3 but vary H from $\{1, 3, 5, 10, 20\}$.

I ADDITIONAL EXPERIMENTAL RESULTS

Question 6. Can OSOM effectively control multiple self-agents?

To directly test whether OSOM can control a *team* of agents, we consider a centralized-control variant of PPW in which both predators are controllable self-agents and a joint controller outputs their joint action at each timestep (see Sec. D.3 for details). We compare PACE and OSOM in this setting, including both the original single-self versions and their multi-self counterparts ('PACE w/ Multi Self-Agents' and 'OSOM w/ Multi Self-Agents'), where OSOM uses factorized per-agent OTEs for the two preys and aggregates them into a team-level context. As shown in Fig. 9, centralized team control yields slower early convergence for both approaches but higher asymptotic returns than their single-self variants, and **OSOM w/ Multi Self-Agents consistently outperforms PACE w/ Multi Self-Agents across training**, demonstrating that OSOM remains effective when extended to non-trivial multi-agent team control.

Question 7. How does the opponent switch frequency H affect OSOM's performance?

We further study the impact of the switch frequency H on P00 (Eval Set) by varying $H \in \{1, 3, 5, 10, 20\}$. The corresponding results are presented in Fig. 10. Across all choices of H , OSOM dominates all baselines in terms of average return and success rate, and the relative gap remains stable. This suggests that our conclusions are not tied to a specific non-stationarity level, and that OSOM is robust to both fast and slow opponent switches.

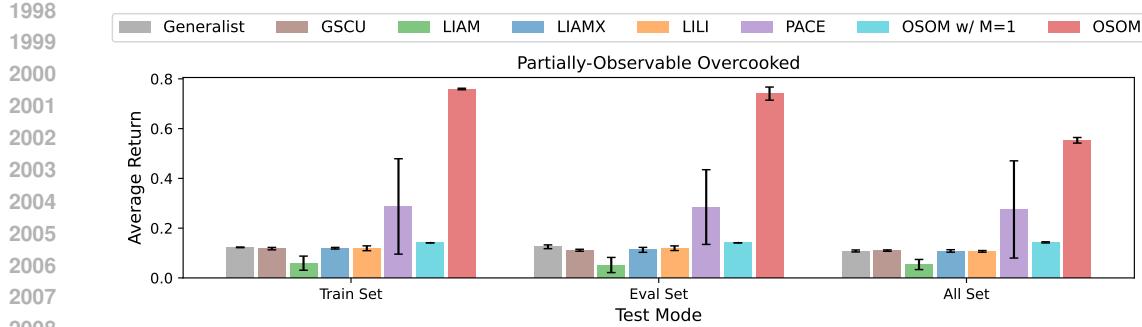


Figure 11: **Ablation study on the degenerate case of a single OTE ($M = 1$) in POO.** We adopt the same experimental setup as in Fig. 3 but set $M = 1$ for OSOM’s OTE prompt.

Question 8. How does OSOM perform in the degenerate case of a single OTE ($M = 1$)?

We also investigate the degenerate case $M = 1$, where the prompt contains only a single OTE and OSOM deems that there is at most one opponent type. In this regime, the context vector collapses to a constant, and OSOM behaves like a generalist agent without meaningful type uncertainty. In a POO experiment with $M = 1$ as shown in Fig. 11, OSOM performs comparably to other OM baselines but significantly worse than full OSOM with $M \geq 2$, which can exploit variation across opponent types. This behavior is consistent with our interpretation of OSOM as an open-set opponent model whose advantages emerge precisely when multiple types are possible.

2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051