Multi-Task Neural Network Mapping onto
Analog-Digital Heterogeneous Accelerators

Hadjer Benmeziane', Corey Lammie!, Athanasios Vasilopoulos', Irem Boybat!,
Manuel Le Gallo', Sidney Tsai2, Kaoutar El Maghraoui®, Abu Sebastian’
IIBM Research Europe, 8803 Riischlikon, Switzerland
2IBM Research Almaden, 650 Harry Road, San Jose, CA USA
3IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
hadjer.benmeziane@ibm.com

Abstract

Multi-Task Learning (MTL) models are increasingly popular for their ability to
perform multiple tasks using shared parameters, significantly reducing redundant
computations and resource utilization. These models are particularly advanta-
geous for analog-digital heterogeneous systems, where shared parameters can be
mapped onto weight-stationary analog cores. This paper introduces a novel frame-
work, entitled Multi-task Heterogeneous Layer Mapping, designed to strategically
map MTL models onto an accelerator that integrates analog in-memory comput-
ing cores and digital processing units. Our framework incorporates a training
process that increases task similarity and account for analog non-idealities using
hardware-aware training. In the subsequent mapping phase, deployment on the
accelerator is optimized for resource allocation and model performance, lever-
aging feature similarity and importance. Experiments on the COCO, UCI, and
BelgiumTS datasets demonstrate that this approach reduces model parameters by
up to 3x while maintaining performance within 0.03% of task-specific models.

1 Introduction

Recent advances in the emerging paradigm of In-Memory Computing (IMC) have propelled it as a
candidate to overcome the limitations of traditional computing. Analog IMC (AIMC) is of partic-
ular interest as it has the potential to scale to higher computational density with improved energy
efficiency [1], making it especially appealing for a wide range of applications [2, 3, 4]. By per-
forming computations directly within the memory, AIMC reduces data movement and accelerates
computation. However, the inherent noise and variability in analog processing can pose challenges
to achieving consistent accuracy [5]. Limited IMC weight capacity and oversized models can pro-
hibit model deployment in a full weight-stationary manner, which is the key to its advantages [6].
As a result, heterogeneous accelerators, which integrate both digital and analog components, offer
an effective solution [7], combining the precision and flexibility of digital computation with the
energy-efficiency of AIMC. Combining the best of both worlds, heterogeneous accelerators are a
strong candidate for future Al systems, both in the edge and in data centers.

With the increasing demand for Al on edge devices, developing efficient methods to optimize and
reduce model sizes has become more critical than ever. To address some of the edge-related chal-
lenges, MTL [8] has emerged as a powerful approach, enabling a single model to perform multiple
tasks simultaneously using the same input representation, thereby minimizing redundant computa-
tions and resource consumption. This is especially vital in use cases like autonomous driving, where
models must handle tasks such as object detection, semantic segmentation, and decision-making in
real time. Such scenarios highlight the growing importance of MTL for delivering high performance
while maintaining the efficiency required for edge deployment.

38th Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024(MLNCP 2024).

a) Heterogeneous Analog-Digital Accelerator b) Task-dependent Models Mapping c) Multi-task Model Mapping

DPU AIMC Core (Craver1) (Crayer1) (Ctayer1)

/ / fon AIMC lOn AIMC
] (Ltaverz J) ((Laver2)| [(Laver2)
£ AIMC
jg (Crayer3) (I.averl) (rayer3) (Ctayer3) |(Ctayers) (CLayer3)
—
e (uym) (L.,,,e ra) ((Lavera) (tavera) (tavera) [(ayera)
:g ﬁ ﬁ 1 1 13
= Prediction Jll Prediction Prediction
e J Task Isolation x Less parallelism J Resource Efficiency J Increased Parallelism

Communication fabric X Resource i X Memory overhead \/ Less memory utilization

[T shared Weights () Task-specific Weights

Figure 1: Illustration of (a) a heterogeneous analog-digital accelerator, depicting (b) a traditional
heterogeneous approach and (¢) a MHLM mapping approach. In the traditional case, heterogeneous
mapping is performed independently for each task, whereas for the MHLM case, heterogeneous
mapping are performed for a single task-agnostic DNN.

In this paper, we introduce a novel framework, entitled Multi-task Heterogeneous Layer Map-
ping (MHLM), for training and deployment of MTL models on heterogeneous accelerators with
both Digital Processing Units (DPUs) and AIMC components. Our framework focuses on model
mapping on heterogeneous analog-digital accelerators. To maximize energy-efficiency, a weight-
stationary approach is employed, where all shared components are mapped to AIMC cores, and
task-specific components are assigned to DPUs. Shared weights remain stationary on the AIMC
cores throughout the computation, significantly reducing the costly data movement between mem-
ory and processing units which is required by DPUs. Meanwhile, task-specific components are
handled by DPUs to maintain the high accuracy required for specialized tasks, ensuring an optimal
balance between performance and energy-efficiency.

We simulate heterogeneous deployment using Phase Change Memory (PCM)-based AIMC cores,
modeled with the AIHWKit [9] and DPUs. We demonstrate that MHLM can reduce the number
of parameters by 3x while maintaining performance within 0.03% of task-independent models on
average, across three different tasks and multiple multi-task models.

2 Related Work

Multi-Task Learning (MTL) Models MTL [8, 10] is a sub-field of Machine Learning (ML)
where multiple tasks are learned simultaneously using a shared model, leveraging task commonali-
ties to improve learning efficiency, data utilization, and reduce overfitting [11]. Current State-of-the-
Art (SOTA) MTL models are often handcrafted, requiring extensive experimentation to determine
which components should be shared across tasks, leading to sub-optimal performance. To address
these challenges, automated approaches such as Neural Architecture Search (NAS) [12, 13, 14]
and adaptive optimizations [14, 15] have been developed, aiming to dynamically discover optimal
sharing strategies during training. While these methods can reduce the manual effort involved in
designing MTL models and potentially improve scalability, they often add significant computational
complexity, increased memory requirements, and poor noise-resiliency in heterogeneous analog-
digital accelerators.

Mapping Strategies for Heterogeneous Analog-Digital Accelerators Mapping ML models onto
heterogeneous accelerators presents a unique set of challenges, which has spurred significant re-
search efforts in recent years [16, 17]. Traditional approaches often involve splitting the model
into layers or modules that can be either efficiently or accurately executed on either analog or digital
components [16], optimizing the deployment for a given target in accuracy and efficiency on a work-
load. However, these strategies have primarily focused on single-task models, with no exploration
of how MTL models can be mapped onto such accelerators.

3 Multi-task Heterogeneous Layer Mapping

We develop a framework that trains a given network on a set of tasks, optimizing for maximum
weight reuse and deployment on analog hardware. It subsequently maps the network onto a hetero-
geneous accelerator, searching for the largest contiguous part of the network, starting from its first
layer, that can be shared between the tasks with minimal loss in accuracy. In detail, our contributions
are as follows:

1
H [Get feature maps]
'

—_— [Com;Jutes] [

i
i
H [Independent task-specific training]
i

[Multi-task hardware-aware training] Jensen-Shannon

Calculates the
Divergence

shapely values

[Calculate weighted scores (wjs)]

No. if wis < Yes _Shared
threshold Layer

trained models
for each task

Models for each
targeted task

O Common layers O Task-specific Output decoding O Shared weights O Task-specific weights

Figure 2: Overview of the MHLM model mapping approach, which includes a (D) training phase,
where noise injection and joint multi-task loss are used to enhance similarity across tasks, followed
by a (2) mapping phase, that decides which layer are shared or task-specific.

1. A Hardware-aware (HWA) training algorithm that enhances the similarity of model weights
across tasks, enabling more efficient resource sharing and reducing redundancy;

2. An adaptive post-training mapping algorithm that uses Jensen-Shannon Divergence (JSD)
and Shapley values to dynamically search for the largest shared part of the network, while
keeping model performance over a threshold, maximizing the shared parameters and thus
the energy efficiency;

3. A comprehensive evaluation on benchmark datasets, including COCO, UCI, and Bel-
giumTS, demonstrating the effectiveness of our approach in improving resource utilization,
reducing energy consumption, and enhancing overall performance in multi-task learning
scenarios.

The two components of our framework, namely the training and mapping algorithms are presented
in Fig. 2. We start with a (D training phase, where Gaussian noise is injected into the model weights
to simulate the variability found in analog computing environments. During this phase, a joint
multi-task loss function encourages the similarity of features across tasks. The next (2) mapping
phase uses JSD and Shapley values [18] to evaluate the similarity and importance of features, de-
termining whether a feature should be shared across tasks, i.e., mapped on AIMC cores, or remain
task-specific, i.e., mapped on DPUs.

3.1 Similarity-Enhancing Training

@ involves a HWA training algorithm that injects Gaussian noise into the model’s weights during
training. This noise simulates the variability encountered in analog computing, encouraging the
model to learn more robust and similar representations across tasks. However, the added noise
increases feature dissimilarity, rendering standard multi-task learning methods ineffective in the
context of analog deployment. To address this, we propose a novel training approach that includes
a joint multi-task loss to explicitly enhance similarity among tasks by penalizing large differences
between the feature distributions of different tasks. The training algorithm pseudo-code is provided
in Alg. 1.

After injecting noise during the forward propagation passes and obtaining the outputs for all tasks,
the algorithm calculates a floating-point joint multi-task loss Lo (L9). This loss comprises two
components: the task-specific loss L, for each task and a regularization term that penalizes large
differences between the feature distributions z; and z; of different tasks using the KL divergence.
The regularization term is weighted by a factor, A. Once the total loss is computed, gradients are
accumulated (L10), and the model weights are updated (L11) to minimize the loss'.

The benefits of this training approach are illustrated in Fig. 3, where the performance different
training strategies are compared using the COCO dataset. Since analog devices are prone to temporal
variations, causing their performance to fluctuate over time [19], we report the 1-day performance
after the devices are programmed for all experiments?. This is reported after each training epoch for

'KL divergence was selected for training due to its computational efficiency and simplicity, while Jensen-
Shannon Divergence (JSD) is employed for mapping because of its symmetric properties, offering a more
balanced and robust measure of similarity between task-specific feature distributions.

>The 1-day accuracy metric is chosen to balance the need to assess early-stage drift impacts. Accuracy
typically decreases linearly with respect to logarithmic time.

Algorithm 1 Training for Multi-task Model Mapping

Require: Number of tasks 7', Gaussian noise level o, joint multi-task loss weight A
Require: Number of epochs Tepoch
1: for eachepocht =1,...,T¢pocn do

2: Get input data x and task labels y; for all tasks ¢ € {1,...,T}
3: Clear gradients, optimizer.zero_grad()
4: for each task t € {1,...,7} do
5: Apply Gaussian noise to weights: W; = W; + N (0, 0%)
6: Get task output and encoded features ¥, z; = fi(x; W)
7: end for
8: Compute joint multi-task loss:
T
Liotal = Z Etask(yta yt) + A Z KL(Zi | ‘Zj)
t=1 i<j
9: Accumulate gradients, Lyo.backward()
10: Update model weights, optimizer.step()
11: end for
1O0f : . . 08 . . .
—©&— With Noise & MT Loss - With Noise & MT Loss
! —*— Without Noise & MT Loss -%- Without Noise & MT Loss
0.8 07p 1 3- With Noise, No MT Loss |

L& —=— Wwith Noise, No MT Loss -
£ Without Noise, No MT Loss

Without Noise, No MT Loss g

B R EIRIN IS

4
o
T

o
o
T

I
IS
T
Average JSD
o
o
T

o
'S
T

1-day Multi-task Loss

o
N
T
o
w
T

L L L
0.00 0.2

1
50 100 150 200 “o 50 100 150 200
Epoch Epoch

Figure 3: Evaluation of Training Strategies on the COCO Dataset. The plot shows how the average
loss decreases across epochs using multi-task training with a lambda value of 0.05.

four different training strategies: with and without noise injection, and with and without the joint
multi-task loss. When the joint multi-task loss is applied, the JSD decreases, reflecting improved
similarity between the learned representations of the tasks. Without the joint loss, the JSD remains
around 0.6, indicating that the tasks are less aligned in their feature distributions. The inclusion of
Gaussian noise aids in reducing variability, contributing to more stable and similar representations
across tasks.

3.2 Multi-Objective Mapping Algorithm

For (2), the objective is twofold: (i) maximize the shared portion of the model, enabling its deploy-
ment in weight-stationary AIMC, and (ii) simultaneously maximize the average 1-day performance
across all tasks. The mapping algorithm uses JSD to measure the similarity between the feature map
distributions of different tasks and Shapley values to assess the importance of each feature map.

The adaptive mapping algorithm is described in Supplementary Alg.2. The core decision-making
process balances these metrics, governed by a threshold 7, which determines whether a feature
map should be shared or remain task-specific. Additionally, a weighting factor 3 is introduced to
prioritize configurations that enhance the 1-day performance. These threshold are empirically set.
Supplementary Fig.2 shows the impact of these threshold on the final average performance.

4 Experiments
4.1 Experimental Setup

Datasets: We evaluate the performance of our method using three datasets — COCO [20], UCI [21]
and an autonomous driving scenario with BelgiumTS [22].

Table 1: 1-day Performance Results on COCO. SS: Semantic Segmentation, OD: Object Detection,
IC: Image Classification.

Model Training 1-day 1-day 1-day Shared Analog Digital Analog MAC
Scenario mloU (SS) mAP (OD) Accuracy (IC) Portion (%) Params (M) Params (M) Ops (%) ¥
MTL-NAS - 0.692+0.050 0.635+0.040 0.822 +0.045 22 10.2 349 30%
EDNAS - 0.688 £0.045 0.628 £0.045 0.820 +0.040 31 11.4 243 32%
ResNet50 [25] Task-specific w/o HWA* 0.753 0.686 0.858 0 0 76.1 0%
Task-specific w/ HWA 0743 £0.050 0.673£0.040 0.852 +0.050 0 76.1 0 98%
AdaShare 0.712+£0.048 0.640 £0.042 0.810 +0.048 58 17.9 10.8 48%
AdaMTL 0.690 +£0.045 0.610+0.043 0.792 +0.045 75 183 11.0 55%
MHLM 0.739 £0.040 0.668 +0.040 0.846 + 0.050 65 16.25 9.9 65%
DETR [26] Task-specific w/o HWA* 0.762 0.702 0.878 0 0 122.6 0%
Task-specific w/ HWA ~ 0.751 £0.050 0.691 £0.050 0.873 +0.040 0 122.6 0 86%
AdaShare 0.720 £ 0.041 0.655+£0.042 0.835+0.041 66 28.7 122 52%
AdaMTL 0.695+0.044 0.620+0.044 0.803 +0.043 80 294 125 56%
MHLM 0.748 £ 0.040 0.688 +0.040 0.867 +0.040 72.5 28.8 10.6 68%
FocalNet [27] Task-specific w/o HWA* 0.738 0.678 0.848 0 0 85.4 0%
Task-specific w/ HWA 0.732£0.060 0.671 £0.060 0.841 +0.050 0 85.4 0 92%
AdaShare 0.710 £0.058 0.636 £0.057 0.805 +0.052 48 15.6 135 44%
AdaMTL 0.685+0.059 0.610£0.059 0.795 +0.058 70 15.8 13.8 58%
MHLM 0.725 £0.060 0.666 +0.050 0.838 +0.050 53 14.6 13.0 76%

" Full digital models are not susceptible to conductance drift or noise.
¥ Batch Norm and non weight-stationary attention MACs are included in the computation of this percentage.

Comparison Methods We compare our results to NAS methods including MTL-NAS [23] and ED-
NAS [24], and adaptive sharing methods such as AdaShare [14] and AdaMTL [15]. For each of
these methods, we apply a HWA on the final multi-task network. We use the same mapping, i.e.,
shared portion in analog. We also compare to the original full task-specific networks with and with-
out HWA. Full digital baselines for the adaptive multi-task networks can be found in Supplementary
Table 1. Supplementary Section F expands on the training hyperparameter for each model.

Evaluation Metrics: For a comprehensive assessment, we employ a range of evaluation metrics
across the different tasks. For the object detection and segmentation tasks, we use mean Average
Precision (mAP) and mean Intersection over Union (mloU) as primary metrics. For classification
tasks, accuracy is used to measure the effectiveness of our approach. Additionally, we report the
shared portion of the model, which quantifies the proportion of the network (in the number of param-
eters) that is shared across tasks, providing insights into the trade-offs between resource efficiency
and task-specific performance.

Experiment Mapping Time: The training process with hardware-aware training and joint multi-
task loss takes about 1.4x longer than conventional training, due to similarity enhancement, but
remains manageable as it is a one-time process. The mapping process, which calculates JSD for
shared portions, averages around 15 minutes for larger networks such as DETR and FocalNet.

4.2 Results

COCO: The results highlight the substantial reduction in the number of parameters achieved by
our MHLM framework compared to task-specific training. Across all models, MHLM uses up to
3x fewer parameters while maintaining performance within 1% of task-specific training. The in-
crease in the shared portion in MHLM directly correlates to energy savings, as more of the model
is deployed on analog components, which are more energy-efficient. This trade-off between shared
portion and performance is critical for resource-constrained environments. Although AdaMTL of-
fers a higher shared portion, it suffers from a drastic drop in performance due to its failure to account
for analog noise, emphasizing the importance of our hardware-aware training. AdaShare performs
slightly better but still under-performs compared to MHLM, demonstrating the effectiveness of our
noise-aware approach for hybrid analog-digital platforms. The low standard deviations across the
metrics indicate that the performance was consistently high across multiple runs.

UCI: The results presented in Fig. 4 provide a detailed comparison of accuracy and shared portion
for different tasks for the UCI dataset under different conditions. Fig. 4(a) highlights the accuracy
across tasks for the baseline (0% shared) trained with and without noise, as well as for the multi-
task mapping method (MHLM) under similar noise conditions. The baseline without noise shows
the highest accuracy, but it does not benefit from sharing, which limits resource efficiency. Intro-
ducing noise in the baseline configuration results in a noticeable drop in accuracy across most tasks,
indicating the sensitivity of the models to analog noise.

le6

0.95 T T 100
e __ 14 mmm Params (M)
] = voo ion (9
090l @ | 4 o e e q Z,,0 Shared Portion (%) 80 _
° 0 S
> [] bl X
(€] - -~
S ossf B s
§ ’ u ™ . © £
< u " m o1& &
Z 0.80F n 1 % E
o ° e
5 —) @ e
@ Task-specific. w/ Noise .E &
0.75F g Task-specific. w/o Noise 3
A MHLM
. L | |
0 700 2 4 6 8 10 00 Task-specific MHLM 0

Task Model

Figure 4: Task-wise comparison of (a) accuracy and (b) the shared portion for the UCI dataset.

Table 2: 1-day Performance Results on BelgiumTS Dataset. SS: Sign Segmentation, SC: Sign
Classification.

Model Training 1-day 1-day Shared Analog Digital Analog MAC
Scenario mloU (SS) Accuracy (SC) Portion (%) Params (M) Params (M) Ops (%) 7
ViT-Adapter-S [28] Task-specific w/o HWA 0.810 0.948 0 0 36.9 0%
Task-specific w/ HWA* 0.803 £ 0.007 0.940 £ 0.007 0 36.9 0 95%
AdaShare 0.773 £0.007 0.910 + 0.008 58 12.3 10.1 50%
AdaMTL 0.760 £ 0.006 0.900 + 0.007 72 12.7 10.2 52%
MHLM 0.800 + 0.006 0.938 + 0.007 60 12.3 10.1 65%
MaskFormer [29] Task-specific w/o HWA 0.820 0.955 0 0 43.5 0%
Task-specific w/ HWA* 0.813 +0.005 0.948 + 0.006 0 43.5 0 88%
AdaShare 0.780 £ 0.006 0.910 + 0.007 62 14.5 11.1 54%
AdaMTL 0.768 £ 0.006 0.900 + 0.007 70 15.0 115 57%
MHLM 0.810 £ 0.005 0.945 + 0.006 62 14.5 11.1 70%
MHA-JAM [30] Task-specific w/o HWA 0.800 0.940 0 0 35.1 0%
Task-specific w/ HWA* 0.793 £ 0.007 0.930 + 0.008 0 35.1 0 90%
AdaShare 0.760 £ 0.007 0.900 + 0.008 61 11.7 8.5 48%
AdaMTL 0.748 £0.007 0.890 + 0.008 75 11.9 8.7 50%
MHLM 0.790 £ 0.007 0.928 + 0.007 61 11.7 8.5 68%

" Full digital models are not susceptible to conductance drift or noise.
¥ Batch Norm and non weight-stationary attention MACs are included in the computation of this percentage.

Conversely, the MHLM approach without noise demonstrates improved accuracy compared to the
baseline with noise, showcasing the effectiveness of our method in sharing components while still
delivering strong performance. When noise is introduced to MHLM, a slight decrease in accuracy
is observed, but it remains competitive with the baseline without noise, underscoring the robustness
of the method. Fig. 4(b) shows the shared portion across tasks, where the MHLM configurations
achieve significant sharing without substantial drops in performance. The results emphasize the
advantage of our approach in balancing resource efficiency with task performance, making it well-
suited for deployment in noise-prone environments.

BelgiumTS: Maximizing shared portions resulted in better resource utilization, for real-time sign
segmentation and detection, particularly in edge-like models. The performance drops were minimal,
with low standard deviations. The 1-day performance metrics underscore the robustness of these
models under time-constrained conditions, with only slight reductions in accuracy compared to full
training (0.005).

5 Discussion & Conclusion

The overall results demonstrate the efficacy of our MHLM framework. Notably, models trained
with MHLM consistently exhibited a high shared portion while maintaining robust performance
metrics. The Pareto analysis, shown in Supplementary Fig.1, further emphasizes the strategic trade-
offs between performance and resource sharing, revealing how our framework adeptly balances
these objectives. The ablation study, Supplementary Table 3, highlights the critical role of each step
in MHLM.

MHLM is particularly impactful in scenarios with stringent resource constraints, enabling significant
shared component usage without substantial performance degradation. Note that our framework can
be generalized for optimized deployment in mixed-precision solely digital accelerators, but it is out
of the scope of this work. Future work will quantitatively determine the energy-efficiency using
system-level simulations and explore the joint architecture search and mapping for heterogeneous
analog-digital accelerators.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Jiacong Sun, Pouya Houshmand, and Marian Verhelst. Analog or Digital In-Memory Com-
puting? Benchmarking Through Quantitative Modeling. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pages 1-9, 2023. doi: 10.1109/IC-
CAD57390.2023.10323763.

Manuel Le Gallo, Riduan Khaddam-Aljameh, Milos Stanisavljevic, Athanasios Vasilopoulos,
Benedikt Kersting, Martino Dazzi, Geethan Karunaratne, Matthias Bréandli, Abhairaj Singh,
Silvia M. Miiller, Julian Biichel, Xavier Timoneda, Vinay Joshi, Malte J. Rasch, Urs Egger,
Angelo Garofalo, Anastasios Petropoulos, Theodore Antonakopoulos, Kevin Brew, Samuel
Choi, Injo Ok, Timothy Philip, Victor Chan, Claire Silvestre, Ishtiaq Ahsan, Nicole Saulnier,
Vijay Narayanan, Pier Andrea Francese, Evangelos Eleftheriou, and Abu Sebastian. A 64-
core mixed-signal in-memory compute chip based on phase-change memory for deep neu-
ral network inference. Nature Electronics, 6(9):680-693, Sep 2023. ISSN 2520-1131. doi:
10.1038/s41928-023-01010-1.

S. Ambrogio, P. Narayanan, A. Okazaki, A. Fasoli, C. Mackin, K. Hosokawa, A. Nomura,
T. Yasuda, A. Chen, A. Friz, M. Ishii, J. Luquin, Y. Kohda, N. Saulnier, K. Brew, S. Choi,
I. Ok, T. Philip, V. Chan, C. Silvestre, I. Ahsan, V. Narayanan, H. Tsai, and G. W. Burr. An
analog-Al chip for energy-efficient speech recognition and transcription. Nature, 620(7975):
768-775, Aug 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06337-5.

Tai-Hao Wen, Je-Min Hung, Wei-Hsing Huang, Chuan-Jia Jhang, Yun-Chen Lo, Hung-Hsi
Hsu, Zhao-En Ke, Yu-Chiao Chen, Yu-Hsiang Chin, Chin-I Su, Win-San Khwa, Chung-Chuan
Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Mon-Shu Ho, Chung-Cheng Chou,
Yu-Der Chih, Tsung-Yung Jonathan Chang, and Meng-Fan Chang. Fusion of memristor and
digital compute-in-memory processing for energy-efficient edge computing. Science, 384
(6693):325-332, 2024. doi: 10.1126/science.adf5538.

M. J. Rasch, C. Mackin, M. Le Gallo, A. Chen, A. Fasoli, F. Odermatt, N. Li, S. R. Nandaku-
mar, P. Narayanan, H. Tsai, G. W. Burr, A. Sebastian, and V. Narayanan. Hardware-aware train-
ing for large-scale and diverse deep learning inference workloads using in-memory computing-
based accelerators. Nature Communications, 14(1), aug 2023. doi: 10.1038/s41467-023-
40770-4.

GW Burr, H Tsai, I Boybat, C-E Ho, Z-W Liou, et al. Design of Analog-Al Hardware Ac-
celerators for Transformer-based Language Models. In 2023 International Electron Devices
Meeting (IEDM), pages 1-4. IEEE, 2023.

Shubham Jain, Hsinyu Tsai, Ching-Tzu Chen, Ramachandran Muralidhar, Irem Boybat, Mar-
tin M. Frank, Stanistaw Wozniak, Milos Stanisavljevic, Praneet Adusumilli, Pritish Narayanan,
Kohji Hosokawa, Masatoshi Ishii, Arvind Kumar, Vijay Narayanan, and Geoffrey W. Burr. A
Heterogeneous and Programmable Compute-In-Memory Accelerator Architecture for Analog-
Al Using Dense 2-D Mesh. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 31(1):114-127, 2023. doi: 10.1109/TVLSI1.2022.3221390.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

Manuel Le Gallo, Corey Lammie, Julian Biichel, Fabio Carta, Omobayode Fagbohungbe,
Charles Mackin, Hsinyu Tsai, Vijay Narayanan, Abu Sebastian, Kaoutar El Maghraoui, et al.
Using the IBM analog in-memory hardware acceleration kit for neural network training and
inference. APL Machine Learning, 1(4), 2023.

Yu Zhang and Qiang Yang. An overview of multi-task learning. National Science Review, 5
(1):30-43, 2017.

Ammar Sherif, Abubakar Abid, Mustafa Elattar, and Mohamed ElHelw. Stg-mtl: scalable task
grouping for multi-task learning using data maps. Machine Learning: Science and Technology,
5(2):025068, jun 2024. doi: 10.1088/2632-2153/ad4e04.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with atten-
tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 1871-1880, 2019.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal. Autosem: Automatic task selection and
mixing in multi-task learning. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3520-3531, 2019.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what
to share for efficient deep multi-task learning. Advances in Neural Information Processing
Systems, 33:8728-8740, 2020.

Marina Neseem, Ahmed Agiza, and Sherief Reda. Adamtl: Adaptive input-dependent infer-
ence for efficient multi-task learning. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4730-4739, 2023.

Corey Lammie, Flavio Ponzina, Yuxuan Wang, Joshua Klein, Marina Zapater, Irem Boybat,
Abu Sebastian, Giovanni Ansaloni, and David Atienza. Lionheart: A layer-based mapping
framework for heterogeneous systems with analog in-memory computing tiles. arXiv preprint
arXiv:2401.09420, 2024.

Payman Behnam, Uday Kamal, Ali Shafiee, Alexey Tumanov, and Saibal Mukhopadhyay.
Harmonica: Hybrid accelerator to overcome imperfections of mixed-signal dnn accelerators.
In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 619—
630. IEEE, 2024.

Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In
International conference on machine learning, pages 9269-9278. PMLR, 2020.

Irem Boybat, Benedikt Kersting, S Ghazi Sarwat, X Timoneda, Robert L Bruce, Matthew
BrightSky, Manuel Le Gallo, and Abu Sebastian. Temperature sensitivity of analog in-memory
computing using phase-change memory. In 2021 IEEE International Electron Devices Meeting
(IEDM), pages 28-3. IEEE, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Pi-
otr Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740-755. Springer, 2014.

B Amarnath, S Balamurugan, and Appavu Alias. Review on feature selection techniques
and its impact for effective data classification using uci machine learning repository dataset.
Journal of Engineering Science and Technology, 11(11):1639-1646, 2016.

Dogancan Temel, Min-Hung Chen, and Ghassan AlRegib. Traffic sign detection under chal-
lenging conditions: A deeper look into performance variations and spectral characteristics.
IEEE Transactions on Intelligent Transportation Systems, 21(9):3663-3673, 2019.

Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas: Task-agnostic
neural architecture search towards general-purpose multi-task learning. In Proceedings of the
IEEE/CVF Conference on computer vision and pattern recognition, pages 11543-11552, 2020.

Thanh Vu, Yanqi Zhou, Chunfeng Wen, Yueqi Li, and Jan-Michael Frahm. Toward edge-
efficient dense predictions with synergistic multi-task neural architecture search. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1400—
1410, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770-778, 2016.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213-229. Springer, 2020.

[27] Jianwei Yang, Chunyuan Li, Xiyang Dai, and Jianfeng Gao. Focal modulation networks.
Advances in Neural Information Processing Systems, 35:4203-4217, 2022.

[28] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vi-
sion transformer adapter for dense predictions. In The Eleventh International Conference on
Learning Representations.

[29] Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you

need for semantic segmentation. Advances in neural information processing systems, 34:
17864-17875, 2021.

[30] Kaouther Messaoud, Nachiket Deo, Mohan M Trivedi, and Fawzi Nashashibi. Trajectory
prediction for autonomous driving based on multi-head attention with joint agent-map repre-
sentation. In 2021 IEEE Intelligent Vehicles Symposium (1V), pages 165-170. IEEE, 2021.

A Multi-Objective Analysis Results

ResNet50 DETR FocalNet
0.90 T T T T T T 0.9 T T
*—a S
£ s e ~| 0.9 ~5 al * B
° 0.85 - . ° S— o ° T e L)
g ° L] g ° " S o8l)]
5 0-80F ° » 1 & [] s e o [
E % E o8l) o 1 E F)
£ 0.75F e 1 ¢ ° £ °
g g g o7 * .
> 0.70F * 1 = * - +
3 o * S o7} °] %
- il -
g 03¢ ER-) g o6l .
5 060f © ResNet50 Data Points 1 g @ DETR Data Points £ ® FocalNet Data Points
Ed ResNet50 Pareto Front z 06 DETR Pareto Front 1 2z FocalNet Pareto Front
0.55F * AdaShare (ResNet50) 1 * AdaShare (DETR) 0.5 * Adashare (FocalNet) |
+ AdaMTL (ResNet50) + AdaMTL (DETR) + AdaMTL (FocalNet)
L L L L 4 L L L L L L L L
0'5%.0 0.2 0.4 0.6 0.8 1.0 0'%.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Shared Portion Shared Portion Shared Portion
0.9 VlT‘-Adapt@Tr-S 09 Ma‘skForrr?er 09 MHA—JAIYI
° @ ® I\ P—e
r @
S os © %o Sos ® Sos °
g ® u_ e g ° * , o2 5 N -
E o ot E ° ° E e
£ o 8 é 8 e 2N
& o07f ® 4 & o07f 4 & 07 @ 8
5 5 ° 3
° o ° L]
- il =
& 0.6 4 &o6f 4 &os6f 8
g @ ViT-Adapter-S Data Points S ® MaskFormer Data Points S ® MHA-JAM Data Points
z ViT-Adapter-S Pareto Front z MaskFormer Pareto Front z MHA-JAM Pareto Front
os5F * AdaShare (ViT-Adapter-S) \ o5 * AdaShare (MaskFormer) \ osk * AdaShare (MHA-JAM)]
’ + AdaMTL (ViT-Adapter-S) q ' + AdaMTL (MaskFormer) ' + AdaMTL (MHA-JAM)
| | | | | | | I | | | I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Shared Portion Shared Portion Shared Portion

Supplementary Figure 1: Pareto fronts for different models across COCO and BelgiumTS datasets.
Each subplot shows the trade-off between the shared portion and average performance for a specific
model, with the Pareto front (orange line) indicating the optimal configurations. Blue dots represent
data points near the Pareto front, providing additional context.

The Pareto fronts for the six models evaluated across the COCO and BelgiumTS datasets are shown
in Supplementary Fig. 1. Each subplot corresponds to a specific model and illustrates the trade-off
between the shared portion and average performance. The orange line in each subplot represents
the Pareto front, which highlights the optimal configurations where both the shared portion and
average performance are maximized. Additionally, the figure includes blue crosses representing
non-Pareto points that are close to the Pareto front. These points provide further insight into the
trade-offs, showing configurations that are suboptimal compared to the Pareto-optimal configura-
tions. By visualizing how small changes in the shared portion can impact average performance, the
figure underscores the importance of balancing the shared portion with task-specific performance
when designing multi-task models for deployment in hybrid analog-digital systems.

The Pareto front is extracted by running the mapping algorithm, Supplementary Alg.2, under dif-
ferent configurations to balance resource sharing and 1-day performance. For each solution, the
algorithm computes a weighted JS divergence that reflects task similarity and feature importance.
Based on a threshold, the algorithm determines whether a layer is shared or task-specific, with all
subsequent layers marked as task-specific once the threshold is exceeded.

10

B Multi-Objective Mapping Algorithm

Supplementary Alg.2 shows MHLM mapping pseudo-code. The weighted JSD (Weighted_JS) is
designed to balance the trade-off between maximizing shared components across tasks while main-
taining high task-specific performance. The equation incorporates two factors: the Shapley value for
each feature map and the 1-day average performance. The Shapley value, influenced by the scaling
factor a, reflects the importance of the feature map across multiple tasks, ensuring that critical fea-
tures with high task contribution are less likely to be shared. This mechanism prevents performance
degradation by discouraging the sharing of highly specialized features. The inclusion of the 1-day
performance term, modulated by the weighting factor 3, ensures that the mapping process accounts
for analog drift and noise over time. By emphasizing performance stability after 1 day of operation,
the algorithm prioritizes robustness in hardware-deployed models. The parameters « and [were
empirically selected through cross-validation experiments.

Supplementary Algorithm 2 Multi-Objective Mapping Algorithm

Require: Feature maps for each task F; where ¢t € {1,2,...,T}
Require: Scaling factor « for Shapley value influence
Require: Threshold 7 for sharing decision
Require: Weighting factor g for 1-day performance maximization
Ensure: Sets of shared parts and task-specific parts: Shared_Parts, Task_Specific_Parts
1: Initialize Shared_Parts < (), Task_Specific_Parts <+ ()
2: for each feature map £ do
3: Initialize Avg_J S* as the average JS divergence across task pairs
4: Compute the Shapley value Shapley,Valuek for feature map &
5 Compute the weighted divergence Weighted_JS* = Avg_JS* x (14 o x Shapley_Value®) x
(1 + B x 1-day Average Performance)

6: if Weighted JS* < 7 then

7: Add k to Shared_Parts

8: else

9: Add k and all subsequent layers to Task_Specific_Parts for all tasks
10: break loop to stop further shared selection
11: end if
12: end for

13: return Shared_Parts, Task_Specific_Parts

11

C Full Digital Baselines

Supplementary Table 1 and 2 show the results of training the multi-task learning models fully on
digital, i.e., without any noise. These are the maximum performances possibly acheived by each of
the model.

Supplementary Table 1: Full digital baselines for AdaShare, AdaMTL, and MHLM on COCO
Dataset.

Model Method mlIoU (SS) mAP (OD) Accuracy (IC)

AdaShare 0.782 0.673 0.854

ResNet50 AdaMTL 0.791 0.688 0.855
MHLM 0.741 0.671 0.849

AdaShare 0.781 0.694 0.884

DETR AdaMTL 0.810 0.679 0.873
MHLM 0.750 0.689 0.869

AdaShare 0.724 0.657 0.829

FocalNet AdaMTL 0.710 0.643 0.818
MHLM 0.729 0.667 0.840

Supplementary Table 2: Full digital baselines for AdaShare, AdaMTL, and MHLM on BelgiumTS
Dataset.

Model Scenario mloU (SS) Accuracy (SC)
ViT-Adapter-S AdaShare 0.792 0.929
AdaMTL 0.785 0.920
MHLM 0.802 0.939
MaskFormer AdaShare 0.798 0.930
AdaMTL 0.792 0.920
MHLM 0.811 0.947
MHA-JAM AdaShare 0.780 0.920
AdaMTL 0.768 0.910
MHLM 0.798 0.928

D Ablation Study

Supplementary Table 3: Ablation study results.

Model Training Scenario Avg. 1-day Performance Shared Portion (%)
Task-specific Training 0.85 £ 0.05 0
Without Noise Injection 0.68 £+ 0.06 55
ResNet50 Without MT Loss 0.71 £0.05 30
Without Feature Importance 0.83 £0.04 35
Full MHLM 0.84 £0.04 65
Task-specific Training 0.88 £0.04 0
Without Noise Injection 0.70 £ 0.06 58
DETR Without MT Loss 0.74 £ 0.04 35
Without Feature Importance 0.86 + 0.04 40
Full MHLM 0.87 +0.04 72.5
Task-specific Training 0.87 £ 0.06 0
Without Noise Injection 0.69 + 0.06 57
FocalNet ~ Without MT Loss 0.72 £0.05 33
Without Feature Importance 0.85+0.04 37
Full MHLM 0.86 +0.04 70

12

The ablation study results, summarized in Supplementary Table 3, reveal the impact of key com-
ponents on model performance and resource sharing. Independent training yields the highest task-
specific performance but with no shared resources. When noise injection is omitted, performance
drops significantly, highlighting its importance for robustness. Without the MTL, the model achieves
slightly better results than without noise, yet still with a low shared portion, indicating the critical
role of MT loss in enabling component sharing. Removing feature importance maintains high per-
formance but reduces the shared portion, underscoring its contribution to efficient sharing. The full
approach, integrating all components, strikes the best balance between performance and resource
sharing, demonstrating the effectiveness of our methodology.

E Impact of JSD threshold on mapping

100 ; ; . . 0.72
Jo.70
801 Jo.68

-0.66

o
o
T

-10.64

N
o
T

Shared Portion (%)
Average 1-day Performance

20

1 1 1 1
%.0 0.2 0.4 0.6 0.8 1.8'54
Threshold (Tau)

Supplementary Figure 2: Impact of JSD Threshold on Shared Portion and 1-Day Performance.

The impact of varying the JSD divergence threshold on the proportion of shared components and
the average 1-day performance is illustrated in Supplementary Fig. 2. The two objectives in the
multi-objective mapping algorithm—maximizing the shared portion of the model while maintaining
high 1-day performance—are inherently contradictory. As the threshold increases, more parts of the
model are shared, leading to significant reductions in model parameters, thus improving resource
efficiency. However, this comes at the expense of performance. As observed in the figure, with
lower values, the 1-day performance remains close to the maximum value of 0.72, but the shared
portion is minimal. Conversely, as it approaches 1, the shared portion of the model increases towards
100%, but the 1-day performance drops below 0.60.

F Training Hyperparameters

Each network in our experiments was trained with specific hyperparameters, obtained with hyper-
parameter optimization. Table 4 summarizes the key hyperparameters used during training for each
model. For COCO datasets, a resizing to 224x224 and random cropping were applied.

Supplementary Table 4: Training hyperparameters for each network. Learning rate (LR), Batch size
(BS), Scheduler, and Number of epochs (Epochs) are listed.

Model LR BS Scheduler Epochs
ResNet50 (COCO) 0.001 16 Cosine Annealing 100
DETR (COCO) 0.0005 8 StepLR with step size 30 100
FocalNet (COCO) 0.0003 16 Cosine Annealing 100
ViT-Adapter-S (BelgiumTS) 0.0005 32 Cosine Annealing with Warm Restarts 200
MaskFormer (BelgiumTS) 0.0003 32 StepLR with step size 50 200
MHA-JAM (BelgiumTS) 0.001 32 Cosine Annealing 200

The following ATHWXKit ‘rpu_config® was used for all experiments where analog in-memory cores
were deployed. This configuration simulates hardware non-idealities, such as noise and variability

13

in the Phase Change Memory (PCM)-based cores, while maintaining performance close to that of
fully digital implementations.

def create_rpu_config (g-max=25, tile_size=512, modifier.std=0.07):
rpu-config = InferenceRPUConfig ()

rpu_config.mapping. digital_bias = True
rpu-config.mapping. weight_scaling_omega = 1.0
rpu-config . mapping. weight_scaling_columnwise = True
rpu-config . mapping.learn_out_.scaling = True
rpu_config.mapping.out_scaling_columnwise = True
rpu_config . mapping. max_input_size = tile_size
rpu_config . mapping. max_output_size = tile_size

rpu_config.noise_.model = PCMLikeNoiseModel (g-max=g_max)
rpu_config.remap.type = WeightRemapType . CHANNELWISE_SYMMETRIC
rpu_config.clip.type = WeightClipType . FIXED_-VALUE
rpu_config.clip.fixed_value = 1.0

rpu_config.modifier.type = WeightModifierType .MULTNORMAL
rpu-config.modifier.rel_-to_actual_.wmax = True

rpu-config.modifier.std_-dev = modifier_std
rpu-config.forward = IOParameters ()
rpu-config.forward.out_noise = 0.05
rpu_config.forward.inp.res = 1 / (2%%8 — 2)
rpu-config.forward.out_res = 1 / (2%%8 - 2)
rpu-config.drift_.compensation = GlobalDriftCompensation ()

return rpu_config

14

