
DFD: Distilling the Feature Disparity Differently for Detectors

Kang Liu 1 2 Yingyi Zhang 3 Jingyun Zhang 2 Jinmin Li 2 Jun Wang 2 Shaoming Wang 2 Chun Yuan 1 †

Rizen Guo 2 †

Abstract

Knowledge distillation is a widely adopted model
compression technique that has been successfully
applied to object detection. In feature distillation,
it is common practice for the student model to
imitate the feature responses of the teacher model,
with the underlying objective of improving its
own abilities by reducing the disparity with the
teacher. However, it is crucial to recognize that
the disparities between the student and teacher
are inconsistent, highlighting their varying abili-
ties. In this paper, we explore the inconsistency in
the disparity between teacher and student feature
maps and analyze their impact on the efficiency of
the distillation. We find that regions with varying
degrees of difference should be treated separately,
with different distillation constraints applied ac-
cordingly. We introduce our distillation method
called Disparity Feature Distillation(DFD). The
core idea behind DFD is to apply different treat-
ments to regions with varying learning difficul-
ties, simultaneously incorporating leniency and
strictness. It enables the student to better assim-
ilate the teacher’s knowledge. Through exten-
sive experiments, we demonstrate the effective-
ness of our proposed DFD in achieving signifi-
cant improvements. For instance, when applied
to detectors based on ResNet50 such as Reti-
naNet, FasterRCNN, and RepPoints, our method
enhances their mAP from 37.4%, 38.4%, 38.6%
to 41.7%, 42.4%, 42.7%, respectively. Our ap-
proach also demonstrates substantial improve-
ments on YOLO and ViT-based models. The code
is available at https://github.com/luckin99/DFD.

1Tsinghua University 2Tencent WeChat Pay Lab33 3Tencent
Youtu Lab. Work was done when Kang Liu was an in-
tern at Tencent WeChat Pay Lab33. †Correspondence to:
Chun Yuan <yuanc@sz.tsinghua.edu.cn>, Rizen Guo <rizen-
guo@tencent.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
The ongoing advancements in deep learning have prompted
increasingly deep and wide models to tackle progressively
complex tasks. Correspondingly, these larger models come
with an increase in the number of parameters and compu-
tational complexity. This results in more time consump-
tion and memory usage, posing great challenges for real-
time applications in various industries. Object detection is
a computationally intensive task that requires processing
large amounts of data in real-time, thus the inference speed
and size of the parameters are crucial. Knowledge distilla-
tion is an important technique to address these challenges.
By introducing additional supervision provided by a com-
plex teacher model, the performance of the compact student
model will be improved with knowledge distillation. Many
approaches(Romero et al., 2014; Guo et al., 2021; Yang
et al., 2022b; Cao et al., 2022) have achieved significant
improvements in detectors by supervising the student using
intermediate features from the teacher. These methods gen-

Figure 1. Visualization of spatial attention. We use RetinaNet with
ResNeXt101 as the teacher model and RetinaNet with ResNet50
as the student model. We use a different color bar to visualize the
L1 distance between teacher’s and student’s spatial attention.

erally enhance the performance of the student by enforcing
it to mimic the teacher’s feature. Hence, the difference in
feature responses is crucial for the effectiveness of feature
distillation. To investigate this issue, we visualize the spatial
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attention of the teacher and student model in Fig.1.

Firstly, we observe that both the student and teacher models
generate strong responses at specific regions in Fig.1(b)(c),
with the majority of attention concentrated in small areas
within the foreground bounding boxes. Additionally, certain
regions in the background also exhibit a noticeable level
of attention. The spatial distribution information is crucial
for accurate detection, as the specific regions of response
aid the detectors in accurately localizing the target objects.
These visualization results differ from those mentioned in
FGD(Yang et al., 2022b) and Defeat(Guo et al., 2021), as
they distinguish between foreground and background based
on the bounding boxes and perform distillation separately
for each. The response of the feature maps not only lacks a
one-to-one correspondence with the foreground-background
distinction but also lacks correlation with the refined target
mask region in the image. The distinction between fore-
ground and background is based on the perspective of ob-
ject detection rather than knowledge transfer. Secondly, by
calculating the L1 distance between the attention maps of
the student and teacher models in Fig.1(d), we observe that
the disparities in their responses are more intricate. There
are notable differences in the intensity of disparity at var-
ious locations, which are present in both foreground and
background regions. This disparity in response distribution
reflects, to some extent, the varying capabilities between
the student and teacher models. The disparities in capabili-
ties make it challenging for students to learn under overly
strict constraints, prompting the use of weaker constraints
in some methods(Cao et al., 2022; Yang et al., 2020) to
enhance distillation performance. However, there is a ques-
tion regarding whether weaker constraints can lead to the
development of lazy students.

Table 1. Comparison of distillation on different regions. Teacher:
RetinaNet-ResNeXt101. Student: RetinaNet-ResNet50. HD: High
disparity region. LD: Low disparity region. Split: Split these
regions, and use different weights for the distillation losses of dif-
ferent parts. DC: Using different constraints for different regions.

Model HD LD Split DC mAP

RetinaNet
RX101
-R50

- - - - 36.4
✓ - - - 39.8
- ✓ - - 38.2
✓ ✓ - - 39.6
✓ ✓ ✓ - 40.0
✓ ✓ ✓ ✓ 40.4 (Ours)

To investigate whether these observation impact the distil-
lation performance, we conducted a simple experiment as
shown in Table.1. We divided the feature maps into two re-
gions, namely high disparity regions(HD) and low disparity
regions(LD), based on an L1 distance threshold of spatial
attention. We applied the MSE loss to directly guide the
student in mimicking the teacher’s features in different re-

gions. Surprisingly, distilling only the high disparity regions
outperformed distilling the entire feature map without dif-
ferentiation, which indicates that these two regions hold dif-
ferent significance. The high disparity regions highlight the
differences in capabilities between the teacher and the stu-
dent, we conducted separate distillation on these two regions
with a higher weight assigned to the high disparity regions.
We can find that the performance is improved from 39.6 to
40.0 mAP(+0.4). Taking into consideration that the high
disparity regions pose greater learning challenges and to
some extent reflect the structural differences within the mod-
els themselves, we applied weaker constraints specifically
to these regions while maintaining strict constraints(MSE)
on the low disparity regions.By leveraging this different
constraints, we further improve the performance to 40.4
mAP(+0.8). These results convincingly demonstrate that
the varying difficulty levels across these regions significantly
impact the efficacy of distillation. Based on the aforemen-
tioned observations, we proposed our Disparity Feature
Distillation(DFD), a distillation method that combines both
leniency and strictness simultaneously. DFD have devised
distinct distillation strategies for different regions, taking
into account the disparities in feature maps between the
teacher and student models. For high disparity regions, we
diminish the requirement for students to learn exclusively
from the teachers’ features by employing weaker super-
vision through a learnable transformation module. These
disparities indicate differences in ability between the student
and teacher models. This approach aims to prevent students
from being misguided by overly strict constraints. For re-
gions with low disparities, where students are capable of
fully acquiring knowledge to some extend, we employ strict
constraints to ensure that students learn as comprehensively
as possible. We conducted experiments using our method
on various detectors and achieved state-of-the-art (SOTA)
performance. In summary, the contributions of this paper
can be outlined as follows:

• We investigated the characteristics of response distri-
butions between the student and teacher models and
explored the impact of spatial disparities in responses
on the efficiency of knowledge distillation.

• We proposed DFD, a distillation method that com-
bines both leniency and strictness simultaneously. This
approach helps the student better learn the teacher’s
knowledge by utilizing different learning strategies
based on varying difficulty levels.

• We validated the performance of DFD on multiple
detectors and achieved SOTA on the COCO dataset.
Additionally, we extended the application of DFD to
segmentation and pose estimation, demonstrating the
scalability of DFD.
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2. Related Work
2.1. Object Detection

Object detection is a challenging and essential computer
vision task. It requires detecting foreground targets in the
images and assigning correct category labels to these targets.
Most detectors can be divided into two types, one-stage
detectors and two-stage detectors. For one-stage detectors
such as RetinaNet(Lin et al., 2017), Reppoints(Yang et al.,
2019) and YOLO(Redmon et al., 2016), the detection head
will directly perform bounding box regression and classifi-
cation on the feature maps. In contrast, two-stage detectors
like Faster-RCNN(Ren et al., 2015) and Mask-RCNN(He
et al., 2017) generate candidate regions through Region Pro-
posal Network(RPN) before the detector head. As a general
distillation method, our method can be applied to both types
of detectors.

2.2. Knowledge Distillation

By extracting additional information from the teacher net-
work as supervision signals, knowledge distillation can help
student models achieve better performance. Teacher models
usually have stronger performance but with heavy parame-
ters and slower running speeds. Student models are usually
lighter and faster than teacher models but with weaker per-
formance. Knowledge distillation be categorized into logits-
based(Hinton et al., 2015), feature-based(Romero et al.,
2014; Yang et al., 2023b; Liu et al., 2023a), and relation-
based distillation(Park et al., 2019; Yang et al., 2022a). Fit-
net(Romero et al., 2014) first used feature maps for distilla-
tion. Many knowledge distillation algorithms are designed
for image classification(Yang et al., 2023a; Zhao et al.,
2022). Chen et al.(Chen et al., 2017) first introduced knowl-
edge distillation into object detection, including the distil-
lation of feature maps and detector heads. GID(Dai et al.,
2021) distilled inconsistent object instances detected by stu-
dents and teachers. Sun et al. (Sun et al., 2020) proposed
a distillation method that simultaneously distills features,
classification heads, and bounding box regression heads.
Some distillation methods noticed the inconsistency of fore-
ground and background in object detection. Defeat(Guo
et al., 2021) tried to distill the foreground and background
with different weights. FGD(Yang et al., 2022b) used anno-
tation region masks to divide foreground and background
regions for distillation with different weights and introduced
global distillation. However, these methods only considered
this issue from the perspective of object detection but did
not consider it from the perspective of distillation. Some
methods have been proposed to impose weak constraints
to prevent excessive constraints from misleading students’
training. PKD (Cao et al., 2022) helps students learn better
from stronger teachers by normalizing the feature maps of
student and teacher. MGD(Yang et al., 2022c) restores ran-

domly masked features under the guidance of the teacher,
allowing students to have more freedom to learn. While
these methods impose more relaxed constraints on students,
it may lead to the risk of training a lazy student.

3. Method
3.1. Preliminaries

The feature-based distillation method has been widely uti-
lized in object detection(Romero et al., 2014). Typically,
these methods extract feature maps generated by the inter-
mediate layers of the teacher networks, which are used as
additional supervisory information. Generally, The feature-
based distillation methods can be formulated as:

Lfea =

C∑
k

H∑
i

W∑
j

(
FT
i,j,k − FS

i,j,k

)2
(1)

where Lfea represents the distillation loss of feature mimick-
ing, FT and FS are the feature maps from teacher and stu-
dent network. C,H,W denote the channel number, height,
and width of the feature map.

3.2. Disparity Feature Distillation

The overall architecture of disparity feature distilla-
tion(DFD) is illustrated in Figure 2. Specifically, we extract
the feature maps FT and FS and then proceed to calculate
the spatial attention of both the teacher and student models:

A(F ) = H ·W · softmax

(
1

C
·

C∑
c=1

|F |

)
(2)

By compressing channel information, we obtained spatial
attention maps A(FT ) and A(FS) of size N × H × W .
Here, A(F ) is a computational formula where the input
feature is denoted as F . Then we calculate the L1 distance
to obtain the spatial attention disparity map:

D =
∣∣A(FT )−A(FS)

∣∣ (3)

D indicates the difference in spatial attention distribution
between the student and teacher with shape N ×H ×W .
We use the mean of the disparity map D as the threshold
P to partition the regions, which allows the binary map to
change during the training process dynamically.

Maski,j =

{
0, if Di,j < P
1, Otherwise (4)

Based on this adaptive binary map, features are divided
into two parts, namely high disparity regions RHD and low
disparity regions RLD. In order to better convey information
from the teacher, a learning strategy that combines leniency
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Figure 2. An illustration of over all architecture of our DFD. We calculate the L1 distance of spatial attention between the teacher and
student model, and use its mean as the threshold to divide it into high disparity regions(HD) and low disparity regions(LD). Then we use
different constraint methods to calculate distillation losses for these two regions separately. The specific structure of the transformation
module is shown in Figure.3.

and strictness is used. For these two parts, RHD and RLD,
strict supervision and weak supervision were selected to be
provided. The distillation losses can be described as:

LHD =

C∑
k

H∑
i

W∑
j

(
FT
i,j,k − ftrans(F

S
i,j,k)

)2
, i, jϵRHD

(5)

LLD =

C∑
k

H∑
i

W∑
j

(
FT
i,j,k − FS

i,j,k

)2
i, jϵRLD (6)

where LHD and LLD refer to the loss functions computed
separately for the high disparity and low disparity regions.
As illustrated in Figure.2, we employ the Mean Squared
Error (MSE) loss as a strict constraint in a point-by-point
manner for low disparity regions(LD). Simultaneously, we
pass the student’s features through a learnable transforma-
tion module ftrans then employ MSE loss to align them
with the teacher’s features, establishing our weak constraint
for high disparity regions(HD). This module can be trained
along with the student network to form appropriate con-
straints during the training process adaptively. We will
further discuss these in ablation studies.

3.3. Overall Loss

By applying our DFD, the overall loss can be formulated as:

Ltotal = Ltask + α · LHD + β · LLD (7)

where Ltask is the training loss of the student in the specific
task, α and β are two weight coefficients used to control the
relative weight of different distillation losses. Our method is
simple and general and contains only two hyper parameters.

4. Experiments
4.1. Experiment Setup

To evaluate the effectiveness of our method, we conduct
comprehensive experiments on the COCO2017 dataset (Lin
et al., 2014) using 8 Tesla V100 GPUs. This dataset com-
prises 80 object categories, and we use the default split of
120k images for training and 5k images for testing. We
report the mean Average Precision (mAP) as the evaluation
metric. We train all detectors for 24 epochs (2x schedule)
or 12 epochs (1x schedule) with the stochastic gradient de-
scent (SGD) optimizer. The optimizer is configured with
a momentum of 0.9 and a weight decay of 0.0001. We
select all the feature maps obtained after the neck of each
model for distillation. Our implementation is based on
MMDetection (Chen et al., 2019) with Pytorch (Paszke
et al., 2019) framework, and we follow the default train-
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Table 2. The main results of different kinds of detectors on COCO dataset. RetinaNet: anchor-based one-stage detector. Faster-RCNN:
two-stage detector. RepPoints: anchor-free one-stage detector.

Teacher Method schedule mAP AP s AP m AP L

RetinaNet ResNext101

RetinaNet ResNet50 2x 37.4 20.0 40.7 49.7
FGD(Yang et al., 2022b) 2x 40.9 23.1 45.1 54.9
MGD(Yang et al., 2022c) 2x 41.2 23.6 45.3 54.6

PKD(Cao et al., 2022) 2x 41.2 23.0 45.4 55.6
Ours 2x 41.7(+4.0) 24.4 46.0 55.7

CascadeMaskRCNN ResNeXt 101

FaterRCNN ResNet 50 2x 38.4 21.5 42.1 50.3
FGD(Yang et al., 2022b) 2x 42.0 23.8 46.4 55.5
MGD(Yang et al., 2022c) 2x 42.1 23.7 46.4 56.1

PKD(Cao et al., 2022) 2x 41.4 22.7 45.1 56.0
Ours 2x 42.4(+4.0) 23.9 46.8 56.3

Reppoints ResNeXt101

Reppoints ResNet 50 2x 38.6 22.5 42.2 50.4
FGD(Yang et al., 2022b) 2x 42.0 24.0 45.7 55.6
MGD(Yang et al., 2022c) 2x 42.3 24.4 46.2 55.9

PKD(Cao et al., 2022) 2x 42.4 24.3 46.7 56.4
Ours 2x 42.7(+4.1) 24.8 46.7 56.2

ing settings of MMDetection. For YOLO experiments, we
use MMYOLO(Contributors, 2022) framework. The inher-
iting strategy (Kang et al., 2021) is an effective method
that can improve the student network’s convergence perfor-
mance and speed without introducing additional comput-
ing costs. In the main experiments, we use this strategy
to initialize the student which has the same head struc-
ture as the teacher. For all one-stage detectors, we use
α = 0.000028 and β = 0.00001. For two-stage detectors,
we use α = 0.00000035 and β = 0.0000001.

4.2. Main Results

We conduct experiments on three different types of detectors
to verify the performance of our method. We select several
methods (Yang et al., 2022b;c; Cao et al., 2022) with out-
standing performances for comparison. For anchor-based
one-stage detector RetinaNet(Lin et al., 2017), we choose
RetinaNet with ResNext101 as the teacher and RetinaNet
with ResNet50 as the student. Our method improve the
performance of the student network from 37.4 mAP to 41.7
mAP. We achieve a gain of + 4.0 mAP. For anchor-free de-
tector RepPoints(Yang et al., 2019), our method improves
the performance of the student model from 38.6 mAP to 42.7
mAP, achieving a gain of + 4.1 mAP. Our method is also
applicable to two-stage detectors. We improve the perfor-
mance of FasterRCNN-Res50 from 38.4 mAP to 42.4 mAP,
achieving a gain of + 4.0 mAP. These results demonstrate
that our DFD can better transfer the teacher’s knowledge to
the students and can be applied to various types of detectors.

4.3. Experiments of Other Detectors

To further demonstrate the performance of our method, we
selected some other networks for experiment as shown in
Table.3. We first test our method on the different back-
bones, we choose Swin Transformer (Liu et al., 2021) for
experiment. When using MaskRCNN with Swin-Small, our
method improved MaskRCNN with Swin-Tiny from 42.7
mAP to 44.4 mAP. These results demonstrate that our DFD
is not only effective for CNN-based models and applicable
to transformer-based models. YOLOv6(Li et al., 2022) is
an advanced detector that exhibits remarkable performance
and fast inference speed. We select YOLOv6-Small as the
teacher and YOLOv6-Tiny as the student. Our method im-
prove the student’s performance from 40.6 mAP to 41.7
mAP. These results demonstrate the robust performance and
versatility of our approach.

Table 3. Experiments of other detectors on COCO dataset. We
performed MaskRCNN based experiments baesd on MMDetec-
tion(Chen et al., 2019) and YOLOv6 experiments based on MMY-
OLO(Contributors, 2022).

Method Schedule mAP

MaskRCNN-SwinS(Teacher) 1x 48.2
MaskRCNN-SwinT(Student) 1x 42.7
PKD 1x 43.9
Ours 1x 44.4

Method Epoch mAP

YOLOv6-Small(Teacher) 400 44.0
YOLOv6-Tiny(Student) 300 40.6
PKD 300 41.3
Ours 300 41.7
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Table 4. Experiments with progressively stronger teacher. Faster-
RCNN with ResNet50 is uniformly used as the student model. We
train all models with 1x schedule on COCO dataset.

Teacher Method Schedule mAP

FasterRCNN R101
39.8

student 1x 37.4
PKD 1x 39.6
Ours 1x 39.7

FasterRCNN Rx101
41.2

PKD 1x 40.0
Ours 1x 40.5

MaskRCNN Rx101
42.2

PKD 1x 40.5
Ours 1x 41.1

Table 5. Test results of different transformation modules. We train
all models with 1x schedule on COCO dataset and we apply these
modules to the whole feature maps.

Teacher Method Schedule mAP

RetinaNet
ResNext101

RetinaNet R50 1x 36.5
Conv1-1 1x 40.1
Conv3-3 1x 40.1

Conv1-3-1(0.5C) 1x 39.8
Conv1-3-1(C) 1x 40.1

Conv1-3-1(2C) 1x 40.2

4.4. Experiments with Progressively Stronger Teachers

To test the applicability of our method, we conducted ex-
periments using different teacher-student pairs. The results
are shown in Table 4. We used FasterRCNN- ResNet50
as the student model for all experiments and tested our
method with various teacher models. We first used Faster-
RCNN as the teacher. When using the backbone network
ResNet101 and ResNext101, our method improved the stu-
dent by +2.3 mAP and +3.1 mAP, respectively. When using
MaskRCNN-ResNext101, our method improved the stu-
dent’s performance by +3.7 mAP. Our results surpassed
those of PKD for all teacher-student pairs.

4.5. Design of Transformation Module

To establish a suitable weak constraint, we choose to de-
sign a transformation module to implement it. This module
can be trained along with the student network to form ap-
propriate constraints during the training process adaptively.
We test several alignment modules, and their performances
are shown in Table 5. To avoid the transformation module
from requiring excessive training and interfering with the
student network’s training, we only experiment on com-
pact convolution-based transformation modules. We use the
most fundamental 1×1 convolutions and 3×3 convolutions
to compose the transformation module. ReLU are applied
between different convolutional layers. For example, as

Figure 3. Experiment of transformation module. (a). The structure
of the transformation module we used. (b). L2 distance during the
training.

shown in Table 5, Conv1-1 represents the sequential use of
two 1× 1 convolutions, with ReLU added between the con-
volutional layers. As shown in Figure 3 (a), Conv1-3-1(2C)
represents the sequential use of 1×1 convolution, 3×3 con-
volution, and 1×1 convolution. Simultaneously, the channel
size is expanded to 2C during the first 1× 1convolution and
then transformed back to C during the last 1×1 convolution.
According to the experimental results in Table.5, we ulti-
mately choose to use Conv1-3-1(2C) as our transformation
module. We also measured the L2 distance between student
and teacher features after using this transformation module
and MSE loss, which are shown in Figure 3 (b). We can
find that through this transformation module, students can
adaptively establish constraints with teachers and retain a
certain level of disparity.

4.6. Comparison with Latest Methods

In order to compare the performance of DFD, we selected
several latest relevant methods for comparison. For fair com-
parison, we report their original results and replicate ours
under their settings. As shown in Table.6, DFD outperforms
DiffKD(Huang et al., 2023) and CTFD(Liu et al., 2023b) in
both RetinaNet and Reppoints.

Table 6. Comparison with latest methods.
Model Method mAP

RetinaNet
ResNeXt101
-ResNet50

DiffKD(Huang et al., 2023) 40.7
CTFD(Liu et al., 2023b) 41.0

Ours 41.2

RepPoints
ResNeXt101
-ResNet50

DiffKD(Huang et al., 2023) 41.7
CTFD(Liu et al., 2023b) 42.0

Ours 42.5
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Table 7. Results of pose estimation on COCO-Body and segmenta-
tion on Cityscapes.

Pose estimation Method Input Size mAP

Heatmap Res50 Teacher 256 × 192 71.8

Heatmap
MobileNetV2

student 256 × 192 62.0
CWD 256 × 192 62.2
Ours 256 × 192 62.6

Segmentation Method Input Size mAP

PspNet Res101 Teacher 512 × 512 78.34

PspNet
Res18

student 512 × 512 69.85
CWD 512 × 512 73.53
Ours 512 × 512 73.74

Table 8. The performance of using different constraints in different
regions. Teacher: RetinaNet ResNeXt101. Student: RetinaNet
ResNet101. TF: Using transformation module. HD: high disparity
regions. LD: low disparity regions.

HD LD Schedule mAP

MSE MSE 1x 39.7
TF TF 1x 40.2
TF - 1x 39.9
- TF 1x 39.4

MSE TF 1x 39.9
TF TF + MSE 1x 40.2
TF MSE 1x 40.4

4.7. Task Extension and FGD Comparison

DFD partitions regions by computing the differences in fea-
tures, allowing it to be applied to various tasks. FGD(Yang
et al., 2022b) relies on annotations to compute foreground
regions, making it challenging to extend its applicability.
Pose estimation and segmentation are tasks that also require
attention to spatial distribution information. Our method
can be effectively extended to these tasks, as shown in Ta-
ble.7. DFD demonstrates excellent performance on heatmap-
based models for pose estimation tasks on the COCO-Body
dataset. Additionally, it shows significant improvements
on segmentation models when evaluated on the Cityscape
dataset(Cordts et al., 2016). It is worth noting that due
to the need to compute the annotation bounding boxes re-
gions, FGD requires a longer computation time. Under the
same framework and environment, for Reppoints-Rx101
distills Reppoints-R50, FGD takes nearly 29 hours, while
our method only requires nearly 18 hours.

4.8. Combining Different Approaches

In this section, we will elaborate on how we combine dif-
ferent constraint methods to achieve better performance.
As shown in Table.8. The performance of using MSE and
transformation module separately is 39.7 mAP and 40.2

Table 9. Performance of different strict constraint methods. Stu-
dent: RetinaNet ResNet50. FT and FS represent the feature maps
of the teacher and the student, respectively.

Teacher Method Schedule mAP

RetinaNet
ResNext101

√
|FT − FS | 1x 40.0

|FT − FS | 1x 40.2
|FT − FS|2 1x 40.4
|FT − FS |4 1x 40.1

Table 10. Experiments of combining our method with other meth-
ods on COCO dataset. Teacher: RetinaNet ResNet101. Student:
RetinaNet Res50.

Teacher Method Schedule mAP

RetinaNet
ResNext101

MGD 1x 40.0
MGD + Ours 1x 40.3

PKD 1x 39.9
PKD + Ours 1x 40.3
PKD + MGD 1x 39.9

mAP. The results of using the transformation module in
significance and low disparity regions were 39.9 mAP and
39.4 mAP, respectively. We replace the high disparity area
with MSE, resulting in a decrease in performance. However,
using the transformation module in all regions while us-
ing MSE for additional constraints in low disparity regions
resulted in a performance of 40.2 mAP. The best result is
achieved by using the transformation module and MSE in
high and low disparity regions, respectively. Therefore, we
find that combining weak and strict constraint methods can
help students better learn teachers’ knowledge. We also test
the performance of different strict constraint methods, as
shown in Table.9. We consider not performing any opera-
tions and directly constraining the feature maps of teachers
and students point by point. According to Table.9, using L2
distance, i.e., MSE Loss, produce the best results.

Table 11. Performance of different distance function methods.
Teacher Method Schedule mAP

RetinaNet
ResNext101

RetinaNet R50 1x 36.5
L1 Distance 1x 40.4
L2 Distance 1x 40.2

4.9. Combining DFD with Other Methods

Several distillation methods have been proposed to prevent
excessive constraints from misguiding student training. For
example, PKD (Cao et al., 2022) normalizes feature maps
to help students learn better from a stronger teacher. MGD
(Yang et al., 2022c) restores randomly masked features un-
der the teacher’s guidance. Here we combine PKD and
MGD with our methods by utilizing them as weak con-
straint methods. As shown in Table.10, when replacing the
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Figure 4. Visualization of spatial attention. Student: RetinaNet Res50. We visual the spatial attention of the teacher and student models.
As a comparison, we also visualized the spatial attention of student after distillation with MGD and our method, respectively.

Table 12. Using different threshold functions. Here we use L1
distance maps as the difference map, and use different threshold
functions as thresholds for region partitioning.

Teacher Method Schedule mAP

RetinaNet
ResNext101

RetinaNet R50 1x 36.5
Medium 1x 40.1
Mean 1x 40.4

weak constraint method with MGD, we increased MGD
by 0.3 mAP. When replacing the weak constraint method
with PKD, we increased PKD by 0.4 mAP. At the same
time, we also test using MGD as a strong constraint and
PKD as a weak constraint and found that it can’t bring any
improvement, which further validates our idea.

4.10. Dsicussion of Area Selection Method

In this section, we discuss how to select different regions.
We first consider using different distance functions to mea-
sure the differences between the feature map of the student
and teacher, the results are shown in Table.11. By compar-
ing the results, it can be found that the best performance is
achieved when using L1 distance as the metric. Then we
discuss what threshold function can achieving better perfor-
mance, as shown in Table.12. In order to avoid introducing
additional hyper parameters and to ensure that this thresh-
old can adaptively change during training, we use different
statistics as the discriminative threshold. We tested the mean
and median for comparison. The results showed that using
the mean as the threshold achieved the best performance.

4.11. Visualization of Attention after Distillation

Our method combines strong and weak constraints to help
the student comprehensively learn the teacher’s knowledge.
To explore how our method affects the student’s characteris-
tics, we visualized the spatial attention of both the student
and teacher, as shown in Figure.4. The initial student dis-
plays a noteworthy difference from the teacher, exhibiting
incomplete and low-intensity responses to objects. After

Figure 5. The results of sensitive test. Teacher: RetinaNet
ResNeXt101. Student: RetinaNet ResNet101. We train the student
model with 1x schedule on COCO dataset.

training with MGD, the student’s features become more
sparse and have a stronger response intensity at crucial
points. However, the response to critical areas is still weak.
After training with our method, we obtained a response
in which the high attention areas matched the teacher’s
characteristics well. Moreover, our method exhibits a more
concentrated and intense response on the main target objects
compared to the teacher.

4.12. Sensitive Study of Hyper Parameter

Our method only has two hyper parameters, α and β. They
control two impacts: the relative scale of distillation losses
and task losses and the relative size of loss between high
and low disparity regions. Here we use RetinaNet for experi-
ments, the results are shown in Figure.5. We first conducted
sensitivity testing on β. We fixed α/β to 3, and the results
showed that our method is not sensitive to the scale of β.
Then we set the β to 0.00001 and adjust the relative size of
α/β. We find that the best results were achieved when α is
larger than β, which means the high disparity regions are
more important.

5. Conclusion
In this paper, we explore the imbalance of feature distillation
in object detection, which refers to the disparity in feature
map response between the student and the teacher. We inves-
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tigated the impact of this difference on distillation efficiency
and proposed our DFD based on this insight. We partition
the regions based on the magnitude of the difference and
applied distinct constraints for each of them. Our method
has shown good distill performance on multiple detectors
and achieved SOAT performance.
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