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ABSTRACT

We propose a training-free and robust solution to offer camera movement con-
trol for off-the-shelf video diffusion models. Unlike previous work, our method
does not require any supervised finetuning on camera-annotated datasets or self-
supervised training via data augmentation. Instead, it can be plugged and played
with most pretrained video diffusion models and generate camera controllable
videos with a single image or text prompt as input. The inspiration of our work
comes from the layout prior that intermediate latents hold towards generated re-
sults, thus rearranging noisy pixels in them will make output content reallocated as
well. As camera move could also be seen as a kind of pixel rearrangement caused
by perspective change, videos could be reorganized following specific camera mo-
tion if their noisy latents change accordingly. Established on this, we propose
our method CamTrol, which enables robust camera control for video diffusion
models. It is achieved by a two-stage process. First, we model image layout re-
arrangement through explicit camera movement in 3D point cloud space. Second,
we generate videos with camera motion using layout prior of noisy latents formed
by a series of rearranged images. Extensive experiments have demonstrated its
superior performance in both video generation quality and camera motion align-
ment compared with other finetuned methods. Furthermore, we show the capacity
of CamTrol generalizing to various base models, as well as its impressive ap-
plications in scalable motion control, dealing with complicated trajectories and
unsupervised 3D video generation. Videos available at anonymous demo page.
(If not accessible, please refer to the supplementary materials for the same demo.)

1 INTRODUCTION

As a more appealing and content-richer modality, videos differ from images by including an extra
temporal dimension. This temporal aspect provides increased versatility for depicting diverse and
dynamic movements, which can be decomposed into object motion, background transitions and
perspective changes. Recent years have witnessed the rapid development and splendid breakthrough
of video generation with text prompt or images as input instructions (Li et al., 2023; Hong et al.,
2022; Ho et al., 2022; Luo et al., 2023; Zeng et al., 2024; Blattmann et al., 2023a; Brooks et al., 2024;
Ge et al., 2023; Fei et al., 2023), and demonstrated the inestimable potential of diffusion models to
synthesis realistic videos. While these video generation models have made progress in generating
videos with highly dynamic objects and backgrounds (Zeng et al., 2024; Blattmann et al., 2023a; Li
et al., 2023), most of them fail to provide camera control for the generated videos.

The difficulty of controlling camera trajectory in videos primarily arises from two aspects. The initial
challenge lies in the inadequacy of annotated data. Most video annotations lack of descriptions,
especially precise descriptions of video’s camera movements. As a result, video generation models
trained on these data often fail to interpret text prompts related to camera motions and generate
correct outputs. One solution to mitigate the data insufficiency problem is to mimic videos with
camera movements through simple data augmentation (Yang et al., 2024a). However, these methods
could only handle simple camera motions like zoom or truck, and have trouble in dealing with
more complicated ones. The second challenge lies in the effort of additional finetuning required
for controlling camera movements. As camera trajectories could be sophisticated, they sometimes
cannot be accurately elaborated using naı̈ve text prompts alone. Common solutions (Wang et al.,
2023; He et al., 2024) proposed to embed camera parameters into diffusion models through learnable
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encoders and perform extensive finetuning on large-scale datasets with detailed camera trajectories.
However, such datasets like RealEstate10k (Zhou et al., 2018) and MVImageNet (Yu et al., 2023)
are intensively limited in scale and diversity due to the difficulty associated with data collection, in
this way, these finetuning methods demand substantial resources but exhibit limited generalizability
to other types of data. Lack of annotations and heavy finetuning effort make camera control a
challenging task in video generations.

In this work, we attempt to address these issues through a training-free solution to offer camera
control for off-the-shelf video diffusion models. We begin by introducing two core observations un-
derpin that video diffusion models can achieve camera movement control in a training-free manner.
First, we find that base video models could produce results with rough camera moves by integrat-
ing specific camera-related text into input prompts, such as camera zooms in or camera pans right.
This simple implementation, though not very accurate and always leads to static or wrong motions,
shows the natural prior knowledge learnt by pretrained models about following different camera tra-
jectories. The other observation is the effectiveness video models have exhibited in adapting to 3D
generation tasks. Recent works (Voleti et al., 2024; Melas-Kyriazi et al., 2024; Shi et al., 2023) find
that leveraging pretrained video models as initialization helps drastically improve the performance
of multi-view generations, demonstrating their strong ability of handling perspective change. The
two crucial observations reveals the hidden power of video models for camera motion control, thus,
we seek to find a way to evoke this innate ability, as it already exists in the model itself.

We propose CamTrol, which offers camera control for off-the-shelf video diffusion models in a
training-free but robust manner. CamTrol is inspired by the layout prior that noisy latents hold to-
wards generation results: As pixels in noisy latents change their positions, corresponding rearrange-
ment will also occur to the output and leads to layout modification. Considering camera moves
could also be seen as a kind of layout rearrangement, this prior can serve as an efficacious hint
providing video model with information of specific camera motions. Specifically, CamTrol con-
sists of a two-stage procedure. In stage I, explicit camera movements are modeled in 3D point
cloud representations and produce a series of rendered images indicating specific camera move-
ments. In stage II, layout prior of noisy latents are utilized to guide video generations with camera
movements. Compared with previous works, CamTrol require no any additional finetuning utilizing
camera annotated datasets, nor does it need self-supervised training based on data augmentation.
Extensive experiments have demonstrated its superior performance in both video generation quality
and camera motion alignment against other finetuned methods. Furthermore, we show the capacity
of CamTrol generalizing to various base models, as well as its impressive applications in scalable
motion control, dealing with complicated trajectories and unsupervised 3D video generation.

2 RELATED WORK

Camera Control for Video Generation While methods aim for controlling video foundation
models constantly emerge (Ma et al., 2024; Liu et al., 2023; Feng et al., 2023), there are few works
explore how to manipulate camera motion of generated videos. Earlier work (Hao et al., 2018)
controls motion trajectory via warping image through densified sparse flow and pixel fusion, similar
ideas also appear later in Chen et al. (2023) and Yin et al. (2023). Besides utilizing optical flow,
two main techniques for implementing video camera control are via self-supervised augmentation
or additional finetuning. Yang et al. (2024a) disentangles object motion with camera movement
and incorporates extra layers to embed camera motions, where model is trained in a self-supervised
manner by augmenting input videos to stimulate simple camera movements. He et al. (2024) and
Wang et al. (2023) train an additional camera encoder and integrate the output into temporal attention
layers of U-Net. Guo et al. (2023) learns new motion pattern via LoRA (Hu et al., 2021) and
finetuning with multiple reference videos.

Noise Prior of Latents in Diffusion Model One of the most natural advantages of diffusion model
comes from its pixel-wise noisy latents formed during denoising process. These latents hold strong
causuality towards output and directly determine what the result looks like, meanwhile have ro-
bust error-resilience as they are perturbed by Gaussian noises across different scales. Numerous
work have exploited the convenience of this noise prior to attain controllable generation, such as
image-to-image translation (Meng et al., 2021), pixel-level manipulation (Nichol et al., 2022), im-
age inpainting (Lugmayr et al., 2022) and semantic editing (Choi et al., 2021; Hou et al., 2024).
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Figure 1: Pipeline of CamTrol. In stage I, camera movements are modeled through explicit 3D
point cloud . In stage II, layout prior of noisy latents are utilized to guide video generation.

Recent research has shown that even sampled from Gaussian distribution, the initial noise of diffu-
sion process still have significantly influence to the layout of generated contents (Mao et al., 2023).
In other work, noise prior is used to guarantee temporal consistency among video frames (Luo et al.,
2023), or to trade-off between fidelity and diversity of image editing (Kim et al., 2022).

Video Model for 3D Generation Similar to how most video generation models using the ground-
work laid by image foundation models (Blattmann et al., 2023b; Esser et al., 2023; Singer et al.,
2022; Wu et al., 2023), training of 3D generation model also relies heavily on pretrained 2D video
models (Voleti et al., 2024; Melas-Kyriazi et al., 2024; Shi et al., 2023; Chen et al., 2024; Han et al.,
2024). These methods either finetunes with rendered videos directly (Blattmann et al., 2023a; Chen
et al., 2024; Melas-Kyriazi et al., 2024; Han et al., 2024), or adds camera embedding for each view
as extra condition (Voleti et al., 2024; Shi et al., 2023). Video foundation models have shown to
be particularly beneficial in generating consistent multi-view rendering of 3D objects, demonstrates
their inherent abundant prior knowledge for handling camera pose change.

3 TRAINING-FREE CAMERA CONTROL FOR VIDEO GENERATION

CamTrol takes two stages to evoke the innate camera control ability hidden in foundation models. In
Sec. 3.1, we will describe how to model explicit camera movement for video generation. In Sec. 3.2,
we will elaborate on video’s motion control with the guidance of noise layout prior.

3.1 CAMERA MOTION MODELING

To evoke pretrained video diffusion model’s ability of dealing with camera perspective changes,
hints of camera motion should be injected to diffusion model in a proper way. While simply con-
catenating camera trajectories with text prompt is incomprehensible for original model, previous
works (Wang et al., 2023; He et al., 2024) introduce additional embedder to encode camera pa-
rameters and finetune with limited annotated data (Zhou et al., 2018; Yu et al., 2023), which are
data-hungry yet lack of generalization ability. Other method (Yang et al., 2024a) constructs camera
motions by self-supervised augmentations, but could only handle a few easy camera controls. Thus,
we seek a more efficient and robust way to guide the model towards camera controllable.

Considering perspective change of video is originally caused by camera movements in 3D space, we
resort to 3D representation for providing generation models with explicit motion hints. Specifically,
we choose point cloud as the intermediate representation, in which space we can expediently ma-
nipulate camera poses for simulating diverse movements. One extra benefit that point cloud brings
is its data-efficiency: By utilizing inpainting techniques, only one single input image is required for
the whole point cloud reconstruction, this sidesteps the effort of large-scale finetuning.

3
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Point Cloud Initialization We start by lifting the pixels in input image plane to 3D point cloud
representations. In practice, the input image can be either user-defined or created by image gener-
ators like Stable Diffusion (Rombach et al., 2022). Given an input image I0 ∈ R3×H×W , we first
estimate its depth map D0 using off-the-shelf monocular depth estimator ZeoDepth (Bhat et al.,
2023). By combining image and its depth map, point cloud P0 can be initialized as:

P0 = ϕ([I0,D0],K,P0), (1)

where ϕ denotes the mapping function from RGBD to 3D point cloud, K and P0 represent camera’s
intrinsic and extrinsic matrices set by convention (Chung et al., 2023) as they’re usually intractable.

Camera Trajectories To get consistent images from multiple views, we set camera motion as a
trajectory of extrinsic matrix {P1, ...,PN−1}, each including a rotation matrix and translation ma-
trix representing camera’s pose and position. At each step i, we project the point cloud back to cam-
era plane using function ψ and get a rendered image with perspective change: Ii = ψ(Pi,K,Pi).
By calculating extrinsic matrices of corresponding movement, we obtain a series of camera motions
including zoom, tilt, pan, pedestal, truck, roll and rotate, enabling flexible camera movements. De-
tailed definitions of these movements are elaborated in Appendix B. By combining basic trajectories,
hybrid camera movements can be attained and produce videos with cinematic charm. What’s more,
benefit from explicit camera motion modeling, our method could support trajectories with precise
extrinsics, which means it can generate videos with any complicated camera motion.

Multi-view Consistency When perspective changes, there can be vacancies appear as some areas
are unoccupied within the point cloud. To get more reasonable results, we employ image inpainting
model (Rombach et al., 2022) to fill up the holes for new renderings, with a mask distinguishing the
known points from nonexistent ones. This operation guarantees coherence between known views
and novel views in 2D space. After inpainting, image is lifted again onto 3D space and gradu-
ally complete the whole point cloud representation. During this process, points between adjacent
views may become misaligned since depth estimator only estimates relative depth, further leads to
inconsistency in both 3D point cloud and rendered images. To avoid this situation, we adopt depth
coefficient optimization (Chung et al., 2023) at each step of the camera movement, formed as:

di = argmin
d

(∑
M

∥∥∥ϕ([Ĩi, dD̃i],K,Pi)− Pi−1

∥∥∥) , (2)

where Ĩi and D̃i refer to the inpainted image and its depth map respectively, di denotes depth
coefficient to be optimized, and M refers to the overlapping region between Pi and Pi−1, as other
areas are not shared for calculating ℓ1 loss.

Thus, we get a set of images refer to the input and indicate specific camera movement:

{I0, ..., IN−1} = {ψ(Pi,K,Pi)|i ∈ [0, N − 1]} . (3)

3.2 LAYOUT PRIOR OF NOISE

With camera motion modeling, we obtain a sequence V0 = {I0, ..., IN−1} ∈ RN×3×H×W of ren-
dered images adhering to a specific camera trajectory. Note that quality of rendered images are not
perfect since single input image only leads to sparse point cloud reconstruction, besides, these ren-
derings are static, thus they could not use directly as video frames. To form an ideal video, we need
to find a way that satisfies three requirements: 1) camera motions should be maintained; 2) video
should be encouraged with more dynamics; and 3) quality imperfection should be compensated.

Camera Motion Inversion Recent work on diffusion models have demonstrated the strong con-
trollability of its noisy latents (Meng et al., 2021; Mao et al., 2023), the causality and error-resilience
they hold towards final output make them a convenient yet powerful tool for controllable generation
of diffusion models. Particularly for initial noise, even sampled from Gaussian distribution, it still
have significant influence on the layout of generated image (Mao et al., 2023), so that rearranging

4
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Figure 2: Transition of samples between two distinct distributions. As the layout-arranged im-
ages being inverted by adding random noise, the distribution of their noisy latents will gradually
converge to their video counterpart (green area), finally forming nearly Gaussian latents with spe-
cific layout change. This information is then inherited during video generation process. Steps of
camera motion inversion determine the trade-off between video diversity and motion fidelity.

the noise pixels will make content in output relocate as well. For instance, if all pixels in initial
noise shift to right by a certain distance, it is likely that generated output reflect a similar shift. This
reminds us that the impact of camera movement on images could also be regarded as a kind of layout
rearrangement, where pixels change their positions caused by viewpoint change. In a similar way,
videos can be reorganized following camera motion if their noisy latents change accordingly.

Inspired by this, we first construct a series of noisy latents indicating specific camera movements. It
can be intuitively done by employing diffusion’s inversion process on rendered image sequence V0.
Latent at timestep t0 can be calculated as follows, where ᾱt are variances of the scheduler:

Vt0 =
√
ᾱt0V0 +

√
1− ᾱt0ϵ, ϵ ∼ N (0, I), (4)

Because the rendered images V0 share common pixels in certain regions, their latents also have rele-
vance to each other in a way indicating pixels’ move. Moreover, while being perturbed with random
noise, blank spaces and flawed regions in V0 can be further filled with randomness, providing video
model with more possibilities to generate and correct them.

Video Generation After camera motion inversion, noisy latents presenting camera movements are
then passed through the backward process of video diffusion model, utilizing their layout controlla-
bility to guide video generation. Leveraging prior knowledge of base video model, the generation
process also bestows video with rational dynamic information. In this way, explicit camera move-
ments are injected into video diffusion model in an appropriate and training-free fashion. Starting
from noisy motion latents at timestep t0, the generation step can be represented as:

V̂t−1 =
√
αt−1

(
Vt −

√
1− αtϵ

(t)
θ (Vt)√

αt

)
+
√
1− αt−1 − σ2

t ϵ
(t)
θ (Vt) + σtϵ, t ∈ [1, t0] . (5)

Here ϵθ denotes the video model for noise prediction and σt determines whether the denoising
process is deterministic or probabilistic, we set σ = 1 to encourage diversity of generation results.

Trade-off Between Fidelity and Diversity Leveraging noise prior guidance in diffusion model
could lead to a trade-off between generation’s fidelity and diversity (Meng et al., 2021; Hou et al.,
2024), where results that hold more faithfulness towards guidance tend to decline in generation qual-
ity. In this task, similar circumstance also occurs as model is required to be guided by some imperfect
renderings while generate a reasonable and dynamic video. The key factor to balance the trade-off
problem lies in the choice of t0. When larger t0 applied, generation bears more resemblance to orig-
inal guidance V0, yet lacks of rationality and dynamics to be an appealing video. Instead, smaller
t0 leads to well-generated video, but is less aligned with desired camera motion. Empirically, we
find larger t0 works better for motions with moderate intensity, and for those with relatively drastic
move, smaller t0 shows preferable performance. The process of stage II is illustrated in Fig. 2.

5
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Table 1: Quantitative comparisons. Our method attains comparable performance with finetuned
methods in both video generation quality and camera motion alignment.

Method Video Quality Motion Accuracy
FVD ↓ FID ↓ IS ↑ CLIP-SIM ↑ ATE ↓ RPE-T ↓ RPE-R ↓

SVD 1107.93 68.51 7.21 0.3095 4.23 1.79 0.021
MotionCtrl+SVD 810.59 69.03 7.17 0.3076 4.19 1.07 0.012
CameraCtrl+SVD 951.80 67.59 6.82 0.3138 4.22 1.17 0.013
CamTrol+SVD 778.46 68.06 7.05 0.3110 4.17 1.07 0.010
Reference - - - - 3.60 0.89 0.008

A bedroom with a large bed and a television

MotionCtrl CameraCtrl CamTrolReference SVD

Figure 3: Qualitative comparisons with finetuned methods. CamTrol’s outputs align well with
complex trajectories from reference video, while others fail to perceive subtle camera pose changes.
We provide videos in the supplementary materials for a clearer comparison.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details We compare our method with state-of-the-art works including MotionC-
trl (Wang et al., 2023) and CameraCtrl (He et al., 2024). To ensure a fair comparison, we employ
SVD (Blattmann et al., 2023a) as base model for all methods. SVD is originally trained on res-
olution of 576 × 1024, but SVD-based CameraCtrl only support 320 × 576. Since changing the
original resolution leads to suboptimal generation quality, we use 576 × 1024 for MotionCtrl and
CamTrol, then resize their outputs into 320× 576 for calculating metrics. For all methods, the num-
ber of frames and the decoding size of SVD are set to 14. We use 25 steps for both inversion and
generation processes.

Evaluation Details In quantitative evaluation, FVD (Unterthiner et al., 2018), FID (Heusel et al.,
2017) and IS (Saito et al., 2020) are used to assess video generation quality, and CLIPSIM (Wu
et al., 2021) quantifies the similarity between generated video and input prompt. For the accuracy
of camera motion, we adopt ParticleSFM(Zhao et al., 2022) and produce estimated camera tra-
jectories from generated videos, with the use of Absolute Trajectory Error(ATE) measuring their
differences compared to ground truth. Relative Pose Error (RPE) is calculated to assess between
consecutive frames how well the relative motions match expected ones including their transition
(RPE-T) and rotation part (RPE-R). Specifically, we randomly sample 500 prompt-trajectory pairs
from RealEstate10k (Zhou et al., 2018), and use the corresponding videos as reference for calculat-
ing FVD and FID. Since SVD is an image-to-video model, we generate the first frames using Stable
Diffusion (Rombach et al., 2022) by text prompts. We also compare the results produces by vanilla
SVD as a reference. For camera motion accuracy, we provide the evaluations on ground truth videos
as a lower bound of these metrics.
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Table 2: Computational analysis of inference process, evaluated under unified settings.
SVD MotionCtrl CameraCtrl CamTrol (t0 = 10)

Max GPU memory(MB) 11542 31702 26208 11542

Time (s) pre-process - - - 56
inference 11 32 42 8

A backyard with a patio and an umbrella.

M
o
ti
o
n
C
tr
l

C
am

er
aC
tr
l

C
am

T
ro
l

R
ef
er
en
ce

A person , black shirt, is typing on a keyboard...

Zoom Out

(a) general scenes (b) dynamics

Figure 4: Generalization comparisons. CamTrol can avoid domain collapse that rises from over-
fitting on certain datasets, adapting to more general scenes (Left, where input does not resemble real
scenes), and maintain video’s dynamics while adhering to desired camera movements (Right).

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

Quantitative Evaluation Quantitative evaluations are shown in Table 1. In the table, the best
results are in bold, and the second best is underlined. The performance of vanilla SVD (without
motion control) is indicated as SVD, while the lower bound of motion metrics provided by ground
truth videos is indicated as Reference. In terms of video quality, CamTrol attains comparable per-
formance with methods finetuned on the RealEstate10k dataset. For motion accuracy, CamTrol also
gets lowset score in ATE and RPE-T/R. The quantitative evaluation demonstrates CamTrol’s ability
to generate videos with both accurate camera motion and high visual quality.

Qualitative Analysis Qualitative comparisons are illustrated in Fig. 3. The reference trajectory in-
cludes zoom, pan and roll. While MotionCtrl and CameraCtrl fail to perceive subtle camera motions,
resulting in simple pan movement, CamTrol is able to follow the complex trajectory and generate
video with correct move. We also evaluate the generalization ability of different methods in generat-
ing more general scenes and dynamic content, the results are shown in Fig. 4. Since both MotionCtrl
and CameraCtrl are finetuned on limited scenes (i.e., real estate videos) with static content, they can
hardly generalize to other scenes, such as videos in non-realistic style or videos that include people.
As illustrate in Fig. 4, their motion controls in both situations are misaligned with input movements.
Furthermore, finetuning on such datasets leads to the loss of dynamics, which is a crucial element in
video generation. In comparison, CamTrol preserves most of the prior knowledge from video base
models, enabling it to handle general scenes as well as generate dynamic content. Relevant videos
are available in the supplementary materials.

Computational Analysis We provide the computational analysis in Table 2, including the max-
imum GPU memory required and the time consumption for all methods during inference process.
The evaluations are conducted under unified settings. We test on 576×320, with 25 generation steps,
the number of frames and decoding size of SVD are set to 14. As a training-free method, CamTrol

7
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Figure 5: Comparison with base model. Controlling camera motion via prompt engineering
doesn’t work at most times. Instead, CamTrol offers robust control towards video’s camera move-
ment in a training-free manner.
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Figure 6: Effectiveness of layout prior. Layout prior guidance compensates for the vacancies
(Left) and static contents (Right) caused by point cloud rendering.

requires no extra GPU memory during inference process compared with base model. This makes
it save 10-20GB of GPU memory than other methods under the same circumstances, and makes it
applicable running on a single RTX 3090. The major consumption of CamTrol comes from the time
rendering multi-view images. Since this process is currently sequential in time, i.e., t0 → t1 → t2,
a more parallel approach may be more time-efficient. We will leave this to future works. The results
of 576× 1024 resolution and more detailed settings can be found in the Appendix.

4.3 ABLATION STUDY

Comparison to Base Model To demonstrate that changes of camera motion are attributed to our
method rather than the innate capability of video model, we conduct ablation study to assess its
effectiveness. We add prompts describing certain camera moves (e.g. zooms out), letting video
model understand by itself. The results are shown in Fig. 5. It could be observed that even provided
with prompts indicating how camera should move, base model fail to produce correct results. In-
stead, CamTrol is able to implement designated motion control without any instructions from text
prompts. In Table 1, the comparison with vanilla SVD also demonstrate CamTrol’s effectiveness.

Effectiveness of Layout Prior We employ ablation study to validate the effectiveness of layout
prior guidance, illustrating its necessity from two aspects: the completeness of vacancies and dy-
namic of generated video. In Fig. 6, we showcase frames before and after noise prior guidance.
With camera pose changes, there appears regions unfilled in point cloud and causes blank spaces in
rendered images(left part); Besides, due to the static nature of point cloud, rendered images remain
stationary(right part). Noise layout prior could compensate for these flaws, finally produce videos
with inpainted vacancies and rationalized dynamics.

8
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Table 3: Quantitative effect of t0.

t0
Video Quality Motion Accuracy

FVD ↓ FID ↓ IS ↑ CLIP-SIM ↑ ATE ↓ RPE-T ↓ RPE-R ↓
t0 = 5 1079.88 68.52 7.14 0.3100 4.17 1.09 0.012
t0 = 10 778.46 68.06 7.05 0.3110 4.17 1.07 0.010
t0 = 15 754.14 67.98 7.00 0.3107 4.13 1.02 0.008

𝑡 0
=
0

𝑡 0
=
1
0

𝑡 0
=
2
0

Child in jeans and boots walking in the woods…

Figure 7: Effect of t0. Smaller t0 encourages
dynamics while larger t0 preserves camera
movements (Pedestal Down).
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Figurine of Superman raise his arms, on a base…

Figure 8: 3D rotation videos at different mo-
tion scales. CamTrol supports camera move-
ments over various scales.

Effect of Timestep t0 t0 is a crucial factor that influences the trade-off between generated video’s
diversity and its faithfulness to camera motions requirements. To investigate its effect on the output,
we conduct experiments with various t0 values, relevant results are shown in Fig. 7. As illustrated,
videos generated with larger t0 tend to conform better to camera motion requirements, but suffer
from decrease in dynamics; On the contrary, smaller t0 leads to more plausible generations but fails
to meet camera’s requirements, as latents at these timesteps carry more randomness. We also provide
quantitative evaluations of different t0 in Table 3. As t0 increase, CamTrol produces videos alike to
static, camera-moving scenes (which have lower FVD as we use RealEstate10k as reference videos)
with higher accuracy in motion control.

Generalization to Diverse Situations Our proposed CamTrol can be seamlessly plugged and
played under various scenarios, accommodating different base models, resolutions, generating
length, all in training-free style. We present visual results of its applications under different set-
tings, including CogVideoX (Yang et al., 2024b)(diffusion transformer model, 720×480 resolution,
49 frames) and VideoFusion (Luo et al., 2023)(decomposed diffusion process, 128×128 resolution,
16 frames), in Fig. 10. Our approach remains effective applied to alternative video base models,
resolutions and generating lengths, demonstrating its strong robustness and generalization ability.

4.4 FURTHER APPLICATIONS

3D Rotation Videos One of the most advantages of our method is it can generate videos with
rotating moves and produce outputs similar to 3D generation models (Voleti et al., 2024; Melas-
Kyriazi et al., 2024). While these 3D models need large-scale training on 3D dataset and could only
handle inputs in specific styles, our approach is able to deal with any type of images and achieve this
in a completely zero-shot manner. One example of this is shown in Fig. 8.

Hybrid and Complex Camera Movements By combining different basic camera trajectories,
CamTrol can support hybrid camera movements and endow generated video with cinematic charm.
Besides this, explicit motion modeling also equips CamTrol with the ability to support trajectories
containing precise extrinsics, and generate videos presenting any complicated camera movement.

9
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Zoom In

A snow-capped mountain peak towers above a tranquil alpine lake, mirrored perfectly in its glassy surface.

Zoom Out

Pan Left

Pan Right Tilt Down

Tilt Up

Input

Figure 9: Multi-trajectory video generation. CamTrol is able to generate videos with different
trajectories for one scene.

(a) CogVideoX-2b (b) VideoFusion
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A detailed wooden toy ship sails on blue carpet that mimics sea…

An elderly man sits at the water‘s edge, engrossed in his artwork… A construction worker looking down at city…

Vaporwave synthwave style Los Angeles street…

Figure 10: Applied onto CogVideoX (Yang et al., 2024b) and VideoFusion (Luo et al., 2023).
CamTrol can be plugged and played under various situations, accommodating different base models,
different resolutions, different generating lengths, all in a training-free manner.

Multi-trajectory Video Generation One natural application of our method is to generate multi-
trajectory videos for one scene. Since the point cloud is fixed once the reconstruction process fin-
ished, the consistency of the content between different trajectories is guaranteed, and we can easily
produce multiple camera-moving videos of this scene. We present this application in Fig. 9. More
results on multi-trajectory video generation could be found in the supplementary materials.

Camera Motion at Different Scales CamTrol supports camera movements at controllable scales.
By specifying different magnitudes of camera’s extrinsic matrix within point cloud spaces, rendered
images will exhibit varying degrees of motion, leading to videos with distinct scales of camera
movements. This further demonstrate the powerful controllablity of CamTrol, and provides a new
pathway for video’s customized camera control. We provide relevant visualization in Fig. 8.

5 CONCLUSION

In this paper, we propose a training-free and robust method CamTrol to offer camera control for
off-the-shelf video diffusion models. It consists of two-stage procedure including explicit cam-
era motion modeling in 3D point cloud space and video generation utilizing layout prior of noisy
latents. Compared to previous work, CamTrol does not require any additional finetuning on camera-
annotated datasets or self-supervised training via data augmentation, simultaneously, comprehensive
experiments demonstrate its superior performance in both generation video quality and motion align-
ment against other state-of-the-art methods. Furthermore, we show the ability of CamTrol general-
izing to various scenarios, as well as its impressive applications including unsupervised generation
of 3D rotation video, scalable motion control and dealing with complicated camera trajectories.
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A MORE RESULTS ON CAMERA CONTROL

We showcase additional qualitative results of CamTrol on various camera movements. As pdf for-
mat is not the best way to exhibit videos, we put them on our anonymous demo page:

Please Click Here for Our Video Results.

If not accessible, please refer to the supplementary materials for a quicker view to the demo page.

This demo page includes CamTrol-generated videos including basic camera motions (including
Zoom, Tilt, Pan, Pedestal, Truck, Roll, Rotate, Hybrid, Complicated, detailed definitions are in B),
hybrid motions (Zoom In first, then Pedestal Up, Zoom Out + Pedestal Up + Truck Left + Tilt Down
+ Pan Right) and complicated motions generated from precise camera extrinsics (extracted from
RealEstate10k (Zhou et al., 2018)).

Besides, it contains 3D rotation videos generated unsupervisedly from video base models (both
objects and scenes). These outputs share sort of similarity with outputs of 3D generation models, as
they all exhibit in a turning-table like way, which camera rotates around some objects. The difference
here is that 3D model, as trained on specific datasets, could only generate outputs in certain styles,
e.g., single static object with no background. Instead, our model could handle arbitrary image as
input, and generate a rotating-around video with proper dynamics. From this aspect, our method
could be seen as a infinite source of attaining 3D data. And by utilizing our method with stronger
backbones, video foundation models could truly become the largest source of 3D data as it should
be.

Furthermore, it contains additional results mentioned in ablation studies, e.g. controlling camera
motions at different scales, and the effectiveness of using layout prior compared with the raw output
given by video base model.

B DEFINITIONS OF BASIC CAMERA MOTIONS

We refer to the terminology in cinematography to describe different camera motions, definitions of
each type are detailed in Table 5.

To get consistent images from multiple views, we set camera motion as a trajectory of extrinsic
matrix {P1, ...,PN−1}, each including a rotation matrix and translation matrix representing cam-
era’s pose and position. For hybrid motions, CamTrol supports both spatial (i.e. moving several
basic moves simultaneously) and temporal (concatenation of basic motions sequentially) combina-
tions. In the case of complicated trajectories, one can directly use precise parameters for camera’s
extrinsic matrix as input to control video’s motion. Additionally, if these parameters not available, a
reference video with corresponding move can also serve as input. With the help of SFM algorithms
(e.g. COLMAP 1, ParticleSFM (Zhao et al., 2022)), camera motion can be easily estimated and used
for imitation. In this sense, CamTrol can also be seen as an unsupervised method to achieve video
motion transfer.

C VISUAL COMPARISONS WITH STATE-OF-THE-ARTS

Sec. 3 showcases some qualitative comparisons between CamTrol and different state-of-the-art ap-
proaches. For better visualization and comparison, we provide more video results in the supplemen-
tary materials. Please check them if needed.

D IMPLEMENTATION DETAILS

For text prompt input, we use Stable Diffusion v2-1 2 or Stable Diffusion XL 3 to generate the initial
image. The inpainting model we apply is Stable Diffusion inpainting model proposed by runway

1https://github.com/colmap/colmap
2https://huggingface.co/stabilityai/stable-diffusion-2-1
3https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
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Table 4: Computational analysis of on 576× 1024.
SVD MotionCtrl CameraCtrl CamTrol (t0 = 10)

Max GPU memory(MB) 34236 71096 - 34236

Time (s) pre-process - - - 149
inference 32 54 - 22

Table 5: Definitions of camera motions. We follow the terminology in cinematography to describe
different camera movements.

Camera Motion Directions Definition

Zoom In Camera moves towards or away from a subject.Out

Tilt Up Rotating the camera vertically from a fixed position.Down

Pan Left Rotating the camera horizontally from a fixed position.Right

Pedestal Up Moving a camera vertically in its entirety.Down

Truck Left Moving a camera horizontally in its entirety.Right

Roll Clockwise Rotating a camera in its entirety in a horizontal manner.Anticlockwise

Rotate Clockwise Moving a camera around a subject.Anticlockwise

Hybrid Combinations Spatial and temporal combination of basic motions.

Complicated Arbitrary Camera extrinsic matrix or a reference video as input.

4, and backward step of inpainting is set to 25. We deploy ZeoDepth 5 as depth estimation model.
The classifier-free guidance scale follows default setting of base models themselves. We use SVD’s
default setting of 6 fps for video generation, and process reference videos to 6 fps for FVD and FID
calculation. The complete procedure of CamTrol is elucidated in Algorithm 1.

For computational analysis, we set both number of frames and decoding size to 14, generation steps
to 25. We do not apply xformers in all approaches. The computational analysis at 576 × 1024
resolution is shown in Table 4. SVD-based CameraCtrl only support resolution at 320× 576.

E CHOICE OF 3D REPRESENTATION

In Sec. 3.1, we designate point cloud as the intermediate 3D representation for explicit camera
motion modeling. Doubts may arise why we do not use more complex 3D representation which
might be more useful. Here we take the most prevalent 3D representation: 3D Gaussian Splatting 6,
as example to elaborate the benefit of using point cloud in three aspects:

Firstly, concerning the input, point cloud is able to construct the whole scene from one single in-
put image combining techniques of depth estimation and inpainting. GS, though also an explicit
3D representation, requires optimization following images from different views, which means it is

4https://huggingface.co/runwayml/stable-diffusion-inpainting
5https://github.com/isl-org/ZoeDepth
6https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Algorithm 1: Training-free camera control for video generation

Input: Text prompt p, camera motion P, input image I0 (optional).

// Stage I: Camera Motion Modeling:

1 for i=1,...,N-1 do
2 Ĩi = inpainting(Ii−1,Pi, p) ;
3 D̃i = depth(Ĩi) ;
4 while not converged do
5 di = argmind

(∑
M

∥∥∥ϕ([Ĩi, dD̃i],K,Pi)− Pi−1

∥∥∥)
6 end
7 Pi = ϕ([Ĩi, diD̃i],K,Pi) ;
8 Ii = ψ(Pi,K,Pi) ;
9 end
// Stage II: Layout Prior Generation:

10 V0 ← {Ii}N−1
i=0 ;

11 Sample random noise ϵ ∼ N (0, I) ;
12 Motion inversion Vt0 ←

√
ᾱt0V0 +

√
1− ᾱt0ϵ ;

13 for t=t0,...,1 do

14 Vt−1 ←
√
αt−1

(
Vt−

√
1−αtϵ

(t)
θ (Vt)√

αt

)
+
√
1− αt−1 − σ2

t ϵ
(t)
θ (Vt) + σtϵ

15 end

neither capable of handling single input image, nor can it leverages 2D inpainting to complete the
scene gradually.

Secondly, from the aspect of time, point cloud can directly lift 2D points onto 3D spaces, while
3DGS demands optimization on each scenario. As a training-free method, our method takes nearly
no time to generate a video after multi-view images are acquired, but would need more time if 3DGS
were applied.

Lastly, from the task itself, the target of stage I is not precisely reconstruct the 3D scene but only
offer a rough layout guidance, in this context, rendered images from point cloud qualify enough and
no further refinement on 3D reconstruction is necessary.

From the analysis, point cloud is quite qualified serving as a rough layout guidance in a relatively
quick speed, without any further optimization and redundant multi-view images as input. The use
of point cloud allows our algorithm to be totally training-free and optimization-free, simultaneously
being able to produce camera-moving videos quickly with merely one single image or text prompt
as input.

F DETAILS ABOUT GENERATING 3D ROTATION VIDEOS

3D generation models (Voleti et al., 2024; Melas-Kyriazi et al., 2024; Shi et al., 2023; Chen et al.,
2024; Han et al., 2024) are trained on highly-regulated 3D datasets, these datasets are hard to collect,
and consist only a limited variety of data types (e.g. single static objects with no background). As
a consequence, 3D generation models exhibit very constrained output distribution and could only
produce results in certain styles. CamTrol avoid these problems of arduous data collecting, laborious
finetuning and output collapse by utilizing the layout prior hidden in video foundation models. Not
only does it require no training, but this advantage also benefits CamTrol from inheriting most of
the prior knowledge inside video foundation models, e.g., the diversity of scenarios, the dynamic of
moving objects, temporal consistency, etc. Thus CamTrol is able to generate dynamic 3D content,
both objects and scenes, in a totally unsupervised and training-free manner, this is what other method
cannot achieve yet.
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Compared with regulated datasets, the problem of processing wild pictures in 3D is that some of
the parameters is unknown. In Sec. 3.1, we’ve mentioned that the camera intrinsic matrix K and
initial extrinsic matrix P0 are set by convention as they’re usually intractable. Another crucial
parameter concerning 3D video generation is the distance between camera and the content of input
image (denote as f ), note that input image could be synthetic or real. Considering most camera
rotations are done around the center point, we extract a patch from the very center of the input
image, conducting depth estimations on the it and define the distance f as the averaged depth. The
rotation and transition matrix during camera moving can be formed as :

Ry =

[
cos θi 0 − sin θi
0 1 0

sin θi 0 cos θi

]
, t =

[
f sin θi

0
f − f cos θi

]
,

where f =
1

|P |
∑

(j,k)∈P

D(x0 + j, y0 + k).

(6)

Here i ∈ [0, N−1] and θi refers to rotation angle around y axis at step i,D denotes depth estimation
of image, P represents the patch around central point (x0, y0). In our experiment, we choose (j, k) ∈
[−10, 10] as the size of patch.

G MOTION BLUR, PROBLEMS AND SOLUTIONS

Videos produced by CamTrol need to satisfy certain camera movement, and some drastic perspective
changes might cause visible trails, recognised as motion blur of objects or scenes. This phenomenon
will appear to be more indispensable when video base model holds a relatively small generation
length (e.g. 16 frames) as well as the motion scale becomes larger (e.g. tilt up for 60 degrees or
more). To avoid blur issues in controlling video camera motion, we propose several solutions as
below:

1. According to the analysis above, the blur issue is caused by limited generation frames
and large camera movement, thus the most intuitive solution is to either cut down mo-
tion scale or utilize a more capable generation model. For severe perspective changes, the
optimal approach would involve employ video foundation models that support larger gen-
eration length (e.g. CogVideoX (Yang et al., 2024b) supports generating video with 49
frames). This allows model to manage motions of equivalent magnitude while experienc-
ing a smaller moving range between adjacent frames, thereby brings effective alleviation
to blur problems.

2. One can also stack the results of multiple generations to form a complete outcome, i.e.,
treating the last frame of previous generation as the starting frame for the next, and integrate
them as a whole. This approach is more suitable when utilizing a image-to-video (I2V) base
model. Since most open-source video foundation models are text-to-video (T2V), one may
consider increasing the step of camera motion inversion t0, which guarantees more fidelity
towards input images’ content (and motion).

3. Besides the above two approaches, it is as well a common and convenient choice to apply
frame interpolation towards the output. Lots of off-the-shelf frame interpolation models
are open-sourced and could be found on github.

4. Lastly, if video length is not being able to alter, it may be necessary to increase the fps of
generated videos for better visualization. Although larger fps leads to shorter video dura-
tion, it simultaneously makes the visual persistence brought by motions less pronounced,
which reduce blur visually.

In our experiments, we take raw output in all settings.
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