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Abstract

We study unstable dynamics of stochastic gradient descent (SGD) and its impact1

on generalization in neural networks. We find that SGD induces an implicit2

regularization on the interaction between the gradient distribution and the loss3

landscape geometry. Moreover, based on the analysis of a concentration measure of4

the batch gradient, we propose a more accurate scaling rule, Linear and Saturation5

Scaling Rule (LSSR), between batch size and learning rate.6

1 Introduction7

SGD plays an important role in the success of deep learning. However, we still do not fully understand8

how SGD works from the perspectives of both optimization behavior and generalization performance.9

To be specific, SGD is a stochastic approximation of full-batch gradient descent (GD), but SGD10

generally yields better generalization with a small batch size [27, 23]. Moreover, GD is a discretization11

of gradient flow (GF) with a finite learning rate, i.e., GF is a GD in the limit of vanishing learning12

rate, but GD generally performs better with a large learning rate [2, 32, 28, 43]. There are some13

scaling rules [25, 10, 15, 45, 54] on how to tune the learning rate for varying batch sizes, but they14

fail when the batch size gets large [42, 38, 57, 43, 33]. Especially for a greater data-parallelism to15

accelerate the training process, we require a more accurate scaling rule for the large-batch regime.16

There has been many studies to understand the SGD dynamics and its impacts on generalization in17

deep neural networks. While they provide some useful and intuitive explanations to help us understand18

these properties of SGD, unfortunately, some results often rely on impractical assumptions or only19

apply to a certain range of learning rates and batch sizes. For example, some approximate SGD as a20

stochastic differential equation (SDE) in the limit of vanishing learning rate [34, 35, 29, 16, 30, 31,21

18, 44, 4]. Therefore, in a practical finite learning rate regime, this may not properly describe the22

SGD dynamics. Moreover, Yaida [52] raises some theoretical issues about the SDE approximation23

and Li et al. [33] theoretically analyze a sufficient condition for the SDE approximation to fail.24

In this paper, we aim to understand the dynamics and the implicit bias of SGD through the analysis of25

the interaction between SGD and the loss landscape of a neural network with minimal assumptions.26

To be specific, we investigate the unstable dynamics of SGD “at the edge of stability” [6] (Section27

4.1-4.2). This investigation leads to a more refined characterization of the edge of stability by the28

interaction-aware sharpness which extends the previous findings for full-batch GD to a general SGD.29

Then, we introduce a concentration measure of the the batch gradient distribution of SGD. By doing30

so, we find that SGD implicitly regularizes the interaction-aware sharpness and its regularization31

effect is controlled by the ratio of the concentration measure to learning rate (Section 5.1). Finally,32

we propose a more accurate scaling rule between batch size and learning rate, based on a novel33
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analysis of the implicit regularization and the concentration measure (Section 5.2). This can be34

applied to any batch size including the large-batch regime where the previous scaling rules fail35

[18, 38, 57, 42, 43, 46]. We name it Linear and Saturation Scaling Rule (LSSR).36

2 Stochastic Gradient and Loss Landscape37

In this section, we review some concepts required for further discussion. We also summarize the38

notations in Appendix A for a quick reference. We often omit the dependence on some variables and39

the subscript of the expectation operation when clear from the context.40

For a learning task, we use a parameterized model (neural network) with model parameter θ ∈41

Θ ⊂ Rm. Then we train the model using training data D = {xi}ni=1 and a loss function ℓ(x; θ).42

We denote the (total) training loss by L(θ) ≡ 1
n

∑n
i=1 ℓ(xi; θ) for training data D. At time step43

t, we update the parameter θt using GD: θt+1 = θt − η∇θL(θt) with a learning rate η, or using44

SGD: θt+1 = θt − ηgb(θt) with a mini-batch gradient gb(θt) ≡ 1
b

∑
x∈Bt

∇θℓ(x; θt) ∈ Rm for a45

mini-batch Bt ⊂ D of size b (1 ≤ b ≤ n).46

Now, we are ready to introduce some important matrices, Cb, Sb, and H . First, we define the47

covariance Cb(θ) ≡ Var[gb(θ)] = E
[
(gb(θ)− E[gb(θ)]) (gb(θ)− E[gb(θ)])⊤

]
∈ Rm×m and the48

second moment Sb(θ) ≡ E[gb(θ)gb(θ)⊤] ∈ Rm×m of the mini-batch gradient gb(θ) over batch49

sampling for a batch size 1 ≤ b ≤ n.1 The covariance Cb and the second moment Sb satisfy not only50

Cb = Sb − Sn but also the following equation [15, 29, 49]:51

Cb =
γn,b
b

(S1 − Sn) =
γn,b
b
C1, (1)

where γn,b = n−b
n−1 for sampling without replacement and γn,b = 1 for sampling with replacement.52

We provide a self-contained proof of (1) in Appendix B.1. We note that, for sampling without53

replacement, many previous works approximate γn,b ≈ 1 assuming b ≪ n [18, 15, 46], but we54

consider the whole range of 1 ≤ b ≤ n (0 ≤ γn,b ≤ 1 with γn,1 = 1 and γn,n = 0). Second,55

we define the Hessian H(θ) = ∇2
θL(θ) = Ex∼D[∇2

θℓ(x; θ)] ∈ Rm×m and the operator norm (the56

top eigenvalue) ∥H∥ ≡ sup∥u∥=1 ∥Hu∥ of H . We also denote the i-th largest eigenvalue and its57

corresponding normalized eigenvector by λi ∈ R and qi ∈ Rm, respectively, for i = 1, · · · ,m.58

Therefore, with these matrices, we can write one of our goals as follows:59

We aim to understand how the gradient distribution (Cb and Sb) and the loss landscape geometry60

(H) interact with each other during SGD training.61

We investigate this “interaction” in terms of matrix multiplication HSb. To be specific, we consider62

the trace tr(HSb) or its normalized one tr(HSb)
tr(Sb)

(will be denoted by ∥H∥Sb
in Definition 2 later).63

3 Related Work64

Some studies investigate the interaction between the gradient distribution and the loss landscape65

geometry represented by tr(HSb) in the context of escaping efficiency [58, Section 3.1], stationarity66

[52, Section 2.2], and convergence [48, Section 3.1.1]. However, they require some additional67

assumptions like SDE approximation of SGD [58], the existence of a stationary-state distribution68

of the model parameter [52, Section 2.3.4], and strong convexity of the training loss function [48],69

respectively. In this paper, we provide a new insight into the interaction tr(HSb) without these70

assumptions.71

Convergence of full-batch GD (b = n) has been instead analyzed with an upper bound on the72

interaction tr(HSn) with further assumptions for the stable optimization, such as β-smoothness of73

1These two matrices Cb and Sb are also called the second central and non-central moments, respectively.
But to avoid confusion, we use the term “second moment” only for the non-central Sb.
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the objective and 0 < η < 2
β (e.g., η = 1

β ) [39, 41, 37, 3]. 2 However, it may lose useful information74

of the interaction between H and Sn. Moreover, when we train a standard neural network with GD75

in practice, ∥H∥(≤ β) increases in the early phase of training and the iterate enters the regime called76

the edge of stability [6] where ∥H∥ ⪆ 2
η , i.e., η ⪆ 2

∥H∥ ≥ 2
β . This contradicts with the assumption77

for stable optimization and the iterate exhibits unstable behavior with a non-monotonically decreasing78

loss [51, 50, 6]. We further extend this discussion of unstable dynamics for GD to the case of SGD.79

From the generalization perspective, many studies focus on the implicit bias of SGD toward a better80

generalization [40, 56, 47, 20, 21, 1, 46]. There are mainly two factors known to correlate with the81

generalization performance: the batch gradient distribution during training [15, 18, 44, 58] and the82

sharpness of the loss landscape at the minimum [14, 23, 8, 22, 9, 26]. We provide a link between the83

batch gradient distribution and the sharpness that the model is implicitly regularized to have a low84

sharpness when the second moment of the batch gradient is large (see Section 5.1).85

4 Optimization through Loss Landscape86

We start by investigating the optimization behavior of SGD through the interaction between SGD and87

the loss landscape without the stochastic differential equation (SDE) approximation.88

4.1 Unstable Optimization89

Using the second-order Taylor expansion, the change in total training loss Lt = L(θt) as the SGD90

iterate moves from θt to θt+1 at time step t can be expressed as follows:91

Lt+1 − Lt = −η∇L⊤gb +
η2

2
g⊤b Hgb +O(∥δt∥3), (2)

where δt = θt+1 − θt = −ηgb. Thus, we obtain the expected loss difference as follows:92

E[Lt+1]− Lt = −η∇L⊤E[gb] +
η2

2
E[g⊤b Hgb] + ϵ (3)

= −η∥∇L∥2 + η2

2
tr
(
E[Hgbg⊤b ]

)
+ ϵ (4)

= −η tr(Sn) +
η2

2
tr(HSb) + ϵ (5)

=
η2

2
tr(Sn)

[
tr(HSb)

tr(Sn)
− 2

η

]
+ ϵ, (6)

where ϵ = O(E[∥δt∥3]) and E[gb] = ∇L is used. For the moment, we make a minimal assumption93

that the training loss is locally quadratic, i.e., ϵ = 0 near θt, but we will revisit this assumption later94

(see Section 4.2). Then, the expected loss increases when the following instability condition is met:95

Definition 1 (Instability Condition).
tr(HSb)

tr(Sn)
>

2

η
. (7)

We also define unstable regime U = {θ ∈ Θ : tr(HSb)
tr(Sn)

> 2
η} and stable regime S ≡ Uc. For a96

standard non-quadratic loss function, we will show in the following sections that the iterate tends not97

to stay within the unstable regime U and operates near at the boundary ∂S of the stable regime S,98

called the edge of stability [6]. Cohen et al. [6] mark the edge of stability with {θ ∈ Θ : ∥H∥ = 2
η}99

for GD, but we mark with ∂S = {θ ∈ Θ : tr(HSb)
tr(Sn)

= 2
η} for both SGD and GD which provides a more100

clear and generalized indication as shown in Figure 4 later. On the other hand, for a globally quadratic101

loss, when the GD iterate satisfies the instability condition, it diverges within the unstable regime [6].102

We emphasize that many studies on the convergence of GD usually consider the optimization within103

2L(θt+1)−L(θt) ≤ ∇L⊤(θt+1−θt)+
β
2
∥θt+1−θt∥2 = −η∥∇L∥2+ βη2

2
∥∇L∥2 = −η(1− βη

2
)∥∇L∥2

and thus the loss monotonically decreases when 0 < η < 2
β

.
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Figure 1: [An empirical validation of (6) for SGD (top) and (9) for GD (bottom)] In the early
phase, until the iterate enters the edge of stability, it validates (6) and (9) with the blue line with
the slope η2

2 and x-intercept 2
η . For GD (bottom), they are plotted after ∥H∥ exceeds 2

η after which
∥H∥Sn

starts to increase from 0 to 2
η in a few steps. For cross-entropy loss, we mark the end point

with ‘x’ when the iterate enters the unstable regime. We train 6CNN with η = 0.02.

the stable regime [39, 41, 37, 3], but GD mostly occurs at the edge of stability after a few steps of104

training. We will argue that this behavior is crucial for generalization in neural networks.105

For later use, we also define the interaction-aware sharpness as follows:106

Definition 2 (interaction-aware sharpness).

∥H∥Sb
≡ tr(HSb)

tr(Sb)
. (8)

Here, tr(HSb) ≤ ∥H∥ tr(Sb), i.e., ∥H∥Sb
≤ ∥H∥, and the equality holds only when every gb is107

aligned in the direction of the top eigenvector of H .108

Figure 1 (top row) empirically validates (6), showing the normalized loss difference E[Lt+1]−Lt

tr(Sn)
109

against tr(HSb)
tr(Sn)

in the early phase of training before entering the unstable regime. This result implies110

that the training loss L(θ) is approximately locally quadratic, i.e., ϵ ≈ 0, in the early phase. Especially,111

for full-batch GD (b = n), the instability condition can be rewritten as ∥H∥Sn >
2
η and we have the112

following relationship between the loss difference Lt+1 − Lt and ∥H∥Sn from (6):113

Lt+1 − Lt =
η2

2
tr(Sn)

(
∥H∥Sn − 2

η

)
+ ϵ. (9)

Figure 1 (bottom row) shows ∥H∥Sn
soars from 0 in a few steps after ∥H∥ exceeds 2

η [6], satisfying114

(9) approximately with ϵ ≈ 0, before the iterate enters the edge of stability. This result is consistent115

with the following Proposition for a quadratic training loss L. The proof is deferred to Appendix B.2.116

Proposition 4.1. For GD with a quadratic L, if ∥H∥ > 2
η and 0 < λi <

2
η for all i ̸= 1, then117

| cos(q1,∇L(θt))|, |q⊤1 ∇L(θt)| and ∥H∥Sn
increase to 1,∞ and ∥H∥, respectively, as t→ ∞.118

4.2 Non-quadraticity, Asymmetric Valleys and the Edge of Stability119

In the previous section, we have shown that the training loss is approximately locally quadratic before120

the iterate enters the edge of stability. However, after the iterate enters the edge of stability, i.e.,121
tr(HSb)
tr(Sn)

reaches and exceeds 2
η , the step size is relatively large for the sharp loss landscape so that the122

iterate jumps across the valley [19], and the higher-order terms ϵ in (6) and (9) become non-negligible123

and cause a different behavior of the iterate than in the stable regime.124
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Figure 2: [Non-quadraticity and overestimation] The normalized loss difference E[Lt+1]−Lt

tr(Sn)
against

tr(HSb)
tr(Sn)

during training. After the iterate enters the edge of stability, it often shows a more gentle

slope than η2

2 , especially in the unstable regime.

Figure 2 shows empirical evidences for the non-quadraticity. After the SGD/GD iterate enters the125

edge of stability, when the instability condition tr(HSb)
tr(Sn)

> 2
η is met, the normalized increase in the126

loss
∣∣∣E[Lt+1]−Lt

tr(Sn)

∣∣∣ is often smaller than η2

2

∣∣∣ tr(HSb)
tr(Sn)

− 2
η

∣∣∣ from (6) and (9) (blue line) when assuming127

a locally quadratic function. This results in a gentle slope less than η2

2 .128

We hypothesise that due to this non-quadraticity of the training loss, the iterate is discouraged from129

staying within the unstable regime. Figure 3 demonstrates the asymmetric valley [12] that one side is130

sharp and the other is flat. In Figure 3 (left), we evaluate the directional sharpness ∥Hα∥Sn
along131

the gradient descent direction −η∇L(θ) where Hα ≡ H(θ − αη∇L(θ)) for α ∈ 1
4 × [1, 2, 3, 4, 5],132

and compare ∥Hα∥Sn(θ) with ∥H∥Sn(θ). At the sharp side, it has a high ∥H∥Sn
> 2

η (blue) with133

the gradient ∇L and the top eigenvector q1(H) of the Hessian being highly aligned (cf. Prop. 4.1).134

However, when the loss landscape gets far from being quadratic, the Hessian and its top eigenvector135

can change abruptly, q1(Hα) would not always be aligned with q1(H) and ∇L(θ), and ∥Hα∥Sn136

tends to decrease. This would be a possible explanation for the tendency of decreasing and then137

oscillating ∥H∥Sn
. See Appendix C.3 for detailed empirical evidences of the above arguments.138

Figure 3 (right) similarly shows that when the iterate is at a sharp side of the valley, it tends to jump139

to the other side of a flatter area, and vice versa.140

To summarize, we make the following observations for GD in order: (i) ∥H∥ increases in the141

beginning (the progressive sharpening [6]), (ii) ∥H∥ exceeds 2
η , (iii) the gradient ∇L becomes more142

aligned with the top eigenvector q1(H) in a few steps, (iv) ∥H∥Sn reaches the threshold 2
η and the143

iterate jumps across the valley, (v) ∥H∥Sn
tends to decrease due to the non-quadraticity, and it repeats144

this process, while ∥H∥Sn oscillating around 2
η . We observe a similar behavior with oscillating145

tr(HSb)
tr(Sn)

around 2
η for SGD. It requires further investigation into the exact underlying mechanisms146

and we leave it as a future work.147

Remark (Experiments in Section 4). We report the experimental results using vanilla SGD/GD148

without momentum and weight decay, constant learning rate, and no data augmentation. We train a149

simple 6-layer CNN (6CNN, m = 0.51M) on CIFAR-10-8k where DATASET-n denotes a subset of150

DATASET with |D| = n and k=210 = 1024. See Appendix C.1-C.3 for the results from other datasets,151

learning rates and networks (ResNet-9 with m = 2.3M [13] and WRN-28-2 with m = 36M [55]).152
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Figure 3: [Asymmetric valleys] Left: The ratio ∥Hα∥Sn

∥H∥Sn
where Hα = H(θ − αη∇L(θ)) for

α = 1
4 × [1, 2, 3, 4, 5] for each t during training. When ∥H∥Sn

< 2
η (red), ∥Hα∥Sn

is usually larger
than ∥H∥Sn

. On the other hand, when ∥H∥Sn
> 2

η (blue), ∥Hα∥Sn
is usually smaller than ∥H∥Sn

.
Right: The training loss difference along the gradient descent direction, for each θt. Each plot is
normalized and translated to have the same minimum value and the same zero where ∆L = 0. We
also plot the quadratic baseline (cyan dashed curve). When ∥H∥Sn <

2
η (red), it usually becomes

sharper across the valley (right-shifted). On the other hand, when ∥H∥Sn
> 2

η (blue), it usually
becomes flatter across the valley (left-shifted). We train 6CNN using GD with η = 0.04.

5 Generalization through Implicit Regularization153

In the previous section, we have empirically demonstrated that the SGD iterate is implicitly discour-154

aged from staying within the unstable regime. Now, we are ready to further analyze this property155

from the regularization perspective.156

5.1 Implicit Interaction Regularization (IIR)157

First, to understand the effect of batch size b on the gradient distribution, we define the following ρb:158

Definition 3 (a concentration measure of the batch gradient). We define ρb as the ratio of the squared159

norm of the total gradient ∥∇L∥2 to the expected squared norm of the batch gradients E[∥gb∥2], i.e.,160

ρb ≡
∥∇L∥2

E[∥gb∥2]
=

tr(Sn)

tr(Sb)
. (10)

Here, we can write ∥∇L∥2 = ∥E[gb]∥2 and thus the ratio ρb =
∥E[gb]∥2

E[∥gb∥2] ≤ 1 is similar to the square161

of the mean resultant length R̄2
b ≡ ∥E[ gb

∥gb∥ ]∥
2 ≤ 1 of the batch gradient gb [36], especially when162

std[∥gb∥] is small compared to E[∥gb∥] (see Appendix C.5 for empirical evidences). Both ρb and R̄2
b163

are concentration measures and have lower values when the batch gradients gb are more scattered.164

Therefore, it is natural to expect that the ratio ρb is small for a small batch size b, and we will revisit165

this in more detail in the following section (cf. (12)). We also note that ρn = R̄2
n = 1.166

Now, we can rewrite the instability condition tr(HSb)
tr(Sn)

> 2
η (multiplying both sides by ρb) as ∥H∥Sb

>167

2ρb
η . In other words, the interaction-aware sharpness ∥H∥Sb

is implicitly regularized to be less than168

2ρb
η . We name this Implicit Interaction Regularization (IIR).169

Definition 4 (Implicit Interaction Regularization (IIR)).

∥H∥Sb
≤ 2ρb

η
. (11)

We argue that the upper constraint 2ρb
η in IIR is crucial in determining the generalization performance.170

With a low constraint, SGD strongly regularizes the interaction-aware sharpness ∥H∥Sb
. We also171

note that IIR affects not only the magnitude ∥H∥ but also the directional interaction. In other words,172

IIR discourages the batch gradients from aligning with the top eigensubspace of the Hessian that is173

spanned by a few largest eigenvectors of the Hessian (cf. [11]).174
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Figure 4: [A clear indication of the edge of stability] (a)-(c): After a few steps of full-batch
training, ∥H∥ (blue) hovers above 2

η [6], but ∥H∥Sn
(red, defined in (8)) oscillates around 2

η (red
dashed horizontal line). The edge of stability is more evident in the latter (red). Curves are plotted
for every step. We train a model on CIFAR-10-8k (n = 213) using (a)/(b) cross-entropy loss with
η = 0.01/0.02, respectively, and (c) MSE with η = 0.02. (d): We plot curves ∥H∥Sb

when trained
with various b’s. After a few steps (around 125), they reach the threshold which linearly increases as
b becomes larger when b≪ n = 213, and saturates to 2ρb

η ≈ 2
η when b is large. Curves are smoothed

for visual clarity. We use SGD with b ∈ {23, · · · , 212} and η = 0.08.

Figures 4(a)-4(c) show that, for GD (ρn = 1), the interaction-aware sharpness ∥H∥Sn
(red) oscillates175

around 2
η and exhibits IIR. This result is consistent with Cohen et al. [6] that ∥H∥ hovers above 2

η176

for GD. This is because, as mentioned earlier, 2
η ≈ ∥H∥Sn

≤ ∥H∥ and the equality holds only when177

the gradient ∇L and the top eigenvector q1 of H are aligned, but generally they are not. For this178

reason, IIR provides a tighter relation and more clearly identifies the edge of stability than Cohen179

et al. [6]. These results are also consistent with Prop. 4.1 that ∥H∥Sn suddenly increases from 0 to 2
η180

in a few steps after ∥H∥ exceeds 2
η (see Appendix C.3-C.4 for more). Moreover, IIR also applies to181

a general SGD training with 1 ≤ b ≤ n. Figure 4(d) shows IIR for SGD with different batch sizes182

b ∈ {23, · · · , 212}. The upper bound (2ρb/η according to (11)) of ∥H∥Sb
is higher when using a183

larger batch size, but limited to less than 2/η (ρb ≤ 1). We will further discuss this behavior with an184

investigation of ρb in the following section.185

5.2 Linear and Saturation Scaling Rule (LSSR)186

The ratio b/η of batch size b to learning rate η has long been believed as an important factor in-187

fluencing the generalization performance, and the test accuracy has observed to be similar when188

trained with the same ratio b/η = b′/η′, i.e., b′ = kb and η′ = kη for k > 0. This is called the189

linear scaling rule (LSR) [25, 10, 18, 44, 57]. They argue that LSR holds because θt+k − θt =190

−η
b

∑k−1
i=0

∑
x∈Bt+i

∇ℓ(x; θt+i) ≈ −η
b

∑k−1
i=0

∑
x∈Bt+i

∇ℓ(x; θt) = −η′

b′

∑
x∈Bt:t+k

∇ℓ(x; θt) as-191

suming ∇ℓ(θt+i) ≈ ∇ℓ(θt) for 0 ≤ i < k, where Bt:t+k ≡ ∪k−1
i=0 Bt+i and |Bt:t+k| = kb = b′.192

However, the assumption is false and the gradient oscillates mostly with a negative cosine value193

cos(gb(θt), gb(θt+1)) < 0 between two consecutive gradients after entering the edge of stability194
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Figure 5: [Linear and Saturation Scaling Rule (LSSR)] Left: LSSR (red) in (12), LSR (black dotted
line) [10] and SRSR (blue dotted line) [15]. For LSSR, we can observe both linear and saturation
regions (n = 8k, ρ = 2−7). Right: Heatmaps of test accuracy for models trained with a large number
of pairs of (b, η) on CIFAR-10-8k , CIFAR-100-8k , STL-10-4k, and Tiny-ImageNet-32k (from
left to right, from top to bottom). It does not follow either LSR or SRSR, but LSSR. We also plot
f(b) = ρb (yellow dashed curve) for some ρ on each heatmap. Note that they are all log-log plots
and thus a slope of 1 means it is linear.

(see Appendix C.3). Moreover, LSR fails when the batch size is large [18, 38, 57, 43, 46]. On the195

other hand, Krizhevsky [25], Hoffer et al. [15] propose the square root scaling rule (SRSR) with196

another ratio
√
b/η to keep the covariance of the parameter update constant for b ≪ n based on197

Var[ηgb] = η2Cb =
γn,bη

2

b C1 ≈ η2

b C1. However, Shallue et al. [42] show that both LSR and SRSR198

do not hold in general.199

Based on the analysis of IIR with a new ratio 2ρb/η in the previous section, we explore why LSR fails200

in the large-batch regime and provide a more accurate rule to explain the generalization performance201

of the models trained with various choices of batch size and learning rate pairs (b, η).202

To this end, we investigate the concentration measure ρb = tr(Sn)/ tr(Sb). By combining two203

equations, Cb = Sb − Sn (by definition) and Cb =
γn,b

b (S1 − Sn) in (1), we can obtain Sb =204

Cb + Sn =
γn,b

b S1 + (1− γn,b

b )Sn. Therefore, we have tr(Sb) =
γn,b

b tr(S1) + (1− γn,b

b ) tr(Sn),205

which leads to the following equation:206

ρb ≡
tr(Sn)

tr(Sb)
=

tr(Sn)
γn,b

b tr(S1) + (1− γn,b

b ) tr(Sn)
=

1
γn,b

b
1
ρ + (1− γn,b

b )︸ ︷︷ ︸
(∗)

≈

{
b

γn,b
ρ ≈ bρ if b is small

1 if b is large

(12)
from (10) where ρ = ρ1 = tr(Sn)/ tr(S1). Note that ρ is (much) smaller than 1 because ∇ℓ(xi)207

has different direction for each xi and tr(Sn) = ∥∇L∥2 = ∥ 1
n

∑
i∇ℓ(xi)∥2 ≤ 1

n

∑
i ∥∇ℓ(xi)∥2 =208

tr(S1). In other words, 1/ρ is (much) larger than 1 (see Appendix C.5).209

Figure 5 (left) demonstrates a new scaling rule with the ratio ρb/η, called the Linear and Saturation210

Scaling Rule (LSSR), with the two regimes that (i) ρb is almost linear when b≪ n (linear regime) and211

(ii) ρb saturates when b is large (saturation regime), which are also shown in Figure 4(d). It depends212

on which part of the denominator (∗) in (12) dominates the other. First, when b≪ n, then γn,b/b is213

not very small and the first term γn,b

b
1
ρ dominates the second term 1− γn,b

b since 1
ρ ≫ 1. Second, as214

b becomes large, γn,b/b ≈ 0 and the second term (≈ 1) dominates the first term. Thus, ρb saturates215

to 1 and is not linearly related to b, and LSR is no longer valid. The above arguments also hold for216

the batches sampled with replacement where the only modification is γn,b = 1, ∀b in (12). Figure 5217

(right) empirically supports LSSR with the test accuracies when trained with various combinations of218

pairs (b, η). To be specific, the optimal learning rate is almost linear when b is small, but it saturates219
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when b is large. We also plot f(b) = ρb (the yellow dashed curve) for some ρ. Note that Figure 8 of220

Shallue et al. [42, Section 4.7] shows similar “linear and saturation” behaviors supportive of LSSR221

on other datasets (see also Figure 7 of Zhang et al. [57, Section 4.3]).222

Remark (Experiments in Section 5). We train models using vanilla SGD/GD without momentum and223

weight decay, constant learning rate, and no data augmentation. For Figure 5, we use subsets of the224

datasets CIFAR-10 [24], CIFAR-100 [24], STL-10 [5], and Tiny-ImageNet (a subset of ImageNet [7]225

with 3× 64× 64 images and 200 object classes). We use a large number of epochs (800) and batch226

normalization [17] to achieve a zero training error even with a large b and a small η. However, in227

the lower right corner (red area) of each heatmap in Figure 5 (right), when b is too large or η is too228

small so that ∥θt+1 − θt∥ = η∥gb∥ is too small, it requires an exponentially large number of steps229

for the iterate to enter the edge of stability. Thus, in this case, the assumption in Goyal et al. [10],230

∇ℓ(θt) ≈ ∇ℓ(θt+i) for 0 ≤ i < k, approximately holds and the reasoning on LSR is valid. However,231

this only holds for a non-practical (b, η) which shows a suboptimal performance. See Appendix232

C.4-C.5 for the results from other networks and hyperparameters.233

6 Discussion234

We provide a new insight on the link between the batch gradient distribution and the sharpness of the235

loss landscape. In this section, we reconcile our arguments with some previous studies.236

Jastrzębski et al. [18] explain the optimization behavior of SGD with the SDE approximation237

dθt = −∇L(θt)dt+
√

η
bC

1/2
1 dW (t) of the SGD where W is an m-dimensional Brownian motion.238

Therefore, the same ratio η
b = η′

b′ leads to the same SDE, which implies LSR. Moreover, a large η
b239

implies a large diffusion in SDE, which has been linked with the escaping efficiency from a sharp240

local minimum in Zhu et al. [58]. We instead argue that a large second moment tr(Sb) (compared241

to tr(Sn)) and a large η lead to a low constraint 2ρb/η on the interaction-aware sharpness. We242

emphasize that we do not model SGD with SDE and thus our argument is applicable to a practical243

learning rate regime.244

Wu et al. [49] empirically show that what is important for the generalization performance of a neural245

network is not the class to which the gradient distribution belongs, but the second moment of the246

distribution. This is consistent with our arguments with the interaction tr(HSb) and the concentration247

measure ρb = tr(Sn)/ tr(Sb), because they depend on the second moment Sb, not on the class of the248

gradient distribution.249

Recently, Li et al. [33] suggest a necessary condition that the “noise-to-signal ratio” needs to be250

large for LSR (and the SDE assumption) to hold. This is consistent with our result on the linear251

regime (where b and ρb are small) because the noise-to-signal ratio is approximately the inverse of the252

“signal-to-noise” ratio ρb = tr(Sn)/ tr(Sb), but defined for an equilibrium distribution. We provide253

not only the necessary condition but also the sufficient condition for LSR with a novel scaling rule254

LSSR applicable to every batch size including where LSR fails (the saturation regime).255

7 Conclusion256

From an analysis of unstable dynamics of SGD (Section 4.1) and the instability condition (Definition257

1), we clearly mark the edge of stability (Figure 4) with the interaction-aware sharpness ∥H∥Sb
258

(Definition 2) and show the presence of the implicit regularization effect on the interaction between259

the gradient distribution and the loss landscape geometry (IIR) (Section 5.1, Definition 4). Moreover,260

introducing the concentration measure ρb of the batch gradient (Definition 3, (12)), we link the261

second moment of the gradient distribution and the sharpness of the loss landscape, and propose262

a new scaling rule called Linear and Saturation Scaling Rule (LSSR) (Section 5.2, Figure 5). Due263

to the simplicity of the analysis, we hope that our insights will motivate the future work toward264

understanding various learning tasks.265
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(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]449

(d) Did you discuss whether and how consent was obtained from people whose data you’re450

using/curating? [Yes]451

(e) Did you discuss whether the data you are using/curating contains personally identifiable452

information or offensive content? [N/A]453

(e) If you used crowdsourcing or conducted research with human subjects...454

(a) Did you include the full text of instructions given to participants and screenshots, if455

applicable? [N/A]456

(b) Did you describe any potential participant risks, with links to Institutional Review457

Board (IRB) approvals, if applicable? [N/A]458

(c) Did you include the estimated hourly wage paid to participants and the total amount459

spent on participant compensation? [N/A]460
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